
ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:343

CHAPTER
13

Wrapping It Up

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

344 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:344

Oracle Performance Management:
A Summary
There is an old adage that reminds people that “All good things come to an end.”
The same holds for this book. Now that we have invested a significant portion of
the last six months of our lives writing about Oracle Performance Management
and its related components, it is time to bring the curtain down, wrap things up,
and move on to other pursuits. Life is an endless journey of new challenges, and
it continues to be fun when you learn from each challenge and grow with experience.
Writing this book sure was a great experience for us in many aspects.

Any good presentation is required to have three components: an introduction,
the text, and a summary. The introduction is supposed to introduce you to the
topic (tell you what we will talk about), the text is supposed to provide you with
all relevant details (talk about the things that we intended to), and the summary is
supposed to capture the gist of everything that was said in the text (tell you what
we just told you). To keep literary tradition and the norm intact, we are conforming
to the same. So here we go, on the last lap of this great experience, summarizing
every chapter.

What Is Oracle Performance
Management?
Oracle Performance Management is a step-by-step process of iteratively investigating,
determining, and implementing tuning solutions using a proven methodology.
While tuning a system, it is important to know when to tune, what to tune, how
much tuning it requires, and when the tuning efforts should stop. Specific goals
need to be set and all tuning efforts need to cease when those goals are attained.

The Method Behind the Madness
Every Oracle Performance Management effort is potentially tri-faceted: tune, schedule,
or buy. Ultimately, don’t bet your professional life on performance tuning Oracle
systems based on cache-hit ratios. By following the process of setting attainable goals,
measuring current performance, making deliberate and well-considered changes, and
reevaluating and reiterating the process, you can be assured of making positive
progress in your tuning effort. Taking the two-pronged approach to monitoring the
operating system for resource bottlenecks and using session wait statistics within
Oracle to determine the exact nature of the performance bottlenecks allows for a very

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Wrapping It Up 345

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:345

productive performance management effort. The key to this method is drilling down
to the heart of the problem. Here is how:

1. Start with V$SYSTEM_EVENT and determine what resource is in highest
demand, such as db file sequential read.

2. Drill down further to V$SESSION_EVENT and see which and how many
sessions are involved for any given wait event.

3. Next, look at V$SESSION_WAIT to find the details of the resource
contention, for example, which files, tables, latches, and so on.

4. Check the values for P1–P3 to find the relationships to other views.

5. Consider the time waited for these and other events. Work on the top
five events.

6. Continue this process until all bottlenecks are unearthed.

7. At the same time, determine which SQL statements are contributing to
these bottlenecks.

8. In a parallel effort, collect and analyze the OS statistics. Do this keeping
the Oracle environment in mind. That means you should understand the
OS statistics as they relate to Oracle.

9. Once you have determined the problem area, decide on a solution, test it, and
implement it.

10. Deploy adequate change-control mechanisms so you can track what
changes you have made and what effect they have had on the system.

11. After the solution is implemented, reevaluate to see if you have met
your goals.

So for the last time, if the database buffer cache-hit ratio is low and you are
beginning to get alarmed, stop and look at the wait events for the sessions. If
there are no I/O-related wait events, your suspicion of a performance problem
is unfounded. On the other side, if your cache-hit ratios are in the upper 90s,
don’t just sit back thinking that everything is fine, because in reality it may not be.
All you have to do is to check for the wait events. Don’t assume that a 99.999
percent cache-hit ratio implies that your Oracle database is performing at its peak
efficiency, because even with that kind of cache-hit ratio, something nasty could
be brewing. The behavior change that we have tried to bring about with this book
is to get you to tune your Oracle systems based on wait events, not ratios.

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:11 PM

Color profile: Generic CMYK printer profile
Composite Default screen

346 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:346

Application Tuning:
There Is No Substitute
Eighty percent of your Oracle system performance problems are due to bad SQL.
Designing and developing optimal SQL is quintessential to scalable system performance
and consistent response times. As a DBA, you need to be aware of the type of optimization
methodology you are using, the method and frequency of calculating statistics, optimal
indexing strategies, and selecting the right join methodology for a given SQL statement.
Remember, it is not always beneficial to use an index. Care needs to be taken to identify
this on a case-by-case basis.

