
ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:117

CHAPTER
5

Instance Tuning—The
Shared Pool Area

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

118 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:118

Myth & Folklore
Low statistics of less than 99 percent cache-hit ratios in the library or dictionary cache
are evidence of a poorly performing system and can be corrected by increasing the
size of the shared pool area.

Fact
Well, let’s first ask the question: what makes you think the shared pool is the
problem? Did you see any associated wait events? Simply increasing the size of
the shared pool in an arbitrary fashion is unlikely to solve any shared pool–related
performance problems. It should be noted that the positive effects of a larger shared
pool (beyond a certain size) would only last for a short duration after the instance
starts up. Plus, the more memory you allocate to the shared pool area, the higher the
probability for increased CPU consumption in managing it and the longer processes
hold some of the latches for these memory structures. The Oracle RDBMS has been
effectively designed to deal with I/O not as an “in-memory” database. If, in fact, it
were designed to be solely in-memory, it would take a whole different set of algorithms
to optimize it. A trap some less experienced DBAs fall into is to constantly increase
the size of the shared pool, thinking that just a little more memory will do the trick.
As with almost all performance issues, just throwing more resources at Oracle (in
this case, the shared pool area) does little more than push the problem out a few days
or weeks. And in some cases, adding more memory may create other problems that
you did not envision and thus hurt performance. You must understand that most
challenges in dealing with the shared pool are related to the type of access to this
memory structure, in addition to the lack of meaningful and proactive management
of space within this structure. Among other things, the segregation of large and small
packages and the identification of frequently used stored SQL (packages, procedures,
functions) are important. Equally critical is the allocation of adequate space within
the shared pool area for operations conducted by the Recovery Manager (RMAN),
Parallel Query, Java, and the Oracle multithreaded server (MTS). Last but not least,
the best use and reuse of SQL statements within this memory structure will go a long
way in keeping contention down and performance up.

F
antastic! We get this feeling that not so far in the distant future we
will be so specialized in tuning Oracle that we might call ourselves
pool consultants or pool experts. Now, there is a catchy job title. And
there may be some buzz in the industry—Call the Pool Guys, they
will take care of you. Well, by the time we get done talking about the

various pools in this chapter and the next one, you will be 100-percent convinced

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 119

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:119

that we are in fact the Pool Guys. Think about it: shared pool, reserved area (area
within the shared pool), large pool, java pool and default pool, keep pool and recycle
pool. You will be up to your ears (but not drowning!) with our discussions about the
various pools. Now we better get on with our business quickly, as we have been
told that we may not have anything to tune in Oracle9i. This is because Oracle9i is
supposed to be self-tuning, self-configuring, and really does not need our tuning
services. Right!

Welcome to the shared pool area—our technically invigorating SPA. By the end
of this chapter, you will feel as though you have spent a day having the following
done on you: a detoxifying sulfur-rich mud wrap, herbal facial, blanket wrap, and a
full body massage with foot reflexology, which lasts for two whole hours. Our point
is, your database should be feeling that way. Peace and harmony!

We are now getting into the nuts and bolts of tuning Oracle. But before we go too
far down this road, let’s talk about what you can hope to accomplish here. Remember
our basic premise: you, our esteemed customer, need to get the biggest bang for your
tuning buck. This is not just from a pure dollar perspective, but also from a time
perspective. We do not want you or anyone else to go on a wild goose chase or get
tangled up with arcane and useless efforts.

This means tuning only those components that will improve overall system
response times for the user community. In the next few chapters, we will share
information about the configuration and tuning various aspects of the System Global
Area (SGA). This includes the SPA as well as the other pools. The reserved area has
been available since Oracle 7.3. The other pools have been available since Oracle8
and up. We will also talk to you about the database buffer cache and the redo log
buffer as well as other constructs that require your attention.

Significant performance increases can be realized by focusing on these areas, but
keep this in mind: they may be less dramatic than increases resulting from application
tuning. Here you will learn how to optimize performance of the shared pool, but only
if you have already resolved the application tuning issues. If not, now is the time to
go back to the chapters “Application Tuning—Issues that concern a DBA” and
“Application Tuning—Tracking down bad SQL.” Since by this point in your tuning
efforts you should have identified the components of your application that require
work, the next steps are to ensure that your database and your instance are configured
in an optimal fashion.

In order to make certain that everyone is on the same page (as authors, we like
that phrase), we’ll start with a review of the Oracle architecture and provide you
with some details regarding processing of SQL statements. We will then follow that
up with the details of tuning the shared pool area. We promise that this is not yet
another endless lecture on the Oracle architecture. We will keep it short and sweet,
but we want to make sure that we are all singing the same song, from the same page,
of the same book.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:42 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle Architecture
As with all things, understanding what you are dealing with is key to how successfully
you can deal with it. Oracle is no different. By taking time to review the Oracle
architecture, you will be more certain of the effects of any changes you make. Let’s
review the basic terms and concepts used here so we are all using the same language.
Figure 5-1 illustrates the internals of an Oracle database from a high level.

The following table is a list of terms that you should already be familiar with.

120 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:120

FIGURE 5-1. An Oracle database supported by an Oracle instance

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Term Description

Host The machine on which Oracle runs. Sometimes
called a server.

Instance This is comprised of the System Global Area (SGA),
its associated background processes, and related
shared memory structures. This is transient and
created on each instance startup.

Database The data files, control files, and redo logs. These are
the permanent structures of an Oracle server.

Background Process Any process (such as the database writer process)
that performs a defined task for Oracle—writes
modified blocks from memory to disk.

Server Process A process that does work on behalf of only one user.
The exception to this rule is when the server process
is shared and this is relevant when you configure
Oracle in the MTS mode.

System Global Area The System Global Area is the collection of all
shared memory structures that belong to Oracle. This
includes the shared pool area, the database buffer
cache, the redo log buffer, and other miscellaneous
buffers, queues, and structures that Oracle maintains.
In simple terms, it is the area where data and SQL
statements reside and work is accomplished.

Shared Pool Area The portion of the SGA where SQL statements, stored
procedures, and specific dictionary information are
stored in memory.

Database Buffer Cache The area where data blocks in use are kept and
manipulated.

Reserved Area Available in Oracle 7.3 and up. A reserved area to
store large SQL objects (including packages,
procedures, functions).

Large Pool Available in Oracle8 and up. An area reserved for
special operations used by RMAN, Parallel Query,
and MTS. Facilitates better management of the
shared pool.

Chapter 5: Instance Tuning—The Shared Pool Area 121

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:121

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

122 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:122

Term Description

Java Pool Available in Oracle8i and up. This is memory
structure reserved for Java and its many associated
objects.

Redo Log Buffer A usually small area of the SGA where change
records or change journals are stored prior to being
written to the redo log files on disk.

