[2 -""-‘;
F # _.!'_ #
..-I.- -
= --'I, ‘rid'-' = ;

. : >
i (s
: F s,
b
; g
% R
- 2 23 "’F
l
2 ; ~,
3 — e s
o -
‘III = 1 E I : . -
- o - af . —F

/ _ Database TLln'ing |

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
f system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
r computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

] Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.
Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this

work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
this Work, and is not responsible for any errors or omissions.

190 Oracle Performance Tuning 101

VA Myth & Folklore
The optimum number of extents for every object is one.

Fact

There cannot be anything farther from the reality than this. We call this myth the
father of all Oracle myths. Let there be no doubt, there is no magical number for the
optimum number of extents for an Oracle object. The perpetrators of this myth do
not understand the potential fragmentation and space management nightmare that
this optimum number of extents myth creates. The nightmare is created because not
all objects in a database contain the same amount of data. Therefore having objects
that are supported by varying sizes of a single extent within a tablespace can and
will cause space fragmentation problems and eventually present a space management
nightmare. It is perfectly acceptable to have multiple extents for an object. However,
if your object lives in the other end of the spectrum and is comprised of many
thousands of extents, there are other issues you have to deal with. But having 1,000
extents for an object by itself does not pose any performance problems, so long as
the extents are sized as a multiple of (DB_FILE_MULTIBLOCK_READ_COUNT *
DB_BLOCK_SIZE).

This ensures that Oracle will issue the same number of read system calls regardless
of whether the object consists of 1 extent or 1,000 extents. If the extents are not
aligned with the aforementioned size, additional read system calls can cause
unnecessary overhead on the 1/O subsystem. In the bigger scheme of things, assuming
worst-case scenario, it is one additional read system call per extent of the most
heavily hit objects in your database. If you have a lot of objects with a lot of extents
that are misaligned, you are posing more overhead on your I/O subsystem.

A Myth & Folklore
74 Reorganizing a table (export, drop, recreate, import) that contains many hundreds
of extents to one extent provides better performance.

Fact

This is definitely a corollary to the first myth. The export followed by the import
eliminates block-level fragmentation, row-level fragmentation (if applicable), and
resets the high-water mark of the table, which in turn provides better performance.
So, it is the defragmentation operation (within a block and/or a row) and the reduction
of the number of blocks that will be read during a full table scan that eventually
provides better performance.

It must be noted that the effect of the entire table’s data stored in one extent
has nothing to do with the performance increase. Table reorganization eliminates
block-level fragmentation because the import process refills each block up to the
level of pctfree within the block. This provides for better block compaction and
utilization, as each block is filled to the maximum allowable capacity.

Chapter 8: Database Tuning

Row-level fragmentation is eliminated when the erstwhile chained or migrated
rows get fixed (because they get reinserted into brand new blocks). A chained row
is when a row is stored in multiple blocks, because its length exceeds the free space
size of one block. Said in another way, a chained row is a row that spans multiple
blocks. A row is migrated when it cannot fit in its current block and thus is relocated
to another block (where there is adequate space), keeping a pointer in the original
block. The pointer in the original block is required, as index ROWID entries still
point to that location. While chaining is usually a problem related to a row’s length
and the size of the Oracle database block, migration is usually related to the lack of
adequate free space in a block to keep the row in the same block when an update
operation increases its length. Needless to say, Oracle will always attempt to
migrate a row before it decides to chain it.

Although, you can be guaranteed that all migrated rows will be fixed after a
table gets reorganized, chaining may still pose a problem if the row length exceeds
the available free space in a database block. If the table in question undergoes a
significant amount of inserts followed by deletes, it is important to adjust pctfree (to
reduce row-level fragmentation) and pctused (to reduce block-level fragmentation).
It is equally important to adjust the initial and next storage parameters (if they are
too small) to keep the table from reaching maxextents. Just because Oracle supports
unlimited maxextents, you don’t have to go out of your way to use it.

[about the things that need configuration and management that provides
_ optimal performance. The primary goal in this chapter is much more
than tuning. It is the proactive configuration and management of various
components of the database to reduce the number of tuning issues that eventually
become production problems. The Oracle RDBMS has undergone many improvements
in the past five years. Now more than ever, there is a need to harness all of the
available functionality for a given release of Oracle. It is easy to get stuck in the
past, and it is important to keep abreast of the new features that Oracle supports.

Further, for the sake of completeness we also have provided some high-level
coverage of some of the issues we have experienced while dealing with hybrid and
data warehouse databases. This by no means is an exhaustive coverage of the topics
and is mentioned here purely for the sake of completeness. Although the data
warehousing topic by itself warrants so much attention that there are many books
written just on that topic (one of our favorites is Oracle8i Data Warehousing, by
Gary Dodge and Tim Gorman), we wanted to at least touch on some of the key
issues and challenges in managing large Oracle databases.

191

192 Oracle Performance Tuning 101

Picking the Right Database Block Size

First things first! The optimal configuration of the Oracle database block size is one
of the most critical and important tasks you will perform in the life of a database.
This is because the block size of a database has a great performance impact on
various issues and it needs to be configured right the first time, every time. Changing
the database block size is an involved process and requires a complete rebuild of
your database—a luxury you may not have time for once you are in production.
So get it right the first time!

How Does Database Block Size

Impact Performance?

The positive or negative impact on application and system performance imposed by
the database block size is multifaceted. There are several factors to consider here,
but optimal application design and meaningful SQL statements are paramount to
everything else. Nothing will replace the power of an optimal SQL statement.
However, the size of the Oracle database block size can and will impact the
application. Here are some issues that require thought and planning:

B How much time does it takes to perform 1/O of one database block?
B What is the size and usage of the database buffer cache?

B What is the impact of having a larger index block in your environment?

B What is the impact of having rows that exceed the size of the database
block size?

B What is the impact of having less free space in a block due to the size of
the block?

B How is query performance impacted when update operations increase the
length of column values and the lack of free space chains the row across
multiple blocks?

m How will row migration and/or row chaining affect I/O performance?

How to Optimally Size the

Oracle Database Block Size

Most 32-bit versions of Oracle support a database block size up to 16K. This value
can increase up to 64K or higher on the 64-bit implementations of Oracle on certain
hardware platforms. The importance of configuring the Oracle database block size
correctly the first time cannot be over-emphasized, as it cannot be changed during

Chapter 8: Database Tuning

the life of a database (as of Oracle version 8.1.7). Oracle9i supports a flexible
method to have different database block sizes for different tablespaces, giving you
another chance to correct the problem after the database is created.

Optimal sizing of the Oracle database block can impact the efficacy of the
application’s 1/O access patterns. This is because of the varying patterns portrayed
by the different kinds of applications. Transactional or hybrid systems portray totally
different 1/O access patterns versus data warehouse or decision support systems.

VIP

With each doubling of the Oracle database block
size, there are two things that double in size: the
amount of data within a block and the contention
for data within a block caused by more rows. If the
contention aspect is not taken into consideration it
can very easily fall through the cracks and come
back to bite you later. At a very high level, the act
of doubling the database block size should be
followed by doubling of the block-level storage
parameters that control the degree of concurrent
data access within a block (such as initrans and
freelists). Failure to do that will result in increased
block-level contention. We will discuss this in more
detail in the section “Changing the Database Block
Size: Core Issues.”