You have the power to dramatically transform systemwide performance by just
adding an index, changing the join methodology of a SQL statement, or providing a /*+
HINT */ to a SQL statement. Trust us, we are talking about many orders of magnitude
in potential performance increase here.

Hunting down bad SQL statements requires discipline and makes you aware and
adept in the various tools that Oracle provides to troubleshoot bad SQL statements.
This is important because unless you get to the bottom of the performance problem
with your SQL statements, you really can’t tune your system performance problem.
Okay, let’s drive home that point one more time: 80 percent or more of your system’s
performance problems are caused due to bad SQL statements.

Here are some core steps to tune your SQL statements:

1. Ensure TIMED_STATISTICS is set to TRUE at the instance level (set it
permanently in the init.ora or set it temporarily by executing an alter
system command).

2. Ensure MAX_DUMP_FILE_SIZE is set high enough. This controls the size
of your trace files.

3. Determine the location pointed to by USER_DUMP_DEST and ensure
enough free disk space. This is where your trace files will live.

4. Turn on SQL_TRACE for the session in question while the application
is running.

5. Run the application.

6. Locate the trace files.

7. Run tkprof (transient kernel profile) on the trace file that was located
in step 4 to generate a trace output file.

8. Study the trace output file.

9. Tune the most expensive SQL statements.

10. Repeat steps 4–9 until required performance goals are achieved.

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

SQL_TRACE, TKPROF, EXPLAIN PLAN, and AUTOTRACE are some of the core
tools that are shipped with the Oracle database software. They have been known
to work consistently across multiple releases and operating system platforms.
Understanding these tools is essential to your success in your application tuning
efforts. Regardless of whom you choose as your third-party vendor for your Oracle
database performance monitoring tools and SQL tuning tools, you absolutely have
to understand and know your way around these core tools.

Shared Pool Area Tuning
Tuning the shared pool, like any other part of your Oracle system, requires understanding
the interdependencies of all components. In this case, it means knowing the nature of
the SQL being used. The relative sizes of packages, procedures, and functions affect
the shared pool and the other related pools. It requires that the database administrator
proactively manage the shared pool and large pool when applicable. Knowing which
options the system is using determines the configuration of some of the pools. If RMAN
is used as a part of the backup methodology, or if parallel operations or MTS is used,
the large pool must be configured to support these tools. If Java is installed, Oracle will
need a robust Java pool.

Don’t let cache-hit ratios be the driver of tuning decisions. Use wait events to
direct your tuning efforts down the right path. If the system is experiencing a high
number of reloads in the library cache, it may be starving for memory. Consider
increasing SHARED_POOL_SIZE. But before doing that, also consider the benefits
of SQL tuning or segregating large packages and procedures or utilizing open and
persistent cursors. Remember, soft parses are better than hard parses, and open
cursors are better than soft parses. Investigate the use of SESSION_ CACHED_
CURSORS in your version of the Oracle database.

Avoid simply flushing the shared pool to clear everything out. You might get
one package to run, but at a high cost in performance to all the other users on the
system who are subject to hard parses where they would have used a soft parse.

If poor performance is traced back to recursive SQL having to constantly
repopulate the data dictionary cache, definitely increase the shared pool. However,
be careful that the ensuing increase in the SGA does not cause problems elsewhere
that might be worse.

Pinning or keeping packages and other objects in the shared pool can provide
excellent relief from aging issues as well as shared pool fragmentation, thus
avoiding the ORA-04031 error. This is done with the package dbms_shared_pool
using the keep procedure. Many database administrators find pinning key system
and application packages at the startup of an instance helps in proactively managing
the shared pool size. These steps are often added to the startup scripts.

Chapter 13: Wrapping It Up 347

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:347

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Buffer Cache Tuning
You can analyze the I/O patterns in your system by querying the relevant parameters in
V$SYSSTAT. Determine the cache-hit ratio and compare it to readings taken over time
to understand physical I/O trends. Be sure to compare like times with like times keeping
in mind that all instance-specific statistics are cumulative since the last startup.

You should very seriously consider implementing multiple pools in the database
buffer cache if you can identify segments that have differing access patterns or
characteristics. Small segments that are frequently accessed by applications or segments
that require very fast access should be placed in the keep pool. Segments that are
observed to have as many physical reads as logical reads are good candidates for the
recycle pool. Those that can’t be categorized should be left in the default pool. When
increasing the database buffer cache size, be certain that the larger size of the SGA will
not cause additional paging or swapping.