The System Global Area
The System Global Area (SGA) is the part of Oracle made up of shared memory
segments supported by the operating system. It is Oracle’s work area where pretty
much everything gets done. The size of the SGA is determined by the sum of its
components. This value is displayed at instance startup or by querying V$SGA:

SVRMGR> startup
ORACLE instance started.
Total System Global Area 122838416 bytes
Fixed Size 64912 bytes
Variable Size 55484416 bytes
Database Buffers 67108864 bytes
Redo Buffers 180224 bytes
Database mounted.
Database opened.
SVRMGR> select sum(Value)

2> from V$SGA;
SUM(VALUE)

122838416
1 row selected.
SVRMGR>

The major components of the SGA are the SPA, the database buffer cache (DB
cache), and the redo log buffer. In Oracle 7.3, the reserved area could be configured
in the shared pool area. Additionally, in Oracle8 and up, the SGA includes the large
pool and the java pool. Each of these areas of memory is configured by parameters in
the initialization file (init.ora). The performance efficiency of these areas is affected by
their respective parameter settings in the init.ora. The following sections describe all
major areas of the SGA common to all versions of Oracle up to Oracle8i.

The Shared Pool Area (SPA)
The SPA is sized with the parameter SHARED_POOL_SIZE. At a very high level,
the resources set aside for the SPA are automatically divided between the library
cache (LC) and the data dictionary cache (DDC) and other internal components (the

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:43 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 123

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:123

discussion of those is beyond the scope of this book). Unless you have an Oracle6
system you should not be concerned with how this happens. If you do have an
Oracle6 system, it is high time you did an upgrade. The LC contains all the SQL and
stored procedures and functions that are in use or have been used recently. The DDC
contains metadata from the data dictionary about all the objects, their structures,
security, and so on, referenced in the most recently used SQL statements. The DDC
contains “data about data.”

The Database Buffer Cache
The database buffer cache is composed of copies of Oracle blocks from the data
files. These blocks could be one of the following types: data, index, temporary,
rollback, or bootstrap/cached segment blocks. In fact, the database buffer cache
often contains many versions of the most actively used blocks from the data files.
The many versions of the data blocks are created for various transactions requiring
read-consistent images of the data.

Oracle implements multiversion read consistency using the before image from the
rollback segments (when applicable) to provide consistent reads across transactions.
The basic concept here is that the rows retrieved and sent to you will always be
committed data. The exception to this rule is if you are the initiator of a transaction,
and you want to query your changes before deciding to commit or rollback the
changes. By default, with Oracle you will never do dirty reads (changes made to data
by others that are yet to be committed). This concept is discussed in greater detail in
the chapter “Contention Tuning.”

The size of the database buffer cache is determined by the initialization parameter
DB_BLOCK_BUFFERS. The amount of memory utilized by this memory structure is
a function of DB_BLOCK_SIZE multiplied by DB_BLOCK_BUFFERS. If you cache
10,000 blocks of 8K each, the memory allocation will be 81920000 bytes or
about 78MB.

The Redo Log Buffer
The parameter LOG_BUFFER sets the amount of memory used to store redo information
or change journals of the database. Sizing this memory structure correctly is critical
on systems where a lot of DML occurs. Since this is the heart of Oracle’s recovery
mechanism, it is important to size this appropriately without going overboard. We will
discuss this in greater detail in the chapter “Instance Tuning—The Redo Log Buffer
and Miscellaneous Tuning.”

The Reserved Area
With the advent of Oracle 7.3, there was better support for managing the issues
posed by large stored SQL or PL/SQL (packages, procedures, and functions). This
segregation of SQL was long overdue, as small SQL statements and large SQL
statements (or stored SQL) often interfered with one another when stored in the

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

124 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:124

same area and caused both aging of SQL and fragmentation of the shared pool. The
SHARED_POOL_RESERVED_SIZE was thus introduced, and the whole purpose of
this was to segregate small and large SQL in separate areas so they do not interfere
with one another.

The Large Pool
With the advent of Oracle8, a new memory pool (outside the shared pool area)
was introduced. The large pool was added to provide room specifically for parallel
operations, for use by the MTS configuration and by RMAN. Setting the initialization
parameter LARGE_POOL_SIZE configures this area.

The Java Pool
The Java pool is available in Oracle8i. It is configured by the parameter JAVA_
POOL_SIZE and is used by Java programs just like the shared pool area is used by
SQL. Note that the installation of the Java component requires that this be configured,
but the Oracle recommendation is far too small. It may need to be set above 100MB
to get it to install properly.

NOTE
Until 8.1.6, the memory allocated to the java pool
was not accurately reported in the show sga
command or V$SGASTAT.

The Background Processes
The SGA associated with today’s Oracle instances can be extremely large, but no
matter how large or small, someone has to take care of the activities associated with
the instance. A small army of operating system processes (UNIX) or threads (Windows
NT) manages these tasks. It is important to distinguish between background processes
and other processes. Background processes are independent of user connections.
They perform operations on the instance and database on behalf of all users. They
perform operations such as writing to data files, recovering the database, or resolving
errors. Some of the processes also aid in increasing overall performance.

Figure 5-1 shows all the background processes. Some of them are required
(Oracle cannot run without them) and we will point them out. All the others are
used to support specialized options or provide performance boosts. They will be
discussed in the appropriate sections. The following table defines the mandatory
processes plus the two optional default processes.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 125

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:125

Process Description

SMON The system monitor is responsible for many of the
maintenance routines in the SGA and even in
tablespaces, for example, coalescing free space.
SMON also manages rollback segments (shrinks them
to size when OPTIMAL is set) and performs recovery
operations during startup (when required). It is a
required process.

PMON This process monitors the Oracle foreground processes
(server processes). It is the first process that is started.
It oversees tasks such as cleanup of memory, process
space, and locks of terminated connections and lost
connections. It is a required process.

DBWR or DBW# The database writer process is usually the only process
that actually writes data blocks to the data files in a
database. The exception to this is when SQL*Loader is
run (in direct mode) or when SORT_DIRECT_WRITES
is set to TRUE. Of course, the CKPT process writes
to the headers during a checkpoint. It is possible to
have more than one. This process is involved in the
management of writing modified blocks from the
database buffer cache to disk. It is a required process.

LGWR The log writer process manages the redo log buffer. It
writes redo information from the redo log buffer to the
redo log files. It is a required process.

RECO The recovery process that is required for resolving
in doubt distributed transactions. It resolves
problems using the two-phase commit construct.
This is required when any distributed constructs
such as DBLINKS is used. It is automatically started
when DISTRIBUTED_TRANSACTIONS is either
derived or set to a non-zero value.

CKPT A performance enhancer, the checkpoint process
helps complete checkpoints reducing the workload
on the LGWR process. From Oracle8 and up, this is
a required background process.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

126 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:126

Some additional notes about DBWR and LGWR are in order. These two
processes are real workhorses and as such are subject to bottlenecks. Of course,
since both of them are I/O-based processes, care needs to be taken to avoid and
prevent contention between these processes. To see why, you will need to know
a few more points about how they do their work.

DBWR writes copies of modified blocks of tables, indexes, rollback segments,
and temporary segments (if SORT_DIRECT_WRITES is not set to TRUE) on four
events. Here we go:

■ Every three seconds.

■ Whenever the list of dirty blocks reaches its threshold length (internally
predetermined).

■ Whenever another process searches the list of least recently used blocks
(LRU list) and cannot locate a free buffer, after an internally set number of
block searches.

■ At checkpoints.

LGWR writes the redo buffers to the current log file based on five conditions:

■ Every three seconds (independent of DBWR).

