e 48 £/ o~

/£ g
.I'Iu
b
P ’ e
s :
3 |

e .

= - =

,Instancef-TUning—Thé '
Redo Log Buffer and
ml aneous ,Tuning

il

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.
Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this

work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
this Work, and is not responsible for any errors or omissions.

R

170 Oracle Performance Tuning 101

\ g

Myth & Folklore
The bigger the redo log buffer, the better. If a TMB redo log buffer is good, an 8MB
redo log buffer must be even better.

Fact

Many times a database administrator gets alarmed by system statistic that reports
not-so-attractive numbers for redo log space requests and some others related to
redo activity. However, one must pay more attention to the wait events that are
caused by such statistics. Excessive non-idle waits of any kind can adversely affect
the performance of your database. True, there should not be a large number of waits
for the redo log buffer, but a small non-zero value is not a problem. Particularly, if
this memory structure is not the cause for wait events in the database, increasing the
size of this memory structure should be avoided. Continuing to increase the value of
LOG_BUFFER will eventually create a problem of its own. If this buffer is too large,
it can cost more to manage the space than any potential benefits that can be gained.
Bigger is not necessarily better in this case!

Myth & Folklore
Third-party packaged applications do not expose their SQL, hence there are no real
tuning opportunities in those environments.

Fact

Although most third-party packaged application vendors bury their SQL at depths
that are not reachable to most DBAs, there are some instance-level tuning opportunities
that have surfaced in Oracle8, which make these applications a lot more tunable. Prior
to Oracle8, the extent of tuning some of these applications was limited to creating,
modifying (adding one or more columns or changing the type—from B*-tree to
bitmapped indexes) and removing existing indexes, which provided a limited effect on
the application’s execution behavior. In Oracle8, the advent of some optimizer-specific
initialization parameters allowed DBAs to control the behavior of the Oracle optimizer
in a more flexible fashion. Needless to say, these parameters should be thoroughly
tested in your environment before deploying on production systems.

" n this chapter, we want to address areas of the instance that are
| A _important, but that don’t carry the same weight as the shared pool area

~ or the database buffer cache. Just the same, they can cause plenty of
© heartache and grief if not addressed adequately. These areas include the
redo log buffer, background processes such as the database writer
(DBWR), the log writer (LGWR), the archiver (ARCH), and checkpoints. We also
want to look for tuning avenues in third-party packaged applications where the SQL

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning |7 |

is usually not reachable. This tuning effort is accomplished by tuning the Oracle
optimizer. The task of tuning the Oracle optimizer should be undertaken only after
all of the tuning methods outlined in the previous chapters have been exhausted.

Configuring the Redo Log Buffer

Before configuring the redo log buffer it is a good idea to understand what it is and
how it works. The redo log buffer is the first step in recording changes to data in
the database. This also includes any metadata changes in the database. The redo
log buffer is usually the smallest of the caches in the SGA. It is a fixed-size buffer
that is determined by the Oracle initialization parameter LOG_BUFFER. The redo
log buffer is used by all server processes that modify the data or the structure of one
or more tables. The server processes writes the before image, the after image of the
changed rows, along with the transaction ID, into the redo log buffer.

The LGWR process reads the contents of the redo log buffer and writes those to
the online redo log files on disk. Based on whether the database is in archivelog
mode, the redo log files may or may not be copied by the ARCH process to archive
log destination. The LGWR can be compared to a copy boy in a newspaper office.
For those of you who have lived in some part of the past British Empire this should
be very familiar to you. In the olden days when e-mail and electronic workflows
were just things of one’s imagination, it was the copy boy who got things done. (For
our female readers, we want to explain that a copy boy could have been a girl too.
It was the days when gender-bias was very prevalent and little attention was paid for
“politically correct” speech or term usage. Please do not hold this against us, as this
is not our doing.)

The main function of a copy boy was to collect the final copy of the news
reports from the various reporters and editors and get it to the pressroom in a timely
and ordered fashion. Even reporters who were prompt in finishing their work were
still dependent on this little person to do his or her job on time and in a proper
fashion. Why was this person little? It was because the job always attracted very
young people. If the copy boy slacked off or was distracted with other matters or
just did not do his job right, the entire paper copy printing could be held up. If the
newspaper office had many news reporters, the copy boy could very easily become
the bottleneck for the entire process of printing news. This is a very good example
of a seemingly insignificant person (in the larger scheme of the newspaper office’s
pecking order) becoming crucial to the smooth flow of things.

