1 A -
[} 2 "-"d.'
F # _.!'_ #
-.'I.I -
A7 =
- --;‘ ‘;:"__l _.::.;.r

&

-

- 3 = _J

U I
.."Il- f{ | k. f_ * e i I F
i o :
P Parallel Query Tuning

computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.
Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error

by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this

¥
"
Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
§ Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
| system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
this Work, and is not responsible for any errors or omissions.

A -

226 Oracle Performance Tuning 101

Myth & Folklore
Using parallelism for SQL operations will always result in performance increases.

Fact

Using parallelism for queries or for DML statements (Oracle8 and above) will not
always increase the performance. If it were that simple, we would all be using
parallelism on everything in sight and all those high-paid Oracle performance-tuning
experts and consultants would be looking for other careers. However, if parallelism
is used judiciously in an environment that is conducive (you design it to be conducive),
it can dramatically improve performance. Otherwise, it has potential to paralyze
your system.

gy © youwantto use and tune parallelism without paralyzing your

_ = system! In this chapter, we will share with you how to do just that.

) Please do not get confused between Parallel Query (PQ) and Oracle

 Parallel Server (OPS) or whatever they call it these days (Oracle9i Real
Application Clusters?). They are two totally different things. In this

chapter, we deal with PQ. Even though PQ sounds like an extra charge option

(which it was once upon a time), today it is part of the Enterprise Edition of Oracle

and is installed when you install the Oracle RDBMS.

When Oracle executes a SQL statement that does not use parallelism, there is
only a single process involved in completing the task. But when the same statement
is executed with parallelism, Oracle divides the work and assigns it to multiple
processes. By doing so, the work gets done faster, but only if the environment is
conducive to parallelism. That is the theory behind parallelism. But optimal
implementation of PQ is another story.

What Is Parallelism and
How Does Oracle Do It?

Remember the old math problem from school: If one worker takes eight hours to do
a particular job, how much time will two workers take when the job is done together?
Was the answer four hours? Well, it may be in theory. In reality, however, that may
not be the case. If those workers interrupted each other, talked about their weekend
plans or last night’s ball game while trying to get the job done, it may take more
than eight hours for them to complete the job. But if their work was properly managed
to keep such interruptions at bay, they could get the job done faster. The same is
true for parallelism. It needs proper design, adequate resources, and built-in controls
to improve overall performance. The primary goal behind Oracle’s Parallel Query
architecture is to have all parallel query slaves perform approximately the same

Chapter 9: Parallel Query Tuning 227

amount of work, so that they will all complete their portion of the work at
approximately the same time.

When to Use Parallel Query

The concept of parallel operations is based on dividing the work among multiple
processes. It assumes that multiple jobs of small magnitude can be completed much
faster than a single job with a somewhat larger magnitude, both producing the same
result. For example, when a full table scan is performed by multiple processes, there
is a possibility (depending on the design and nature of the environment) that it can
return the data faster than even an indexed scan. However, this requires an environment
that is conducive to parallelism.

Parallelism requires (among other things) that the table be spread over multiple
storage devices to facilitate access by multiple processes without 1/O contention.

It also requires adequate capacity for CPU and memory, to handle the resource
requirements of the parallel query slaves. Using PQ does not always require a
multiple CPU system. Really?

Sure. If a single CPU system is underutilized, PQ can make better use of it. Why
not? You have paid good money for your system, so there is nothing wrong in finding
ways to make the most of it. But remember that the availability of required resources
is the key when considering PQ, because lack of resources would definitely paralyze
your system. Don’t go overboard without determining whether you have enough
resources. It may be important to design for parallelism keeping in mind the busiest
period of processing, so that if need be, the parallel operations can peacefully
coexist with the other jobs and sessions on the system.

Parallel execution of SQL statements is useful for operations where a large
amount of data gets processed: full table scans, joining of large tables, large
range-scans of indexes, insertion of massive amounts of data to a data warehouse,
and so on. PQ rewrites the underlying SQL statement in such a way that the query
can be divided into multiple tasks. Multiple processes running simultaneously to
produce desired output can handle these multiple tasks. These processes are often
called the parallel query slaves or parallel query servers, the operations of which
are controlled and coordinated by the server process which takes on a new name:
parallel execution coordinator or parallel query coordinator (PQC).

The key to proper use of PQQ is to keep the parallel query slaves’ processes from
interfering with one another. For example, too many PQ slaves should not access
the same storage devices at the same time, or wait on each other for CPU and other
system resources. Going overboard with PQ by configuring and launching too many
parallel query slave processes and/or enabling parallelism on every table on the
system has the potential to cause systemwide contention, increase OS-level context
switching, and degrade overall system performance. In addition, these processes
will be counted against the total number of Oracle processes. If you reach the limit,
new database connections will not be possible. So please handle and use PQ with care!