Guidelines to Pick the Right Size

It is normal practice to configure an Oracle database with a smaller block size for
applications that are transactional in nature (OLTP). The primary focus here is to
reduce the amount of block-level contention for transactional systems, as most
transactional applications retrieve a few rows from a block, and thus should not
have to deal with more data than what is required. This does not in any way imply
that larger block sizes are bad for hybrid systems, as long as initrans and freelists are
proactively configured for the relevant objects. This is because block-level contention
needs to be consciously managed, and configuring large Oracle database block
sizes should not cause block-level contention. Another factor to consider is that
very few databases are truly transactional in nature. Most databases are hybrid in
nature and support mixed I/O patterns in the form of writes (via transactions) and
reads (via reports). Given that the read aspect is as important as the write aspect,
configuring the Oracle database block size should be done keeping both aspects

in mind. Applications that are read-intensive or report-intensive (such as data
warehouses or decision support applications) should be configured with the largest
available block size supported on the version of Oracle installed.

193

194 Oracle Performance Tuning 101

NOTE

It is possible that third-party packaged applications
in the ERP world could be as read-intensive as a
data warehouse application. Of course, this depends
on the time of the day, week, or month.

VIP

Based on current default values for file system block
sizes for advanced file systems (such as xfs, jfs, efs,
vxfs), it is recommended that you do not create a
database (regardless of its I/O pattern) with an
Oracle block size of less than 8K. Most hybrid
transactional systems perform well with 8K block
sizes, but some systems may require larger block
sizes, depending on the amount, nature, and
frequency of their read access patterns.

The Sizing Formula

There are many issues that require serious consideration while sizing the Oracle
database block size. We have used the following formula to configure many
production systems:

DB_BLOCK_SIZE = Operating System (OS) block size >= OS page size

NOTE

If advanced file systems (such as xfs, jfs, efs, vxfs) are
configured and implemented for Oracle data files,
the OS block is overridden with the file system (FS)
block size. In that case the formula changes to:
DB_BLOCK_SIZE = FS block size >= OS page size.

The Oracle database block size should always be equal to the value of the operating
system (OS) block size. The OS block size can be determined by executing a platform-
or filesystem-specific command on each operating system. In some cases you may
have to check the documentation of your OS or your Volume Manager vendor. On
Windows NT, check the system documentation for further information. This is to ensure
that when Oracle requests to read one database block from disk, the operating system
does not perform physical 1/O greater or less than the size of the Oracle-block. That
makes sense, doesn’t it? Let us explain it further.

Chapter 8: Database Tuning

If you created an advanced file system with a block size of 8K and created an
Oracle database with a block size of 4K, every request by Oracle to read one
database block will result in the OS reading 8K worth of data (even though only 4K
was requested). This is due to the fact that at the lowest level it is the file system
block size that is utilized as a blocking factor to read/write data from a file.
Configuring a 4K Oracle block size when the OS block size is 8K is guaranteed to
put undue stress on the 1/O subsystem, as every single-block request will generate
twice the amount of 1/O that is actually required. Put another way, in the above
example configuration you have lost 50 percent of the built-in capacity of your I/O
subsystem by configuring the database block size less than the OS block size or FS
block size for single block read requests. If the converse were true (Oracle database
block size was 8K and FS block size was 4K), then on some operating systems the
I/O system may accidently trigger the read-ahead algorithm under a false assumption
that the application is performing a sequential scan.

Well, that’s fine, but what is the relationship of all this with the OS page size?
That factor is usually relevant only for those systems where pinning or locking
the Oracle SGA is not possible. (The act of pinning or locking the SGA in memory
tells the OS’s paging algorithm to ignore those shared memory segments allocated
by Oracle for the SGA, until the system experiences extreme levels of memory
starvation).

The page size is the unit of I/O utilized by the paging algorithm to page-in and
page-out memory pages to and from main memory. When a page-out occurs, the
contents of that memory page is written to the swapfiles of the OS. This again implies
physical 1/O. The frequency of paging is related to the amount of free memory
available and the number and size of memory requests that need to be serviced
for various processes on the system. Given that paging is a core function of the OS,
and that the Oracle SGA is in memory (in DB_BLOCK_SIZE block boundaries), it is
important to ensure that there is no additional overhead (similar to the relationship
between DB_BLOCK_SIZE and OS block size or FS block size) while paging one or
more pages of the Oracle SGA. The page size is normally system-specific, and the
default values on most systems are adequate. On Solaris, the page size can be
determind by the pagesize command. Similar commands may be available on other
OS platforms.

Let’s recap. And we will do it starting with the OS page size. The OS page size
should be less than or equal to the OS block size (or FS block size). The OS (or FS)
block size should, in turn, be equal to DB_BLOCK_SIZE. From the above discussion,
it is evident that it does not make any I/O sense to create a file system with a block
size that is smaller than the OS’s page size. It definitely does not make any I/O
sense to create a database with a database block size that is different than the
OS block size.

195

196 Oracle Performance Tuning 101

NOTE

The OS block size is closely related to the discussion
of the Oracle database block size. On most UNIX
systems, the default value of the OS block size is 512
bytes and this is usually relevant for ufs file systems.
As mentioned earlier, on most systems that use
advanced file systems, the default value for the file
system block size is 8K. So for all practical reasons,
the OS block size is 8K (as it gets overridden by the
FS block size). If ufs file systems are used, the file
system should be created with a block size of at least
8K. The default OS page size on most systems today
is at least 4K, with 8K becoming a standard on the
newer chip architectures.

Changing the Database Block Size: Core Issues

The only way to change the database block size is to take a full export of the database,
shut down the database, delete all files associated with the database, and then
recreate the database from scratch by using the desired block size in the init.ora
(by configuring DB_BLOCK_SIZE). We hope that clarifies the earlier statement we
made: “The database block size cannot be changed in the life of a database.” The
only method to change the Oracle database block size may not be feasible or even
possible in most environments due to the following reasons:

m The time it would take to perform a full export of the database could be
too long even if exports were done using the direct attribute.

B The sheer size of the database would make a full export a theoretical dream.

m Even if you got the export done, the slowest component of this method
is the import.

B Even if your database is relatively small, you just may not have an available
downtime window to do this.

So let’s put things in perspective: you really have one shot at this and if you
don’t get it right the first time, your applications and your database will pay the
price in performance loss for the life of the database. Houston, do you copy that? Of
course, this changes in Oracle9i.

Chapter 8: Database Tuning

Small versus Large Block Size:

An Interesting Perspective

Eyal Aronoff, in his paper titled “Oracle Database Block Size,” compares the
performance characteristics of an Oracle database with database block sizes of 2K and
8K. The performance numbers gathered by his experiments for single block reads are
interesting. The following table is a synopsis of the performance numbers from that
paper for single block reads.

Description 2K Block Size 8K Block Size
Number of rows in the table 150,000 150,000
Number of read requests 14,100 3,400

Time spent reading a block 19 ms. 20 ms.

Total time spent 268 sec. 68 sec.

By looking only at the numbers for a single block read, the difference is not that
much (1 millisecond). Also note that the number of read requests for a database
with an 8K Oracle database block size dropped by 75 percent. This is also very
significant for iterative single block index scans, as more index entries will be
stored in one Oracle block, thus reducing the size of an index and the number of
read requests to read the index blocks.

The 75 percent reduction in read requests should be kept in mind along with the
fact that the size of the Oracle database block size was increased four-fold (from 2K to
8K). However, if applications continually request single block reads from disk, the 1
millisecond difference will add up to a sizeable number in the long run. In that case, it
is conceivable that the iterative pattern of reading single blocks from disk can place
more load on the I/O subsystem than what is required. Basically, Oracle is issuing
more I/O requests than it would if a larger block size were used.