Our goal here is to explain in simple terms how the redo log buffer and its support
systems, LGWR and the redo logs, work. Hmmm, sounds like a great name for a band!
When a user process issues a DML statement, the associated server process must
guarantee that the change being made can be recovered in the event of an instance
or media failure. This is accomplished with the redo log buffer, some redo-specific
latches (internal structures within Oracle that provide mutually exclusive access to

1 72 Oracle Performance Tuning 101

its memory structures), and that soon to be famous band, LGWR and the redo logs.
The order of events is very important here. Let’s review this process, as it changed
significantly in Oracle 7.3:

I. A user process issues an insert, update, or delete statement. Let us assume
that it is the start of a transaction and Oracle assigns a transaction identifier
for this operation.

2. The server process associated with the user process reads the required data,
index, and rollback blocks into memory and locks the relevant row(s) that
require manipulation.

3. The server process then acquires what is called a redo copy latch first.
Acquiring this redo copy latch is a prerequisite condition before the process
can write to the redo log buffer. However, the write does not take place just
yet. It is useful to note that there are as many redo copy latches as are defined
by the Oracle initialization parameter LOG_SIMULTANEOUS_COPIES. This
parameter is obsolete in Oracle8i (automatically set to two times the number
of CPUs). But in prior releases, such as in Oracle 7.3.x, this parameter could
be set to the allowed maximum of two times the number of CPUs. In Oracle8,
this parameter could be set to up to eight times the number of CPUs. On
some operating system platforms, the support for eight times the number of
CPUs was back-ported to Oracle 7.3.4. There is no measurable overhead of
setting this to the platform-specific maximums.

4. The server process then acquires the redo allocation latch to reserve space in
the redo log buffer. The amount of space is dependent on the size of the redo
entry to be written. As soon as the space is reserved, the redo allocation latch
is released, as there is only one redo allocation latch per database and
hogging this latch can cause significant performance problems.

5. The server process then writes the redo entry into the redo log buffer using
the redo copy latch. (The redo entries when written to the redo log files are
used to recover one or more components of Oracle in the event of instance
or media failure.)

6. The server process then releases the redo copy latch.

7. Once the redo information is written into the redo log buffer, the server
process writes the rollback information into the blocks of the rollback
segment assigned to the transaction. This is used in the event the user process
issues a rollback instead of a commit. Please note that rollback entries also
generate a redo of their own and must also be logged in the redo log buffer.

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning

8. Now that all the bases are covered to protect the transaction (including the
data that is about to change) the server process can now update the row(s)
in the data and the index blocks.

NOTE

Given that the redo log buffer is a circular buffer,
simultaneous writes to this memory structure can
and will happen. This is of course subject to how
quickly the redo allocation latch is acquired and
released. Also note that the processing of the redo
information takes precedence over all other data
changes or activity. From a tuning perspective this
means that anything that holds up getting that
information into the redo log buffer will hold up
everything else. So keep this little guy in the SGA
happy! Remember the copy boy story!

LGWR writes the redo log buffer to disk on one of the following events:

B Every three seconds (independent of DBWR). Yes, from Oracle8 and up, it
has its own timer.

m On a commit. Remember that the write of the redo entry must physically be
completed before control is returned to the program issuing the commit.

B Whenever redo information equal to one third of the size of the redo log
buffer has been written to the redo log buffer. For example, if the size of the
redo log buffer is 131072 bytes, when 43690 bytes of new information has
been written to the redo log buffer, LGWR will copy the new redo information
to disk. Starting from Oracle8, LGWR will write to the redo logs when MIN
(1IMB,LOG_BUFFER/3) is true. This is to support better performance when
Oracle instances are configured with large redo log buffers. However, this
fact should not be misunderstood as a recommendation to set larger redo
log buffers. The point we are trying to make here is not that the redo log
buffer will never get more than one-third full. What we are trying to
communicate is that when it reaches the one-third full threshold, LGWR
will write the contents of the redo log buffer. However, given the circular
nature of the buffer, the remaining two-thirds of the buffer will be utilized
for writes by other server processes that need to write to the redo log buffer.
From Oracle8 and up, this one-third write will not exceed a size of TMB (in

173

174 Oracle Performance Tuning 101

the event the instance is configured with a redo log buffer larger than 3MB)
per the above formula. Said another way, if you size your redo log buffer at
15MB, LGWR will initiate a write when TMB worth of redo entries have
been written to the redo log buffer. It should be noted here that in our tests
we could not find any evidence to corroborate the “consistent working” of
the one-third full event. The threshold at which LGWR was writing varied
significantly from one-sixth full to two-thirdsfull. Don’t count on this one.

B At checkpoints.

B When posted by the DBWR process. But you must always remember that
modified data blocks in a database are always written after the corresponding
redo entries for those blocks are written to disk.

The size of this buffer can be seen immediately after starting an instance on the
line for “Redo log buffers” in the messages from the startup command:

(=« § SVRMGR> startup
ORACLE instance started.

