-
il
. s
."I.
4
o
-

r et A
g i
7
p—— ’ - = .I-"L

7 -"'F
l
i ‘.__ .‘ 4 . __‘-ﬂ' e
.-'

-~ Application
uning—Issues that
~_~Concern,a DBA

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.
Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this

work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
this Work, and is not responsible for any errors or omissions.

"

-

58 Oracle Performance Tuning 101

A& Myth & Folklore
Index scans are always the preferred method of executing a SQL statement, as it will
perform much less I/O than a full table scan, and thus execute better.

Fact

Time and time again, real-life applications have proven that a SQL statement loses
the efficiency of using an index when the number of blocks that are visited by it
exceeds the number of blocks from a full table scan. A couple of exceptions to the
above rule are columns in tables that contain redundant and low-cardinality data
and are supported by bitmapped indexes or fast-full index scans. The point we are
trying to make here is that the overhead related to reading the root, intermediate,
and leaf blocks of an index, plus the data block reads for each row returned by the
query, should not outweigh the cost of a full table scan. If an index scan performs
more /O than a full table scan, it will actually hurt performance, rather than help.
Ironically, if the rows that are being retrieved are splattered across numerous blocks
of the table and are not clustered or located next to each other, the use of an index
in the query’s execution plan will result in the query not performing at optimal
levels (even if the number of rows processed or retrieved is less than the mythical
level of 15 percent), due to the excessive amount of I/O generated by it. This excess
I/O generation can potentially strain the storage subsystem. It thus makes performing
a full table scan a much more viable option. If the table in question is of significant
size (definition of significant is left to you), you should even consider a parallel scan
on the table.

= backwards—even though you have come to us for tuning therapy, we
do all the talking and you do all the listening. We promise, in the end,
you will feel much better, and you will go home feeling much lighter, so much that
your loved ones will wonder what has come over you. If you don't, try reading this
chapter again. Your exit condition for this chapter should be (REPEAT UNTIL
Happiness = TRUE).

VIP

Did you know? Eighty percent of the performance
problems on your system actually have nothing to
do with you or your Oracle Database configuration.

§7

&

Chapter 3: Application Tuning—Issues that Concern a DBA

Well, given that a significant portion of your performance problems is related to
SQL, it is important for us to talk to you about SQL and application tuning issues.
When we set out to write this book, our goal was to focus on the database tuning
aspects (the remaining 20 percent we plan to cover in good detail), but given
that 80 percent of the problems that you inherit have nothing to do with the
database configuration, we thought you might need some help.

In most environments, the DBA ends up inheriting someone else’s incredible
programming skills or 1/O subsystem design and has to either live with it or go find
another job. But the bad news is that this knack of inheriting someone else’s work
does not just go away. The more years you spend working with this technical beast
we call Oracle, the higher your propensity to attract with uncanny frequency those
works of art SQL programs. We have a name for it: SQL from the Dark Side.

To make things even more complicated, someone or the other keeps inflating
your ego with terms like expert, guru, or flippant quotes like, “You da man,” “Oh,
she walks on water,” “Could you please wave your DBA magic wand?” “She is the
goddess,” (now, where have | heard that one before?), and so on. Don’t let that stuff
go to your head, as the upper part of your body will start defying gravity. Please do
not put Sir Isaac Newton and his three laws of motion to shame!

On the bright side, it is only natural for people to frequently beseech you to
undertake the work of a SQL janitor. Yes, in very simple terms you will have to
clean up the...well, you know what we mean! And the more you clean up, the
better you will get at it, and the more stuff you will be given. Your life might seem
like a PL/SQL loop with no exit condition in sight.

If you are a novice DBA, it is absolutely normal to experience body shivers,
cold sweats, and nightmares if you go to bed thinking of those SQL statements that
need tuning. Some of us get technical nightmares, and the concept of rapid eye
movement sleep becomes a thing of the past. Yes, believe it, you are the chosen
one to fix all the performance issues that arise in your environment, even though
you had nothing to do with it. Over the years, you will also have your own
armory of horror stories to tell: SQL from the Crypt. Now that’s a fascinating book
to write. Maybe there is even hope for a television series. Okay, we will be right
back, need to talk to our acquisitions editor!

A day after speaking with the acquisitions editor, SQL tuning is of paramount
importance to your system’s health and performance. No amount of database
tuning is going to provide you with the quantum of benefit that an optimal SQL
statement will. We are literally talking about the potential for many orders of
magnitude of performance increase here. No book on database tuning (including
ours) or any database-tuning expert (regardless of how many years they have tuned
Oracle databases) can provide that kind of performance increase. Remember

59

60 Oracle Performance Tuning 101

that 80 percent of your Oracle system performance problems arise from badly
designed and badly implemented SQL statements. Does that make sense?

Now it’s time to set some expectations. When we talk about application tuning,
we are not talking about every minute detail of SQL programming, we are talking
about the issues most DBAs face when confronted by an application problem. But if
you are in need of the minutest details of SQL programming, allow us to recommend
three books that will provide almost everything you need. Please realize that we are
doing this in an effort to avoid reinventing the wheel and to save some trees.

The books we recommend for application tuning (in no specific order of
preference) are Advanced Oracle Tuning and Administration, by Eyal Aronoff, Kevin
Loney, and Noorali Sonawalla, Oracle SQL High Performance Tuning, by Guy
Harrison, and Oracle Performance Tuning, by Peter Corrigan and Mark Gurry.