228 Oracle Performance Tuning 101

How to Use Parallelism

Now that you know what parallelism is, let’s discuss how your SQL statement can
use it. The number of parallel query slaves for a single task is called the degree of
parallelism. Normally, PQ would attempt to use parallel query slave processes
equal to the value of degree of parallelism. But if a sorting operation is involved,
the number of processes required is doubled.

VIP

It is very important to note here that PQ will utilize
twice the number of processes defined in the degree
if the SQL statement requires a sort operation.

This is a very crucial aspect of PQ and needs your
undivided attention, as it has the potential to cripple
performance system-wide.

As you will see shortly, there are other initialization parameters that actually
control the number of such processes irrespective of the degree of parallelism.
However, there are the following ways to set this degree of parallelism:

m At the table or index level

m At the SQL statement level with a parallel hint

B As a default based on the number of CPUs or the number of storage devices
that Oracle believes that you are using

The following example shows how to set the degree of parallelism when creating
a new table. The “parallel (degree 4)” clause sets the table’s degree of parallelism to 4.

s SQL> create table MYTABLE
(ColA number(2),
ColB number(2)
)
parallel (degree 4);
Table created.

You can see the value of the degree of parallelism for the table in the
USER_TABLES, ALL_TABLES, and DBA_TABLES views in a column titled Degree:

(= SQL> select Degree
from USER_TABLES
where Table_Name = 'MYTABLE";
DEGREE

Chapter 9: Parallel Query Tuning

You can change the degree of parallelism for a table using the alter table
command. In the following example, the degree of parallelism is changed to 6:

7 SQL> alter table MYTABLE parallel(degree 6);
Table altered.
SQL> select Degree
from USER_TABLES
where Table_Name = 'MYTABLE';
DEGREE

The following code listing shows how to set the degree of parallelism on an
index to 4 while creating the index. Depending on your Oracle version, the data
dictionary views USER_INDEXES, DBA_INDEXES, and ALL_INDEXES will have a
column titled Degree, which will contain the value of the degree of parallelism for
the index.

{5 7 SQL> create index MYINDEX
on MYTABLE (ColA)

storage (initial 1M next 1M)

parallel (degree 4);
Index created.
SQL> select Degree

from USER_INDEXES

where Index_Name = 'MYINDEX";

DEGREE

4

NOTE

Since all the parallel query slaves operate
independent of each other, each will use the
associated storage parameters as their own. In the
preceding example, four query slaves will each use
the initial extent’s value of TMB while building the
index, thereby using 4MB at once during the index
creation process. Also, these parallel query slaves
will need their own space in temporary tablespace
to perform the sort. Please keep in mind the impact
on disk space when using parallelism for building
indexes.

229

230 Oracle Performance Tuning 101

You can also use the alter index command to change the degree of parallelism
for an index, as shown here:

7 SQL> alter index MYINDEX parallel(degree 6);
Index altered.
SQL> select Degree
from USER_INDEXES
where Index_Name = 'MYINDEX";
DEGREE

6

The following sample code shows how to set the degree of parallelism on a
table to 6, via a PARALLEL hint in a SQL statement. Please also note that if you use
a table alias, the alias needs to be referenced in the hint, as shown. Only the few
last lines from the output are shown in the following example:

(== 7 select /*+ PARALLEL (CM, 6) */ Customer_ld Custid, Last_Contract_Yr Lcy
from CUSTOMER_MASTER CM
order by Customer_ld;

CUSTID LCY

101119153 2000

101119164 2000

101119197 2000
5065192 rows selected.

Please note that since the previous example uses an “order by” clause to sort
the result set, Oracle may attempt to allocate at least twelve parallel query slaves
to this operation.

The following example sets the degree of parallelism on a table to a value of
default. In Oracle 7.3 and 8.0, this default degree is determined by Oracle based
on various factors, such as number of CPUs, or number of storage devices on which
the table or index is stored.

(0 SQL> alter table MYTABLE parallel;
Table altered.
SQL> select Degree
from USER_TABLES
where Table_ Name="MYTABLE";
DEGREE

DEFAULT

Chapter 9: Parallel Query Tuning

In Oracle 8.1.6, a new initialization parameter, PARALLEL_THREADS_PER_CPU,
defines the default degree of parallelism. Its default value is platform-specific and
is adequate in most cases. Oracle suggests decreasing the value of this parameter if
the system appears to be overloaded when parallel query is running. It is very easy
to determine this if you look at V$SESSION_WAIT for wait events that relate to
parallel query slaves. Of course, it’s your job to figure out whether or not your
system appears to be overloaded. The good news is that the value of this parameter
can be changed dynamically.

If you set the degree of parallelism at table and/or index level, and also specify
a different value via a hint in the SQL statement, which one would Oracle use?
Well, Oracle always uses the following order of precedence:

I. SQL statement with the PARALLEL hint
2. Parallel degree set at the table or index

3. Default degree of parallelism

NOTE

Once the degree of parallelism is determined,
it becomes the degree of parallelism for the
entire operation.