Total System Global Area 48572320 bytes
Fixed Size 64912 bytes
Variable Size 45137920 bytes
Database Buffers 2048000 bytes
Redo log buffers 524288 bytes

Database mounted.
Database opened.

It can also be queried from V$PARAMETER:

=« 7 select Name, Value
from VSPARAMETER
where Name = 'log_buffer’;
NAME VALUE

log_buffer 524288

This is the value in bytes. The default for this parameter varies from version to
version. In Oracle 8.0, the smallest size allocated for the redo log buffer is 73728
bytes (72K). In Oracle 8.1.5, the default value is 524288 bytes (512K).

It is recommended to start with a smaller value and increase the size as needed
until this resource is no longer the point of contention. We have seen many database
administrators start with LOG_BUFFER = 131072 (128K) for their environments. And
that's a good size to start with. Increase the size only if there are wait events associated
with the redo log buffer (this is discussed later in the “Wait Events that Affect the
Redo Log Buffer” section). If your redo log buffer is, say, 32MB, chances are that
it is oversized and you may be wasting memory. Check the wait events in your
database for more information.

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning

Initialization Parameters that
Affect the Redo Log Buffer

This list of parameters includes those that directly affect the redo log buffer and its
performance. Additional parameters are discussed later in the “Initialization
Parameters for Miscellaneous Instance Tuning” section.

LOG_BUFFER Set this to a byte value appropriate for the
system. Start with 131072 and increase as
wait events dictate.

LOG_SIMULTANEOUS_COPIES Simply set this to the platform-allowed
maximum. The default is the number of CPUs.
This parameter is obsolete in Oracle8i (is now
_LOG_SIMULTANEOUS_ COPIES), but
defaults to two times the number of CPUs.
Modify_LOG_SIMULTANEOUS_COPIES only
after gathering evidence for redo copy latch
contention.

Wait Events that Affect the Redo Log Buffer

The following wait events indicate that there are redo log buffer-related problems in
your database. Be sure to evaluate all of them before taking action. Don’t rush to
increase the size of the redo log buffer until you have confirmed that to be the actual
cause of your wait event. Increasing the size of the redo log buffer without a specific
reason is not a good practice.

log buffer space Indicates a potential problem of LGWR not being
able to keep up with the rate of writes into the redo
log buffer by server processes. Usually indicates a
log buffer size problem (too small) or slow device(s)
or contention where the online redo logs are
located.

log file parallel write Waits associated with writing of redo records from
the redo log buffer to disk. Usually indicates slow
device(s) or contention where the online redo logs
are located.

log file single write Indicates writing to the header block of the log
files. May indicate waits during checkpoints.

175

176 Oracle Performance Tuning 101

log file switch (archiving
needed)

log file switch (checkpoint
incomplete)

log file sync

latch free

Waits indicate ARCH is not keeping up with
LGWR. Could be because of online redo logs
being too small, slow devices, or high contention
on devices (usually caused by the log files placed
on the devices where data files are located). As a
corrective measure, you may want to investigate
the possibility of using multiple ARCH processes
or 1/O slaves, or configure the archive buffer-related
Oracle initialization parameters (where applicable).

Waits associated with improperly sized online redo
log files (usually too small and/or too few redo log
groups). This is caused when log switches occur
too frequently, which results in too- frequent
checkpointing. When checkpoints get queued up,
they have to complete before the subsequent log
switches can be processed.

Waits associated with the flushing of redo log
buffers on a user commit. If the waits are persistent,
it may indicate device contention where the online
redo log files are placed and/or slow devices.

Indicates latch contention for the latch# that is
being waited on. Ensure that you already have
tuned the number of latches to their allowed
maximums by setting the relevant init.ora parameters.
If the problem persists, you should determine
what is causing the contention for the latch and
fix the underlying problem. Your goal should be
to cure the disease not the symptom. A latch free
event is a symptom of a bigger problem. In the
context of the redo log buffer, the redo copy
latches are the only supported configurable
parameter (LOG_SIMULTANEOUS_COPIES)

and even that is obsolete in Oracle8i.

Solving Redo Log Buffer Issues

Problems directly affecting the redo log buffer are very simple. In fact, there can
only be one of two things holding the process up. Either the server process can’t get
the necessary latch or the redo log buffer is full and there is no place to write the
redo information. If the log buffer space event is frequent and accrues a significant
amount of time, it is safe to assume there is a problem. If this event is accompanied

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning

by one or more log file events (listed in the previous section), it indicates that the
problem is likely with the I/O system.