Proactively avoid latch contention by setting DB_BLOCK_LRU_LATCHES to the
platform-specific allowed maximums. There is no measurable overhead in doing
that. Be cautious while implementing any unsupported parameters. Their behavior
may change once they are de-supported.

Don’t fall for “expert recommendations” with respect to cache-hit ratios. There
are no optimal or magical numbers here. This is true even if your application
supports applications on the Web. We are fully aware of the sub-second response
time requirement for these applications. However, that in itself should not force
you to store every block of your data in the database buffer cache. There are
many other ways to achieve sub-second response times (optimal application and
schema design, meaningful SQL, application-layer caching, multi-tier architectures,
and so on).

In today’s world, caching all of your data is not even possible. If indeed you
are caching all of your data, chances are that your database is very small. Oracle
was designed and built to perform I/O very efficiently. With the significant advances
in Oracle’s kernel engine and storage hardware, doing a reasonable amount of
physical I/O is normal and acceptable. The ideal cache hit ratio for one environment
may make no sense for another.

Redo Log Buffer and
Miscellaneous Tuning
Tuning the redo mechanism—including the redo log buffer—is one of the last
components to tune as part of instance tuning. You can go ahead and always set
the value of the Oracle initialization parameter LOG_SIMULTANEOUS_COPIES to
the platform-specific maximum if your Oracle database version is prior to Oracle8i.
This proactively avoids redo copy latch problems that occur due to lack of latches.
Then set the size of the redo log buffer to a reasonable starting value by setting

348 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:348

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

LOG_BUFFER = 131072 (128K). Some folks start with 256K as well. Be cautious,
though, as getting too aggressive with this can create more problems than it fixes.
Increase this value if you observe the log buffer space wait event. However, if you
also observe wait events such as log file switch, log file sync, or log file parallel
write, there may be an underlying I/O issue on your storage devices. If this is the
case, ensure that the redo logs and the archive logs are on independent devices
separated from the data files of the database.

The archiving system can be tuned by setting LOG_ARCHIVE_BUFFER_SIZE
and LOG_ARCHIVE_BUFFERS (these parameters don’t exist in Oracle8i). Additionally,
tune checkpoints by ensuring that they occur only on log switches. Size the redo
log files appropriately to control checkpoint frequency and also allow sufficient
time for the checkpoint process to complete so you won’t get those “checkpoint not
complete” messages. Also ensure that they are on independent storage devices, as
they need their space (if you know what we mean).

We are all aware that most third-party packaged application vendors in their
efforts to “encapsulate” the complexity of their application bury their SQL many
fathoms below sea level and make it unreachable to mortals such as us. We studied
in good detail some instance-level tuning opportunities that are supported since
Oracle8, which modifies the behavior of the Oracle optimizer and thus makes
these packaged applications more amenable to our tuning efforts.

Database Tuning
Database tuning deals with proactively configuring and managing various storage-
related components in the database. The configuration of the Oracle database block
size is one of the most important steps that you as a DBA will perform. It needs to
be done right the first time, every time. When in doubt, go with a bigger database
block size.

To manage block-level fragmentation and to better use the available space
that you allocate to an object, block-level storage parameters such as pctfree and
pctused need configuration. Block-level concurrency support for multiple transactions
needs to be done by configuring initrans and maxtrans for the relevant tables that
will have to support concurrent data manipulation. If a table is heavily inserted into,
configuring adequate freelists is essential to manage contention. Every step needs to
be taken to reduce and eliminate tablespace-level fragmentation. Fragmentation can
be managed by implementing the “Four-Bucket Tablespace Configuration” method.
It is perfectly okay to waste some disk space and keep all extents in a tablespace
uniform, rather than deal with free space fragmentation.

Consider locally managed tablespaces in Oracle8i. This provides significant
increases in performance and ease of maintenance. Partitioning is a key feature that
was introduced in Oracle8. It provides the capability to decompose an object into
smaller segments, and thus provide better performance while dealing with these
smaller segments.