All the aforementioned methods to set the degree of parallelism only determine
the number of parallel query slaves the PQC will request for a given operation. In
certain situations the PQC may not get what it asks for. This is because the actual
number of parallel query slaves that are eventually assigned to an operation
depends on the number of available processes in what is called the parallel
execution server pool.

In very simple terms, this means that if there are not enough available parallel
query slaves, the degree you specify (or expect) may not be the actual degree of
parallelism with which the SQL statement is executed. We will talk about this in
more detail in the coming sections. But this should be enough to draw your attention
to the fact that using parallelism without understanding all these other things will
cause you more headaches when you don’t see the expected improvement in your
query performance.

If you decide that no parallelism is required and would like to remove the
degree of parallelism from the table or index definition, you can use the noparallel
clause in the alter command as shown next. Also, to disable parallelism in a SQL
statement that would otherwise use parallelism because of the definition of the
degree of parallelism on the table, you can use the NOPARALLEL hint.

231

232

LA

Oracle Performance Tuning 101

| SQL> alter table MYTABLE noparallel,
Table altered.
SQL> select /*+ NOPARALLEL */ count (*)
from CUSTOMER_MASTER,;
COUNT(¥)

5065192

SQL Statements that Benefit
from Parallelism

As mentioned before, parallel execution of SQL statements can improve performance
of SQL statements when they process or access large amounts of data. Not only can
you use it in just plain old SQL statements to select data, you can use it for a number
of DDL and DML operations as well.

As of Oracle 7.3, you can use parallelism for the following types of operations:

m Select statements

B Subqueries in update and delete statements

B Subqueries in insert and create table statements

m Create Table As Select (CTAS) statements

m Create index statements (parallel DDL)

In addition, from Oracle 8.0 and up, the following types of DDL operations
can use parallelism:

m Rebuilding an index

B Rebuilding an index partition

B Splitting a partition

B Moving a partition

In addition to these DDL operations, Oracle8 introduced parallelism for insert,
update, and delete statements. Oracle uses the term Parallel DML (PDML) to refer to
these operations, although the ANSI definition of Data Manipulation Language (DML)
generally includes query statements too. PDML can be used to speed up bulk DML

operations against large tables. PDML can be of great benefit to many of the operations
in decision support systems and data warehouse systems that typically handle large

Chapter 9: Parallel Query Tuning 233

amounts of data. On systems such as these, performance and scalability of accessing
such large amounts of data is very important. At the same time, PDML can also be
helpful in certain OLTP operations.

PDML can also be used with non-partitioned tables. However, full benefit of
PDML can be realized only when tables are partitioned. This is because only
parallel insert operations can be performed on non-partitioned tables. But remember
that the parallelism is spread across all the partitions and that there is no parallelism
within a partition. This means you can have only one parallel query slave per
partition. The major advantage of using PDML is performance and the elimination
for the need to “hand hold” parallelism for DML operations. However, as mentioned
before, the needed resources must be available.

Parallel DML can only be enabled or disabled within a session. Before a session
can be enabled (using an alter session command) to use PDML, you need to either
commit or rollback all work done previously in the session. Since a PDML session
executes the SQL statements as an autonomous transaction, it cannot be part of the
previous transaction. To enable or disable Parallel DML you can use the alter session
command. Thankfully, there are no new Oracle initialization parameters to set and
bounce the database. Once the session is enabled for PDML, Oracle executes
subsequent statements in the session in parallel mode. You need to specify the
degree of parallelism via a PARALLEL hint or the degree of parallelism will default
to whatever is set on the table.

The following code example shows a sample PDML session. As you can see, an
attempt to enable Parallel DML failed with ORA-12841 when a commit or rollback
for the previous transaction was not issued. Also, note that a commit or rollback is
needed to end the transaction that was executed in parallel, before disabling the
Parallel DML session.

| SQL> insert into MYTEST values (1);

1 row created.

SQL> alter session enable parallel dml;

ERROR:

ORA-12841: Cannot alter the session parallel DML state within a transaction
SQL> commit;

Commit complete.

SQL> alter session enable parallel dml;

Session altered.

SQL> update /*+ PARALLEL (MYTABLE, 3) */ MYTABLE set Num=Num+4;
4800000 rows updated.

SQL>alter session disable parallel dml;

ERROR:

ORA-12841: Cannot alter the session parallel DML state within a transaction
SQL> commit;

Commit complete.

SQL> alter session disable parallel dml;

Session altered.

234 Oracle Performance Tuning 101

Initialization Parameters
that Affect Parallelism

The following table lists the initialization parameters that affect parallelism. Most of
these have direct impact on how parallelism works in your system.

PARALLEL_MIN_SERVERS

PARALLEL_MAX_SERVERS

PARALLEL_MIN_PERCENT

PARELLEL_SERVER_IDLE_TIME

PARALLEL_AUTOMATIC_TUNING

PARALLEL_ADAPTIVE_MULTI_USER

Sets the minimum number of
parallel query slave processes that
are initiated when the instance is
started. Default is 0.