Our primary goal for this chapter is to make you aware of the issues that we
know are significant and provide you with tips about facilitating optimal SQL. More
importantly, we want to bring to light what not to do. Knowing your enemy is the
first step toward winning a battle. And that is exactly our focus: to tell you more
about the number one performance enemy: bad SQL. Once you know your enemy
in your own environment, you will be more than able to build your own battle plan.
Get ready, action stations!

NOTE

Sometimes bad SQL is the result of a bad data
model. In that case, you may have to address the
data model issues first.

The Story of the Oracle Optimizer

Before talking about SQL, it is appropriate to talk about how SQL statements get
optimized, and we intend to share that information with you by telling you a story.
This story of the Oracle optimizer will provide you insight into your application and
SQL tuning efforts.

The Older Sibling: The Rule-Based Optimizer

Long ago in Oracle-land, prior to version 7.0, there were no flexible options for SQL
statement optimization within the Oracle optimizer. The optimizer just optimized SQL
statements using a set of fixed internal rules. It was that simple. Now, we really don’t
need to know what those rules were, but you will appreciate some of the optimizer’s
limitations, if you know what they are and how they worked. Here are four sample rules:

m Rule #1 Single row by ROWID. For applications that utilize the actual
ROWID numbers in the where clause. Oh, did they pay dearly when their
table(s) had to be reorganized. Or even worse, when their database was
migrated to Oracle8 and the ROWID format changed. Ouch...that hurt!

Chapter 3: Application Tuning—Issues that Concern a DBA 6 |

B Rule #8 Access by a composite index (an index with more than
one column).

m Rule #9 Access by a single-column index.

m Rule #15 Full table scan.

So now you know how it acquired the name “rule-based optimizer.” Basically,
when the optimizer had a SQL statement to process, it started at the bottom of the
list—say, Rule #15—and worked its way up. If it found an index (based on where
clause conditions), it opted to use it as an index (depending on which kind) qualified
for either Rule #8 or #9. Given that Rule #8 or Rule #9 had a higher precedence than
Rule #15 (because it was a rule with a smaller number), it executed the query with 8
or 9, assuming that there were no further rules that qualified potentially to provide
the optimizer with better precedence to run the SQL. The basic assumption that the
rule-based optimizer made was that as a SQL statement qualified for a given rule
and as the rule number got smaller, the execution plan allegedly got better. Which
it did...most of the time!

Well, that was exactly where the rule-based optimizer started to falter. It could
not determine the “least expensive method,” as it did not utilize any kind of cost
function or statistics. It optimized SQL statements, for example, to use an index or to
perform a full table scan, based on the existence of one or more indexes and the
bunch of rules. The optimizer was thus reduced to an engine that blindly (yet many
times quickly) implemented a set of rules, whether or not it made sense to implement
a given rule. The lack of flexibility and adaptability are quite possibly the biggest
disadvantages of the rule-based optimizer. It is important to note that the cost-based
optimizer was initially designed for online transaction processing (OLTP) databases.
Data warehouses were nonexistent in the early days of the rule-based optimizer.

What Was the Impact of the Rule-Based
Optimizer’s Inflexibility?

The only way to work around the optimizer’s inflexibility was to deliberately modify
the application and do some not-so-smart things, such as wrap a function around
the leading column of an index column like upper(Last_Name), round(price), and so
on, in the where clause of the SQL statement to force a full table scan. The following
queries will illustrate the inflexibility we are talking about:

(=« 7 select Last_Name, Hire_Date, Salary
from EMP
where Mgr_Id = 123;

This query, by default, was executed using an index (because there existed an index
called Mgr_Id_ldx on the Mgr_Id column). Over time, if a significant number of
employees in the EMP table reported to 123, and if the index scan did not provide

62 Oracle Performance Tuning 101

the needed performance, the query had to be rewritten as shown below to prevent
it from using the Mgr_Id_Idx index. This is because an index usually fails to serve its
purpose when the number of blocks visited to execute the query exceeds the
number of blocks from a full table scan.

(=« 7 select Last_Name, Hire_Date, Salary
from EMP
where round(Mgr_Id) = 123;

Like this example, many SQL statements had to be recoded, and in many
cases, this resulted in multiple versions of the same SQL statement, with minor
modifications, maintained within the same application. This was because one
version of the SQL statement had the function wrapped around the indexed column
and another version of the same SQL statement was without the wrap. Many of us
had to take such not-so-smart measures to cater to the varying performance needs
of the same SQL statement. Ultimately, this often resulted in poor utilization of the
shared pool area memory structure (which we will discuss in good detail in the
chapter “Instance Tuning—The Shared Pool Area”), as multiple versions of similar
SQL statements had to be stored and maintained in memory, even though they
functionally performed the same operation.

The Rule-Based Optimizer and the
C Compiler: An Expert’s View

We added this section to this chapter because we felt a significant message needed
to be relayed, and the discussion of application tuning would not be complete
without it. This was a direct result of an interesting discussion with one of the
industry’s experts in Oracle Performance Tuning, Cary Millsap. The perspective that
Cary provides on this topic is pretty amazing. He says that the rule-based optimizer
was formerly an operator precedence list, not a list of how fast Oracle’s execution
plans are. He adds that when he figured out that the rule-based optimizer precedence
list was exactly like the operator precedence list in the book on C language by
Kernighan and Ritchie, he crossed a major threshold of understanding about SQL
optimization. An analogy he shared with us was that “exponentiation is not always
faster or better than multiplication, although it has a higher precedence in most
computer languages.” Amazing stuff indeed, and we could not agree more.

In particular, there are three rules of precedence in which this thinking makes a
huge difference:

B Rule #8 Composite index, all keys listed in the where clause (the entire key).

m Rule #9 AND-EQUALS merge (single index or index merge).