Chapter 13: Wrapping It Up 349

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:349

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:12 PM

Color profile: Generic CMYK printer profile
Composite Default screen

We hope you will spend your precious days performing tasks that are of value
to your system and your business, rather than trying to get every object in your
environment to fit into one extent. It is time for us to put an end to the one extent
compulsion and accept the fact that an object can have many hundred extents and
still perform at peak levels, so long as it does not suffer from severe block-level or
row-level fragmentation and the extent sizing is done keeping in mind DB_ FILE_
MULTIBLOCK_READ_COUNT and DB_BLOCK_SIZE. Compressing an object’s
extents into one extent in no way makes performance better. It just gives fragmentation
a new lease on life.

Parallel Query Tuning
Parallel Query was designed to squeeze every last drop of system resources out of
your hardware and software investment. Now, that’s a good thing, to get your
money’s worth. However, using parallelism without paralyzing your system requires
understanding of how parallelism really works, what affects it, and what it affects. It
is very important to consider the side effects of using parallelism when there are not
enough resources available and the environment is not conducive enough.

Parallelism involves dividing work among many processes, each performing its
own allocated workload. The idea is to “divide and conquer.” For starters, the table
data should be spread over as many storage devices as possible so that multiple PQ
server processes will not be hampered by I/O contention. You should also select a
proper degree of parallelism for the operation, as it dictates how many PQ server
processes will be utilized. The degree of parallelism can be set as part of a table or
index definition, or by using the PARALLEL hint with a SQL statement.

There are some special initialization parameters to configure. Specifically, these
include PARALLEL_MIN_SERVERS, PARALLEL_MAX_SERVERS, and PARALLEL_
MIN_PERCENT. You should understand how these interact with each other and
what important role PARALLEL_MIN_PERCENT plays. The new Oracle initialization
parameter PARALLEL_AUTOMATIC_TUNING allows the DBA to set just one
parameter for Parallel Query tuning and control the values of a variety of other
parallel parameters. As fantastic as that sounds, please perform comprehensive tests
in your environment before using this. Some other initialization parameters will also
need to be understood in light of using parallelism, such as LARGE_POOL_SIZE,
SORT_AREA_SIZE, and SORT_AREA_RETAINED_SIZE.

There are several SQL statements that can utilize PQ operations. From Oracle8,
many DDL operations can also utilize parallelism in addition to DML operations.
Parallel DML can significantly improve the performance of bulk DML operations in
large databases. However, there are some special issues you must be aware of
when using PDML. PDML is fully supported with partitioned tables. When using
PDML against such tables, make sure that adequately sized rollback segments are
available. To improve I/O, spread these rollback segments over multiple disk

350 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:350

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

devices. In addition to the size of the rollback segments, there should be enough
rollback segments available, typically equal to the number of table partitions, but
not to exceed twice the number of CPUs in the server.

The dynamic performance view V$PQ_SYSSTAT provides information on how
your system utilizes PQ servers. Monitoring it will enable you to determine
adequate values to set initialization parameters PARALLEL_MIN_SERVERS and
PARALLEL_MAX_SERVERS.

Contention Tuning
Every database will have bottlenecks and contention issues to deal with. There will
be more processes competing for limited resources. The key to your success lies in
how well you allocate and manage these resources to minimize such bottlenecks
and contention.

Configuring appropriate rollback segments is important to a well-performing
database in any environment, DSS or OLTP. If there are not enough correctly sized
rollback segments, performance of all DML activities will suffer. Application
programmers and database administrators have seen the ORA-01555 error quite a
few times. It is not the database administrator’s fault that there are not enough larger
rollback segment to avoid this errors. But many times the way the code is written
causes this error to surface. Addressing it only from the database standpoint will
have its limitations as well. Sometimes the code does require change.

All applications will perform sorts in addition to database maintenance tasks.
This should be expected with a relational database like Oracle. Configuring
appropriate temporary tablespaces to carry on sort operations is also very important.
At the same time, care must be taken to find ways to avoid resource contention.
When sorts are taking place on disk, the extent allocation and de-allocation will
cause contention for the space management transaction enqueue (ST enqueue)
resource in a busy database. Proper values selected for the init.ora parameters
SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE will minimize the need to
use the disk for sorts. When disk sorts cannot be avoided, it is important that the
storage for the temporary segments is properly sized. With the introduction of true
temporary tablespaces, sort processes do not have to deal with multiple allocation
and de-allocation of extents for temporary segments. With true temporary tablespaces,
one large segment is used by all sorting operations. When possible, consider using
multiple temporary tablespaces for multiple user groups with data files on different
storage devices to reduce contention for I/O. In addition to using true temporary
tablespaces, consider using locally managed tablespace for temporary segments.
This combination will ensure that you will have minimum requirement for using the
ST enqueue resource.