=2 NOTE

. Based on the performance numbers from Eyal
Aronoff’s paper and our combined personal
experience, we have found that the size of the
database block has less impact on the performance
of multiblock reads (sequential reads), if the parameter
DB_FILE_MULTIBLOCK_READ_COUNT is set such
that (DB_BLOCK_SIZE * DB_FILE_ MULTIBLOCK_
READ_COUNT) = I/O chunk-size of the operating
system. The /O chunk-size of the operating system
is contfigurable on many platforms and will be
covered in more detail in the chapter “I/O Tuning.”

197

198 Oracle Performance Tuning 101

VIP

Please refrain from setting DB_FILE_
MULTIBLOCK_READ_COUNT to a very high values
(normally 32 or higher), as this may send the
message to the Oracle optimizer that full table scans
are cheap. You definitely do not want the optimizer
to go overboard on full table scans. It does not take
much to confuse it.

Summary

It is important to configure the Oracle database block size appropriately, as it
impacts the overall performance of your database. Again, you get one shot at getting
it right. When in doubt, go with the larger block size, but make sure you follow it up
by increasing any relevant block-level parameters to manage contention proactively.
Viewed in another perspective, application 1/O performance really boils down to
the frequency and efficiency of block reads from disk and their impact on application
performance. The efficiency of block reads is measured by the amount of data made
available to the application by reading one block from an Oracle data file.

Configuring Block-Level
Storage Parameters

The core block-level performance-related storage parameters that require proactive
configuration are pctused, pctfree, initrans, maxtrans, and freelists. This section is
dedicated to discussing the relevant configuration details of these parameters.

Configuring pctused

The best way to explain pctused is to think of a dining experience in a restaurant. In
some restaurants, waiters and waitresses provide awesome service to enhance your
dining experience. They always have an eye on the level of water in your glass. As
the water level in your glass reduces (as you take sips of water), they promptly come
around and fill your glass.

If you think of the blocks in your Oracle table like glasses of water, understanding
pctused is very easy. The waiter (server process) fills up the glass (insert) with water
and when it is full, the glass goes off the freelist (which means no more water can
be poured into the glass). When you consume water (delete), the level (percent full)
of your glass reduces. If the waiter fills your glass when the water level drops at

Chapter 8: Database Tuning

approximately the exact same level, you can envision that level as pctused. pctused
is the percent utilization level of a block when it goes back on the freelist for more
insert operations. So, the better the restaurant, the higher the pctused.

As you sip water from your glass and its level falls below pctused, your glass
makes it to the front of the freelist of blocks (blocks into which insert operations are
done). When that occurs, the waiter fills the glass to its maximum possible level (up to
pctfree). pctfree is relevant to this discussion here. This is because, if you are the kind
who usually adds additional cubes of ice to your water, you need to reserve some free
space in the glass to allow for the ice cubes to update your glass of water. This is to
ensure that the additional ice cubes do not result in water overflowing from your
glass. You never want water to overflow from your glass and wet the tablecloth, the
same way you never will want data to overflow from an Oracle block.

In the event of a potential situation where the water might overflow, you ask
the waiter for another empty glass to ensure that the overflow amount is stored in the
second glass. This is exactly what happens in row chaining where some pieces of the
row are stored in one block and the others are in another block, with pointers that
connect them. Sorry, at this time we don’t have a restaurant water drinking analogy to
explain row migration. Whenever we think about row migration we think about the
post office, which allows you to forward your mail when you move from one place to
another, even though all of your mail is still sent to the original address.

pctused, Restaurant Quality, and Database Performance

You can basically gauge the quality of the restaurant by the promptness of the
waiters in filling your glass of water. There are some restaurants where they fill your
glass once and never come back. You will have to prompt them to fill your glass.
You probably will not go back to those restaurants very often. Then there are others
who don’t even allow you to take a breather after taking a sip of water. They will fill
your glass just as you put it down. When done enough times during a dining experience
with your beloved one, that can get annoying. In Oracle’s perspective, both situations
need to be avoided.

In the first scenario, pctused is set too low, hence the block never gets on the
freelist on time. This can cause block-level fragmentation, as the table may be
comprised of many partially filled blocks. This results in wasted disk space and
generates more 1/O for range scans.

In the second scenario, pctused is set too high, and this results in the block
bouncing on and off the freelist too many times. This results in unnecessary contention
and overhead associated with managing the first block on the freelist(s). One thing is
for sure, the next time you dine with your loved ones, you will think of pctfree and
pctused. We thus take credit for permanently altering the “value proposition” of
your future dining experiences.

199

200 Oracle Performance Tuning 101

Configuring pctfree

The parameter pctfree (set as a percentage) is used to reserve a certain percentage of
space in each block for future update operations that increase the length of one or more
column values. It is important to configure this parameter appropriately for update- intensive
tables, as this parameter controls the amount and frequency of row migration and
row chaining. The amount of row migration and row chaining on a table impacts
application performance on that table. This is because row migration or row chaining
causes more /O to be performed to retrieve data.

The Oracle documentation has formulas to calculate the values for pctfree,
pctused, and other block-level storage parameters. But the core need here is to
reserve adequate space, based on the nature of data manipulation in the important
tables of your application. If the length of the table’s rows can potentially increase
by 25 percent, you may want to consider setting pctfree to 25. On the flip side,
setting a high pctfree for all tables globally will result in wasted disk space and force
the application to perform more I/O than required. This is because not all tables
require 25 percent of their allocated storage reserved for future update operations.
The default value for pctfree is 10 percent, and any tables that need more (based on
application write patterns on that table) need to be configured with a higher value.
On the flip side, you should reduce the default value of pctfree for those tables that
do not experience any updates that increase the length of rows. In practice, you
need to determine the amount of fragmentation in the objects in your database and
then make necessary adjustments.

Configuring initrans

Every Oracle data block has a header area which is used to store (among other
structures) a table directory, a row directory, and transaction slots. Transaction
slots are used by transactions to identify themselves within that block, before they
attempt to modify one or more rows within the block. These slots play a major role
in Oracle’s methodology that is used to implement row-level locking and to provide
read consistent views of data.

When a transaction needs to modify rows in a block, it first has to “sign in” to
an available transaction slot in the header area of the block. Then, based on the
slot-number that it utilized in the block, a lock byte is set for each row the
transaction modifies to indicate it is currently modifying those rows in that block.
So, if a transaction signs into transaction slot 2 in the block’s header, the value 2
will be set for the lock byte for each row it modifies (within the scope of that
transaction). This facilitates other queries or transactions that visit the same block to
determine whether the block is currently undergoing any changes and/or whether
the data the new transaction is trying to modify is currently locked by another
transaction. Transaction slots and the row-level lock byte are core components
that facilitate row-level locking and provide support for Oracle’s multiversion

Chapter 8: Database Tuning

read consistency model. We will discuss this in more detail in the chapter
“Contention Tuning.”

The block-level storage parameter initrans configures the initial number of
transaction slots (and thus the slot numbers) that are allocated for each block,
so transactions can avoid spending time and resources for dynamically allocating
transaction slots in the block’s header area at runtime. The default value for initrans
is 1 for tables and 2 for indexes, which means that if a second transaction should
attempt to modify data in the same block (via an insert, update, or delete operation),
and if the first transaction slot is not currently available, it will borrow 24 bytes from
pctfree to allocate the second transaction slot in the block’s header area. If this
occurs frequently, it can cause a couple of problems:

B The dynamic allocation of transaction slots slows down the performance of
the transactions, as it has to engage in block-level space management tasks,
instead of just modifying data in the block.

B If a large number of extra transaction slots are dynamically allocated for a
table, any tailored calculations for pctfree for that table may eventually
become invalid, as the 24 bytes per slot that are borrowed from pctfree are
never returned when the transaction completes.

As mentioned before, proactively configuring initrans to avoid block-level
contention whenever the Oracle database block size is increased is not only desired
but also required.

