o e i

d

f_.f' ' T BT Y, Tl
Instance Tuning—The

(

Databigﬁ Buffer Cache

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.
Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this

work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
this Work, and is not responsible for any errors or omissions.

"

-

—

\ =

—

\

150 Oracle Performance Tuning 101

A Myth & Folklore
A 60 percent database buffer cache-hit ratio indicates bad database performance.

Fact

Not true. As the nature of operations on the database changes, so should this value.
During the day, a high cache-hit ratio (CHR) may be observed for OLTP operations
as they access the same set of blocks. But at night, as batch jobs run and manipulate
a wide range of data blocks, you should expect the CHR to fall. Keep in mind that
blocks that were needed during the day are still there, but suddenly many new blocks
are being requested. This will result in a lower CHR. If user processes are not waiting
for blocks to be read from disk, waiting for free buffers, or complaining about bad
performance, a 60 percent CHR is just fine. Tuning is about what users need to get
their jobs done. It is not about achieving an arbitrary ratio.

A Myth & Folklore
A cache-hit ratio in the database buffer cache of 99 percent or more means that the
Oracle database is performing at its peak levels.

Fact

A very high cache-hit ratio in the database buffer cache can be misleading. Frequently
executed SQL statements that perform full table scans of the same small table or
correlated subqueries (that read the same set of blocks over and over) can elevate
the CHR to artificially high levels. This can make you believe that Oracle is working
at peak efficiency when trouble is brewing. From the users’ perspective, if they
are waiting for blocks to be read from disk, waiting for free buffers, or waiting

on the LRU chain in the database buffer cache, it doesn’t matter if the CHR is 99
percent —you should recognize that you have a performance problem on your
hands. We will go so far as to say that on most “real systems” a high CHR (such

as 99 percent) usually indicates extremely inefficient SQL in the applications. You
need to troubleshoot and tune those offending SQL statements to get acceptable
response times.

" he myths we talk about in this chapter are some of our pet peeves in

- the world of Oracle Performance Management. And we have good

. reason to feel this way. Allow us to share with you a “war story” that
will put things in the right perspective.

One of us was onsite at a customer that was experiencing a severe system
performance problem with an Oracle database. The application was third-party
supplied and performed the task of tracking the time of the corporation’s temporary
employees. After some initial measurements of system performance were done, it
was determined that the system was experiencing severe CPU bottlenecks. Further

Chapter 6: Instance Tuning—The Database Buffer Cache

investigation revealed six Oracle processes running batch reports that caused the
CPU bottleneck. These reports needed to be repeatedly executed at various times
during the course of a business day. Each Oracle process was consuming more
than 99 percent of a single CPU (when there was really no need for that). The
system was configured with six processors. You can see why there was a CPU
bottleneck on this system, apart from the fact that there had to be some method of
scheduling these jobs, say no more than four of these jobs could run concurrently.

The real culprit causing the CPU contention was unearthed when the Oracle
processes were traced and the most expensive SQL was ascertained. Before this
exercise, the database CHR was 98 percent and the Oracle database administrator
(DBA) was under the assumption that Oracle was performing optimally, when the
reality was something totally opposite. The culprit SQL statements were all correlated
subqueries and each ran for 45 minutes, utilizing all of the horsepower of a single
CPU. Six such queries ran and literally crippled the system.

When the correlated subqueries were rewritten with “inline views” (there is an
example of how to do this in the chapter “Application Tuning—Issues that Concern
a DBA” in the “How Not to Write SQL” section), the SQL statements ran for 45
seconds, utilizing only 65 percent of the horsepower of a single CPU. It was pretty
obvious that we had achieved much better application scalability after the rewrite.
Further, after the rewritten queries were deployed, the CHR dropped to 72
percent, but there was a lot more work getting done during a day. For the DBA,
this was a whole new paradigm, as historically he was used to correlating high
cache-hit ratios with optimal performance. Do you now see why it can be very
dangerous to tune Oracle using cache-hit ratios instead of wait events?

In this chapter, we will discuss how the database buffer cache works, the newer
components of the database buffer cache, important initialization parameters to
consider when tuning this cache, and how to reduce the likelihood of a table aging
out of the cache. Tuning the database buffer cache is a matter of understanding how
it works and how to detect the symptoms of poor performance. As pointed out by the
myths, the CHR can be high and the users may still complain about performance
issues. Or the CHR may be low, and yet no one is complaining.

What Is the Five-Minute Caching
Rule—or Is It Ten Now?