If you find latch free events along with the log buffer space events, you can
be sure there is a latch or redo log sizing issue. By querying V$LATCH for the
redo copy latch and redo allocation latch you can see the latch statistics. This
will confirm that there is a latch problem when the ratio of misses to gets or
immediate_misses to immediate_gets is greater than 1 percent. This can be
corrected by setting the value of LOG_SIMULTANEOUS_COPIES to the
platform allowed maximum (obsolete in Oracle8i). This increases the number
of copy latches. In fact, you can avoid dealing with this at all by setting that
maximum value at the outset. In Oracle8i, LOG_SIMULTANEOUS_COPIES is
auto-configured to two times the number of CPUs on the system.

So if the latches are in good order, the problem has to be that the server process
can’t get space in the redo log buffer. It comes into play when we realize that the
redo log buffer is not being flushed fast or often enough. Making the redo log buffer
larger is not a big deal, but experience has shown that it is possible to reach a point
of diminishing returns very quickly. You should not increase the size of your redo
log buffer unless you have concrete evidence that warrants it in V$SESSION_WAIT.

VIP

From a pure /O perspective, the most common
mistake is to put the redo logs with database files
or other types of files. This creates competition for
resources where it is least tolerated. Redo logs need
to go on independent storage devices, and they
need to be separated from all other files to perform
optimally. Don’t forget that redo log switches on
archiving databases are also subject to the
limitations of how fast the redo logs can be safely
copied and made available to LGWR again. So
check your redo logs and make sure they are on
properly configured storage devices. Remember,
you don’t want to overload the copy boy and have
him perform mailroom tasks and run errands for
you. If you do, you run the risk of preventing him
from doing his job right.

After correcting any storage device layout issues, it is safe to resize the redo log
buffer (if needed). Change the value for LOG_BUFFER in the initialization file and
restart the instance. You can start with a size of 128K or 256K and monitor the database
for redo log buffer-related wait events. If it is already getting large—say, more than
1MB—something less dramatic might be in order. In fact, the database may be
experiencing a point of diminishing returns with regard to sizing the redo log buffer.

177

178 Oracle Performance Tuning 101

The sure-fire method to calculate the optimal size for the redo log buffer (or any other
memory structure, for that matter) should be based on wait events and wait events only.

Miscellaneous Instance Tuning

So far in this book, we have covered in good detail the main tuning avenues in the
Oracle instance. In this section, we will look at the remaining components in the Oracle
instance that affect performance and may need tuning or adjusting. From a purist’s
perspective, we are not only dealing with the Oracle instance, but also the Oracle
database. It should be noted here that the improper configuration of these database
components may have a profound negative effect on the performance of some of
the background processes.

Checkpoints

No, these are not guardposts on the border! They are moments in time when Oracle
makes sure that everything has been synchronized. They occur naturally every time
a log switch occurs or any time a DBA issues an alter system checkpoint command.
They create and record known synchronization points in the database so that recovery
can be easily facilitated in the event of an instance or a media failure. Occasionally, it
is useful to have them performed more often than nature dictates. To increase the
frequency of checkpoints, you can use either the LOG_CHECKPOINT_INTERVAL
or LOG_CHECKPOINT_TIMEOUT Oracle initialization parameter. The former
parameter is 1/O-based and is set to the number of OS blocks’” worth of information
that must be written to the redo log files before a checkpoint is initiated. The latter
parameter is time-based and indirectly controls the maximum duration that dirty
blocks can remain in the database buffer cache. The definition of LOG_CHECKPOINT _
TIMEOUT has changed in Oracle8i.

Also it is useful to observe that checkpoints no longer occur on log switches.
They actually occur before a log switch. Obviously both aforementioned parameters
keep the previous checkpoint as a point of reference. Just remember that checkpoints
take resources and can impact system performance when done very frequently.

In our production experience, we have configured LOG_CHECKPOINT_
INTERVAL to a high number or O (the effect is the same), so that checkpoints occur
only during log switches. It is okay to leave LOG_CHECKPOINTS_TIMEOUT to its
default value of 0 (1800 in Oracle8i) so long as your system performs okay with
checkpoints on log switches only. But if these parameters are configured in the
aforementioned method, the redo log files need to be sized appropriately. Although
it is difficult to generalize the optimal frequency of log switching as it is dependent
on a variety of issues (such as whether you are running a standby database, what
your service level agreement for instance recovery is, and so on), it is safe to say that
the number of log switches in your system should not average more than one every

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning

twenty minutes. This is to prevent the database from experiencing performance
bottlenecks or performance hiccups associated with frequent checkpoints.