Configuring maxtrans

The parameter maxtrans controls the maximum level of transactional concurrency
within a block. This truly defines how many transactions can concurrently perform
changes within a block at the same time. The default value for maxtrans is 255, but
that does not mean that every block can support 255 transactions right away. The
required transaction slots need to be allocated before multiple transactions can
modify data within a block at the same time. The actual meaning of the default
value is that every block can support up to 255 transactions.

If you do not wish to pay the penalty of runtime dynamic transaction slot
allocation in your blocks and thus slow down your transaction, you may be better
served to configure initrans to what you think is the projected maximum number
of concurrent transactions within a block that your application will need. And to
provide this discussion with a dose of reality, it is relevant for you to know that the
probability of multiple transactions modifying data in a block is the highest on those
tables that experience a high number of concurrent insert operations. These are your
typical OLTP tables. For those tables, you should also be configuring multiple
freelists for the table. And that leads us to the next section.

201

202 Oracle Performance Tuning 101

Configuring freelists

A freelist is a set of free blocks in a table into which data can be inserted. Freelists are
maintained for tables by linking the block headers with pointers starting from the segment
header of the table. A free block does not necessarily imply that it is empty. A free block
indicates that there is room (space) in that block and it is available for insert operations.

When a block is full (contains data up to pctfree), it is taken off the freelist.
Subsequent delete operations on that block may cause the block utilization to fall below
pctused, and this causes the block to be put back at the head of the freelist. The default
setting for the number of freelists on a table is 1. This can cause a bottleneck for those
tables that need to support multiple concurrent insert operations from multiple transactions.
All transactions will need to get access to the first block on the freelist (head of the
freelist) to insert data into that block.

Although there is plenty of printed and electronic material out there that
recommends configuring freelists to the number of concurrent transactions, a value of
two times the number of CPUs has been observed to be adequate for most systems. On
systems that are configured with a large number of CPUs, this number may be lower.
By configuring multiple freelists, the free blocks on the freelists are segmented across the
number of freelists configured. This facilitates access to different first blocks of the multiple
freelists by multiple transactions. By configuring multiple freelists, you can ensure that
no single block will become a point of contention for multiple concurrent insert operations.

If you go overboard on this, there is a potential for artificially increasing the
high-water mark of the table. This is because Oracle inserts blocks into a freelist five
blocks at a time for each freelist. For example, if you have 40 freelists configured on
a table, an insertion process into the freelists causes 200 blocks to be added. This
means in a worst case scenario, the server process will have to read an additional
160 blocks (that may not contain data) while performing a full table scan. Also,
there is no guarantee that all of the data inserted by all of the users will be evenly
spread across all of the freelists. This is caused by the formula used by Oracle to
assign a specific freelist to a server process. Freelist contention needs to be dealt
with in a proactive fashion, by setting it to an appropriate value for those tables that
will experience multiple concurrent insert operations via multiple transactions.

NOTE

Although freelist contention is impossible to
investigate and unearth using the V§WAITSTAT
and V$SYSSTAT dynamic performance views,
drilling down on the buffer busy waits Oracle wait
event in V$SESSION_WAIT will provide you with
insight into the nature and cause of the event. In our
experience on many production systems, the buffer
busy waits wait event has acted like a thermometer
for freelist contention.

Chapter 8: Database Tuning 203

Designing, Configuring, and
Tuning Tablespaces

Tablespaces, when designed and implemented correctly, facilitate easy administration
and management. The added benefit is better application and data availability.
There is not much to performance tuning with tablespaces, with one exception.

In Oracle8i, tablespaces can be configured as locally managed tablespaces,
eliminating data dictionary management calls for allocating and deallocating space
for objects within that tablespace. This does eliminate a lot of recursive SQL during
space allocation operations. Further, locally managed tablespaces are never
coalesced by SMON.

Apart from locally managed tablespaces or if your database version is not Oracle8i,
the tuning efforts for tablespaces should include separation of objects that are accessed
concurrently into multiple tablespaces and the configuration of the data files for
those tablespaces on separate storage devices. It is also equally important to set
reasonable default storage parameters in your tablespaces.

The Four-Bucket Tablespace
Configuration Method

The process of configuring the default storage clause for tablespaces revolves
around proactively reducing tablespace-level fragmentation. Tablespace-level
fragmentation occurs when objects within the tablespace are sized differently and
thus cause fragmentation of free space within the tablespace. When the free space
within a tablespace is fragmented, it causes space allocation problems when new
extents are allocated. This is because an extent is a set of contiguous blocks, and
even though there might be more than 128MB of free space in a tablespace, the
extent allocation operation for 128MB fails with an ORA-1653 or ORA-1654,

due to lack of contiguous space.

Thus by reducing or eliminating tablespace-level fragmentation, the frequency
of object reorganization (to get back some wasted space) or addition of data files for
a tablespace (in response to the ORA-1653 or ORA-1654 errors) is greatly reduced.
As they say, the best way to cure fragmentation is to not have fragmentation. This is
only possible if tablespaces are configured with appropriate and meaningful default
storage clauses.

The four-bucket method is a process of physically grouping objects together,
based on their current and predicted size. For this effort, four buckets—namely small,
medium, large, and x-large—are used. So what do buckets have to do with tablespace
storage? Actually a lot, more than you can imagine. The better job you perform defining
the logical buckets for your objects, the less prone your database will become to
fragmentation and reorganization. Let us explain with a real-life example.

204 Oracle Performance Tuning 101

Assume that you are moving from one continent to another (or maybe even
within a country) and all of your belongings need to packed, shipped, and then
delivered at your new residence. You decide to rent/lease a shipping container
(one of those huge boxes that you see stacked up in a shipping yard) for the effort.
The packers arrive with four sets of boxes: small, medium, big, and one for mirrors
and other odd-shaped stuff. When they pack, you may wonder how it will all fit
into the shipping container. But the even sizes of the boxes will help pack everything
with room to spare. If the packers had used 20 different sizes of boxes, there would
be a mess. Sometimes the space inside a box may be “wasted” (filled with wrapping
paper). Remember, you paid for the whole shipping container and don’t have to
worry as long as the available space inside the shipping container is not exceeded.

The fundamental principle of the four-bucket method is that if all extents
within a tablespace are of the same size, by definition there will be virtually no
tablespace-level fragmentation. This is because all extents (free or used) will be of
the same size and Oracle can acquire the needed space for an object within that
tablespace without much ado. This principle also has an ancillary benefit of
eliminating the need to periodically coalesce the free space in a tablespace.

What is tablespace coalescing? Consider a restaurant where six DBAs want to
sit together during the lunch rush. These DBAs are not willing to sit at three other
available tables with two chairs each in different areas of the restaurant. The waiter
puts more tables from a nearby area together to accommodate them.

Also, we would rather wait for the next appearance of Haley’s comet than wait
for SMON to “automatically” coalesce the free space in a tablespace. Implementing
the four-bucket method, which allows for equally sized extents, facilitates a low-
maintenance, well-designed free space management scheme, without depending
on SMONs services. In the bigger scheme of things, you would not want SMON
to do the coalescing anyway.

Implementation Details of the Four-Bucket

Tablespace Configuration Method

The four-bucket method outlined below is a field-tested object grouping and storage
configuration method, deployed in early 1998 on a 700GB Oracle8 database. Another
good source of information on preventing fragmentation is the paper “How to Stop
Defragmenting and Start Living: The Definitive Word on Fragmentation,” by Bhaskar
Himatsingka and Juan Loaiza. This is available at http://metalink.oracle.com/cgi-bin/
cr/getfile_cr.cgi?239049.