There is no magic to managing or tuning latch contention. Neither is it the
most important thing to worry about. However, it gets a lot of attention. Just like

Chapter 13: Wrapping It Up 351

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:351

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

352 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:352

a squeaky wheel! People drive themselves crazy trying to tune their latches without
really digging deep into what is causing the contention. If you track the trend
Oracle is following, many of the latches are slowly but surely becoming
undocumented parameters, which implies that you do not touch it unless advised
otherwise. A DBA can tune just a few latches. Fortunately, there are corresponding
Oracle initialization parameters, so set those appropriately and forget about latch
contention (at least from a number of latches perspective). Besides, almost all the
time, latch contention is a symptom of a serious application problem—too much
serialization. Stick to the tuning methodology and you will be content with not
finding any latch contention! There are other fun things that need your attention.

I/O Tuning
I/O tuning (of which RAID is an important component) is essential to achieve
scalable system performance when the database grows in size. RAID provides
the technology to scale I/O and system performance of applications and provide
high availability. Proactive design, architecture, and deployment of optimal RAID
configurations are quintessential to gaining scalable I/O performance. It is important
to understand the RAID solutions offered by each hardware vendor before any
implementation is done. A solid understanding of the application to be supported
plays a large part in RAID selection. Researching the application and the details of
your vendor’s RAID offerings must be the starting point of any I/O subsystem
design. The following table summarizes the various levels of RAID:

Level of RAID Functionality

RAID 0 Provides striping but no recoverability. Your application
requires read/write performance without recoverability (rare).

RAID 1 Provides mirroring and recoverability. Your application
primarily requires write performance.

RAID 0+1/1+0 Provides the combination of 0 and 1 and recoverability.
Your application requires read and write performance. This
is very widely used (note that 1+0 is better than 0+1 for
availability).

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 13: Wrapping It Up 353

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:353

Level of RAID Functionality

RAID 2 This was one of the early implementations of striping with
parity, and it uses the hamming code technique for parity
calculations. It was replaced by RAID 3, RAID 5, and RAID
7 and is very rarely implemented.

RAID 3 Provides striping with bit/byte-level parity and is supported
by a dedicated parity disk. This also provides recoverability.
Your application requires read performance for bulk
sequential reads and requires better data-transfer rates for
sequential reads over IOPS. It is not widely used, but is
slowly gaining popularity.

RAID 4 Provides striping with block-level parity and is supported
by a dedicated parity disk. It also provides recoverability,
but is very rarely supported by hardware vendors.

RAID 5 Provides striping with block-level parity. The parity is
distributed across the number of disks in the volume. It
also provides recoverability. Your application requires read
performance for random reads that are small in nature,
and requires better IOPS over data-transfer rates. It is very
widely used.

RAID 6 Provides striping with block-level multidimensional parity.
Supports recoverability, but suffers from slower writes
when compared to RAID 5. It is very rarely implemented.

RAID 7 Same functionality as in RAID 3, but with better
asynchronous capability for reads and writes. This is
significantly better overall I/O performance when
compared to RAID 3, but it is also much more expensive
than RAID 3.

RAID-S This is EMC’s implementation of RAID 3/5.

Auto RAID This is HP’s automatic RAID technology that autoconfigures
the I/O system based on the nature and type of I/O
performed on the disk blocks within the RAID array.

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle and RAID have an interesting marriage; adequate thought and care needs
to be put into them. A good design can go a long way in an optimal and scalable
implementation. The following table summarizes the interaction between Oracle
and RAID:

Level of RAID When and Where to Use It

RAID 0 Not suitable for any critical component of an Oracle
database. May be considered for development
databases where recoverability is determined to be
a non-issue. This is suitable when you can simply
restore a copy of a production database and reapply
any DDL differences to re-create a development
environment.

RAID 1 Ideal for online and archived redo logs. Leaves the
write-head at the location of the last write. On most
systems, you will need three volumes for the online
redo logs (for three groups) and one volume for the
archived redo logs.