Sets the maximum number of
parallel query slave processes or
parallel recovery processes that
Oracle starts based on the demand
for such processes. Default is 5.

Specifies the minimum percentage
(of the value of requested degree of
parallelism) of parallel query slave
processes that must be available for
parallel execution. Default is 0.

Available from Oracle 7.1 and up
to Oracle 8.0; obsolete in 8.1.3. It
specifies idle time in minutes for
parallel query slave process after
which Oracle terminates the
process. Default is 5 minutes.

Available from Oracle 8.1, if set

to TRUE, Oracle determines values
for all other related parameters.
However, the tables and indexes
must be defined with degree of
parallelism.

Available from Oracle 8.0, if set to
TRUE, Oracle enables an adaptive
algorithm that tries to improve
performance of parallel executions
in multiuser environment. Assumption
is that you have tuned your system
for optimum performance in a single
user environment.

PARALLEL_EXECUTION_MESSAGE_SIZE

PARALLEL_THREADS_PER_CPU

OPTIMIZER_PERCENT_PARALLEL

LARGE_POOL_SIZE

SHARED_POOL_SIZE

RECOVERY_PARALLELISM

Chapter 9: Parallel Query Tuning

Available from Oracle 8.0, it
specifies the size of messages for
parallel execution. Defaults to a value
of 2148 bytes on most platforms.
According to Oracle, this may need
to be changed to 16K or 32K for
improving parallel query performance
in Oracle 8.0.x. In Oracle8i it can
be set to a maximum value of 16K,
as the PQQ messaging system uses
UDP protocol instead of TCP.

Available from Oracle 8.1, it
specifies the default degree of
parallelism for the instance. It is
platform specific, but typically
defaults to 2.

Specifies the amount of parallelism
that the optimizer uses in cost
functions. Usually does not need any
modification from default value of 0.

Available from Oracle 8.0, it specifies
the size of the large pool in SGA.
As mentioned in the chapter “Instance
Tuning—The Shared Pool Area” if
PARALLEL_AUTOMATIC_TUNING
is set to TRUE, the PARALLEL_
EXECUTION_MESSAGE_SIZE is
allocated from the LARGE_POOL_
SIZE; if LARGE_POOL_SIZE is not
defined in init.ora file, it will be
created with a default size of 18MB.

Specifies the size for the shared pool
in SGA. Memory for the PARALLEL _
EXECUTION_MESSAGE_SIZE is
allocated from SHARED_
POOL_SIZE.

Specifies the number of processes
which run in parallel during
instance or media recovery.

235

236 Oracle Performance Tuning 101

SORT_AREA_SIZE Specifies maximum allocation of
sort space per user for the “sort”
phase of a sort. Each parallel query
slave process will use this amount
of sort space.

SORT_AREA_RETAINED_SIZE Specifies the amount of sort space
retained for the “fetch” phase of
a sort. Each parallel query slave
process will retain this amount
of sort space.

SORT_DIRECT_WRITES Obsolete in Oracle8i. In prior
versions, when set to TRUE, allowed
Oracle to bypass the buffer cache
while writing sort data to temporary
tablespace. We suggest you set this
to TRUE in Oracle 8.0 and below,
whether you use PQ or not.

SORT_MULTIBLOCK_READ_COUNT This parameter specifies the number
of database blocks to read each time
a sort performs a read from a
temporary segment. The default is
either 1 or 2 depending on platform
and should not be set greater than 2.

At minimum, we suggest you set up the following parameters in your
initialization parameter file:

m PARALLEL_MIN_SERVERS

m PARALLEL_MAX_SERVERS

m PARALLEL_MIN_PERCENT

Interaction Between
PARALLEL_MIN_SERVERS,
PARALLEL MAX_ SERVERS,
and PARALLEL MIN_PERCENT

The parameter PARALLEL_MIN_SERVERS can be safely set to the number of CPUs
in the machine. The upper limit for it is the value for PARALLEL_MAX_SERVERS,

Chapter 9: Parallel Query Tuning 237

which in turn sets the maximum number of parallel query slave processes. Generally
speaking, the parameter PARALLEL_MAX_SERVERS can be set to twice the number
of CPUs, sometimes even higher, but the effectiveness is dependent on the 1/O
system characteristics and the amount of data striping across multiple volumes.

As the demand for the parallel query slave processes increases, Oracle will
initiate additional such processes, but not to exceed the maximum set by the
parameter PARALLEL_MAX_SERVERS. As these processes complete their assigned
tasks and become idle, Oracle terminates them after a certain amount of idle time.
This idle time can be set in minutes using the PARALLEL_SEVER_IDLE_TIME
parameter. From Oracle 8.1.3, this parameter is obsolete and Oracle uses an
internal timer. You no longer can control this using an initialization parameter.
Terminating idle parallel query slave processes reduces the demand on system
resources. However, the number of these processes will not fall below the minimum
set in PARALLEL_MIN_SERVERS. The parameters PARALLEL_MIN_SERVERS and
PARALLEL_MAX_SERVERS define the parallel execution server pool as mentioned
earlier in the section “How to use Parallelism.”