It is possible to get help with checkpoints and improve their efficiency by setting
CHECKPOINT_PROCESS =TRUE in 7.3 and lower. When this parameter is set, the
CKPT process is launched and it performs certain operations associated with
checkpoints and reduces the workload on LGWR. Note that CKPT only updates the
headers of the data files, redo log files, and control files, but does not perform the act
of checkpointing (flushing of dirty blocks is always done by DBWR). In Oracle8, CKPT
is one of the required processes. But it doesn’t mean you don’t need to worry about
checkpoint efficiency in Oracle8 and up. You should pay attention to how much time
it takes to complete the checkpoint. This is especially true if your database has periodic
heavy DML activity. The log files may switch more frequently and more checkpoints
may take place. You can set the init.ora parameter LOG_CHECKPOINTS_TO_ALERT to
TRUE to log checkpoint start and stop times in the database alert log. This information
will tell you at what frequency the checkpoints are occurring and the duration of each
checkpoint.

NOTE

From Oracle8 onward, the CKPT process maintains
a “heartbeat” every three seconds with the control
file. CKPT also writes a checkpoint’s progress to the
control file.

Oracle generates a warning message in the alert log when the checkpoint process
runs into a problem. Many DBAs have seen the message “checkpoint not complete”
in the alert log and have wondered what it means and how they go about fixing it.
This warning is generated when Oracle is ready to overwrite a redo log, but the
checkpoint process has not yet completed from the previous log switch. This will
cause the database to halt until the checkpoint process completes and Oracle is able
to overwrite the log file. To correct this problem, you should provide more time for
the checkpoint process to complete, either by adding more log file groups or by
creating larger redo log files.

Redo Log Files

We know that LGWR wrrites the contents of the redo log buffer to redo log files on disk.
These files maintain a permanent record of all data changes made in a database. The
redo record contains both the old and new value of the data. Every database needs to
have at least two redo log files (but may have more). Oracle uses these files to recover
from an instance or a media failure. For this reason, it is important to protect them from
any disk corruption or disk I/O problems. In general, it is good practice to have multiple
copies of these redo log files on separate storage devices. Please refer to Oracle’s

179

180 Oracle Performance Tuning 101

Administrator Guide for more information on how to configure multiple redo logs and
redo log groups. Here we are concerned with their physical size and how this affects the
performance of your database.

How to Size Your Redo Log Files

Let’s begin by asking the question, “How does the size of the redo log files affect
database performance?” Well, one thing is sure, it should not be smaller than
LOG_BUFFER or else you will have quite a few problems to deal with. The redo
log files are OS files and are written in OS blocks.

In general, a larger log file will take longer time to fill up, thus causing fewer
checkpoints (more about this follows below) and causing less frequent archiving
to be done (but it may take more time to complete). But instance recovery can
potentially take a longer time if the redo log files are sized too large. In addition,
if you are employing a standby database you may lose quite a bit of work if your
primary database experiences a complete disaster.

On the other hand, smaller log files will cause more checkpoints and cause
more performance hiccups due to checkpoint activity, and will keep ARCH pretty
busy. But instance recovery could be a snap! So take your pick. Also related to this
discussion is a new parameter in Oracle8i called FAST_START_IO_TARGET. This
parameter provides control on the number of I/Os that should not be exceeded during
instance recovery. When this parameter is set, you will cause DBWR to write out dirty
blocks to disk in a more aggressive fashion.

So you need to identify what is more important to you. Sometimes you will have
to compromise between performance and availability. And there can be more than
one thing that is important to you. One size does not fit all! You may need to
experiment with what size works best in your environment.

Apart from talking about how to size the redo log files, the other related issue is,
“How many redo logs should be configured?” Oracle needs at least two groups to
stay up and running. But sometimes the size is less of an issue than the number of
redo logs configured for a database. This is especially true in environments that can
afford to configure more storage devices for their redo log files. It is important to
understand that all related db buffer cache entries related to an online redo log must
be written by the DBWR to a data file before LGWR will begin overwriting the next
associated online redo log. If LGWR must wait to write to the next redo log, for the
above reason, a checkpoint cannot complete error message will result. Therefore,
the fewer the number of redo logs, the more likely the occurrence of a checkpoint
cannot complete error. For example, with two redo log groups, 50 percent of the total
redo log space must be available on a log switch. With four redo log groups, 25
percent of the total redo log space must be available. Empirical evidence (thanks to

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning |8 |

some experiments conducted by Craig Shallahamer of OraPub Inc.) suggests that the
law of diminishing returns kicks in around ten redo log groups. So for redo-heavy
systems, you may consider configuring more online redo log groups than the
minimum requirement of two groups.