■ On a commit. Remember that the write of the redo entry must physically be
completed before control is returned to the program issuing the commit.

■ Whenever redo information equal to one third of the size of the redo buffer
has been written to the redo buffer. For example, if the redo buffer is 131072
bytes, when 43690 bytes of new information has been written to the redo
buffer, log writer will copy the new redo information to disk. Starting
from Oracle8, log writer will write to the redo logs when MIN (1 MB.,
LOG_BUFFER/3) is true.

■ At checkpoints.

■ When posted by the DBWR process (see the following note).

Notice where the two coincide? Yes, at checkpoints. Now you can see that there
could be a flurry of activity when a checkpoint is occurring, and configuring data
files and redo log files on the same physical device could result in I/O waits during
checkpoints (if your device does not have adequate I/O processing capacity).

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 127

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:127

NOTE
Even though DBWR wakes up every three seconds
to write, LGWR will be pinged every three seconds
and on every DBWR write to ensure that the redo
entries associated with the dirty blocks are in fact
written to the logs. This needs to happen to prevent
the database from becoming inconsistent in the event
of an instance failure. Redo entries for dirty blocks
need to be written to the redo logs before the dirty
blocks themselves can be written to the data files.

One additional piece of information on the CKPT process: from Oracle8, it keeps
a heartbeat of the instance/database with the control files every three seconds. This is
to help determine the starting point of a recovery, if applicable and when needed.

One More Process: The Server Process
The last process to review is the server process. Some folks call it a shadow process.
This is because every application (user process) that connects to an Oracle database gets
one of these created on its behalf. When you start SQL*Plus and connect to a database,
one of these is started. It is one per user unless the Oracle MTS configuration is used.

When Oracle is configured in MTS mode, each user process communicates with
a dispatcher process (one dispatcher can communicate with multiple users) and
the dispatcher process stores SQL statements for processing in a request queue. The
shared server processes continuously monitor the request queue and process the
SQL statements (as explained later in this chapter) and store the results in the response
queue. The dispatcher processes continuously monitor the response queue, and as they
receive results, they forward them back to the user process that requested those results.

The server process (in the normal/dedicated mode of Oracle) is the one that
actually does the work for you. In a dedicated server environment, each connection
has one of these processes just waiting to carry out whatever orders (SQL statements)
are sent from the application. The server process reads blocks from the data files (if
not already in memory), manipulates data in the database blocks, and returns data as
requested. Ultimately, it is this process that needs your help, as it actually uses the
resources on the system.

Following is a sample output from a UNIX system running an Oracle database.
This output shows the background processes, one server process, and one
application process (SQL*Plus).

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

128 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:128

NOTE
The SQL*Plus process will not be listed if it is
launched as an application from a client. The
SQL*Plus process shown here is one from a
terminal emulation session (telnet) on the host
where the Oracle database resides.

oracle 15956 1 0 11:23 ? 00:00:01 ora_pmon_oradev
oracle 15958 1 0 11:23 ? 00:00:00 ora_dbw0_oradev
oracle 15960 1 0 11:23 ? 00:00:00 ora_lgwr_oradev
oracle 15962 1 0 11:23 ? 00:00:00 ora_ckpt_oradev
oracle 15964 1 0 11:23 ? 00:00:06 ora_smon_oradev
oracle 15966 1 0 11:23 ? 00:00:00 ora_reco_oradev
oracle 16032 15939 0 14:10 pts/1 00:00:01 sqlplus
oracle 16033 16032 1 14:10 ? 00:00:02 oracleoradev (DESCRIPTION=

After reviewing this architectural information, you can see how a change
that you may make in one area might potentially affect performance in other
areas. Additionally, it becomes clear that I/O bottlenecks experienced by major
background processes can cascade across the entire system.

Imagine if DBWR is unable to write dirty buffers to disk fast enough to keep free
buffers available to server processes. Consider what happens if LGWR is unable to
flush the redo buffer fast enough. All of these create opportunities for performance
degradation and thus for tuning. But proactively configuring an Oracle instance and
utilizing the methodology discussed in the chapter “The Method Behind the Madness”
will enable you to spend your time and your system resources in a more wise fashion.
We don’t want you to arbitrarily try to allocate memory to one or more structures in
the Oracle SGA on a continual basis and feel frustrated about performance. We want
you to identify the problem using the wait events method, plan a solution, implement
the solution, and then monitor to determine whether the problem is fixed. You
should desist the urge to just throw more memory at Oracle, even if that is what you
have been taught to do in the past.

The Program Global Area (PGA)
For a minute, when you saw PGA in Figure 5-1, you may have thought it meant
Professional Golfers Association. Well, your thought is noble, but unfortunately it is
a bit of a long drive for Oracle. The PGA, or program global area, is private memory
for the server process and it contains three sections: stack space, cursor state, and
user session data. Yes, it says global, but it is really not quite global (unless you run
Oracle MTS, then parts of the PGA become global).

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 129

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:129

The stack space contains values for variables, scalars, and constants used in the
current session. The cursor state contains cursor information (open, closed, persistency,
handle information, and so on). The user session data contains, among other things,
the current session’s information, the current transaction ID (if applicable), the current
rollback segment number (if applicable), and space for performing memory sorts (when
allocated). And that concludes tonight’s program.

Parsing SQL: What Happens When
the User Presses ENTER?
Whenever a user or a program makes a connection to an Oracle instance and issues
SQL or PL/SQL commands, the server process goes to work on those commands.
Processing SQL statements is broken into multiple phases (depending on whether
the SQL is a select statement or not). These phases are Parse, Define, Bind, Execute,
and Fetch. The Fetch phase is relevant only for select statements. All statements go
through the first four phases mentioned in the following table, but only select
statements have to fetch rows back to the user process. The following table provides
a summary of what happens in each of the various phases.

SQL Statement Processing Phase Description

Parse In this phase, the server process checks
the syntax of the SQL statement and
also performs object resolution and
security checks for SQL execution.
Further, it builds the parse tree and
develops the execution plan for the
SQL statement.

Define In this phase, among other things, the
user and server processes exchange
data type information about the
various columns referenced in the SQL
statements. SQL*Net or Net8/Net8i is
involved here.

Bind This is the phase where values for bind
variables (:b1, :v1) that are referenced
in the SQL statement are resolved.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

130 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:130

SQL Statement Processing Phase Description

Execute During the Execute phase, the server
process reads data blocks from file into
memory (for insert, update, and delete
statements only) as needed and
manipulates the data in memory. It is in
this phase that the execution plan is
executed. It is important to note here that
any “parallelization” of queries takes
place before the Execute phase begins.

Fetch For select statements, this phase signifies
reading the relevant blocks into the
database buffer cache and applying the
execution plan and returning of rows to
the initiating application (user process).

In the Parse phase, the server process hashes the statement based on the ASCII
value of each character. The resulting value is translated to an address corresponding
to a location in the library cache in the shared pool area. If the statement does not
exist in the hash address, it performs checks on the statement for correct syntax,
security privileges for the executing user, and object resolution of all objects
referenced in the SQL.