Chapter 3: Application Tuning—Issues that Concern a DBA 63

m Rule #10 Composite index, prefix of keys listed in where clause (bounded
range search on indexed columns, including the key prefix).

Rule #9 is never faster than Rule #10, but it is always executed at higher
precedence. This hurts customers who use the General Ledger module of Oracle
Apps, and who attempt to optimize the following query by appending the primary
key to the composite index:

(=« 7 select Code_Combination_lId
from GL_CODE_COMBINATIONS
where Segmentl=:vl
and Segment2=:v2
and Segment3=:v3
and Segment4=:v4
and Segment5=:v5;

If you have an index that is structured in the following manner, the rule-based
optimizer will use it to execute this above query: glcc_n1 (Segment3, Segment1,
Segment2, Segment4, Segment5) /* Good */. This index will cause execution to
take place with less than a half dozen logical 1/Os, and the result set will appear
instantaneous on most systems.

However, if you append the Code_Combination_ld to this index (shown
below), in an attempt to cleverly eliminate data block access, you’ll motivate
an AND-EQUALS merge (Rule #9), which will take several seconds even on
fast systems: glcc_n1 (Segment3, Segment1, Segment2, Segment4, Segment5,
Code_Combination_Id) /* Bad */. This is a classic scenario where the rule number
is better (lower rule number but higher order of precedence, Rule #9), but the
performance would have been better with a rule number (with a higher rule
number but lower order of precedence, Rule #10).

The Newborn: The Cost-Based Optimizer

In Oracle 7.0, the cost-based optimizer was born, and there was joy in Oracle-land.
This was way back in the early 1990s. Good grief, we are starting to sound like
grumpy old men. Anyway, the fundamental rationale behind the cost-based optimizer
was to allow more options in building execution plans for SQL statements. It was
supposed to infuse badly needed flexibility into our world of optimization. This was
because the rule-based optimizer ran its life with a bunch of rules, regardless of
whether it made sense to use a rule or not.

With the advent of the new optimizer, there was magic in the air. People rejoiced
and made merry to celebrate its birth, as it was supposed to literally change the face
of Oracle SQL optimization and eventually replace its older sibling—the rule-based

64 Oracle Performance Tuning 101

optimizer, which had served us well for many years. But the joy of the newborn was
short-lived. As much as people loved the cost-based optimizer conceptually, it was
still a baby. In many cases it did not do a good job of optimizing SQL. As a result,
people went right back to the older sibling, who was much more reliable. As weird as
it sounds, the cost-based optimizer, for some of us, was a precursor to parenthood.

The Maturing Process of the
Cost-Based Optimizer

The biggest drawback of the cost-based optimizer (in the early days of Oracle
versions 7.0-7.2) was that it was naive. It assumed that the world was a perfect
place to live in, and it truly believed in fairy tales such as even distribution of data.
What did that mean? We'll give you an example. Assume a table named Car, having
100,000 rows in it and having an index on the Color column. As part of routine
administration, statistics need to be calculated and stored in the data dictionary of
the database so the cost-based optimizer can use the statistics when needed to help
in the determination of the cost of a given optimization plan.

Let’s say after one such collection of statistics (which took many hours if the
environment contained large tables), the data dictionary was populated to reflect
100 distinct values for the index on Color. At runtime, when the optimizer was
building a plan for a SQL statement on that table, it would wrongfully deduce that
each color in that table occurred (100,000/100) = 1,000 times. If you have been
around real production systems, you know that such assumptions could leave you
in the dust. Do you see what we mean by lack of maturity?

Golden Oldie: The Rule-Based Optimizer

The many attempts made to speed up the education process of the cost-based
optimizer were in vain. It had to take its time to learn and grow. As a result, many
of us took deliberate steps to sidestep the cost-based optimizer, but promised to
come back and look it up when it had grown up. This was because the older
sibling performed and dealt with real-life systems with much better reliability

and predictability. But the fact remained that the older sibling, albeit reliable and
predictable, was inflexible...funny how we acquire that characteristic as we age!

The Return of the Cost-Based Optimizer

They say that time is the best teacher. That surely was true in the case of the cost-
based optimizer, as it took a good seven years before it could deal with the real
world. The growing process was assisted and in some cases facilitated by the adoption
of Rdb into the Oracle family in the 1996-1997 time frame. Given that the Rdb
Optimizer had seen many years of research and work, it had aged and mellowed
graciously, as smooth as a Cabernet from the Napa Valley. The experience, wisdom,

Chapter 3: Application Tuning—Issues that Concern a DBA 65

and maturity that the Rdb Optimizer brought to the Oracle cost-based optimizer
was incredible, so much so that, in Oracle 7.3, the cost-based optimizer turned a
new leaf. It actually felt like it had actually turned a new tree (if you would allow
us to use that idiom). It seemed as though the optimizer had been transformed
overnight into an incredible powerhouse of optimization functions. It was quite
a metamorphosis.

The Cost-Based Optimizer Grows Up

Beginning in Oracle 7.3, the ability to generate and store column-level histograms
(statistical functions that allow sampling and storing data distribution) was supported.
This made a huge difference to the cost-based optimizer, as it was accurately able to
determine the distribution of data for a given column, based on the histograms that
were generated. It had learned that even distribution of data was indeed a fairy tale.

s NOTE
,,r"f . The use of histograms is relevant only for SQL

- statements that utilize hard-coded values and not

bind variables. There is a new twist to this feature

in Oracle 8.1.6, with the introduction and forcing
of CURSOR_SHARING. Histograms are not used
when CURSOR_SHARING is set to FORCE in
Oracle8i.