Again, the core focus of the four-bucket method is to proactively manage space
fragmentation. It is understandable that there might be some disk space wastage with
this method, but it is not substantial and the benefits that this method brings make it
worthwhile. The following are the main steps in the four-bucket method:

I. Create four logical buckets for your objects: small, medium, large,
and x-large.

Chapter 8: Database Tuning 205

2. Group the objects in your database into these four buckets.

3. Define appropriate tablespace default storage parameters (initial and next)
for each bucket. Ensure initial and next are set to the same value. Set the
pctincrease tablespace default storage parameter to 0. Setting pctincrease
to 0 is very important, as this facilitates equal-sized extents. Again, don’t
worry about SMON not coalescing free space if the tablespace-level default
storage parameter pctincrease is set to 0, as you don’t need that feature.

4. Create the necessary tablespaces with the default storage clauses defined
in step 3.

5. Create the objects with the appropriate tablespace in the tablespace
clause without the storage clause for the objects to force them to take
the characteristics of the default storage clause of the tablespace where
you create them.

6. Make exceptions for those objects that are accessed concurrently and/or
are of significant size.

7. Repeat steps 1-6 for every distinct object type in your environment
(such as table, index, cluster).

Steps 1-3 require further explanation and the following subsections elucidate
the detail behind these steps.

Step |: Create the Buckets This is self-explanatory. Depending on your
environment you will need to create the appropriate number of buckets that are
meaningful. What is so special about the number four? Absolutely nothing. It was
just the most common number in our implementations. If your environment needs
five or more buckets, by all means go ahead and create the additional buckets.
Depending on your data and its size, you may want to adjust the number of buckets.

Step 2: Group the Objects This requires some analysis work, as you need to
define the size limits for each bucket. This might seem arduous, but all you need to
do is to collate your objects based on their current size and their projected growth
rates. A very simple query grouping the objects by ranges using the blocks or bytes
columns for a given Segment_Type in DBA_SEGMENTS will easily provide you with
the required information. This step is important as it facilitates collating objects in the
appropriate buckets. The following table is an example that defines the buckets and
their size limits. Adjust these numbers appropriately for your environment.

206 Oracle Performance Tuning 101

Bucket Size Limit

Small Less than 64MB

Medium Larger than small, but less than 256MB
Large Larger than medium, but less than 1024MB
X-Large Larger than 1024MB

Step 3: Defining the Tablespace’s Default Storage Parameters: Initial and

Next

After the buckets have been defined in step 2, we move to defining values

for the tablespace default storage clause parameters initial and next. But before we
do that, there are a few questions that need some environment-specific answers:

Is there a need to create multiple large/x-large tablespaces?

Answer: This is an important consideration, as you might have multiple
x-large objects that are accessed concurrently by your applications. For
example, your environment might have four 2GB tables that are accessed
concurrently and therefore might need to be separated across multiple
tablespaces to reduce or eliminate 1/O contention.

How many extents can each object have, given that your intention is to
store all objects of similar size in a tablespace?

Answer: This is not a trick question and we have already dealt with this in
the Myth & Folklore section. However, realize that the following issues are
relevant to objects that are comprised of many thousands of extents:

B Truncate table or drop table operations on these objects may take many
hours. This may have an impact on the duration of reorganization for this
object or the availability of this object to the application.

B The many thousands of extents create many thousands of entries in
the object space management tables in the data dictionary (such as
sys.uet$ and sys.fet$). This may impact the performance of recursive
SQL (SQL statements that run in the background when normal SQL
statements are executed) that perform object space management in
your environment.

What is the growth potential for these objects and will the tablespace have
adequate free space after all objects have been created? Which objects will
grow more than others?

Answer: This is an important consideration as it helps you determine how
to size your data files for your tablespaces. Although 2GB data files are
standard, using 4GB data files should be considered if the database is large
(several hundred gigabytes to terabytes) and if the operating system supports

Chapter 8: Database Tuning 207

large files. You will have to explicitly enable large file support in your
environment. Further, you need to know your data. If you are intimately
familiar with your application and your database, you will have no
problems in determining which objects will post more growth than others.

m Can additional data files be created in the future for these tablespaces and
spread across multiple independent physical devices?

Answer: Again, this goes back to the question of how you plan for your
data growth. This will also help determine appropriate extent sizes for your
tablespaces. This raises other questions such as, how much of the data will
you have to retain, and how much can be purged or archived? If you
initially configure your storage environment with adequate space and with
logical volumes supported by multiple drives (striped and/or mirrored), data
files can be added and they will support larger tablespaces.

The following table is an example that sizes the tablespace default storage
clause parameters initial and next. Adjust these numbers appropriately for your
environment.

Bucket Size for initial and next
Small 256K

Medium TMB

Large 4MB

X-Large 16MB

All right, it is time to put some numbers to the above example, to get a perspective
on how much space wastage actually occurs. Let us assume that we are working in
an environment with 20,000 objects. Further assume that 16,000 objects are assigned
the small bucket, 2,500 objects are assigned the medium bucket, 1,000 objects are
assigned the large bucket, and finally, 500 objects are assigned the x-large bucket.

If you assume the worst case scenario that the last extent allocated to each object is
almost empty and hence wasted, the breakdown of the amount of space wastage in
your environment is next.

208 Oracle Performance Tuning 101

Max. Wastage Number of Objects Total Wastage

Bucket per Object in the Bucket per Bucket
Small 256K 16,000 4.00GB
Medium TMB 2,500 2.44GB
Large 4MB 1,000 3.90GB
X-Large 16MB 500 7.81GB
Total 18.15GB

Okay, so with 20,000 objects the total worst case scenario disk wastage amounts
to 18.15GB. Even at a price of $100 per gigabyte (average street prices for high-
end disk storage for production systems), the total cost of the wastage is $1,815.

If you are supporting a large environment with the above characteristics, we are
really talking about small change here. In today’s world, you will waste one 18GB
drive. On the flip side, think about the benefit. It costs your organization $1,815 to
have a database that by design possesses a very low probability of suffering from
tablespace-level fragmentation. That in turn will translate into many more hours of
uptime, as there will be fewer object reorganizations and more of your time free to
do more important things in life. We are optimistic that any CIO or CTO who has
been around the block will gladly give you the nod to waste 18GB for this effort.

NOTE

Although there have been no quantifiable results
published on the optimum number of tablespaces
or data files a database should have, fundamental
knowledge about the Oracle architecture leads

us to conclude that as the number of tablespaces
increases, the amount of time it would take to
complete a checkpoint will also increase, as a result
of the many file headers that Oracle needs to update.
This is true for environments that have thousands

of data files supporting thousands of tablespaces.
Also, bear in mind that object-level fragmentation
in the form of partially filled blocks and row-level
fragmentation in the form of chained or migrated
rows will still require object reorganization, if
DB_BLOCK_SIZE and object-level storage
parameters are not proactively configured.

Chapter 8: Database Tuning

VIP

The benefits that the four-bucket tablespace
configuration method provides are relative to the
implementation. This means that when objects are
created, they should not contain any storage clause,
as it will undo all the good work done. However, in
Oracle8i, locally managed tablespaces provide an
additional layer of protection that prevents
tablespace fragmentation.

It is extremely important that if you are to reorganize
your objects after implementing the four-bucket
tablespace configuration method, you do it with the
compress=n attribute. This is because the goal of
your reorganization is not to reduce the number of
extents. It is to reduce or eliminate block-level and
row-level fragmentation. If you reorganized your
object with the compress attribute, you will
eventually undo the benefits that this method
provides, as you will start having objects with
different sized extents.