On arriving at the hashed memory address, the server process looks to see if there
is a statement already that matches the inbound statement. If it does not find one, it
needs to perform a hard parse. Hmmm. That implies there might be something called
a soft parse. Well, there is. And applications that do repetitive hard parses provide you
with an opportunity to soften the blow. No pun intended. We will talk about it in the
following section, “Hard versus Soft Parse.”

If there is no SQL statement in the hash address, the process continues, executes
more recursive SQL, and develops a parse tree and an execution plan. The parse tree is
really the SQL statement reformatted and structured in the form of a tree. The execution
plan is derived from this map, and it dictates the best method (most of the time) to retrieve
the data.

The Define phase is when SQL*Net or Net8/Net8i is engaged to do data type
resolution between the user and server processes. This is important as the client
(user process) could be running Windows NT (whose native representation is in
ASCII) and the server could be an IBM mainframe running Oracle on MVS (whose
native representation is in EBCDIC). This means a long, a short, a word, a double,
or any other data type needs to be mapped to the native environments on both sides.
That is what the Define phase is all about.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Bind phase is when the values to the bind variables are resolved. The use of
bind variables in SQL statements go a long way in “reusing SQL” and also reducing
the contention on the shared pool area. It is very important to reuse SQL and this
can be achieved by the use of bind variables.

The Execute phase of SQL processing is the actual application of the execution
plan or map to the data. If the SQL statement is an insert, update, or delete
statement, it modifies data. For these statements the relevant redo entries (for
instance and database recovery) and rollback entries (for transaction recovery) need
to be generated and logged appropriately, before the data is modified in memory.

The Fetch phase is only applicable to select statements and is the process of
actually reading the data into the database buffer cache, applying the execution
plan, and returning the selected rows to the user process. This is the last step in
SQL processing.

Hard versus Soft Parse
A soft parse occurs if the server process can find a matching SQL statement in the
hash address that was generated by the SQL hashing algorithm. This means that the
server process may be experiencing déjà vu. And that is good. Since that statement
has already been executed at least once before, it will already have a parse tree and
an execution plan associated with it, and hence there is no need to rebuild it. Well,
most of the time.

If the underlying objects referenced by the SQL statement have undergone any
structural changes (alter, analyze, and so on) between the last and current execution,
the statement will be flagged as INVALID, so the current server process that executes
that statement can rebuild the execution plan for that SQL statement. For example,
in the case of an analyze, all SQL in the library cache that references the object that
is analyzed will be invalidated. Why?

If your table originally contained 1,000,000 rows, and a batch job just infused
an additional 5,000,000 rows, as a responsible DBA you will do your part and
analyze your table after the data infusion is done. Well, don’t you think the Oracle
Optimizer has a right to know about the fact that you ran an analyze on your table?
After all, it needs to use the most current statistics on the objects, doesn’t it?

If the optimizer was not aware of new statistics, how can it even think of changing
the execution plan for that SQL statement, even with such a significant increase in
data in the table? Without the invalidation, it will be virtually impossible to know
when execution plans for SQL in the library cache need rebuilding. Hence the
invalidation of the SQL statement in the library cache is done for any DDL operations
that modify the structure of any object or any collection of object statistics. Okay,
let’s get back to hard versus soft parse.

Chapter 5: Instance Tuning—The Shared Pool Area 131

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:131

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The server process then progresses to the Bind phase (described in the previous
section) and then to the Execute and Fetch phases. Again, it goes to the Fetch phase
only if the SQL statement is a select.

By skipping the step for building a parse tree and an execution plan, a significant
amount of resources can be conserved—not to mention a considerable reduction in
contention for the various internal resources needed to perform a hard parse. In the
case of a soft parse, time and resources are spent on executing the statement instead
of trying to figure out how to execute it. Four out of five dentists recommend soft
parses over hard parses. Four out of four dentists recommend no parses over soft
parses. Or was that toothbrushes?

NOTE
It is imperative that any aging of SQL statements from
the shared pool area also causes hard parses of those
SQL statements, as those SQL statements will not
be present at the hash addresses in the shared pool
area. But when these SQL statements are reparsed,
they will map to the same hash address unless the
statement has been modified in some fashion.

To Parse or Not to Parse…That Is the Question
How can a SQL statement be not parsed? Well, actually, it does get parsed the first
time, but if your application reuses the same SQL statement over and over again,
within the same session, then keeping the cursor open and persistent will even
eliminate the need for a soft parse within the same session. Most database experts
agree that reducing the number of hard parses also improves performance. Some of
us go the next step and say that reducing the number of soft parses also improves
performance. And it does so without the need to add more memory to the shared
pool area. So to support optimally performing shared pool areas, you have to first
reduce unnecessary parsing by sharing SQL and using bind variables. When
possible, the cursors should be kept open for the duration of the session.

Initialization Parameters
and the Shared Pool
The following table lists the initialization parameters of primary concern when tuning
the shared pool. Not all of them affect the shared pool directly, but several provide
support to overly taxed shared pools on systems using all the latest features, such as
Java and RMAN. They also support shared pools that use Parallel Query and the MTS.

132 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:132

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 133

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:133

Oracle Initialization Parameter Meaning/Relevance

SHARED_POOL_SIZE Sets the total size of the shared pool
in bytes.

SHARED_POOL_RESERVED_SIZE Reserves part of the shared pool for
large objects—the reserved area.

SHARED_POOL_RESERVED_MIN_ALLOC Defines the threshold for large objects.
Not relevant since Oracle 8.0.3.

LARGE_POOL_SIZE Introduced in Oracle8 to better
manage the space for the shared
pool and support shared pool space
management for the new features
in a more proactive fashion. The
cursor-state and user-session-data
components of the PGA reside here
when Oracle is configured in MTS.
This is not part of the default shared
pool area.

LARGE_POOL_MIN_ALLOC Defines the threshold for allocation of
objects in the large pool. Not relevant
since Oracle 8.0.3.

PARALLEL_AUTOMATIC_TUNING Causes parallel operations to use the
large pool, by automatically setting the
LARGE_POOL_SIZE to 15MB if not
already set. Available from Oracle8i
and up.

JAVA_POOL_SIZE Reserves space for Java and its related
components. This is not part of the
shared pool area.

SESSION_CACHED_CURSORS Although this parameter does not
directly affect the shared pool, it does
configure the number of cursors that
can be kept in the session cursor cache
to reduce the probability of soft parses
and thus reduce the contention in the
shared pool area. Set this parameter so
a reasonable number of cursors can be
cached. It does consume additional
memory on a per session basis.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

134 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:134

Configuring the Pools
With Oracle7 there was only one pool to consider, until version 7.3 came around.
With Oracle 7.3, the reserved pool was introduced to effectively manage space within
the shared pool and segregate large SQL objects from smaller SQL. With Oracle8, the
large pool and, with Oracle8i, the Java pool (to support Java programs) was introduced.
In spite of all of these new pools, the shared pool still remains the center of attention.
With the library and data dictionary caches, as well as space set aside to support the
Oracle MTS in Oracle7 systems, it is a critical area for performance. While everyone
knows that I/O is expensive and we work hard to avoid it, many forget that as far as
CPU time goes, hard parsing done in the shared pool is one of the more CPU-
intensive operations. All of this makes configuring the shared pool and the other
pools quite important. Fortunately, it is not that difficult.