The parameter PARALLEL_MIN_PERCENT plays a very important role. It allows
you to set the minimum degree of parallelism that is required to execute your query.
If the system cannot support this minimum degree of parallelism (specified as a
percentage of the actual degree of parallelism on the table or index), the query will
fail. In that case, you can either choose not to run the operation or run it with a
lesser number of parallel query slave processes. Consider the following example
(for simplicity we have formatted the output), which shows the values set for
PARALLEL_MAX_SERVERS, PARALLEL_MIN_SERVERS, and PARALLEL_
MIN_PERCENT:

(==« 7 /* The output from the following command has been formatted */
SVRMGR> show parameter parallel

NAME TYPE VALUE
parallel_max_servers integer 8
parallel_min_percent integer 50
parallel_min_servers integer 4

Let’s suppose that six out of the maximum number of parallel query slave
processes (eight) are busy. You just submitted a query requesting a degree of
parallelism of, say, six. Oracle can only initiate two additional processes before
reaching the limit of eight. But since PARALLEL_MIN_PERCENT is set to 50 percent
(implying you need at least three parallel query slaves to run the query in parallel),

238 Oracle Performance Tuning 101

and it is not possible to initiate three additional processes, Oracle will raise an error,
ORA-12827, as shown in the following example:

| SQL> select /*+ PARALLEL (CM, 6) */ count(*)
from CUSTOMER_MASTER CM
where Customer_Bill_Num is not null;
select /*+ PARALLEL(CM, 6) */ count(*)
*
ERROR at line 1:
ORA-12827: insufficient parallel query slaves available

If PARALLEL_MIN_PERCENT was left to its default value of 0, and if you reached
the upper limit of parallel query slave processes as set by PARALLEL_MAX_SERVERS,
any new query requesting parallelism would be run serially and hence very slowly
(as though Parallel Query was not enabled). But you run the risk of the system
getting hammered by bad performance as the operation is performed serially. So,
suddenly a query that may have previously run much faster using parallelism may
now run slower and take a longer time to complete. And you won’t notice it until
someone complains or you monitor the system when the query is running.

Do you really want this to happen? Would you rather run it in parallel or not at
all? If you so desire, you can set PARALLEL_MIN_PERCENT to its maximum value
of 100 to make sure your query runs with the requested degree of parallelism or
doesn’t run at all. However, your application requirements will dictate what is
acceptable in such situations. We thought it is better if we inform you of all the
available configuration options and how some of these work. In general, if this is for
a production system, you don’t want queries to fail at all, so we suggest that you set
the value of this parameter to 0 or a very small number.

But there is another parameter you need to know about: OPTIMIZER _
PERCENT_PARALLEL. It affects the behavior of the cost-based optimizer in
determining the execution path. Similar to PARALLEL_MIN_PERCENT, the value
of this parameter tells the optimizer how much parallelism to consider in
determining the cost of the execution plan for the query. Possible values for this
parameter are 0 to 100. The default is 0. Lower values tend to favor a serial path
via indexed access while higher values favor full table scans. Obviously, with full
table scans, the benefits of parallelism is much more relevant and measurable.

Oracle8i introduces yet another new parameter, PARALLEL_AUTOMATIC_
TUNING. It can be set to either TRUE or FALSE. The default value is FALSE. If you
set this parameter to TRUE, Oracle determines the values for other related parameters.
It will also set PARALLEL_ADAPTIVE_MULTI_USER to TRUE, enabling Oracle to
override user-given hints in favor of maintaining the load on the system within
acceptable ranges. As a DBA, you just need to set the degree of parallelism at the

Chapter 9: Parallel Query Tuning

table level. That’s it! Sounds simple and wonderful, doesn’t it? But when we set this
parameter to TRUE without using the others, Oracle set PARALLEL_MIN_SERVERS
and PARALLEL_MIN_PERCENT to 0 and the value for PARALLEL_MAX_SERVERS
varied from 40 to a whopping 160 based on the hardware platform. Both of which
were rather high for our environment. So use this parameter with caution and only
after thorough testing.

Designing the Database for Parallelism

Now that we have covered what parallelism is and what its related initialization
parameters are, let’s talk about how to effectively design your database for
parallelism to work in an optimal fashion.

First and foremost, you need to analyze, study, and learn about the storage
device volume group configuration on your system. Implementing parallelism
without regard to how the OS sees your disks can have disastrous results and you
will paralyze your system without even knowing it.