A cache in the context of a database management system is a segment of shared
memory that is allocated for data retrieval and manipulation. The data cache of
Oracle is called the database buffer cache. It should be emphasized here that any
cache (including Oracle’s) suffers from the law of diminishing returns after reaching
a certain size. The exceptions to this rule are operating systems and hardware
platforms that support supercaches. The concept of supercaching (relevant to certain

151

I 52 Oracle Performance Tuning 101

hardware platforms) is based on the fact that the memory management unit (MMU)
within the server is in charge of handling the translations of memory addresses.
Some servers support very sophisticated MMU manipulations and thus are capable
of managing very large chunks of memory in an efficient manner.

Although there are many advanced techniques within Oracle and the operating
system to determine whether the database buffer cache is sized right, a common
rule, called the “five-minute rule,” can provide some high-level insight into this
important aspect of Oracle. This rule was proposed by Gray and Reuter in their
work Transaction Processing: Techniques and Concepts and is derived from the
following equation:

Frequency = ((Memory Cost per Byte — Disk Cost per Byte) * Object Size)/Object
Access per Second Cost

Using disk, memory, and I/O subsystem prices in 1997, it was determined that
the point of diminishing returns for a cache was approximately around five minutes.
Given current day prices of the aforementioned components, it is possible (based on
your operating system platform) that the frequency is between 8-10 minutes, as prices
have gone down since 1997. What this all means for Oracle is that any object (such
as table, index, and so on) that is accessed at least once in the past 10 minutes should
be a candidate for memory caching. In our world, memory caching is data in the
database buffer cache. Data that is not accessed at least once in the past 10 minutes
should really not be forced to stay in memory, as the performance of a cache does
not increase in a significant manner after a certain size. In that case it is cheaper and
more efficient to perform physical I/O.

Further, Oracle is very well designed to perform I/O and it does it very well.
Also, there have been significant improvements in storage hardware that make
large-sized Oracle caching not that attractive. The point we are trying to make here
is that you should resist the urge to arbitrarily increase the size of your database
buffer cache. Be aware of Sir Isaac Newton's third law of motion: for every action
there is an equal and opposite reaction. Do not make dramatic changes to the
database buffer cache size without understanding its implications.

How Does the Database
Buffer Cache Work?

First, data is read into memory (if not already present) before it can be manipulated
(read or write). Second, Oracle manages this data transfer from file to memory and
back again by reading and writing database blocks, not individual rows. Therefore,
when a row is requested, the server process reads the appropriate database block in
memory. If the row is retrieved using an index scan, the necessary index blocks will

Chapter 6: Instance Tuning—The Database Buffer Cache

also be read into memory. The requested blocks get read into the database buffer
cache, which is segmented into blocks of memory equal to the size of a database
block. Third, there is a finite amount of memory available to hold these blocks, so
eventually some blocks need to be overwritten by more recently requested blocks.

Database Buffer Cache Management

Prior to Oracle8i

In versions of Oracle prior to Oracle8i, it was easy to see that the database buffer
cache in its most basic form is a type of inventory control system. It includes a place
(the cache) to put the inventory (the database blocks). It also has a means of managing
which blocks to get rid of to make room for new blocks by following a modified
first-in-first-out (FIFO) management practice. The management method is called the
least recently used (LRU) algorithm.

Let’s think of an example that explains LRU management in the database buffer
cache: your neighborhood supermarket. When you are waiting to check out, you are
usually standing in a cramped space between shelves crammed with little things—a
last-ditch effort to sell you things you usually don’t need. Many of those items are
available only on these shelves, and you may often see new things on these shelves.
Some of the items tend to show up for a short period and then disappear. Some items
in great demand are always there, such as TV Guide and chewing gum. The space
occupied by some things is eventually taken over by other neat-looking little things.
But items in great demand don’t seem to leave this “real estate.” Items that are not in
demand or least bought (used) by the store’s customers just sit on the shelf. Since this
shelf space is expensive and precious, the store manager periodically replaces items
that are not in demand with new items that customers may buy. A similar process
occurs in the LRU list of the database buffer cache. Blocks that are not being used
will eventually get replaced by new data blocks...you get the picture!

Oracle uses this modified FIFO management method based on the LRU algorithm
and it is managed through a linked list of block addresses. The server processes
accessing the blocks manages the LRU list by way of one or more LRU latches
(structures that facilitate some important mutually exclusive tasks that are common
for memory operations).

When a block is read into memory, the server process that reads it from disk
copies it into an “available buffer” in the database buffer cache. It is important to
note here that an available buffer may not necessarily have been empty (it could
contain data from a previous read operation). It then adds the block’s address to
the most recently used (MRU) end of the LRU list. As each block is read into the
database buffer cache, it is added to the most recently used end, thus pushing the
previous block closer to the least recently used end. At some point, the blocks will
have to be reused.