Configuring Temporary Tablespaces

In Oracle 7.3, the concept of pure temporary tablespaces was introduced and the
temporary clause was added to the create tablespace command. The introduction
of pure temporary tablespaces was significant on a couple of points. First and
foremost, it supported the ability to allow sorts, to directly write to disk. This was
done by configuring an initialization parameter SORT_DIRECT_WRITES (this is
obsolete in Oracle8i). When set to TRUE, every sort that was larger than SORT_
AREA_SIZE was directly written to the temporary tablespace. This meant that the
database buffer cache was not used for sort segments, but purely for data, index,
cluster, and rollback segments.

The second aspect was the behavior change of the temporary tablespace and
temporary segments in Oracle 7.3. This change alleviated the overhead and
performance bottleneck for environments that generated a lot of activity in the
temporary tablespace.

209

210 Oracle Performance Tuning 101

Prior to Oracle 7.3, the overhead was caused each time a server process
required temporary space (for sorts during summary operations, group by, order by,
joins, creation of indexes, and so on) larger than SORT_AREA_SIZE, as it allocated
(created) a temp segment in the temporary tablespace (as defined when the user was
created or altered later). When the sort operation completed, the temporary
segment was deallocated (dropped). This obviously was wasted effort as the next
process that required temporary space larger than SORT_AREA_SIZE had to allocate a
temp segment again, only to deallocate at the end of the sorting operation. The core
problem here was the lack of reuse of the temp segments across multiple sort operations.

In Oracle 7.3 with pure temporary tablespaces, the first process that required
temporary space larger than SORT_AREA_SIZE after the instance is started allocated
a temporary segment in the temporary tablespace and allocated as many extents to
this temporary segment as required. When that first process completed its sorting
operation, it left the temporary segment for use by another sort operation. Subsequent
processes increased the size of this temp segment (whose storage characteristics
were determined by the default storage clause in the create tablespace command
that created the TEMP tablespace).

The space within this temporary segment was maintained using a sort extent
pool algorithm (which still used the data dictionary). Thus there was one temporary
segment per temporary tablespace at any given time. This temporary segment got
deallocated by SMON on instance shutdown or startup (as the case may be,
depending on the type of shutdown—immediate or abort. In Oracle8, a new
dynamic performance view V$SORT_USAGE was added to provide information
about the usage characteristics of the temporary tablespaces.

NOTE

Depending on the number of users on your system,
you may want to consider creating multiple temporary
tablespaces, so that one temporary tablespace does not
become a single point of bottleneck.

Global Temporary Tables
and Temporary Tablespaces

While we are still on the subject of temporary tablespaces, we wanted to bring to
your attention the relationship between global temporary tables and temporary
tablespaces. In Oracle8i, a brand new functionality called global temporary tables
was introduced to hold data that is private to a session. Therefore, every session
can view and change only its data. The data in the global temporary table can be
configured to last for the duration of either a transaction or session (depending on
the on commit attribute of the global temporary table).

Chapter 8: Database Tuning

This new feature is supported by the create global temporary table command,
which creates the structure of a temporary table in a user’s schema. Subsequent
insert, update, and delete operations on that table by any other user sessions allow
the data to be private to a user’s session. The temporary table’s structure is created
once and the table (not the data) is globally available across multiple sessions.
The table-level attribute on commit facilitates control over whether the data needs
to be retained at the transaction level or the session level. One of the most incredible
features of global temporary tables is that they do not generate redo logs entries for
the data and index blocks during insert, update, and delete operations. But rollback
entries for the data and redo logs for the rollback entries are always generated.

The important point that needs to be brought up here is that the data that is
manipulated in the session exists in the PGA of the session within the session’s sort
areas. What this means is that if the amount of data that is manipulated exceeds the
session’s SORT_AREA_SIZE, the data is written to the user’s temporary tablespace.
It is important for you to take this into consideration for your temporary tablespace
usage, especially if the amount of data manipulated by the global temporary table
is large.

Configuring Locally Managed Tablespaces

Hmm, this sounds like the marketing slogan that some local restaurants use to
advertise their food and their service. No discussion on tablespaces in Oracle8i
would be complete without due mention of the new functionality of self-managing
tablespaces. The concept of self-management stems from the fact that locally
managed tablespaces do not involve the data dictionary for space management.
This is very significant, as management of space using the data dictionary poses
the overhead on the database in the form of recursive SQL calls that occur during
space management operations such as extent allocation and deallocation.

Depending on the number of objects and the frequency of extent allocation or
deallocation in the database, this can be a performance bottleneck. So, when you
talk about “tuning tablespaces,” Oracle8i provides yet another option for database
administrators. You must absolutely consider using locally managed tablespace for
your temporary tablespaces (if not other tablespaces), as it eliminates the use of the
data dictionary for space management of the temporary segment.

Locally managed tablespaces use a bitmap within the data file of the tablespace
to manage the used and free space within the tablespace. They also provide the
additional layer of fragmentation prevention by overriding the storage clause on
object creation. Here are some things about locally managed tablespaces that you
should be aware of:

B Extent allocation can be done either automatically or uniformly. You pick
which one is appropriate for your environment. To avoid tablespace-level
free space fragmentation in the long run, pick the uniform method. However,

211

212 Oracle Performance Tuning 101

please note that you cannot create a locally managed temporary tablespace
using the extent management local autoallocate clause, you must use extent
management local uniform size nnn or just extent management local.

B Automatic allocation implies that Oracle decides the extent sizes and the
sizes could be different across objects, but they are usually reasonable
multiples of the smallest extent. This is not relevant and cannot be used for
rollback segments or temporary tablespaces. With the extent management
local autoallocate clause in the create tablespace command, you tell Oracle
to take care of extent allocation for you. Oracle then uses 64K, TMB, 8MB,
and 64MB to size extents, based on the current size and growth pattern
of the object.

m Uniform allocation implies the extent sizes for all objects will be the same.
With the extent management local uniform 8m clause in the create tablespace
command, you tell Oracle to allocate every extent for every object within that
tablespace to 8MB, regardless of what is specified in the object’s storage
clause. However, the extent allocation is done in such a manner that Oracle
provides you with at least as much space as you requested via the storage
clause of the object (if you provided the storage clause on object creation).

B When creating temporary tablespaces that are locally managed, the syntax
to create them is not the same as regular tablespaces. In Oracle8i, the
syntax to create a temporary tablespace of type temporary which is locally
managed is outlined in the following code listing:

| Create Temporary Tablespace TEMP
Tempfile '/u01/oradata/prod/temp01.dbf' size 1024m
Extent Management Local Uniform Size 8M;

NOTE

The data file created in the above code example can
be viewed by querying the DBA_TEMP_FILES data
dictionary view instead of DBA_DATA_FILES. This
tempfile is a temporary data file and is different from
the data files that are created for tablespaces. Some
of the core differences between normal data files and
tempfiles is that tempfiles cannot be created in any
manner other than the create temporary tablespace
command, are ignored during media recovery, always
have the nologging attribute set, cannot be set to
read-only mode, and cannot be renamed. You

can also view the dynamic performance view
V$TEMPFILE for more information.

Chapter 8: Database Tuning

Database Partitioning for
Better Performance

The database partitioning functionality was first introduced in Oracle8 and the
underlying principle is “Divide and conquer.” This principle has served as

the foundation for various software engineering disciplines for many years.

In the database’s perspective, partitioning allows decomposition of table data and
index data. It facilitates (but does not guarantee) higher availability, performance,
manageability, and scalability of the database. The ability to partition data into
meaningful chunks is required for current databases. The databases of today
typically have data storage requirements that range from many hundreds of
gigabytes to multiple terabytes.