Archiving
Once a database is put in archivelog mode, it is necessary to turn on the ARCH
process for automatic archiving of redo logs when log switches occur. The ARCH
process copies the redo logs to one or more destinations (depending on your Oracle
version). Configuring this in a proper fashion ensures that the archive logs are written
without any contention and, more importantly, are readily available when needed for
recovery. Configuring it haphazardly can create contention on storage devices. Apart
from using optimal storage devices and avoiding competition from other files, the
archive process can be tuned by setting LOG_ARCHIVE_BUFFERS and LOG_
ARCHIVE_BUFFER_SIZE. It must be noted that both of these parameters are
de-supported in Oracle8i. Oracle recommends leaving this at the default, but if the
archive system is having trouble keeping up, these parameters should be modified to
improve things. When required we have set this to the platform-specific maximums
and have had good archiving performance. But remember that creating multiple redo
log groups with multiple members has a higher probability of better performance.
Using multiple log members in a redo log file group will also speed up the
archiving process. All members in a group are used to perform the archiving process.
Oracle will optimize the archiving process by reading portions of data at a time from
all log members in a staggered round-robin fashion to distribute 1/O. The benefit of
defining multiple log members rather than mirroring them at the OS level may
translate into some performance gains. Oracle does not see the multiple members
created via OS mirroring, but will effectively use all log members within a group to
optimize archiving process.

Initialization Parameters for
Miscellaneous Instance Tuning

Following is a list of parameters that can impact redo log, checkpoint, and archiving
performance.

LOG_ARCHIVE_START TRUE turns automatic archiving on. Use
this if the database is in archivelog mode.

182 Oracle Performance Tuning 101

LOG_ARCHIVE_FORMAT
LOG_ARCHIVE_DEST

LOG_ARCHIVE_
MIN_SUCCEED_DEST

LOG_ARCHIVE_BUFFER_SIZE

LOG_ARCHIVE_BUFFERS

These parameters control where the archived
redo logs are written. In Oracle8 and above
there are additional parameters (such as
LOG_ARCHIVE_DUPLEX_DEST) to facilitate
writing of the archived redo logs to multiple
destinations. Further parameters such as
LOG_ARCHIVE_DEST _n can be set (n can
range from 1 to 5) to achieve redundancy in
the archived redo log files destination. Each
additional copy of the archived redo log files
can be made “required” for the archival
process. Making a destination “required”
further guarantees the recoverability of the
database (because it provides the functionality
of mirrored archived logs), but this may cause
the system to hang if any of the relevant file
systems run out of space.

This sets the number of destination copies
of an archived log that must succeed when
ARCH writes the archived log to multiple
destinations. The default value is 1. This
parameter controls the number of copies
that are required to “proclaim” that a given
archival operation has succeeded. The free
space in the multiple archive destinations
needs to be proactively managed, to reduce
the likelihood of Oracle hanging during a
log switch. But when implemented correctly
it provides better recovery protection.

Determines the size of the buffers used during
the write operation of the ARCH process.
This parameter is obsolete in Oracle8i.

Determines the number of buffers to use
during archiving. The default number of
archive buffers is 1. This parameter is
obsolete in Oracle8i.

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning

LOG_CHECKPOINT_INTERVAL

LOG_CHECKPOINT_TIMEOUT

LOG_CHECKPOINTS_TO_ALERT

FAST_START_IO_TARGET

ARCH_IO_SLAVES
LGWR_IO_SLAVES

This is set to the number of OS blocks to
be written to redo between checkpoints.
This can be set to a high value or to 0 to
force checkpoints only during log
switches. Default is 0.

When set to a value of n, this parameter
specifies that the incremental checkpoint is
at the position where the last write occurred
to the redo log file (also known as the “tail
of the log”) n seconds ago. This parameter
also signifies that there will be no dirty
buffers (in the database buffer cache) for
more than n seconds. The value is specified
in seconds. The default in Oracle 8.1.7 is
1800. Setting this parameter will cause
checkpoint to happen at least as often

as n seconds.

Causes Oracle to timestamp the start and
stop time of checkpoints in the alert log.
Useful to determine whether checkpoints
are running into each other.

This parameter allows you to control
the maximum amount of 1/O that SMON
can perform while performing recovery
on instance startup caused due to an
instance failure. This parameter also
controls the aggressiveness with which
DBWR will write dirty blocks to disk.

These parameters, supported in some
versions of Oracle, allow you to take
advantage of simulating multiple ARCH
and LGWR 1/O slaves. Both of these
parameters are nonexistent in Oracle8i.
The ARCH_IO_SLAVES is replaced by
a new Oracle parameter called
LOG_ARCHIVE_MAX_PROCESSES.

183

184 Oracle Performance Tuning 101

Tuning the Oracle Optimizer

When Oracle8 was released in early 1997, it generated a lot of excitement and
was considered a stellar event in the RDBMS world, as it claimed the following
four major benefits:

m [t was the database for network computing.
B It was to support all of your users.
m [t was to support all of your data.