153

1 54 Oracle Performance Tuning 101

Besides the LRU list, there is another list associated with the database buffer
cache. This is the dirty list—a list of buffers whose contents have been changed.
Once the contents of a buffer has changed, Oracle will not allow the buffer to be
overwritten until the contents have been written to disk. The database writer (DBWR)
is responsible for keeping the dirty list to a manageable size. Unfortunately, since
this operation involves physical I/O, it is subject to the performance limits of the I/O
system. If the I/O system limits the database writer from fulfilling these responsibilities
in a timely manner, more wait events may arise. As DBWR writes these blocks to
disk, they (logically) get moved back to the LRU list (as they are no longer dirty).

A given block can either be dirty or available for reuse (free).

The management of the LRU list for Oracle versions, including 7.3, can be
explained using a simple example of a five-block database buffer cache. Imagine
that the database buffer cache has five blocks, 1 through 5. Now imagine that a
process starts reading blocks into memory. Five blocks of data (A-E) are read into
the buffers (1-5) of the database buffer cache. Block A goes into buffer 1, B into 2, C
into 3, D into 4, and E into 5. When block F (a new block) needs to be read, where
will it go? Let’s look at the LRU list from least to most recently used end before F gets
into the picture. It is in the order 1, 2, 3, 4, and 5 as depicted by the following table:

1 = block A 2 =block B 3 =block C 4 = block D 5 = block E

Therefore the new block could go into buffer 1 since the block in buffer 1 was
the first read and so seemingly the last used. And the data in buffer 1 (block A) can
get overwritten (if the demand for buffers warrants that). If the data in buffer 1
(block A) was modified and not yet written to disk, then it is written to disk first
before it is reused for another block. Thus the LRU list is modified as shown in the
following table:

1 =block F 2 =block B 3 =block C 4 = block D 5 = block E

Additionally, it is important to know that all associated data, index, and rollback
blocks must be read into the database buffer cache before the data itself can be
retrieved or manipulated. Now stop and think about that for a minute. If a job requires
that data be read and it uses indexes to find that data, there are now blocks from both
tables and any indexes used in the database buffer cache. If the data is being updated,
the process performing the update has to read rollback segment blocks (and rollback
segment headers) into memory as well. This can cause the buffer cache to get quite
crowded and some blocks to be aged out.

Chapter 6: Instance Tuning—The Database Buffer Cache 155

If some other processes need the data in the aged-out blocks at a later time, they
will have to perform physical 1/O and get those blocks back into memory. And now,
to add insult to injury, we find that different operations and table attributes affect how
the server process deals with updating the LRU list as it reads blocks. For example,
when doing full table scans, Oracle puts the blocks for the table being scanned at
the LRU end of the list, so that these blocks can be aged the fastest. But if the table’s
cache attribute is on, the server process puts those blocks on the MRU end of the
list. When improperly used, this can cause contention and unnecessary physical
I/O. The number of blocks it utilizes in the MRU end of the list when the cache
attribute is on is subject to an internal Oracle kernel setting.

Database Buffer Cache Management
in Oracle8i and Up

The algorithm that manages the database buffer cache in Oracle8i and up is a lot
different than the old LRU algorithm. It is called the touch-count algorithm. The
basic concept behind this new algorithm is to manage the buffers in the database
buffer cache based on the number of accesses or “touches” to a block. This is more
efficient than moving a block “chronologically” to the top of an LRU list every time
it is used. This algorithm significantly eliminates the overhead associated with
managing the LRU list. Further, it totally eliminates any need to constantly “latch” a
buffer to move it on the list. A buffer is no longer moved from its current location on
the list upon each access or “touch.” When a buffer is accessed, its touch-count
counter is incremented.

So how do blocks get aged? It is a pretty complicated process, but we will
explain it in very simple terms. There is an internal threshold that is set to decide
which buffers stay on the list and which ones are aged. When a block needs to be
aged, its touch-count is checked against this threshold. If the touch-count is greater
than the threshold, the block’s touch-count is set to either a low value or half of its
original value (internally defined and configurable). This is to give the block a second
chance to stay in the cache, as it has been used in the near past.

If a block’s touch-count is less than the threshold, it is selected for aging and is
replaced with the new data that is brought into the database buffer cache. Unlike
the LRU algorithm, where the new block is brought to the top of the LRU list, the
touch-point algorithm inserts the block in the middle of the list after resetting the
block’s touch-count counter. The rationale behind this method is to make the block
“earn” its way up to the top of a list.