Functional Benefits of Partitioning

Partitioning has many benefits, especially in an Oracle database environment.
The key benefits are

m Size-up and scale-up
m Partial data availability

B Increased performance

Size-Up Your Database and Scale-Up Your Performance

If partitioning is implemented in an optimal fashion, it will virtually guarantee
performance scale-up, linear to a size-up of the database. This is extremely important,
as an increase in database size cannot justify a decrease in performance.

Partial Data Availability

Partitioning in Oracle8 facilitates segmentation of the data at a lower level of
granularity than was available in Oracle7. The key difference between an Oracle7
table and an Oracle8 partitioned table is that an Oracle? table is supported by one
data segment and an Oracle8 partitioned table is supported by as many data segments
as the number of partitions in the table. This also allows you to easily spread the
data over multiple storage devices in a controlled fashion, if you create the
partitions in separate tablespaces and create the data files for the tablespaces on
separate storage devices. The same correlation can be made between an Oracle7
index and an Oracle8 partitioned index. With each partition supported by an
independent segment, there is support for partial data availability, even if some
partitions of the table are unavailable due to media failures. This can be very easily
achieved if the partitions are stored in multiple tablespaces, and the tablespaces
themselves are supported by data files on independent storage devices.

213

214 Oracle Performance Tuning 101

Increased Performance
With the basic premise of “divide and conquer,” decomposing tables and indexes
into partitions can provide significant performance increases. This is primarily
attributed to the size of the segments being much smaller. In Oracle8, the new
ROWID assists in data elimination while processing a query by partition key, and
this can result in excellent query performance. Partitioned indexes also allow faster
scans, as the underlying B*-tree associated with a partition of an index is much
smaller than that of an index that is not partitioned. This results in less I/O performed
on the index segment, which in turn translates into better query performance.

The performance gains of partitioning can be summed up with three points:

B Partition-aware processing of tables and indexes by the cost-based
optimizer (it is better to potentially process many small segments on
an as-needed basis, rather than one large segment).

m Partition-level sorts for operations that require sorting (it is better to
sort many smaller segments on an as-needed basis, rather than one
large segment).

B The automatic “horizontal striping” achieved by partitioning supports
better parallel processing of data.

Key Considerations for Database Partitioning

Partitioning tables and indexes in an optimal fashion results in many benefits. The
following list of considerations will assist you in your effort to effectively partition
tables. These considerations have been collected from various Oracle8 partitioning
implementations. They should be used in addition to the recommendations in the
Oracle Tuning Manual:

B Partition key columns of the table should ideally characterize data that is:
m Time-bound or decomposable by some range.

m Predominantly used in the where clause of queries on the
partitioned table.

m While range partitioning will probably be the default choice for most
partitioning efforts, consider hash partitioning, where data cannot be
easily decomposed into ranges. Also, consider composite partitioning when
both range and hash partitioning are required.

B When implementing partitioning, creating one tablespace per partition
should be considered for better availability and management. This provides
the capability to turn on and off your data. This is useful for those sites that

Chapter 8: Database Tuning 215

need to hide their data after a certain period of time, and then bring it online
on demand. If the data in a partition is no longer required, it can be turned
off by issuing an alter tablespace x offline command. When the data in that
partition is required at a later date, it can be turned on by issuing an alter
tablespace x online command. Archiving and purging data by exporting it
off to tape for future retrieval is no longer a feasible or acceptable method.
This is due to the long duration of the import process. With current storage
prices, data should be retained on disk using the method outlined here.

The tables and indexes that are partitioned need to be analyzed and the
Oracle initialization parameter OPTIMIZER_MODE needs to be set to
CHOOSE. This is to ensure that the optimizer can perform partition
elimination (or pruning) while running queries. Partition data elimination

is only supported with the cost-based optimizer, and generation of statistics
on the said tables and indexes is a prerequisite.

The degree of parallelism on partitioned objects needs serious consideration
while designing database partitioning. This is covered in greater detail in
the chapter “Parallel Query Tuning.”

Create at least one local prefixed partitioned index. This will ensure
partition elimination, when the queries perform seeks using the partition
key of the table. For example, if the SALES table has Month_No as its
partition key, creating a local-prefixed partitioned index (leading column of
the index is Month_No) will significantly assist in query performance. The
optimizer will automatically perform partition elimination on queries that
use the Month_No in the where clause of the query.

Create bitmapped local partitioned indexes on predominantly read-only
tables. This has a two-faceted performance benefit. First, the size of the
index will be significantly smaller (which will result in fewer index block
reads). Next, for low-cardinality column data access, the bitmap-to-ROWID
conversion process to access data will be significantly faster than the traditional
method used for data access in regular indexes. Please use the necessary
application and environment prudence when implementing bitmapped
indexes. They need to be implemented only where appropriate, such as with
low-cardinality columns that are not frequently updated. (This restriction is
for Oracle 8.0 or lower, implying higher cardinality columns for bitmapped
indexes are supported in Oracle8i).

Create local partitioned indexes whenever possible, regardless of whether
they are prefixed or non-prefixed. This is to ensure equi-partitioning of
values based on the partition key of the table. You may ask, what in the
world is equi-partitioning? The answer is pretty simple—it is the process
of equally dividing the data across the number of partitions in the table

216 Oracle Performance Tuning 101

or index. Here are some reasons why you might want to consider using
local partitioned indexes:

B A local index is partitioned on the partition key of the table
(since the index partitions will be equi-partitioned with respect
to table partitions).

m Equi-partitioning of indexes facilitates equitable distribution of
the data values across multiple index partitions.

B Local indexes provide better availability, as only the relevant partitions
of local indexes are made unusable on certain table partition-maintenance
operations (such as dropping a partition, truncating a partition, and so on).

m In data warehouses, the use of nonprefixed indexes is preferred, even if
the partition key of the table is not part of the index definition. This is
because most queries are characterized by large range-scans, reading
significant amounts of data from the table. In those cases, nonprefixed
indexes will provide better throughput, especially when used with the
parallel clause.

B Minimize the use of global indexes when ever possible. Global indexes are
partitioned on the partition key of the said global index and do not guarantee
equi-partitioning of the index values. Minimizing their use will ensure that
certain table partition-maintenance operations will not affect the entire
index. This factor is key for partial data/index availability. Further:

m Global partitioned indexes are most useful in supporting unique
constraints on non-partition-key columns.

m If the where clause predicate of certain queries has columns other
than the partition key, global indexes are essential, as they will
prevent full table scans.

B Make indexes unusable prior to performing any bulk DML operations on a
partitioned table. This has two benefits. First, it speeds up the time it takes
to execute the bulk DML, and next, it speeds up subsequent index recreation
(after the bulk DML). For obvious reasons (such as better performance and
better availability of the index), it is better to use the alter index index_
name rebuild command for index rebuilds, rather than dropping indexes
and then creating them from scratch.

Chapter 8: Database Tuning 217

Initialization Parameters to Configure

This chapter has primarily focused on database tuning and its related components.
However, there were references to various Oracle initialization parameters in the
preceding sections. The following table summarizes them and adds a few others that

are relevant.

Oracle Initialization Parameter

DB_BLOCK_SIZE

DB_FILE_MULTIBLOCK_READ_COUNT

OPTIMIZER_MODE

SORT_AREA_SIZE

SORT_AREA_RETAINED_SIZE

SORT_DIRECT_WRITES

Meaning/Relevance

This parameter defines the size of a
block in the database. The Oracle
database block size is the lowest
granularity of storage in an Oracle
environment.

This parameter defines the 1/O
chunk-size used when Oracle
issues a read system call at the
OS. It is relevant for full table
scans and index range scans.

This parameter defines and controls
the type of optimization that is
applied to SQL statements.