Configuring the pools is nothing more than setting the parameter in the init.ora
and starting or restarting the instance. As with all tuning in the workaday world, the
trick is setting the values optimally, so as not to impede other systems or cause
repeated changes to these parameters that cause bouncing of the database multiple
times, yet provide the needed processing and throughput.

The Shared Pool
There are four parameters that directly affect the shared pool. The three important
ones are SHARED_POOL_SIZE, SHARED_POOL_RESERVED_SIZE, and LARGE_
POOL_SIZE. The SHARED_POOL_SIZE decides the size of the regular shared pool.
The SHARED_POOL_RESERVED_SIZE specifies how much of the shared pool should
be configured for the reserved area. The reserved area is used for large packages,
procedures, functions, and such. The LARGE_POOL_SIZE is used for Oracle MTS,
Parallel Query, and RMAN. This memory is in addition to the value configured for
SHARED_POOL_SIZE. For example, if your SHARED_POOL_SIZE is 128MB and your
LARGE_POOL_SIZE is 32MB, this 32MB of memory is in addition to the 128MB
allocated for SHARED_POOL_SIZE.

The parameter (SHARED_POOL_RESERVED_MIN_ALLOC) is only valid if your
database version is prior to 8.0.3. From 8.0.3 onward, this is an undocumented
parameter as it begins with an underscore (_) and like any other undocumented
parameter, should be used only on advice from Oracle support.

The Large Pool
The large pool can be configured by using the LARGE_POOL_SIZE parameter in the
init.ora. It will take effect when your instance is restarted. Prior to Oracle 8.0.3, the
value of LARGE_POOL_MIN_ALLOC indicated the minimum amount to allocate
from the large pool for any operation. Since 8.0.3 it has been desupported and can
only be used by entering _LARGE_POOL_MIN_ALLOC in the init.ora. There is really
no need to do that.

P:\010Comp\Oracle8\145-4\ch05.vp
Wednesday, July 11, 2001 3:53:29 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The large pool is especially useful if Oracle is configured to use MTS or if RMAN is
used to perform backup operations. When Oracle is configured in the MTS mode, the
Cursor State and User Session Data sections of the PGA get moved into the shared pool
area. This, of course, competes with the other uses of the shared pool and degrades
performance. It is exactly for that reason that you should configure the large pool.

NOTE
Contrary to popular belief, the sort areas for sessions
attaching to the Oracle database using the MTS
configuration are allocated in the session’s PGA
instead of the shared pool area. This was last tested
in Oracle 8.1.6.

RMAN also uses the regular shared pool, if the large pool is not configured.
Parallel operations performed by parallel query slaves require workspace in the
shared pool, and configuring the large pool prevents contention and fragmentation
of the regular shared pool. In Oracle8i, setting PARALLEL_AUTOMATIC_TUNING
to TRUE allows these operations to use the large pool instead of the shared pool, if
LARGE_POOL_SIZE is not already set.

The large pool can be initially set to 15–20 percent of the size of the shared
pool, depending on the frequency and type of usage. The preferred method to tune
the large pool is to increase its size as long as the area named as “large pool memory
in use” increases in V$SGASTAT. If the increase shows up as “large pool free
memory,” you have added more memory than is necessary for the large pool. By
configuring the large pool, there is better management of the default shared pool
area. Of course, the net effect is that the SGA grows, but by segregating the different
functions, contention is reduced and you avoid any one pool becoming overly large.
As the size of any pool grows, the cost to maintain it grows—sometimes, beyond the
potential return.

The Java Pool
Configuring the Java pool is done with the parameter JAVA_POOL_SIZE. As
mentioned earlier, the recommendations for setting this parameter as described
in the documentation are too small. Who would have thought that? Several
implementations of Oracle on various platforms indicate that a minimum of 100MB
should be used for this parameter. Again, this is a separate area independent of the
default shared pool area. The default value for JAVA_POOL_SIZE is OS dependent
and can be reduced to about 1MB if Java is not used.

Chapter 5: Instance Tuning—The Shared Pool Area 135

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:135

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

136 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:136

Tuning Your Exotic SPA
Before you jump right in and make changes to the init.ora, you will want to get a
solid understanding of what is in your shared pool and what problems, if any, it is
experiencing. There are a few measurements that can indicate a need to tune the
shared pool. In legalese, the indicators that demonstrate a failure toward optimal
shared pool performance include but are not limited to:

■ High CPU utilization caused by excessive parsing

■ ORA-4031 errors (indicating a failure to allocate memory)

■ Use of Oracle’s MTS

■ Installation of Java

■ Use of RMAN or parallel operations

And while simple statistics do not define poor performance, low cache-hit ratios
in the library and dictionary cache may be symptoms of problems in the shared
pool. The focus of the tuning effort here is to understand if the performance issues in
the shared pool area are caused due to bad sizing or because the space within the
shared pool is not properly managed.

CAUTION
It is very counterproductive to Oracle system
performance to over-allocate memory to one or
more components of your shared pool.
Over-allocation of memory here can and will cause
significant parsing delays (in some cases we have
noticed ten-minute response times for a query such
as – select * from dual;). Such extreme parsing
delays also are accompanied by significant waits for
the shared pool and library cache latches. Do not go
overboard just to get your ratios in the upper 90s.
One more thing: please don’t schedule jobs to flush
your shared pool every five minutes to get around
a problem. Find out what is causing your parsing
problems and cure the disease, instead of the symptoms.

First, take a look at the utilization of the shared pool and other pools. Select the
relevant pool from V$SGASTAT, to show the allocation to each pool and what is
in each pool. Then query V$SGASTAT and look at the total bytes allocated to the
shared pool compared to the amount still free.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SVRMGR> select Pool,sum(Bytes)
2> from V$SGASTAT
3> where pool = 'shared pool'
4> group by pool;

POOL SUM(BYTES)
----------- ----------
shared pool 55464348
1 row selected.

SVRMGR> select Pool,Bytes
2> from V$SGASTAT
3> where Name = 'free memory';

POOL BYTES
----------- ----------
shared pool 23338928
large pool 14367854
2 rows selected.

NOTE
A low value for “free memory” does not necessarily
indicate a problem. Realize that the shared pool
area is a cache, and it is perfectly normal to use up
all of the allocated space. If anything, if you see a
very large value for “free memory” (as in the output
just shown), it should indicate that you have
oversized your shared pool area. A high value for
free memory can also indicate a lot of aging that is
occurring in your shared pool (if you were to query
V$SGASTAT at the right time). The key here is to
manage the space appropriately and make use of
all the available pools in your version of Oracle.
On the flip side, you should periodically query
V$SHARED_POOL_RESERVED (if available in your
version of Oracle) dynamic performance view and
look for increasing values in the Request_Misses
column, to indicate a shared pool that is too small.

Use this information along with information about the two major areas of the shared
pool(namely the library and dictionary cache), to make an informed decision about
changing the value of SHARED_POOL_SIZE. Alternatively, make other decisions such
as using SHARED_POOL_RESERVED_SIZE, LARGE_POOL_SIZE, or JAVA_POOL_SIZE,
to provide the required zoning of objects within the shared pool area.