RAID 0+1 or 1+0 Ideally suited for data files that require read/write
performance especially for online transaction
processing (OLTP) or hybrid systems, where
read/write performance is important. Pick 1+0
over 0+1 when possible.

RAID 3 Ideal for data mart/data warehouse applications
with few users that require mostly range/full scans
on its tables and indexes. Everything else remaining
constant, RAID 3 provides better data transfer than
RAID 5.

RAID 5 Ideal for data mart/data warehouse applications with
many users that require mostly unique scans on its
tables and indexes. RAID 5 provides better IOPS than
RAID 3.

RAID 7 Ideal for data mart/data warehouse applications with
support for more users than RAID 3. The application
requires mostly range/full scans on its tables and
indexes. If your application requires RAID 3 and
better support for IOPS and you can afford it, RAID 7
is your key.

354 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:354

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:13 PM

Color profile: Generic CMYK printer profile
Composite Default screen

As always, DBA 101 common sense needs to be applied on a continuous basis.
Some things never change: DATA tablespaces need to be separated from INDX
tablespaces, regardless of anyone advising you to the contrary. The three rules for
successful optimal RAID configurations are, “Striping, striping, and striping.”

Operating System Tuning
Tuning the OS includes activities such as making sure your system has adequate
memory for the number of CPUs, ensuring that the databases do not consume an
inordinate amount of available physical memory to cause paging and swapping,
verifying that the kernel parameters for the OS are set at proper values, and so
on. Addressing these areas in an effective manner will bring about performance
improvement you are looking for. You will need to understand what features
Oracle supports on your OS platforms. It is your job to test those and make sure
they work as desired. You should know how to use certain OS commands and
available tools to monitor CPU, memory utilization, and I/O throughput.

On UNIX, you need to know how Oracle uses shared memory and semaphores
to manage interprocess communications and all the related kernel parameters.
Implementation of these resources is OS specific. In addition, there are very
specific areas with various operating systems that you can explore to improve the
performance of your database. Some support asynchronous I/O with file systems,
while others make it easy to lock the entire SGA in memory. Some allow you to
control the paging algorithm, while others allow you to modify process management.
On Windows NT, there are a number of areas to address to improve the performance
of not only the database, but also of the Windows NT server as such. The more you
know about the OS and how Oracle uses its resources, there is no doubt in our
minds that you will be the most popular DBA around when it comes to performance
tuning at the OS level!

This Book…In a Nutshell
So go ahead, enjoy life, go out and get some fresh air every now and then, and
have fun during your Oracle system tuning efforts. Please make it a priority to
spend quality time with your family and loved ones. In the bigger scheme of
things, they are ultimate in importance. By using the information in this book, we
guarantee that you will engage in methodical and organized tuning efforts. You
will embark on tuning efforts only when you detect bottlenecks. When you make
that behavior change, you will actually find the time to spend with your family and
loved ones. Good luck with your Oracle Performance Management efforts. May
the force bestow you with intellect, health, peace, love, and prosperity! So long….

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 13
Blind Folio 13:355

Chapter 13: Wrapping It Up 355

P:\010Comp\Oracle8\145-4\ch13.vp
Sunday, May 13, 2001 6:20:14 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Online, you'll find:

• FREE code for selected books

• FREE sample chapters

• Complete online Oracle Press catalog

• Details on new and upcoming

Oracle Press titles

• Special offers and discounts

• Enter-to-win contests

• News and press information

• Information about our expert authors

• Details on how to write for Oracle Press

• And much more!

From a full selection of titles focusing

on Oracle’s core database products to

our in-depth coverage of emerging

applications, Web development tools,

and e-Business initiatives, Oracle Press

continues to provide essential resources

for every Oracle professional. For a

complete list of Oracle Press titles—

from the exclusive publishers of

Oracle Press books—and other valuable

resources, go to

OraclePressBooks.com.

Get the most complete information on

Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

Expert authors, cutting-edge coverage, the latest

releases…find it all at OraclePressBooks.com

ORIGINAL • AUTHENTIC

O N LY F R O M O S B O R N E

O R A C L E P R E S S T M— E X C L U S I V E LY F R O M M c G R AW- H I L L / O S B O R N E

1002

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