Since then, the cost-based optimizer has never looked back. With every new
release, more functionality has been added to it to recognize partitioning, parallel
DML, index organized tables, and other new features. The waiting was really over.
The cost-based optimizer was ready for the real world. According to undisclosed
sources, the rule-based optimizer could be retired sometime in the near future.
(We know you have been hearing this for a while, but that day may be nearing.)

Initialization Parameter Settings
for the Oracle Optimizer

OPTIMIZER_MODE is the parameter that configures the Oracle instance for either
rule-based or cost-based optimization. The default value (when not explicitly

set in the init.ora) of this parameter is CHOOSE, and that is the required setting
for cost-based optimization. The value setting of RULE is meant for rule-based
optimization. There are two other values that it supports—ALL_ROWS and
FIRST_ROWS—and we strongly recommend that you do not set those values in
your initialization file, as they may not be appropriate for all of your applications.

66 Oracle Performance Tuning 101

If you need the FIRST_ROWS or ALL_ROWS optimization functionality, you have
the option of setting OPTIMIZER_MODE either at the session level or incorporating
a /*+ hint */ at the statement level. First, let us show you how to change the
OPTIMIZER_MODE value at the session level:

{5 = | SQL*Plus: Release 8.1.5.0.0 - Production on Fri Nov 3 16:04:31 2000
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connected to:
Oracle8i Enterprise Edition Release 8.1.5.0.0 — Production
With the Partitioning and Java options
PL/SQL Release 8.1.5.0.0 — Production
SQL> alter session set OPTIMIZER_MODE=FIRST_ROWS /* Modifying OPTIMIZER_MODE just
for this session */;
Session altered.

What on Earth Is a Hint?

Well, it is pretty easy to explain a hint. Remember back when you were a kid and
your birthday was coming and you really wanted that new bike or those new roller
skates (we did not have cool rollerblades in those days)? You didn’t come right out
and ask your parents for them (well, those of you who were bolder may have).
Instead, you started saying things like, “Gee, my skates are starting to hurt my feet,” or
“Mom, my knees are bent when [sit on my bike and my feet are on the ground.” You
were dropping some pretty strong hints. And, if your parents were like Oracle, they
listened to what you wanted, and most of the time they made sure that it happened.

Believe it or not, that is exactly what the Oracle optimizer does, when you embed
a /*+ hint */ in the SQL statement. Please observe that a hint looks very similar to a
comment, with the exception of the + after the /*. It is important that you place the
hint in the right location of a SQL statement for the Optimizer to recognize it. It
should ideally be placed before the reference of the first column in the SQL statement.

The following example illustrates how to incorporate a statement-level hint.
Please notice the location of the /*+ hint */ in the SQL statement:

1 SQL*Plus: Release 8.1.5.0.0 - Production on Fri Nov 3 16:04:31 2000
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connected to:
Oracle8i Enterprise Edition Release 8.1.5.0.0 — Production
With the Partitioning and Java options
PL/SQL Release 8.1.5.0.0 — Production
select /*+ FIRST_ROWS */ Last_Name, Hire_Date, Salary
from EMP
where Mgr_id = 123;

Chapter 3: Application Tuning—Issues that Concern a DBA 67

NOTE

If you specify an invalid hint, the optimizer will
ignore it, just like your parents did when you
asked for something totally unreasonable (invalid).
The optimizer will not notify you that your hint

is incorrect, because an invalid hint is treated

like a comment. It is your responsibility as the
performance caretaker of your system to check the
execution plan of your SQL statement and verify
whether the hint was recognized and processed.

Many hints can be specified to control the execution plan the Oracle optimizer
builds for SQL statements. A full list of the hints and their explanation can be found
in the Oracle8i Tuning section of the Oracle documentation (mostly electronic these
days) supplied with your Oracle software. If you are not running on Oracle8i, please
refer to the appropriate Tuning section of your Oracle database version.

Which Optimizer Are You Running?

If the OPTIMIZER_MODE parameter is set to CHOOSE, the existence of statistics in
the dictionary is what determines whether the cost-based optimizer will be used. In
the absence of statistics for all objects in a SQL statement, rule-based optimization
will be performed for that SQL statement. If statistics are generated, true cost-based
optimization is possible, unless the OPTIMIZER_MODE setting is reset at the session
level or is overridden by a statement-level /*+ hint */.

NOTE

If the table has a degree of parallelism on it, the
cost-based optimizer will be used even if there
are no statistics.

Be careful! It is important that statistics be generated for all objects in all of the
application schemas (unless your third-party application does not support the
cost-based optimizer). This is because the presence of partial statistics—say, for a
select statement—could cause the server process servicing the SQL statement to
estimate statistics on the objects without statistics only for the execution of that SQL
statement. Such dynamic runtime sampling of statistics is not permanently stored in

68

Oracle Performance Tuning 101

the data dictionary, and hence is repeated for every run of the same query. This can
and will cause significant performance degradation. If your third-party application
does not support cost-based optimization (that is, your application vendor has
rule-based optimization and you really need to question their long-term vision),
ensure that all statistics in your application’s schema are deleted. It is easy to
determine that by querying the num_rows column in the USER_TABLES view.