Allow us to use an example to make this point more clear. Suppose you have 16
disk drives that are supported by two controllers. Your friendly neighborhood UNIX
system administrator (or your dear disk array system vendor) decided that in the interest
of “ease of management” there is a need to build only one logical volume group
containing all these 16 drives. The OS will see this volume group as a single device.

Now, let’s look at a second configuration. If four physical volume groups were
built with four disk drives each, there will be four such “devices” that the OS would
see. When PQ launches multiple processes to access data, the latter configuration
would provide more throughput than the former and would assist in completing the
query much faster. This is because the setup provides for more “independent” devices
that each of the parallel query slaves can work on. In the first configuration, given that
the OS treated the entire volume group as a single device, multiple processes
hammering one device for reads can create 1/O bottlenecks and breed contention.

You may now be tempted to suggest, if that is the case, why not build 16 volume
groups with just one disk drive each to make it run even faster with more parallel
query slave processes? Well, the speed is not achieved just by having more devices
or more query slaves, but by the number of query slaves that can be effectively
supported by the number of CPUs and available memory on the system. With 16
devices and query slaves, unless you have 16 or more processors (in addition to the
number you need for your normal transactions), your system might experience CPU
starvation and might result in the query taking more time to complete. So test what
works best for your setup. To learn more on how to configure disk subsystems for
maximum throughput, please refer to the chapter “I/O Tuning.”

239

240 Oracle Performance Tuning 101

VIP

You, the Oracle DBA, are the best judge of the
needs of your Oracle system. Although most
hardware vendors understand how their products
are suited to Oracle, it is finally your responsibility
to determine what is good for your environment,
because you know your environment the best.
Creating one volume group with 16 drives is
definitely not the same as creating four volume
groups with four drives each. The degree of
parallelism that can be supported is usually greater
in the second configuration, other factors remaining
constant. Another factor to keep in mind is the
partitioning needs of your application and your
database. If some core tables and indexes of

your database need to be partitioned, separating
the partitions of these tables and indexes is an
important factor to consider while designing for
parallelism. Partitioning will definitely have you
rethink the one-volume, 16-drive configuration.

In addition to configuring the storage devices and volume groups in an optimal
fashion, you also need to understand how to set the value for degree of parallelism.
The manner in which the volume groups are configured has an impact on how a table
or an index is stored. Remember to test it to finalize what value works best for you.

We recommend you set the minimum degree of parallelism on a table (or index)
using the following formula:

Minimum degree of parallelism = Floor (two times the number of CPUs, number
of partitions in the table, number of independent devices or drives on which the
table or partitions reside)

For non-partitioned tables, ignore the number of partitions in the preceding
formula. However, in most environments the maximum degree of parallelism is
usually two times the number of CPUs. Obviously there are exceptions to this rule
depending on the 1/O system, and hardware characteristics. But there are plenty of
other things you will also need to take into account to really have a good design for
parallelism. These include tuning the initialization parameters, consideration for
partitioning of tables and indexes, deciding on the upper limit of maximum number
of parallel query slave processes, whether to use PARALLEL hints or set the degree of
parallelism at table or index level, use of Parallel DML, and so on. These and many
other issues are discussed in the Oracle Tuning Guide and Concepts Guide.

Chapter 9: Parallel Query Tuning 241

Parallel DML Considerations

Earlier, we introduced you to Parallel DML and showed how to use it. Very large
databases are typically composed of large tables. PDML is indispensable for bulk
DML operations on these. PDML complements PQ architecture, but it is fully supported
on partitioned tables. However, parallel direct-load inserts on non-partitioned tables
can be performed using the /*+ APPEND */ hint. With the /*+ APPEND */ hint,
Oracle performs inserts above the high-water mark of the table, thus providing the
capability of direct loads within the scope of your application.

PDML and Rollback Segment Configuration

As you know, the idea of parallelism is supported by multiple processes, and each
process needs its own set of resources. When dealing with a DML operation in
parallel, the “resources” take on additional meaning. It's not just the CPU or devices
anymore. Large DML operations affect rollback segments usage, redo log writing
and archiving, and maintenance of archived log directory. You get the point! When
using PDML, the manner in which you address these issues is very important.

For instance, you should create large rollback segments for use by the bulk
PDML operations. Also, consider creating these rollback segments in different
tablespaces on different devices (preferably on different disk controllers). This
will ensure reduction in I/O contention for accessing rollback segments as well
as any rollback of the DML operation.

You should also consider creating as many large rollback segments as the
degree of parallelism on the partitioned table. If the number of table partitions
exceeds the degree of parallelism, make sure the rollback segments can hold the
before images of the partitions manipulated by the PDML operation. For example, if
the table has 36 partitions on six devices, and the server has six CPUs, the optimal
degree of parallelism for the table is 12 (per the formula in the earlier section
“Designing the Database for Parallelism”). Hence, 12 large rollback segments are
needed for optimal performance. Nevertheless, care must be taken to ensure that
these 12 large rollback segments can hold the before image of all 36 partitions,
assuming that some of the PDML operations affect all 36 partitions.