B It was supposed to be faster.

And faster it was. With significant improvements in its kernel, added by support
for database partitioning, faster connectivity, and a variety of other features, it truly
was a major release. For some of us who had lived through the many bad hair days
trying to migrate from Oracle6 to Oracle7, we thought it was time to live a little (we
were definitely influenced by the marketing hype). We decided to dive into Oracle8
with our head hitting the water first. Thankfully the point of contact of the dive did
not feel like a ton of bricks. We were pleasantly surprised at the relative ease when
we compared it to the Oracle6 to Oracle7 migration. For starters, the migration utility
actually worked. Now that was like a breath of fresh air, as some of the databases that
we supported would have taken many hours to export and then many days to import.

It is hard to believe that Oracle8 is only four years old...it sure does seem longer
than that. Is that a sign of our old age? The long feeling could be attributed to the
fact that “One year in the Oracle IT industry really is equivalent to seven normal
years.” For those of you who have been around the block, you know exactly what we
mean. The calculation, and the fact that we have been working with Oracle8 for four
years, puts our combined experience at 56 years. Now, there is an explanation for that
long and maybe even old feeling!

One of the major features that made a great positive impact was the optimizer’s
capability to perform partition-aware processing of large tables and indexes. This
made a night and day difference in performance of the data warehouses of those
days. Plus, the support for some specialized parameters that controlled its behavior
further lent flexibility in configuring the Oracle optimizer.

Initialization Parameters that
Tune the Optimizer’s Behavior

The following list of parameters should not be modified from the default values until
all documented performance-tuning techniques (outlined in the prior chapters of

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning | 85

this book) have been exhausted. The working efficacy of these parameters should be
tested thoroughly before implementing them in a production environment.

s WARNING
/ ‘f - We have successfully implemented all of the

' parameters discussed in this section at many large
production sites to produce predictable results.
However, it is your responsibility to test them in
your environment before implementing them.

These parameters are most significant for third-party packaged applications
where the code is usually inaccessible. They are also relevant for environments that
require hash joins for batch processing, but need the control mechanisms to hold
back the optimizer from being over-influenced by the hash join method for transactional
processing. And, by the way, hash joins are not as bad as people make them out to be.

Most of these parameters are relevant from Oracle 8.0.5, but some of them may
have been back-ported to prior releases. We thank Probal Shome of Oracle
Corporation for sharing his expertise and insight with us during the Oracle Open
World 1999 conference, with his paper “Using Stored Outlines in Oracle 8i for Plan
Stability” and the long and lively discussion that ensued. Bottom line, this section is
worth your time and effort if you are running any third-party packaged applications.
So without too much ado, go ahead and check it out.

OPTIMIZER_MAX_PERMUTATIONS

This parameter restricts the number of permutations of the tables the optimizer will
consider in queries with joins. Such a restriction ensures that the parse time for the
query stays within acceptable limits. However, a slight risk exists that the optimizer
will overlook a good plan it would otherwise have found. It also lets you limit the
amount of work the optimizer expends on optimizing queries with large joins. The
value of the integer is the number of permutations of the tables the optimizer will
consider with large joins.

OPTIMIZER_MAX_PERMUTATIONS defaults to a value of 80,000. When set
to a value below 80,000 (say, 79,000), it forces the optimizer to try up to eight
different tables as the driving table for queries that involve joins. This usually
results in the optimizer picking the least expensive of the 79,000 plans that it
generates. Said in another way, this parameter provides more options to decide
the order of joining tables for a given query. The default behavior (with the
default value) is to build a plan usually with the smallest table as the driving table.
This default behavior may not always generate the most suitable plan and the
performance you expected, especially for the third-party packaged applications.

186 Oracle Performance Tuning 101

When this parameter is set, it does result in a nominal increase in the parse time of
the SQL statements. But in the bigger scheme of things, this nominal increase in parse
time is well worth the overhead when compared to the significant reduction in the
execution time of SQL statements.

OPTIMIZER_INDEX_COST_AD]

This parameter directly adjusts the cost of using an index. The default value of 100
makes the optimizer evaluate the cost of the index as normal, and a value of 50 makes
the optimizer evaluate the cost to be half as expensive as normal. This parameter
encourages the use of all indexes, regardless of their selectivity. It applies to index use
in general. The range of values for this parameter is 1-10,000. When set to a low value
(say, 1-10), the optimizer is encouraged to perform index scans over full table scans.