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:137

Chapter 5: Instance Tuning—The Shared Pool Area 137

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Library Cache
The library cache contains the SQL statements being processed and information about
them. By delving into this area it is possible to determine the health of the shared pool. If
the shared pool is in good shape, these ratios will be fairly high. But do not run your life
purely on the ratios, as in data-warehouse and decision-support applications the ratios
may be low yet not portray any significant performance problem.

NOTE
If the application does not use bind variables,
looking at these statistics does nothing but generate
heartburn. If you can’t fix the application or set
CURSOR_SHARING=FORCE (Oracle8i and up),
just turn the other way, after you have done nominal
sizing of the shared pool structure.

SVRMGR> select Namespace, Gethitratio, Pinhitratio
2> from V$LIBRARYCACHE;

NAMESPACE GETHITRATIO PINHITRATIO
--------------- ----------- -----------
SQL AREA .868686869 .916376307
TABLE/PROCEDURE .784251969 .745541023
BODY .75 .75
TRIGGER 1 1
INDEX 0 0
CLUSTER .963768116 .97382199
OBJECT 1 1
PIPE 1 1
8 rows selected.
SVRMGR>

What is the difference between GETS and PINS? This will help you understand
the differences between the GETHITRATIO and the PINHITRATIO. The term GETS
is defined to be the number of requests for one or more items in the library cache,
and the term PINS is defined to be the number of executions of a given item.

If the GETHITRATIO for several namespaces is low or is declining, there may be
room for improvement. If the “SQL AREA” namespace is very low, it indicates that
Oracle is not finding very many cursors to share.

Cursors may not be shareable for two reasons. The first reason—quite common in
too many applications—is the failure to use bind variables. This causes two statements
that are essentially the same to have separate areas in the library cache. Bad! One
way to see if this is the case is to query V$SQLAREA and filter the output with a where
clause that looks for similar SQL statements and count the number of occurrences of
each type.

138 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:138

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

With many off-the-shelf applications, you will find the same statement over and
over using a literal instead of a bind variable. To put it mildly, this may very well be
one of the costliest and most pervasive disasters in application coding. This results
in additional hard parses and increased CPU utilization. The best way to avoid or fix
this issue is to incorporate bind variables in the SQL.

If reuse of SQL is not possible, but the database is version 8.1.6 or higher, you can
set CURSOR_SHARING to FORCE. This allows Oracle to substitute a system-generated
bind variable and thus allow sharing in the future. Information on how many parses
have occurred is available by querying V$SYSSTAT for the system or V$SESSTAT for a
given session. Here is a sample query from an Oracle8i database (8.1.6.1):

SVRMGR> select A.Value total,
2> B.Value hard,
3> A.Value-B.Value soft,
4> round((B.Value/A.Value)*100,1) hardparseperc
5> from V$SYSSTAT A, V$SYSSTAT B
6> where A.Statistic# = 171
7> and B.Statistic# = 172;
TOTAL HARD SOFT HARDPARSEPERC

---------- ---------- ---------- --------------
536 149 387 27.8

1 row selected.
SVRMGR>

NOTE
This query is accurate for Oracle 8.1.6.1 and up,
but you will need to query V$SYSSTAT by name
to confirm the STATISTIC# for parse count (total)
and parse count (hard) as these change from
version to version.

NOTE
Oracle7 does not provide a direct mechanism
to determine the number of soft parses using the
just-shown V$ views. However, if you want to
look at hard versus soft parsing for a given session,
you need to turn trace on for that session. You then
can study the output of the trace file by processing
it via tkprof. In the tkprof output, the line “Misses
in library cache during parse” will provide you with
the information you are looking for.

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:139

Chapter 5: Instance Tuning—The Shared Pool Area 139

P:\010Comp\Oracle8\145-4\ch05.vp
Wednesday, July 11, 2001 3:53:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A high percentage of hard parses indicates that there may be a lot of dynamic
SQL or insufficient use of bind variables. Both are costly, since the server process
must do a hard parse for each of those statements. The second reason that cursors
are not available for sharing could be that the statements are getting aged out. An
indicator of this is the ratio of RELOADS to PINS. High values here indicate that
statements are aging out and perhaps the shared pool could be larger or better
managed. But remember, if the application does not use bind variables, these
numbers are meaningless, and resizing of the shared pool just to get the numbers
within a certain percentage should be avoided at all costs. Reloads could result
from too many objects or large objects (such as packages).

SVRMGR> select sum(Reloads)/sum(Pins)
2> from V$LIBRARYCACHE;

SUM(RELOADS)/SUM(PINS)

.001234873

The aging out of objects in the library cache is a natural function of doing business
with limited memory. Values of less than 1 percent are not worth any additional
effort. Any performance problems you have are not the result of having to reload
a SQL or PL/SQL object.

If you do have a reload problem, but the application uses bind variables and
does not have any problems with dynamic SQL, you may simply have too small
a shared pool. Your regular shared pool is potentially competing with a few large
objects for space. In this case, it would be beneficial to store these large SQL or
PL/SQL objects in the reserved pool. If you suspect this is the case, configure the
shared pool to have the reserved pool and set the minimum allocation low enough.
The following query will help identify which large objects might be competing
unfairly for space in the shared pool:

SVRMGR> select Name, Sharable_mem
2> from V$DB_OBJECT_CACHE
3> where type in ('PACKAGE','PACKAGE BODY','FUNCTION'
4> ,'PROCEDURE');

NAME SHARABLE_MEM
--- ------------
DBMS_APPLICATION_INFO 12873
DBMS_APPLICATION_INFO 2709
DBMS_STANDARD 15809
STANDARD 218332
DBMS_OUTPUT 14155
DBMS_OUTPUT 6419
6 rows selected.
SVRMGR>

140 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:140

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:48 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 141

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:141

The output from this query shows one sizeable package, standard. This is one
package that should be moved to the reserved area. If there were others, it would
definitely be a good idea to reserve some additional space from the shared pool
for larger SQL objects by setting the value of SHARED_POOL_RESERVED_SIZE
to a value of 15–20 percent of the total of the shared pool. Then set the value of
SHARED_POOL_RESERVED_MIN_ALLOC to a value just less than the smallest
package you would like to segregate.

NOTE
SHARED_POOL_RESERVED_MIN_ALLOC is a
desupported parameter since Oracle 8.0.3, and it is
now _SHARED_POOL_RESERVED_MIN_ALLOC. It
is recommended that you do not change the value
of this parameter unless advised by Oracle Support
to do so.

Because these larger packages are now in their own space, they will not compete
with smaller statements and packages. When possible, it is a good idea to create
smaller packages of related procedures that are called with about the same frequency.
One thing to note is that when a procedure from a package is called, the entire
package is parsed and loaded in the shared pool. A similar query can be executed
against V$SQLAREA to look at Sharable_Mem values for SQL statements. Use this
information to find the big ones.