PDML and Instance Recovery

If your system encounters an instance failure and a PDML operation gets aborted,
upon instance startup a parallel query such as the following should be executed on
the table that was manipulated by the PDML statement:

(s« 7 select /*+ FULL (tablename) PARALLEL (tablename, 6) * [count (*) from
tablename;

242 Oracle Performance Tuning 101

This will trigger a parallel rollback operation, as part of the instance recovery.
This is required because the rollback operation is done serially in Oracle 8.0.x.
Optionally, if the PDML operation is re-executed, the rollback will be done in
parallel automatically by Oracle.

Further, if the initialization parameter RECOVERY_PARALLELISM is set to a
value greater than 1 (for example, 8, since according to Oracle that is the threshold
number where parallel recovery performs better than serial recovery), SMON will
launch those many processes to perform the recovery in parallel. It must be noted
that the number of independent storage devices on which Oracle data files are
configured eventually determines the optimal number of recovery processes that
need to be configured.

NOTE

If your version of Oracle is at least Oracle 8.1.3 and
you have set the COMPATIBLE parameter to at least
8.1.3, two new features, fast start on-demand
rollback and fast start parallel rollback, facilitate
better availability of the database and thus your
data. They allow your database to be back online
faster. The fast start on-demand rollback allows
on-demand recovery of aborted transactions, one
block at a time. The fast start parallel rollback allows
a set of transactions to be recovered using a group of
server processes. This feature is configurable using
the FAST_START_PARALLEL_ROLLBACK
initialization parameter. The decision to recover a
transaction in parallel or serial is made by SMON
depending on the amount of work that needs to be
done in the recovery process.

PDML Restrictions and Issues

There are certain restrictions on PDML operations. If those are violated, Oracle will
perform the operation serially without telling you! In most cases, no warning or
error message will be generated. There is no PDML support for triggers when certain
data integrity constraints are enforced, or when tables contain LOB or object types,
indexed organized tables, clustered tables, and so on. Please refer to the Oracle
Concepts Guide for more information.

In addition, there are certain initialization parameters you may want to review
before using PDML, as these parameters can potentially affect how PDML performs on
your system. These include ENQUEUE_RESOURCES, DML_LOCKS, TRANSACTIONS,
and LOG_BUFFER. Refer to the Oracle Tuning Guide for more information.

Chapter 9: Parallel Query Tuning 243

Parallel Query Monitoring

All right, so you have read the chapter so far, understood it, and have configured the
system and the database and began using PQ. But how do you make sure the PQ
operations are indeed taking place as designed and desired? Oracle offers a few of
those dynamic performance V$ views that capture PQ operation statistics for you.
These statistics are available at session or system level and are helpful in evaluating
performance of parallel query slaves. The view V$PQ_SYSSTAT provides valuable
information that can be used to determine the values for the initialization parameters
PARALLEL_MIN_SERVERS and PARALLEL_MAX_SERVERS. The following is an
example of the information from the V$PQ_SYSSTAT table:

| SQL> select Statistic, Value
from VSPQ_SYSSTAT,;
STATISTIC VALUE

Servers Busy 6
Servers Idle 0
Servers Highwater 6
Server Sessions 8
Servers Started 2
Servers Shutdown 0
Servers Cleaned Up 0
Queries Initiated 2
DML Initiated 0
DFO Trees 2
Sessions Active 2
Local Msgs Sent 6
Distr Msgs Sent 0
Local Msgs Recv'd 12
Distr Msgs Recv'd 0
15 rows selected.

SQL>

This view is the easiest way to find out if you need to adjust the values set for
initialization parameters PARALLEL_MIN_SERVERS and PARALLEL_MAX_SERVERS. If
you find that the Servers Busy statistic remains close to the value of PARALLEL_MAX_
SERVERS, you may need to increase the value of PARALLEL_MAX_SERVERS to make
sure there will be enough available servers for any additional parallelism operations
(if there is additional system capacity). On the other hand, if the Servers Busy statistic
remains close to zero most of the time, there may not be a need for many PQ servers
and you may want to reduce the value of PARALLEL_MAX_SERVERS.

If the Servers Busy statistic consistently exceeds the value set for PARALLEL_
MIN_SERVERS, you may want to increase the value of PARALLEL_MIN_SERVERS

244 Oracle Performance Tuning 101

to match the value reported by the aforementioned statistic. This will ensure that the
system has an optimal number of PQ servers available for use at all times.

The values shown in the Servers Shutdown and Servers Started statistics may
indicate infrequent demand for additional PQ servers. Additional PQ servers, above
the number set by PARALLEL_MIN_SERVERS, are started when requested, but those
are shut down when they become idle over time. These statistics will also help you
decide if the value for PARALLEL_MIN_SERVERS should be increased. The statistic
Servers Highwater, on the other hand, indicates the maximum number of PQ) servers
that were ever launched.