There can only be a finite number of blocks above the midpoint, and subject to that
limitation, all blocks with touch-counts above the threshold are moved to the top of the
list (which for all practical reasons are blocks above the midpoint). The implementation

I 56 Oracle Performance Tuning 101

of this new algorithm causes the database buffer cache to be supported by three lists: the
main list, the auxiliary list, and the replacement list. The details of this are beyond the
scope of this book, but we hope we have at least whetted your appetite.

= NOTE
“° Even though there is enough documentation to
suggest that this new algorithm is implemented
in Oracle8, our investigation of the “internal
parameters” that are required for this new algorithm
suggest that the change occurred only in Oracle8i.

Configuring the Buffer Pools

The database buffer cache has been traditionally configured by setting only two
initialization parameters, namely, DB_BLOCK_SIZE and DB_BLOCK_BUFFERS.
DB_BLOCK_BUFFERS is set to the number of blocks that can be buffered. Typical
values range from a few hundred to tens of thousands. Since the size of a block
determines the size of each of the buffers, the value of DB_BLOCK_SIZE is important as
well. The total size of the database buffer cache is determined by the number of buffers
times the block size. Thus if DB_BLOCK_SIZE = 8192 and DB_BLOCK_BUFFERS

= 10000, the database buffer cache is 81,920,000 bytes in size or about 80MB. This

is still the most basic configuration required. The value for this cache can be seen
immediately after starting an instance on the line for Database Buffers:

| SVRMGR> startup
ORACLE instance started.
Total System Global Area 48572320 bytes
Fixed Size 64912 bytes
Variable Size 45137920 bytes
Database Buffers 2048000 bytes
Redo Buffers 73728 bytes

Database mounted.
Database opened.

Just as Oracle recognized how large-sized SQL and PL/SQL wreaked havoc with
the shared pool area, Oracle also realized that differing access patterns for tables
made quite a mess in the database buffer cache. With Oracle8 came subsets of the
database buffer cache that allow the database administrator to segregate tables with
differing cache needs in much the same way we segregate large PL/SQL from smaller
packages. By adding the keep pool and the recycle pool, there are now three different

Chapter 6: Instance Tuning—The Database Buffer Cache 157

areas to manage the database buffer cache. The third is, of course, the original, now
known as the default pool. From Oracle 7.3 and up, it is also possible to configure
multiple LRU latches to avoid contention in accessing the LRU list and finding
useable buffers.

Start with the Default Pool

The default pool is actually the original database buffer cache. It is not specifically
allocated. Setting the value of DB_BLOCK_BUFFERS to some number of buffers
configures the total number of buffers available for all pools. For example:

| DB_BLOCK_BUFFERS = 10000

Any object not specifically targeted at one of the other pools will be placed in the
default pool. When configuring multiple pools, it is also necessary to configure multiple
LRU latches. This is accomplished by setting the value of DB_BLOCK_LRU_LATCHES.
Ideally, this value should be set to twice the number of CPUs available to the instance.
This is to proactively configure the number of LRU latches to the allowed maximum, so
that there is no contention caused due to lack of LRU latches. In our experience, we
have observed no measurable overhead for setting it at the maximum value. Oracle
defaults this parameter to the number of CPUs on the system:

(- DB_BLOCK_LRU_LATCHES =16 /* This is for an 8-CPU machine */

The Keep Pool

The keep pool is designed to specifically address the needs of small tables that
require very fast access. Lookup tables and other small (but often used) tables
should be assigned to the keep pool. This facilitates avoiding the effort required to
reread the data block from disk after it has been aged out. Objects placed in the
keep pool will not compete with objects placed in the other two pools and will only
get aged out as competition from other keep pool objects forces them out. The keep
pool is established by setting the initialization parameter BUFFER_POOL_KEEP to
a certain number of blocks (from the value of DB_BLOCK_BUFFERS). However,
you must also set the number of LRU latches for this pool from the value of
DB_BLOCK_LRU_LATCHES:

suw 9y BUFFER_POOL_KEEP = (buffers:2000, Iru_latches:2)

I 58 Oracle Performance Tuning 101

Also keep in mind that the sum of the default, keep, and recycle pool buffers
cannot be more than was allocated to DB_BLOCK_BUFFERS. Nor can the sum
of latches for the three pools be more than the number of latches specified by
DB_BLOCK_LRU_LATCHES.