If you see values for any tables, that implies there are statistics calculated for those
tables. If partial statistics are present, the performance you will observe will be very
unpredictable. This may annoy users more than consistently poor performance

(the user may not be sure whether he can take a coffee break or just peek at his
calendar while a given transaction is running). You definitely run the risk of runtime
statistics calculation, which will significantly slow down the execution time of your
application. So either calculate statistics for all objects or do not have any statistics
for any of the objects, so that rule-based optimization will take effect.

w1 NOTE
7

3 el

To determine the last time statistics were calculated
for the objects in a given schema, you can query the
Last_Analyzed column in DBA_TAB_COLUMNS data
dictionary view. You might want to run the query
with the DISTINCT keyword, because the results
returned are one row for each column in each table.

Calculation of Object Statistics

In this section, you will get familiar with most of the aspects and issues you need to
deal with when collecting object statistics. We will talk about why calculation of
object statistics is important, how to go about collecting statistics, how much, how
often, and the various issues you need to be aware of in collecting statistics.

Why Do You Need to Calculate Statistics?

The calculation of object-level statistics is a core performance-related administrative
function of a DBA, as it is statistics that controls the behavior of the cost-based
optimizer. Without the calculation of object statistics, the process of determining the
cost of a SQL statement is done by Oracle using some internal hard-coded values.

How to Calculate Statistics

The calculation of statistics is accomplished via the analyze command. It is enough
to run the analyze command for a table, as this command will calculate not only
statistics for the table, but also for all indexes that are based on columns of that table.
The calculation of statistics can be done in a couple of ways: you can either estimate

Chapter 3: Application Tuning—Issues that Concern a DBA

the statistics based on a sample size, or you can just compute statistics for the entire
object. The estimate should be the preferred method for databases with very large
tables or environments that cannot afford the time or resources to perform a compute.

CAUTION

It is highly recommended that you do not generate
object statistics for the user SYS, as you run the risk of
deadlocking your database during this process. You
also run the risk of having arbitrary performance
degradation due to the existence of statistics in SYS’s
objects. Don’t do it!

In Oracle8i, a new package called DBMS_STATS has been provided to perform
and supplement the operations supported by the analyze command. Among
operations that are supported are preparing for collection of statistics, improved
calculation of statistics (parallel collection), transfer of statistics between the data
dictionary and your own statistics tables, and getting information on statistics.
Depending on your environment, you might want to use your own statistics tables
(which are outside the data dictionary and hence do not affect the cost-based
optimizer) to experiment with various statistical collections and optimization plans
without running the risk of permanently replacing dictionary statistics and thus
potentially degrading performance.

sw CAUTION

s The direct use of DBMS_STATS is not supported
and not advised on Oracle Application databases.
Oracle Apps supplies its own statistics package
(FND_STATS), which calls DBMS_STATS and also
updates important statistics in the Application
Object Library Schema as well.

In Oracle8i, the execution plans of your SQL statements can also be stabilized,
so that they remain static. This concept is called plan stability. This is especially
relevant for environments that cannot risk the change in execution plans of their
applications, with changes in database version, changes in initialization parameters,
data volumes in tables, and so on. Oracle supports plan stability using stored
outlines, which allow you control over the execution plans of your applications.

The DBMS_STATS package and the Stored Outlines functionality contain
considerable detail, and the discussion of the detail is beyond the scope of this book.
For more information on the various features and syntax of the aforementioned two
features, please refer to the Oracle8i Tuning section in the Oracle documentation.

69

70 Oracle Performance Tuning 101

How Much Statistics Is Enough?

If you estimate statistics on your objects based on a sample size, you need to
ensure that your sample size is adequate so that the statistics will hold reasonable
confidence for its accuracy. The sample size for statistics is important as it provides
the optimizer with statistics that have a good confidence interval and hence
statistical relevance. “Confidence Interval” is a term used in the field of Statistics to
describe the level of confidence that one has in the accuracy of the statistics. This
confidence interval is very much tied to the size of the sample population.

A sample size of 20 percent for estimate operations has been used many times
and seems adequate. But there are some applications where a higher sample size is
required. There are no hard and fast rules in this. You really need to determine what
is the optimal minimum sample size that your application and database environment
require. Obviously, if you compute, your confidence in your statistics is 100 percent,
as it is truly accurate. But for environments that support very large tables, or that can’t
sustain the resource cost and time taken by a compute, estimate will be the viable
option. Use your judgment to determine whether or not compute is right for you,
based on the size of your objects, available downtime, and so on. Also, if your
database version is Oracle8i, the DBMS_STATS package will allow you to analyze
your tables in parallel, which can considerably reduce the amount of time it takes
to perform a compute.

NOTE

You should be aware that performing an analyze
with the estimate option and a sample size that
exceeds 49 percent of the table will cause a
compute of the statistics on the table.

NOTE

There may be some specific applications that are
influenced by some unique data distributions,
where an increase in the sample size for an
estimate operation may provide better plans and
performance. However, the previous note should
be kept in mind when increasing the sample size.

Various Methods of Calculating Object Statistics

The following examples illustrate the various methods of calculating object statistics:

{0« 7 analyze table LINE_ITEMS
compute statistics /* This calculation computes full
statistics for the LINE_ITEMS table and all of its indexes */;

Chapter 3: Application Tuning—Issues that Concern a DBA

or

| analyze table LINE_ITEMS

compute statistics

for all indexed columns size 254 /* This calculation computes
histograms for all columns of all indexes on the LINE_ITEMS table.
The Size 254 is for the number of buckets utilized during the
calculation of the distribution of data */;

or

| analyze table LINE_ITEMS

estimate statistics

sample size 20 percent /* This calculation estimates statistics
for the LINE_ITEMS table and all of its indexes using a sample size
of 20 percent of the number of rows in the table */;

NOTE
The analyze command also has options to analyze
a specific partition of a partitioned table or index.