You should frequently monitor the Servers Busy, Servers Highwater, Servers
Shutdown, and Servers Started statistics, as these provide valuable information to
gauge the processing load on the PQ servers.

The V$PQ_SESSTAT view reports summary statistics about the PQ operation
conducted in a session. This information is valid only when queried from the same
session. The following is an example of what it shows:

(w0 SQL> select Statistic, Last_Query, Session_Total
from VSPQ_SESSTAT,;

STATISTIC LAST_QUERY SESSION_TOTAL
Queries Parallelized 1 3
DML Parallelized 0 0
DFO Trees 1 3
Server Threads 4 0
Allocation Height 4 0
Allocation Width 1 0
Local Msgs Sent 114 342
Distr Msgs Sent 0 0
Local Msgs Recv'd 114 342
Distr Msgs Recv'd 0 0

10 rows selected.

SQL>

The preceding code listing shows that the query last run in the session was
indeed run with parallelism as the statistic Query Parallelized is not zero. Allocation
Width reports the number of instances the query was run against, Allocation Height
reports the requested PQ servers per instance, and Server Threads reports the
number of PQ servers used.

There is another view, V$PQ_SLAVE, that reports information about each PQ
server. The information reported can be used to track each PQ server’s current status,
check if it is busy or idle and for how long, how much CPU time it has consumed,
and so on.

Chapter 9: Parallel Query Tuning 245

In a Nutshell

Parallel Query was designed to squeeze every last drop of system resources out

of your hardware and software investment. That's a good thing. However, using
parallelism without paralyzing your system requires understanding of how parallelism
really works, what affects it, and what it affects. It is very important to consider the
side effects of using parallelism when there are not enough resources available and
the environment is not conducive enough.

Parallelism involves dividing work among many processes, each performing its
own allocated workload. The idea is to “divide and conquer.” For starters, the table
data should be spread over as many storage devices as possible so that multiple PQ
server processes will not be hampered by 1/0O contention. You should also select a
proper degree of parallelism for the operation, as it dictates how many PQ server
processes will be utilized. The degree of parallelism can be set as part of a table or
index definition, or by using the PARALLEL hint with a SQL statement.

There are some special initialization parameters to configure. Specifically, these
include PARALLEL_MIN_SERVERS, PARALLEL_MAX_SERVERS, and PARALLEL_
MIN_PERCENT. You should understand how these interact with each other and
what important role PARALLEL_MIN_PERCENT plays. The new Oracle initialization
parameter PARALLEL_ AUTOMATIC_TUNING allows the DBA to set just one parameter
for Parallel Query tuning and control the values of a variety of other parallel parameters.
As fantastic as that sounds, please perform comprehensive tests in your environment
before using this. Some other initialization parameters will also need to be understood
in light of using parallelism, such as LARGE_POOL_SIZE, SORT_AREA_SIZE, and
SORT_AREA_RETAINED_SIZE.

There are several SQL statements that can utilize PQ operations. From Oracle 8.0,
many DDL operations can also utilize parallelism in addition to DML operations.
Parallel DML can significantly improve the performance of bulk DML operations in
large databases. However, there are some special issues you must be aware of when
using PDML. PDML is fully supported with partitioned tables. When using PDML
against such tables, make sure that adequately sized rollback segments are available.
To improve 1/O, spread these rollback segments over multiple tablespaces
configured across multiple storage devices. In addition to the size of the rollback
segments, there should be enough large rollback segments available, typically
equal to the number of table partitions.

The dynamic performance view V$PQ_SYSSTAT provides information on
how your system utilizes PQ servers. Monitoring it will enable you to determine
adequate values at which to set initialization parameters PARALLEL_MIN_SERVERS
and PARALLEL_MAX_SERVERS.

246 Oracle Performance Tuning 101

We hope we have convinced you why running your queries or DML statements
using parallelism will not always result in performance increases. But we also
hope you have adequate information to effectively utilize parallelism to improve
performance of your queries and DML statements. C'mon, go ahead and parallelize
your environment! Please just try not to paralyze it.

1002
1l

ORIGINAL * AUTHENTIC

Oracle Press

ONLY FROM OSBORNE

Expert authors, cutting-edge coverage, the latest
releases...find it all at OraclePressBooks.com

Oracle Press

[T e P

From a full selection of titles focusing
on Oracle’s core database products to
our in-depth coverage of emerging
applications, Web development tools,
and e-Business initiatives, Oracle Press
continues to provide essential resources
for every Oracle professional. For a
complete list of Oracle Press titles—
from the exclusive publishers of
Oracle Press books—and other valuable
resources, go to

OraclePressBooks.com.

Get the most complete information on
Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

i

OsBORNE
ORACLE PRESS™—EXCLUSIVELY FROM McGRAW-HILL/OSBORNE www.osborne.com

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