The Recycle Pool

The recycle pool is configured in a similar manner to the keep pool. The
parameter BUFFER_POOL_RECYCLE is set to some number of buffers and
some number of latches:

| BUFFER_POOL_RECYCLE = (buffers:1000, Iru_latches:1)

This allocates 1,000 of the 10,000 (per setting in DB_BLOCK_BUFFERS)
available to the database buffer cache pools to the recycle pool, along with one
LRU latch to manage those blocks. Assign large objects to this pool that are likely to
be accessed with some frequency, but that may cause other objects to be aged out
prematurely. Large objects are those that are accessed in a random fashion and that
account for a sizeable percentage of the random reads. The definition of the term
“sizeable” is specific to each application and database. It is recommended to assign
those objects to the recycle pool where the number of block gets (logical reads) for
that object is about the same as the number of physical reads. This near one-to-one
relationship between logical and physical reads is a good indicator that this object
does not benefit from caching and is likely to cause other important objects to age
out of the default pool if they have to share the same pool. Identify these tables by
executing queries against suspect tables with autotrace turned on, by using tkprof
to look at the number of physical reads versus logical reads, or by viewing V$ CACHE
and V$BH.

NOTE

The instance will not start if the number of

latches to be configured for the keep or recycle
pool is not specified. Also note that the number

of buffers in the default pool will be equal to
(DB_BLOCK_BUFFERS—(BUFFER_POOL_KEEP+BUF
FER_POOL_RECYCLE)). A similar calculation is
done for the number of latches for the default pool
as long as there are at least 50 buffers per latch.
The V$BUFFER_POOL dynamic performance view
provides information on how many buffers are
allocated to each of the pools.

Chapter 6: Instance Tuning—The Database Buffer Cache 159

NOTE

For accurate information to be shown in V$CACHE
and V$BH, the catparr.sql script, which is located
under $ORACLE_HOME/rdbms/admin, needs to be
executed every time an object is added or dropped
from the database.

Assigning Objects to a Pool

Objects can be assigned to the pool of choice when they are created. For example:

(= create table EMP (Empid number,
Lname varchar2(30),
Fname varchar2(30),
Salary number(8,2))
tablespace EMP_DATAO1
storage (buffer_pool keep);

This assigns the EMP table to the keep pool. When the buffer_pool parameter
is not specified, the object is placed in the default pool. An object can also be
altered by changing the value of the buffer_pool attribute in the storage clause in
an alter statement.

Using the Cache Option

This is not the lottery—nothing about your instance should be a game of chance.
The cache option is another attribute of a segment that will change the way Oracle
manages that segment’s presence in the database buffer cache. This is especially
true for database versions prior to Oracle8. Specifically, this affects tables undergoing
full table scans. By default, the cache option is turned off when an object is created
unless otherwise specified. This results in the blocks for that segment being added to
the least recently used end of the LRU list (recall that this has changed in Oracle8i)
during a full table scan. That’s good, because it means that you don’t flush the
cache out when doing a full table scan. But it is not so good if that segment is
frequently used and always accessed by full table scans, as is often the case with
smaller tables. This means that if the cache attribute is not used, the probability for
a process to perform physical I/O to return data on that segment is high. Further,
the probability of the blocks aging out of the cache is also high.

When creating or altering the segment, the cache attribute can be turned on. For
example, alter table EMP cache; turns on caching for the EMP table. Now any time
a full table scan is performed on the EMP table, the blocks will be added to the most
recently used (MRU) end of the LRU list. This results in increasing the probability of
the EMP table to stay in the database buffer cache. But it may also result in other

160 Oracle Performance Tuning 101

table blocks aging out to make room for “the new blocks.” Thus the EMP table with
the cache attribute should now be considered for placement in the keep pool.

Analyzing the Database Buffer Cache

Analyzing the database buffer cache involves getting statistics on it, which include
logical reads and physical reads, checking to see which segments currently have blocks
in it, and identifying which resources related to the database buffer cache are in
short supply. This information can be gleaned from the report.txt, STATSPACK
reports, and V§SYSTEM_EVENT, V$SESSION_EVENT. Additionally, the database
buffer cache provides information that can help in diagnosing I/O application-related
problems. So let’s start with the one we all know, the cache-hit ratio.

Understanding Cache-Hit Ratios

This sounds like a Las Vegas term for doing well at the slot machines. Though it is
not as exciting as being in Las Vegas, it is more meaningful in terms of an Oracle
instance. Besides, the Oracle CHR is likely to be significantly higher than any
“Cash” hit ratio you're likely to achieve in Las Vegas.