This parameter defines the amount
of memory allocated to the sort
phase of a sort.

This parameter defines the amount
of memory that is utilized during
the fetch phase of a sort. Your PGA
always consumes at least this much
amount of memory.

This parameter directs the server
process to write any sort data that
is larger than SORT_AREA_SIZE
directly to the temporary
tablespace. This parameter was
introduced in Oracle 7.3 with

a default value of TRUE and is
obsolete in Oracle8i.

218 Oracle Performance Tuning 101

Oracle Initialization Parameter Meaning/Relevance

SORT_MULTIBLOCK_READ_COUNT This parameter was introduced in
Oracle8i and replaces all past
sort-related parameters. It is usually
recommended to set this parameter
to a value of either 1 or 2.

Tuning Issues on Hybrid Databases

A hybrid database (or system) is one that displays the characteristics and behaves
like an online transaction processing (OLTP) system during certain times of the day
and like a decision support system (DSS) during other times. To take stock of reality,
there are very few OLTP systems in our world today when you look at it from a pure
transactional perspective. And let’s face it, the whole idea of getting data into a
database is to query it and run reports that allow us to convert data into information.
The online and batch queries do just that. The primary goal while tuning hybrid
systems is to achieve a balance between the needs of the transactional and reporting
aspects of the system. This can make configuration and tuning that much more
challenging. This section is geared toward outlining some of the key issues and
challenges in managing hybrid systems.

For example, earlier in the chapter we recommended that you pick the right
Oracle database block size for your system by choosing relatively smaller block
sizes for OLTP systems versus larger block sizes for DSS systems. When faced with
a hybrid system, it is normal to find yourself in a dilemma. Which one do you pick,
8K or 16K? Remember another piece of advice from that section: “When in doubt,
go with the larger block size.”

The rationale behind that advice was based on the fact that you could always
proactively configure your block-level storage parameters to avoid and manage
contention that results from the larger size. A larger database block size increases
the amount of data stored in a block, which causes fewer read requests by Oracle
to the operating system. And larger database block sizes naturally shrink the size
and height of the indexes in your system.

The OLTP aspect of the system provides its share of challenges. Some of the
challenges are

B Optimal rollback segment configuration
m Effective management of block-level contention
m Management of locks

m Number of concurrent users on the database

m Number of concurrent connections on the database

Chapter 8: Database Tuning 219

m Service level agreements, including mean time to recover the database
B Frequency and management of backups

B Frequency of the job to analyze your tables and indexes

B High-availability requirements

m Data management, including data archiving and purging

The DSS aspect has its own set of unique issues. They include (among others):

Manipulation and massaging of data
B Management of complex reporting requirements

m Indexing strategies

Segregation of the read-only objects from the read/write objects

B Memory sorts and temporary tablespace configuration

The real challenge on your hands is to balance the needs of the two aspects, so
that a configuration or tuning decision that helps one aspect does not hurt the other.
Remember the importance of both aspects. They will need your attention in
different ways, and you will have to constantly perform an impact analysis for both
aspects before implementing any tuning solutions or configuration changes. Like a
balancing scale, where putting weight on one side raises the other, you will need to
monitor and maintain the weights (tuning efforts) for each of these aspects so that
your database remains in balance and every user gets the best performance possible.

NOTE

There is one piece of friendly technical advice we
would like to provide regarding managing hybrid
systems. Even if your environment has independent
windows for the DSS aspect and the OLTP aspect,
and even if you know that these windows will never
overlap one another, please assume at least for the
sake of system-sizing (memory, CPU, and disk) that
they will. We share this with you from the bottom of
our hearts and our combined production experience.
There is absolutely no room for the word “never”
in the world you live in. As 007 once said, “Never
say never again!”

220 Oracle Performance Tuning 101

Tuning Issues on Data
Warehouse Databases

These days, there is a proliferation of data warehouses left and right in every
business organization. The need to collect, analyze, dissect, and refine data is
critical to an organization more than ever. But the single most challenging aspect of
current data warehouses is the sheer size and volume of the data store. Gone are the
days where a T00GB database was considered a very large database (VLDB). The
VLDBs of today are sized at many hundreds of gigabytes to many terabytes. And
contrary to popular belief, OLTP or hybrid systems can be VLDBs in their own right,
just by virtue of their size. The following are a set of common performance issues
that are faced when dealing with data warehouses:

B Process flow between various entities in the system

m Data model design and implementation

B Schema design and configuration

m |/O configuration (this will be covered in great detail in the
chapter “I/O Tuning”)

m Application design and deployment

B Data management with database partitioning for very large objects
m Extraction, transportation, and loading of data

m Analysis of data

B Management of summarized data

m Sampling of data

m Parallel execution of voluminous operations

m Support for data availability on partial failures

In a Nutshell

This chapter was about database tuning, and it dealt with proactively configuring
and managing various storage-related components in the database. It focused on the
changes that have occurred in various environments that affect Oracle database
configuration. The configuration of the Oracle database block size is one of the

Chapter 8: Database Tuning 221

most important steps that you as a DBA will perform. It needs to be done right the
first time, every time. When in doubt, go with a bigger database block size, but
proactively control block-level contention.

To manage block-level fragmentation and to better use the available space that
you allocate to an object, block-level storage parameters such as pctfree and pctused
need configuration. Block-level concurrency support for multiple transactions needs to
be done by configuring initrans and maxtrans for the relevant tables that will have
to support concurrent data manipulation. If a table is heavily inserted into, configuring
adequate freelists is essential to manage contention. Every step needs to be taken
to reduce and eliminate tablespace-level fragmentation. Fragmentation can be
managed by implementing the “four-bucket tablespace configuration” method. It
is perfectly okay to waste some disk space and keep all extent sizes in a tablespace
uniform, rather than deal with free space fragmentation, which can become a
production problem.

If your database version is Oracle8i, locally managed tablespaces need to be
considered and implemented. This provides significant increases in performance and
ease of maintenance. Partitioning is a key feature that was introduced in Oracle8,
and it provides the capability to decompose an object into smaller segments, and
thus provide better performance while dealing with these smaller segments.

We hope you will spend your precious days performing tasks that are of value
to your system and your business, rather than trying to get every object in your
environment to fit into one extent. It is time for us to put an end to the “one extent
compulsion” and accept the fact that an object can have many hundred extents
and still perform at peak levels, so long as it does not suffer from severe block-level
or row-level fragmentation and the extent sizing is done keeping in mind DB_ FILE_
MULTIBLOCK_READ_COUNT and DB_BLOCK_SIZE. And we hope that we have
convinced you that compressing an object into one extent in no way makes performance
better. It just gives fragmentation a new lease on life, which will rear its ugly head
when you least expect it.

The complexities of managing and tuning hybrid environments and current-day
data warehouses are very demanding. Although justice cannot be done to these
topics without writing volumes on it, our goal was to touch the high-level issues,
which will at least get you to proactively think about these important issues.

1002
1l

ORIGINAL * AUTHENTIC

Oracle Press

ONLY FROM OSBORNE

Expert authors, cutting-edge coverage, the latest
releases...find it all at OraclePressBooks.com

Oracle Press

[T e P

From a full selection of titles focusing
on Oracle’s core database products to
our in-depth coverage of emerging
applications, Web development tools,
and e-Business initiatives, Oracle Press
continues to provide essential resources
for every Oracle professional. For a
complete list of Oracle Press titles—
from the exclusive publishers of
Oracle Press books—and other valuable
resources, go to

OraclePressBooks.com.

Get the most complete information on
Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

i

OsBORNE
ORACLE PRESS™—EXCLUSIVELY FROM McGRAW-HILL/OSBORNE www.osborne.com

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