The Data Dictionary Cache
The data dictionary cache contains the rows that have been read from the data
dictionary in response to recursive SQL. The data from the data dictionary tables are
read into the database buffer cache (like any other table), and the relevant information
is transferred into the dictionary cache. Recursive SQL is executed in response to
regular SQL. As long as Oracle can resolve recursive SQL from the data dictionary
cache, no need arises to reread from disk. This means reduced I/O. The following
query can give you an idea of the hit rate and thus how often the system has to do
extra work:

SVRMGR> select to_char(
2> round((1-sum(Getmisses)/sum(Gets))*100,
3> 1))||'%' "Hit Ratio"
4> from V$ROWCACHE;

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

142 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:142

Hit Ratio

89.8%
1 row selected.
SVRMGR>

In our experience, we have usually seen very high dictionary cache-hit ratios
(upper 90s). On systems that don’t reflect such high ratios, the typical problem was
that the size of the shared pool was too small.

Keep ‘em Home
Oracle provides a package that can help improve performance by not allowing
selected objects to age out of the shared pool. The package is DBMS_ SHARED_
POOL. The procedure to call is keep. This process is called pinning or keeping an
object. If the procedure execution outlined next generates an error, you might have
to run the dbmspool.sql script located in the $ORACLE_HOME/rdbms/admin directory.

SQL> exec dbms_shared_pool.keep('STANDARD');
PL/SQL procedure successfully completed.

After executing this procedure, Oracle will keep this package in memory. Some
folks like to use this on very large packages that aren’t necessarily used frequently
enough to keep them in memory, naturally. By pinning them, they ensure that the
package is present in memory when needed, and that it will not encounter any
runtime errors while trying to load. Use this judiciously as it can cause other objects
to age out at a faster rate by not allowing memory to be freed for other objects. This
can lead to errors in allocating space for new objects needing to be parsed. Once
the package is no longer needed, it can be released by calling the unkeep procedure
in the DBMS_SHARED_POOL package.

To see what has been pinned, look at the Kept column of
V$DB_OBJECT_CACHE:

SVRMGR> select Owner, Name, Type, Sharable_mem, Kept
2> from V$DB_OBJECT_CACHE
3> where Type in ('FUNCTION','PACKAGE','PACKAGE BODY',
4> 'PROCEDURE')
5> order by Owner, Name;

OWNE NAME TYPE SHARABLE_MEM KEP
---- ----------------------------- --------------- ------------ ---
SYS DBMS_APPLICATION_INFO PACKAGE 12873 NO
SYS DBMS_APPLICATION_INFO PACKAGE BODY 2865 NO

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 143

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:143

SYS STANDARD PACKAGE 218604 YES
SYS STANDARD PACKAGE BODY 28576 YES
4 rows selected.
SVRMGR>

It is also possible to pin unnamed objects such as cursors (handles to SQL
statements). To keep a cursor, you must select the ADDRESS and the HASH_VALUE
for that cursor from V$SQLAREA and then use their values as arguments to the keep
procedure.

SQL> exec dbms_shared_pool.keep('21589568,4139960791','C');
PL/SQL procedure successfully completed.

For more information on the syntax of the DBMS_SHARED_POOL package, run
the desc command providing the package name as an argument.

Many database administrators recommend pinning the key system packages as
soon as the instance starts. This avoids problems for those packages, and it avoids
having them step on smaller objects. It is also a good idea to identify any large
application packages and pin them as well. The ones most often recommended
for pinning are STANDARD, DBMS_DESCRIBE, DBMS_APPLICATION_INFO,
DBMS_STANDARD, DBMS_OUTPUT, and DBMS_UTILITY. These can be pinned
as SYS during startup, and no special privileges are needed to do just that.

NOTE
When tested on Oracle 8.1.6 (may be relevant in
other versions too), the flushing of the shared pool
did not flush “pinned objects,” that is, objects you
have Kept. These objects get flushed when the
instance is bounced (obviously) or if you were to
specifically execute the unkeep commands.

Shared Pool Fragmentation:
Proactively Managing ORA-04031
Besides poor performance due to reloads and failure to reuse SQL, the most
common complaint about the shared pool is fragmentation. The ORA-04031 is the
single most powerful statement that Oracle is trying to communicate to you to
proactively manage your shared pool and its related components. Looking it up in
some of Oracle’s information sources yields a wealth of meaningful information.
Not really! What they have to say is next.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

144 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:144

■ Cause More shared memory is needed than was allocated in the shared pool.

■ Action If the shared pool is out of memory, either use the DBMS_
SHARED_ POOL package to pin large packages, reduce your use of
shared memory, or increase the amount of available shared memory
by increasing the value of the init.ora parameters “SHARED_POOL_
RESERVED_ SIZE” and “SHARED_ POOL_SIZE”. If the large pool is
out of memory, increase the INIT.ORA parameter “LARGE_POOL_SIZE”.

Well, now you know as much as before the error. The question is which of those
options will fix the problem. To solve the issue, first understand the problem.

What Causes Fragmentation
of the Shared Pool?
Many things control the rate and frequency of fragmentation in the shared pool
area. Here are some perpetrators:

■ Frequent object aging from the shared pool (may be a sizing problem)

■ A high value for free memory in V$SGASTAT (if it is caused due to aging)

■ Large objects are not KEPT in the shared pool

■ Many SQL statements of the same kind that do not use bind variables

■ Not using CURSOR_SHARING in Oracle 8.1.6, if the application cannot be
modified to use bind variables

■ Excessive parsing (partly as a result of large objects not being KEPT in the
shared pool and also due to lack of caching cursors in the sessions (not
using SESSION_CACHED_CURSORS)

■ Many large anonymous PL/SQL blocks

■ Not configuring and using the reserved pool (Oracle 7.3 and up) and the
large pool (Oracle 8.0 and up)

Imagine that when the shared pool is allocated it is one contiguous chunk of
memory. Now as the first packages and statements are parsed, they get memory
allocated in nice contiguous chunks of exactly the size they need. No problem here.
After the shared pool gets filled, Oracle has to make room for additional objects.
This requires use of the least recently used (LRU) algorithm to manage the space
within the shared pool.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 5: Instance Tuning—The Shared Pool Area 145

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:145

Oracle pitches out the least recently used objects. Since the objects were loaded
on a first come first served basis and not in order of their future use, the shared pool
ends up looking a bit like Swiss cheese. Still okay. Assume that most new statements
will fit in those holes, so they just plug right in. But now along comes a gargantuan
package that will not fit in any of those holes. Oracle starts scrambling around to
clear more objects out until there is enough room.

This is not an issue until one of those little packages is pinned (in use) and
cannot be cleared. That little package is like the little old lady who won’t sell her
house to the shopping center developer even though all of her neighbors have. The
shopping center developers still can’t build a mall, because they can’t get the old
lady to clear out. Basically, the developers have to call the venture capitalists, and
declare an ORA-04031. “unable to allocate %s bytes of shared memory.”

The ORA-04031 Error in Oracle 7.3 and Up
The probability of ORA-04031 errors occurring has reduced a great deal in Oracle 7.3
and up, and this due to changes made to the shared pool space allocation algorithm.
Prior to Oracle 7.3, when an object was %s bytes in size, then “%s contiguous bytes”
were required to store it in the shared pool. Failing that an ORA-04031 was
generated. Since Oracle 7.3, Oracle just needs to find %s bytes between the free
memory and the objects that could be tossed out.