This value is the ratio of how many times a block is requested and the breakdown
of how many times the Oracle database buffer cache was able to supply it by way of
a logical read versus a physical read. Logical reads occur when the server process
finds the block in the database buffer cache. A physical read occurs if the server has
to read the data file and copy the block into the cache. Physical reads are always
followed by logical reads (the block is read from disk into the cache, then Oracle
logically reads it from the cache), though not all logical reads are preceded by
physical reads. Logical reads are the combination of consistent gets and db block
gets from V$SYSSTAT or report.txt.

Following is a common formula to determine the CHR. It considers the ratio
of physical to logical reads, and subtracts the physical reads that preceded the
logical reads.

(== CHR =100 * (1 - (physical reads / (consistent gets + db block gets
- physical reads))

If V$SYSSTAT shows the following values:

S« consistent gets = 47229
db block gets = 2148
physical reads = 3923

we can calculate the CHR as

g CHR = 100 * (1- (3923/(47229+2148-3923))) = 91.37%

Chapter 6: Instance Tuning—The Database Buffer Cache 161

When doing analysis of the CHR, be certain to correlate the value to the time of
day. Compare readings from 2:00P.M. on one day to the same time on another day
to determine if performance has degraded. When comparing performance between
two different times, be sure you understand the differences in the load and types of
operations being performed. For example, a comparison between 2:00pP.M. at the
height of OLTP activity to 2:00A.M. when massive updating by way of batch jobs is
happening is not particularly valid. It is not unreasonable for performance to be
different in a case like that.

NOTE

When comparing performance numbers even during
the same time periods, you should know that the
second day’s numbers have the first day’s numbers
embedded in them. Performance numbers retrieved
from almost all dynamic performance views (V$
views) are cumulative from the time the instance
was last started. To factor the first day’s numbers in
the second day is a very important consideration
during performance data collections.

If multiple pools have been implemented, it is possible to drill down further with
cache-hit ratios and get the cache-hit ratio for the specific pool. The information of
concern is in V§BUFFER_POOL_STATISTICS. This view is created by executing
$ORACLE_HOME/rdbms/admin/catperf.sql (if you have not already done so). Use
the same formula as was used for the generic CHR. The following is a sample query
on V$BUFFER_POOL_STATISTICS:

| select Physical_Reads, Db_Block_Gets, Consistent_Gets
from V$BUFFER_POOL_STATISTICS
where Name = 'KEEP';

This query can be used for the recycle pool as well by substituting the string
KEEP with RECYCLE. With this information, you can resize the database buffer
cache or just one of the pools as needed. To get meaningful results, run the query
multiple times and get a trend.

With the keep pool, the goal will be a very high cache-hit ratio. This means that
the tables most often sought are always in memory and therefore available immediately.

162 Oracle Performance Tuning 101

Again, caution is in order. A value of 100 percent may be an indicator that too
many buffers have been allocated to the keep pool that might be better used
elsewhere. On the other hand, the CHR for the recycle pool is likely to be dismal.
The idea is to free those blocks up as quickly as possible for the next “recyclable”
object. As with all tuning issues, it may take several iterations before a suitable
value is found for each of the pools. Again, this discussion on CHRs should be kept
in perspective of the “Five-Minute Caching Rule.”

What’s in the Database Buffer Cache?

For those of you with inquiring minds, it can be fun and useful to see which objects
are using the largest part of the database buffer cache. The same objects are often
the ones that when put in the appropriate pool can reduce physical I/O. The following
query provides some insight:

| select O.Owner, O.Object_Type, O.Object_Name, count(B.Objd)
from V$BH B, DBA_OBJECTS O
where B.Objd = O.Object_Id
group by O.Owner, O.Object_Type, O.Object_Name
having count(B.Objd) > (select to_number(Value*.05)
from VSPARAMETER
where Name = 'db_block_buffers");

This will return a list of all objects using more than 5 percent of the database
buffer cache. These are the objects to consider first when assigning objects to pools.
Here is an example using a 5 percent threshold:

(="_ = ' OWNER OBJECT_TYPE OBJECT_NAME COUNT(B.OBJD)
DSTG INDEX COMPANY_STATUS_PK 245
SYS CLUSTER C_OBJ# 440
SYS INDEX I_OBJAUTH1 206
SYS TABLE OBJAUTH$ 185

Depending on the size of the database buffer cache, you can set the threshold
value for this query appropriately.