The analyze_schema procedure in the DBMS_UTILITY package allows
calculation of statistics for an entire schema. The following sample execution
calculates statistics for the BENCHMARK schema, with the estimate option,
using 20 percent sample size on all objects. The \ character at the end of the
first line in the following code sample is a “continuation” character:

| SQL*Plus: Release 8.1.5.0.0 - Production on Fri Nov 3 16:07:33 2000
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connected to:

Oracle8i Enterprise Edition Release 8.1.5.0.0 — Production

With the Partitioning and Java options

PL/SQL Release 8.1.5.0.0 — Production

SQL> execute dbms_utility.analyze_schema('BENCHMARK'\
‘estimate’,estimate_percent=>20);

PL/SQL procedure successfully completed.

The new object statistics package in Oracle8i, DBMS_STATS, allows calculation
of statistics with various options. The following is an example that illustrates how to
estimate statistics only on the tables of the BENCHMARK schema, with a sample
size of 20 percent and with the default degree of parallelism on the tables. This
command will not calculate statistics for indexes, as the cascade argument for the
gather_schema_statistics procedure is set to false by default. Setting cascade to true
allows calculation of statistics on indexes at the same time when statistics are

72 Oracle Performance Tuning 101

calculated on tables. However, it should be noted that if indexes are analyzed
along with the tables, any parallelism set on the collection of statistics for the tables
does not apply to the indexes. If the indexes need to be analyzed in parallel, it is
recommended to issue independent gather_index_stats commands to calculate
statistics on those indexes in parallel. In the final analysis, make sure that statistics
on all indexes are calculated, as you do not want partial statistics on your database.

7 SQL*Plus: Release 8.1.5.0.0 - Production on Fri Nov 3 16:08:12 2000
(c) Copyright 1999 Oracle Corporation. All rights reserved.
Connected to:

Oracle8i Enterprise Edition Release 8.1.5.0.0 — Production

With the Partitioning and Java options

PL/SQL Release 8.1.5.0.0 — Production

SQL> execute dbms_stats.gather_schema_statistics(BENCHMARK'\
20,estimate_percent=>20);

PL/SQL procedure successfully completed.

NOTE

The gather_schema_statistics procedure

performs two operations. It first performs an
export_schema_stats and then gathers the statistics
for a schema. It is useful and important to know
this, as your efforts to implement new statistics
may sometimes cause a sudden degradation in
performance (for whatever reason), and you
should have a back-out plan. The running of the
import_schema_stats to replace the new statistics
with the old statistics should be part of your
back-out plan. Also note that the export_schema_stats
facilitates importing of these statistics using the
import_schema_stats across databases. This is
relevant when setting up test environments that are
identical to the production environment (at least
from the point of view of statistics). It is also
relevant when the target database cannot afford a
gather_schema_stats or gather_database_stats to be
performed on it.

The following SQL-generating-SQL script builds another script to automatically
analyze the BENCHMARK schemas for all tables that begin with the letter A. This
script is meant to be run as the user—SYS in SQL*Plus. You may want to use this
script if your database version is not Oracle8i and you need to calculate statistics
on specific objects within a schema, and the list of objects is dynamic.

Chapter 3: Application Tuning—Issues that Concern a DBA

“Job Security” Tips
The following tips can be classified under “job security.” The more you know,
the more secure your job will be!

® When you export one or more objects, ensure that the STATISTICS
parameter is set to NONE, so that the import operation does not overlay
the statistics you have already calculated. The default value for STATISTICS
is ESTIMATE and some releases of Oracle have used a sample size of
1,064 rows. You need to be aware of this, as not setting statistics=none
during the export operation or specifically recalculating the statistics after
the import is done can result in significant performance degradation after
the reorganization of the table is complete.

B When you rebuild your indexes, it is required that you reanalyze those
indexes. Failure to do so can result in significant performance decrease,
because the rebuild command will estimate statistics on the index with an
internal sample size, which may be inadequate, replacing your previous
statistics on that index. The automatic calculation of statistics during the
rebuild can be done by incorporating the estimate or compute clause in
the rebuild command (if your database version supports that feature).
Please also note that any time you add a new index, you should
immediately follow it with an analyze of that index. Otherwise the lack of
statistics on the index will cause runtime performance problems until that
index is analyzed.

® On some versions of Oracle (7.3.X, 8.0.4, 8.0.5, and others), a weird
phenomenon has been observed with the estimate operation. From time to
time, it has been noticed that the estimate operation does not fully delete
the old statistics before calculating new statistics on the objects and this
leaves the statistics in the data dictionary in a questionable state. A classic
symptom of this problem is noticed when the same query is run on two
databases (such as test and production) with the same amount of data and
similar setup, but the performance of the same query is radically different
in the two databases. If you experience such a weird phenomenon, it is
recommended that you explicitly delete the statistics on the objects first,
then estimate the statistics. Rerun the queries to use new statistics. That
usually fixes the problem.

SS550 /* Set up environment for script file generation */
set echo off
set feedback off

74 Oracle Performance Tuning 101

set verify off
set pagesize 0
spool analyze_script.sql
/* Run query for script file generation */
select 'analyze table '||Owner]|".'||Table_name|| ' estimate
statistics sample size 20 percent;'
from DBA_TABLES
where Owner in (BENCHMARK")
and Table_Name like 'A%,
spool off

/* Run query script file to calculate statistics on all tables
based on a sample size of 20 percent */
@analyze_script.sql

set echo on

set feedback on

set verify on

set pagesize 23

How Often Should the Statistics Be Calculated?