OPTIMIZER_SEARCH_LIMIT

This parameter defaults to a value of 5. When set to a value of 1, the optimizer is
totally discouraged from considering cartesian product as the execution method.
With its default value of 5, the optimizer can and will perform cartesian product (if
applicable) for queries with five or fewer tables in the FROM clause. This behavior
of performing cartesian products may be acceptable for small tables, but for obvious
reasons is a no-no for large tables. Depending on the nature of the application, this
parameter needs to be adjusted. If you are seeing cartesian product execution plans,
you may want to set this parameter to 1.

NOTE

A cartesian product between two tables with 100
rows each will generate a result set of 10,000 rows.
Hence as the size of a table increases the cost of
performing a cartesian product increases
proportionately. Watch out for this one!

OPTIMIZER_INDEX_CACHING

This parameter defaults to a value of 0. The range of values for this parameter is
0-100. When set to a high value (say, 99), the optimizer is encouraged to use the
nested loops join method over other methods. This parameter is especially useful

if the initialization parameter HASH_JOIN_ENABLED is set to TRUE and
HASH_MULTIBLOCK_IO_COUNT is set to a non-default value (say, equal to
DB_FILE_MULTIBLOCK_READ_COUNT). Setting this parameter to a high value

of 99 provides the capability to have the cake and eat it too. This is because the
default value for this parameter will put undue influence on the optimizer to consider
hash joins over all other joins (when HASH_JOIN_ENABLED is set to TRUE).

Chapter 7: Instance Tuning—The Redo Log Buffer and Miscellaneous Tuning

Hash joins are suitable for applications, where a small table(s) joined to a very large
table(s), and the where clause predicates cause processing of a significant portion of
the large table(s). Hash joins are also suitable for applications that join two or more
large tables. Both scenarios mentioned here are relevant for batch processing where
the application usually processes a significant amount of data. Configuring this
parameter to a value of 99 does not necessarily turn off hash joins, but does hold

back the optimizer from going overboard with hash joins as the default join method.

. NOTE

. Please exercise due diligence in monitoring the
performance of your batch reports after setting this
parameter. In some very special scenarios, it is
possible for some of your batch reports to require a
USE_HASH hint.

In a Nutshell

Tuning the redo mechanism, including the redo log buffer, is one of the final things
to tune as part of instance tuning. You can go ahead and always set the value of the
Oracle initialization parameter LOG_SIMULTANEOUS_COPIES to the platform-specific
maximum if your Oracle database version is prior to Oracle8i. This proactively
avoids redo copy latch problems that occur due to lack of latches. Then set the size
of the redo log buffer to a reasonable starting value by setting LOG_BUFFER =
131072 (128K). Some folks start with 256K as well. Be cautious, though, as getting
too aggressive with this can create more problems than it fixes. Increase this value
if you observe the log buffer space wait event. However, if you also observe wait
events such as log file switch, log file sync, or log file parallel write, there may be
an underlying 1/O issue. If this is the case, ensure that the redo logs and the archive
logs are on independent devices separated from the data files of the database.

The archiving system can be tuned by setting LOG_ARCHIVE_BUFFER_SIZE
and LOG_ARCHIVE_BUFFERS. Additionally, tune checkpoints by ensuring that
they occur only on log switches. Size the redo log files appropriately to control
checkpoint frequency, and allow sufficient time for the checkpoint process to
complete so you won’t get those pesky “checkpoint not complete” messages.
Also ensure that they are on independent storage devices, as they need their
space (if you know what we mean). Though gains in this section of instance
tuning are not as significant as the other areas, you need to proactively configure
this. Every little bit (and byte) counts!

We are all aware that most third-party packaged application vendors, in their
efforts to “encapsulate” the complexity of their application, bury their SQL many
fathoms below sea level and make it unreachable to mortals such as us. We studied

187

188 Oracle Performance Tuning 101

in good detail some instance-level tuning opportunities that are supported since
Oracle8, which modify the behavior of the Oracle optimizer and thus make these
packaged applications more amenable to our tuning efforts. And that ends the
broadcast on this chapter!

1002
1l

ORIGINAL * AUTHENTIC

Oracle Press

ONLY FROM OSBORNE

Expert authors, cutting-edge coverage, the latest
releases...find it all at OraclePressBooks.com

Oracle Press

[T e P

From a full selection of titles focusing
on Oracle’s core database products to
our in-depth coverage of emerging
applications, Web development tools,
and e-Business initiatives, Oracle Press
continues to provide essential resources
for every Oracle professional. For a
complete list of Oracle Press titles—
from the exclusive publishers of
Oracle Press books—and other valuable
resources, go to

OraclePressBooks.com.

Get the most complete information on
Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

i

OsBORNE
ORACLE PRESS™—EXCLUSIVELY FROM McGRAW-HILL/OSBORNE www.osborne.com

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