Chapter 6: Instance Tuning—The Database Buffer Cache

Wait Events that Affect
the Database Buffer Cache

Regardless of the CHR, you should make it a habit to periodically determine the
“wait events” that affect the database buffer cache. These can be found by querying
V$SESSION_WAIT and looking for events such as buffer busy waits or free buffer
waits. The event latch free is also relevant if the latch is cache buffers chains or
cache buffers Iru chain. Remember, if your database is not experiencing l/O-related
events, a low CHR is not a performance problem.

| select SW.Sid, S.Username, substr(SW.Event, 1, 35), SW.Wait_Time
from V$SESSION S, V$SESSION_WAIT SW
where SW.Event not like 'SQL*Net%'
and SW.Sid = S.Sid
order by SW.Wait_Time, SW.Event;

This query produces a list of events for the connected sessions currently in a wait
state. If wait events exist for database buffer cache resources, use this information to
direct the problem-solving efforts. Most problems in the database buffer cache can be
addressed by either increasing the number of buffers or by making better use of the
resources. However, it should be noted that reducing the need for those resources by
tuning the SQL and 1/O needs of the application will go a long way toward keeping
this cache contention free. The following are a common set of events related to the
database buffer cache. Some relate to 1/O issues, others to actual events in the
database buffer cache. A complete list of wait events is available in the Oracle
Reference manual.

buffer busy waits Indicates wait for buffers in the database buffer
cache. This indicates that a session is reading
this buffer into the cache and/or modifying
it. Can also be a symptom of lack of enough
free lists, on tables that support concurrent
insert operations. This is because multiple
transactions are concurrently attempting to
insert data into the first block of the freelist.

db file sequential read Indicates among other things waits associated
with an index scan. May indicate 1/O
contention or an excessive amount of I/O.

163

164 Oracle Performance Tuning 101

db file scattered read Indicates waits associated with a full table

scan. May indicate I/O contention or an
excessive amount of 1/O.

free buffer waits Indicates lack of free buffers in the database

buffer cache. This could mean either the
database buffer cache is too small or the dirty
list (list of modified blocks in the cache) is not
getting written to disk fast enough. This event
occurs when the free buffer inspected event
does not find any free buffers.

latch free Indicates latch contention for the latch# that

is being waited on. Ensure that you already
have tuned the number of latches to their
allowed maximums by setting the relevant
init.ora parameters. If the problem persists,
you should determine what is causing the
contention for the latch and fix the underlying
problem. Your goal should be to cure the
disease, not the symptom. A latch free event
is a symptom of a bigger problem.

Fixing the Problem

Once you have identified the issue of concern with the database buffer cache,
you can take appropriate corrective action. This may involve one or more of the
following:

Increase the size of the database buffer cache by increasing the number of
blocks buffered. Changing the value of DB_BLOCK_BUFFERS will result
in more memory being used, so make sure that the operating system can
handle that additional shared memory without additional paging or
swapping. However, be aware that if your database is already suffering
from database buffer cache latch problems, increasing the number of
DB_BLOCK_BUFFERS can exacerbate the problem.

Increase the size of the database buffer cache by increasing the database
block size. The only way to accomplish this is to create a new database with
a more appropriate block size and importing the data from the old database.
This is easier said than done, but it does improve data density by making
room for more rows in any single block. Therefore, more data is in memory
with the same number of buffers. Be aware that increased data density can

Chapter 6: Instance Tuning—The Database Buffer Cache 165

mean increased contention for any given block. It becomes even more
important to set the values for initrans and freelists since more users will
be accessing the same block.

NOTE

Make sure to review the init.ora setting for
DB_BLOCK_BUFFERS, as the amount of memory
used for the database buffer cache will increase by
the same factor as the block size did.

B Segregate segments in the appropriate pool based on segment usage.
If the segment is a small lookup table (or another segment that requires
instant access and needs to be kept in memory), configure the keep pool
and alter that segment to use the keep pool. For large segments that might
flush smaller segments out of the default pool, configure the recycle pool
and alter those segments to use it.

m Configure the LRU latches to the platform-specific maximums to avoid latch
contention that is caused by a “lack of enough latches” on the system.
Again, in our experience, there is no measurable overhead in doing that.

B Set the cache attribute for those segments for which you wish to reduce the
probability of block aging.

Also, if you discover I/O problems, be sure to address those. The database
buffer cache can suffer if I/O performance is poor. The positive side is that as the
performance in the 1/O subsystem increases, performance of the database buffer
cache improves as well.

Initialization Parameters that Affect
the Database Buffer Cache

In this chapter, we have discussed various initialization parameters. Following is a
list of those parameters that affect performance in the database buffer cache, along
with their definitions. As mentioned earlier, the database buffer cache is the first line
of defense against unnecessary physical 1/O. Therefore, you will find information
about how these parameters relate to I/O. Also keep in mind that performing physical
I/O is not always a bad thing.