The frequency of calculation of statistics is application and environment dependent.
It solely depends on the rate and quantum of data change in your databases. If your
databases encounter a significant change in the volume of data (application specific),
combined with a potential change in the distribution of data, it is advisable to analyze
your application schemas at the same frequency as the change of data. It is okay to
have different schedules to analyze different sets of tables and indexes. Some could be
analyzed daily, some weekly, and others monthly. Care needs to be taken that any
unusual bulk insert or bulk purging of data is immediately followed by an analyze.
This will ensure that the statistics in the dictionary match the actual number and
distribution of rows in the table. If your table currently has 10,000,000 rows and your
statistics reflect 5,000,000 rows, it is possible that the execution plan the optimizer
builds may not be optimal.

With DBMS_STATS, you also have the option of automatic calculation of
statistics on specific tables. This can be done by setting the monitoring option
at the table level for the list of tables that require this feature. The tables you
wish to monitor need to be altered and the monitoring attribute should be set
to yes. The actual calculation of statistics on these tables can be done using the
dbms_stats.gather_ schema_stats or dbms_stats.gather_database_stats procedures.
These procedures have the capability to track the state of statistics for a given table
and determine whether statistics for a given list of tables is stale or empty.

An object’s statistics become stale when there has been a considerable amount
of DML activity on the table. This is similar to the cross-country rally example that
we shared with you in the chapter “Introduction to Oracle Performance Management.”
If your car has been on a cross-country rally covering thousands of miles, it is only

Chapter 3: Application Tuning—Issues that Concern a DBA 75

fair that it gets an inspection, a tune-up, and an oil change after the rally. To expect
a car to perform at optimal levels without any maintenance after such a long and
arduous trip is being unrealistic (regardless of the car’s manufacturer). The same
applies to Oracle databases. When a significant amount of data purging, insertion,
or update activities have been performed, the statistics of the tables in question will
become stale and need recalculation. Expecting optimal performance without
recalculation of statistics is far from being realistic.

Issues with Calculating Object Statistics

You should be aware that there may be some loss of performance for queries
that access a given table that is currently being analyzed. This is because the
execution plan for those queries could have been built during the time interval
between deletion of old statistics and the calculation of new statistics, as part of
an analyze operation. This means the statistics for the table in question were not
present, hence the process running the query would have to calculate statistics at
runtime. And don’t forget that collecting statistics consumes CPU, memory, and
I/O resources.

Optimal Indexing Strategies

As part of discussing the various issues that affect you in application tuning, the
issue of formulating and implementing a meaningful indexing strategy has very high
importance. This one aspect of your application in itself has great impact on the
performance of your applications. So here is our take on indexing.

What Is an Index?

An index is a supplementary object that is created on one or more columns of a
table to facilitate fast access to the data in the table. An index, by nature of its
inherent structure, has some built-in overhead, and this overhead will outweigh the
cost of doing a sequential full table scan, depending on the number of blocks visited
in the table to retrieve the rows pointed by the ROWID in the index.

The data structure utilized by Oracle to store an index is a B*-tree. This is true
even for bitmap indexes, although in the case of bitmap indexes, the content of the
leaf node is different than that of a regular index.

The top node of an index is called the root node. The second- and subsequent-
level nodes are called branch nodes, and the lowest-level nodes are leaf nodes.
The upper blocks (branch nodes) of an index contain index data that points to

76 Oracle Performance Tuning 101

lower-level index blocks. The lowest-level index blocks (leaf nodes) contain index
data for every value and a corresponding ROWID used to locate the actual row.
The leaf nodes themselves are connected using a double-linked list, which allows
two-way traversal of the leaf nodes. Indexes in columns containing character data
are based on the binary values of the characters in the database character set.

When a SQL statement uses an index, it is the root node that determines the side
of the tree where the value is present, and the intermediary nodes provide location
information on the values stored in the leaf nodes of the index. For those of you
who are algorithm fans, the B*-tree search algorithm is similar to a binary tree
search algorithm, with the exception that a B*-tree can have up to “n nodes” as
children versus a binary tree, which can only have up to two children.

When to Use Indexes

Given that the sole purpose of an index is to reduce I/O, as a query performs more
I/O using the index versus performing a full table scan, the usefulness of using an
index diminishes significantly. For example, let us assume a table with 1,000,000
rows stored in 5,000 blocks, and further assume that the rows matching a given
value of a column are disbursed over 4,000 blocks. In this case, it is definitely not
optimal to create and use the index on that column. This is true even if the raw
percentage of rows retrieved from the table is less than 1 percent, given that 80
percent of the total blocks in the table have to be visited to retrieve the data. When
you add the index blocks that have to be visited to read the ROWID information
from the index, the cost of using an index skyrockets and performance plummets.
Hence, in this case it makes absolutely no sense to use an index.

Now for the flip side! If a table with 1,000 rows has undergone a significant
amount of repetitive insert and delete operations, the high-water mark of the table
will be high, as it does not get reset on delete operations. If the high-water mark is
1,000 blocks, but the 1,000 rows are physically located in 100 blocks, even though
a query may be retrieving 100 percent of the rows in the table, it makes sense to use
the index, as the number of blocks visited and I/O done will be significantly less
than performing a full table scan. The obvious problem here is a fragmented table,
but from a pure 1/O perspective, the use of the index is still useful.

The Moral of the Story

The flaws of row selectivity while using indexes were first identified in a little-known
article “Predicting the Utility of the Nonunique Index,” by Cary Millsap, Craig
Shallahamer, and M. Adler (Oracle magazine, Spring 1993, pages 48-53). The
usefulness of an index was questioned from a pure row selectivity perspective.