Prior to Oracle 8.0, apart from the normal usage of the shared pool for SQL
statements, it was also the home for the stack space and the cursor state components of
the PGA, when a user connection was made using the MTS. This further added to the
fragmentation of the shared pool. In late versions of Oracle 7.3, Parallel Query provided
more competition for space in the shared pool, and RMAN joined the fray in 8.0.

To alleviate this problem, in Oracle 8.0 the initialization parameter
LARGE_POOL_SIZE was introduced. When this parameter is configured, MTS/Parallel
Query/RMAN will utilize the space allocated for the large pool for its operations, rather
than the default shared pool area. This further reduced the frequency of encounters with
ORA-04031. Of course, none of these improvements deal with the issues of dynamic
and ad hoc SQL or bad coding.

To avoid encountering this situation, you will need to make sure you have the
right amount of acreage for your shopping center and you may want to do some
zoning. This is where SHARED_POOL_RESERVED_SIZE comes into play along with
SHARED_POOL_RESERVED_MIN_ALLOC, as well as setting LARGE_POOL_SIZE.
These allow the database administrator to set limits on who gets into what part of
the shared pool. Additionally, pinning (dbms_shared_pool.keep) large objects in
memory prevents their space from being chewed up by the little guys. Set the size
of the reserved pool based on the sum of the sizes of the objects you want to pin.

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Wait Events that Affect
the Shared Pool Area
Regardless of what the hit ratios are for the library and dictionary cache, you should
make it a habit to determine the “wait events” that affect the shared pool area. These
can be found by querying V$SESSION_WAIT and looking for events such as latch free
if the latch is shared pool, library cache, library cache load lock, and so on.

Select SW.Sid, S.Username, substr(SW.Event, 1, 35), SW.Wait_time
from V$SESSION S, V$SESSION_WAIT SW

where SW.Event not like 'SQL*Net%'
and SW.Sid = S.Sid

order by SW.Wait_time, SW.Event;

This query produces a list of events currently in a wait state. If wait events exist
for shared pool resources, use this information to direct the problem solving. Most
problems in the shared pool area can be addressed by either increasing its size (up
to a certain limit) or more importantly by making better use of the various pools
(large pool, reserved area, java pool). However it should be noted that reducing the
need for those resources by reusing SQL and keeping parsing to a minimum will go
a long way toward keeping this cache “contention free.” The following are some
common events that are related to the shared pool area. A complete list of wait
events is available in the Oracle Reference manual.

latch free Indicates latch contention for the latch# that is
being waited on. If the problem persists, you
should determine what is causing the contention
for the latch and fix the underlying problem.
Your goal should be to cure the disease not the
symptom. A latch free event is a symptom of a
bigger problem. For example, if the latch# derived
from this is a library cache latch (assuming that the
shared pool is configured appropriately), it may
indicate a significant amount of hard parsing. This
usually is a problem with applications that have
hard-coded values in them. Either rewrite them
with bind variables or upgrade to Oracle 8i and
use CURSOR_SHARING=FORCE— or just look
the other way.

146 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:146

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

library cache load lock This is required to load objects into the library
cache. This wait event can occur when a significant
amount of reloads/loads are occurring (normally
caused due to either lack of reuse of SQL statements
or a improperly sized shared pool area).

library cache lock Waits associated with concurrency of multiple
processes accessing the library cache. Can indicate
an improperly sized shared pool area, as this lock
needs to be acquired to locate objects in the
library cache.

library cache pin This wait event is also associated with library
cache concurrency and can occur when a given
object needs to be modified or examined in the
library cache.

In a Nutshell
Tuning the shared pool, like any other part of your Oracle system, requires
understanding the interdependencies of all components. In this case, it means
knowing the nature of the SQL being used. The relative sizes of packages, procedures,
and functions affect the shared pool and the other related pools. It requires that the
database administrator proactively manage the shared pool and large pool where
applicable. Knowing which options the system is using determines the configuration
of some of the pools. If RMAN is used as a part of the backup methodology, or if
parallel operations or MTS is used, the large pool must be configured to support these
tools. If Java is installed, Oracle will need a robust Java pool.

Don’t let cache-hit ratios be the only driver of tuning decisions. Use wait events
to direct your tuning efforts down the right path. If the system is experiencing a high
number of reloads in the library cache, it may be starving for memory. Consider
increasing SHARED_POOL_SIZE. But before doing that, also consider the benefits
of SQL tuning or segregating large packages and procedures or utilizing open and
persistent cursors.

Excessive aging may be caused due to one or more large objects called by one
or more programs. These large objects should be pinned in the reserved shared pool
area. Query V$SQLTEXT to confirm that the aging issue is not caused by the parsing
of hundreds of essentially identical statements, with the only difference being the
literal value in the where clause. If this is the case, more memory isn’t going to help
except for a short while. If the application can be rewritten to use bind variables, do
so. If not, and if the system is based on Oracle 8.1.6 or higher, try setting
CURSOR_SHARING to FORCE.

Chapter 5: Instance Tuning—The Shared Pool Area 147

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:147

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
There is a significant overhead during parsing for
your Oracle system if CURSOR_SHARING is set
to FORCE. Anecdotal evidence puts the overhead
at approximately 25 percent. Test and verify this
in your environment before implementing on
production systems.

Avoid simply flushing the shared pool to clear everything out. You might get one
package to run, but at a high cost in performance to all the other users on the system
who are subject to hard parses where they would have used a soft parse.

If poor performance is traced back to recursive SQL having to constantly repopulate
the data dictionary cache, definitely increase the shared pool. However, be careful
that the ensuing increase in the SGA does not cause problems elsewhere that might
be worse.

Pinning or keeping packages and other objects in the shared pool can provide
excellent relief from aging issues as well as shared pool fragmentation, thus avoiding
the ORA-04031 error. This is done with the package DBMS_SHARED_POOL using the
keep procedure. Many database administrators find pinning key system and application
packages at the startup of an instance helps dramatically. These steps are often added
to the startup scripts.

The key point is to add memory when needed and reconfigure the memory for
best use by reallocating it among the pools and reserved area as appropriate. And
last but not least, as with all other tuning efforts, stop when the agreed-upon
performance goals are met.

148 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 5
Blind Folio 5:148

P:\010Comp\Oracle8\145-4\ch05.vp
Monday, May 14, 2001 9:38:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Online, you'll find:

• FREE code for selected books

• FREE sample chapters

• Complete online Oracle Press catalog

• Details on new and upcoming

Oracle Press titles

• Special offers and discounts

• Enter-to-win contests

• News and press information

• Information about our expert authors

• Details on how to write for Oracle Press

• And much more!

From a full selection of titles focusing

on Oracle’s core database products to

our in-depth coverage of emerging

applications, Web development tools,

and e-Business initiatives, Oracle Press

continues to provide essential resources

for every Oracle professional. For a

complete list of Oracle Press titles—

from the exclusive publishers of

Oracle Press books—and other valuable

resources, go to

OraclePressBooks.com.

Get the most complete information on

Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

Expert authors, cutting-edge coverage, the latest

releases…find it all at OraclePressBooks.com

ORIGINAL • AUTHENTIC

O N LY F R O M O S B O R N E

O R A C L E P R E S S T M— E X C L U S I V E LY F R O M M c G R AW- H I L L / O S B O R N E

1002

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