DB_BLOCK_SIZE This parameter is set at database creation. It
determines the size of each block within the
database and thus the size of each buffer
allocated in the database buffer cache.

166 Oracle Performance Tuning 101

DB_BLOCK_BUFFERS This parameter determines the number of
blocks in the database buffer cache in the
SGA. Since this is the area Oracle reads data
from and writes data to, improper sizing can
cause serious l/O-related performance problems.
Oversizing this parameter can result in
systemwide memory starvation and cause the
OS to page excessively and potentially swap.

DB_BLOCK_LRU_LATCHES This parameter defines the number of latches
that are configured for the LRU lists of the
database buffer cache. It can be set to its
platform-specific maximums without any
degradation in performance. Do keep in mind
that the number of latches for all the pools
configured for the database buffer cache
cannot exceed this number.

BUFFER_POOL_KEEP This parameter allocates some number of
buffers and latches from DB_BLOCK_BUFFERS
and DB_BLOCK_LRU_LATCHES to the keep
pool. This provides separate space management
for those segments assigned to the keep pool.
It thus prevents these segments from aging out
as a result of some wild dynamic query or
other unforeseen action.

BUFFER_POOL_RECYCLE By setting BUFFER_POOL_RECYCLE to
a subset of DB_BLOCK_BUFFERS and
DB_BLOCK_LRU_LATCHES, a third pool
in the database buffer cache is established.
This pool is best suited to segments that are
involved in a large percentage of random 1/O.

NOTE

There are many I/O-related parameters that affect
the performance of the database buffer cache,
and they will be discussed in detail in the chapter
“lI/O Tuning.”

Chapter 6: Instance Tuning—The Database Buffer Cache

In a Nutshell

As with all tuning, begin with an open mind. Determine the cache-hit ratio and
compare it to readings taken over time. Be sure to compare like times with like times
to analyze I/O patterns. But don’t run your life just on a CHR. It is just an indicator,
not an all-inclusive method to determine whether your database is performing at
optimal levels.

You should very seriously consider implementing multiple pools in the database
buffer cache if you can identify segments that have differing access patterns or
characteristics. Small segments that are frequently accessed by applications or
segments that require very fast access should be placed in the keep pool. Segments
that are observed to have as many physical reads as logical reads are good candidates
for the recycle pool. Those that can’t be categorized should be left in the default
pool. When increasing the database buffer cache size, be certain that the larger size
of the SGA will not cause additional paging or swapping.

Proactively avoid latch contention by setting DB_BLOCK_LRU_LATCHES to the
platform-specific allowed maximums. There is no measurable overhead in doing
that. Be cautious while implementing any unsupported parameters. Their behavior
may change once they are de-supported.

Don’t fall for “expert recommendations” with respect to cache-hit ratios. There
are no optimal or magical numbers here. This is true even if your application supports
e-commerce. We are fully aware of the sub-second response time requirement
for Web applications. However, that in itself should not force you to store every
block of your data in the database buffer cache. There are many other ways to
achieve sub-second response times (optimal application and schema design,
meaningful SQL, application-layer caching, multi-tier architectures, and so on).

In this day and age, caching all of your data is not even possible. If indeed you
are caching all of your data, chances are that your database is very small. Oracle
was designed and built to perform 1/O very efficiently. With the significant advances
in Oracle’s kernel engine and storage hardware, doing a reasonable amount of
physical 1/O is normal and acceptable. The ideal CHR for one environment may
make no sense for another. Okay, allow us to say it one last time. It is absolutely
normal for your CHR to be even in the 60 percent range so long as your database
is not plagued by I/O-related wait events. On the flip side, don’t sit back and think
everything is picture perfect just because your CHR is 99.999 percent. There could
be I/O-related wait events in the database closet. Watch out!

167

1002
1l

ORIGINAL * AUTHENTIC

Oracle Press

ONLY FROM OSBORNE

Expert authors, cutting-edge coverage, the latest
releases...find it all at OraclePressBooks.com

Oracle Press

[T e P

From a full selection of titles focusing
on Oracle’s core database products to
our in-depth coverage of emerging
applications, Web development tools,
and e-Business initiatives, Oracle Press
continues to provide essential resources
for every Oracle professional. For a
complete list of Oracle Press titles—
from the exclusive publishers of
Oracle Press books—and other valuable
resources, go to

OraclePressBooks.com.

Get the most complete information on
Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

i

OsBORNE
ORACLE PRESS™—EXCLUSIVELY FROM McGRAW-HILL/OSBORNE www.osborne.com

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