It is pretty clear that the use of an index for a query should not be determined

by some arbitrary percentage of the rows processed or selected from the table,
instead it should be determined by the number of blocks visited to retrieve the

Chapter 3: Application Tuning—Issues that Concerna DBA 77

data. If the number of blocks visited for an index, is lower than a full table scan,
then an index will be useful. Otherwise, a full table scan will provide much better
performance. The criteria to use an index should not be based on row selectivity
percentages, as it is impossible to set a specific percentage for all applications. Every
application and database has its own idiosyncrasies, and generalizations on row
selectivity and its relevance to indexes should be avoided, as no two applications
behave alike. The needs of each application are unique and Performance
Management should be tailored to those needs.

How to Build Optimal Indexes
Building optimal indexes is not one of the easiest to perform, because it is totally
dependent on the application’s data querying patterns. If you know your application,
the problem is less complex. Can you summarize the most commonly utilized method
of access of data from the LINE_ITEMS table? If the answer is yes, there lies your
answer on how to build optimal indexes. You basically have to go through the list of
columns that are used most often and make decisions as to the number of indexes you
will build, the required column combinations, and the type of index you will build.
You also need to consider availability needs, which will determine the type of index,
especially when creating partitioned indexes. Here is a partial list of some fascinating
indexing options:

m Non-unique index

m Unique index

m Bitmap index

B Local prefixed partitioned index

m Local nonprefixed partitioned index

B Global prefixed partitioned index

B Hash partitioned index

m Composite partitioned index

m Reverse-key index

B Function-based index

B Descending index

®m Index-organized table

m One or more legal combinations of the above list

78 Oracle Performance Tuning 101

Answers You Need Before You Build Optimal Indexes
The answers to the following questions will also assist you in building
optimal indexes:

I. How many blocks of I/O need to be performed for an index scan versus
a full table scan?

Answer If you know the answer to this, you will immediately know
whether building and using an index makes performance sense.

2. What is the most common set of column combinations that are used for
data access from a given table?

Answer Dig into the application code. If it’s not easily accessible, take a
look at V$SQLAREA or V$SQLTEXT and analyze the most commonly used
SQL statements. Look for the ones with a high number of executions in
V$SQLAREA and find out what is the composition of their where clause.

3. What is the selectivity of a given set of columns on which you are planning
to create an index?

Answer If some columns will always have values and they are relatively
unique, they should be the leading column or cutting-edge of your index.
Order your columns for your index creation in decreasing order of the
probability that it will have a unique value.

4. Do all the columns referenced in the where clause need indexing?

Answer Not necessarily, if columns have very poor data cardinality and/or
could have null values. You need to consciously eliminate such columns
from your indexing list. Having such columns in your index does not do
your query any good.

5. Is the table on which the index is created used for transactions or is it
predominantly queried?

Answer If you don’t know this, you should find out! If it is a transactional
table, you need to determine the potential negative impact to transaction
times by the existence of that additional index. What is the trade-off
between better query performance and the negative impact of transaction
time? If it is a table predominantly used for queries, then it’s okay to

create the index, but you need to be aware of space-related issues in your
INDX tablespace(s).

6. If the data in the table is updated, is it done in a batch process (one user
and one massive update) or is it transactional (with many users and many
small updates)?

Chapter 3: Application Tuning—Issues that Concern a DBA 79

Answer You should know; if not, spend some time finding out. This will
assist you in making decisions on when to drop an index or make it
unusable.

7. Do you need to keep the index for the batch process or can you drop it or
make it unusable?

Answer You should know; if not, find out!

8. What are the storage implications of creating this new index (number of
partitions if applicable, tablespace sizing, space utilized, and so on)?

Answer Plan for this, keeping your bigger storage, capacity planning, and
storage budget picture in mind.

9. What downtime implications does this index have for the application?

Answer If you configure a global prefixed index on a partitioned table and
if this table needs frequent online partition administration, the global index
will be unusable for the time period between the partition maintenance
operation and the rebuild of the entire global index. Is that okay?

10. How much downtime do you have to rebuild your indexes? (Not an issue
in Oracle8i, as indexes can be built online, but for those of you not in
Oracle8i, this is relevant.)

Answer If you have indexes on columns that are fed by an Oracle
sequence, by design you will have monotonically increasing values in that
column and also in the index. All new values will be stored to the right side
of the B*-tree and you will need to rebuild those indexes periodically to
rebalance the tree. How often can you do that? How many new records are
inserted into that table every day? You’ll have more questions as you
answer this question.

= NOTE
"~ Since Oracle8, when entries into the index blocks

are done with monotonically increasing values
(inserts), the blocks are filled completely instead of
leaving them 50 percent full as in prior versions.
Also consider the use of reverse-key indexes for
better random access. Beware of using reverse-key
indexes for range scan; you will incur much more
I/O than a normal index.

As you can see, answers do not come easily; they are quite complex. But the
aforementioned guidelines will put you on the right path. One thing you should be
aware of and work toward, from a performance standpoint, is how you minimize

80 Oracle Performance Tuning 101

the overhead of using an index, so that it actually assists in performance rather than
hinders. Bottom line: get to the leaf node of the index (which contains the data and
their corresponding ROWIDS) in the quickest way you can. It will all boil down to

questions 1 and 2.

Single-Column versus Composite Indexes

If you know that in your application the Ord_Id, Ord_Status, and Ord_Date
columns are frequently used together, creating a composite index is much better
than creating three individual single-column indexes. Also, be advised that any
combination of usage of the Ord_Status and Ord_Date columns will still require
only the following index. The following index will also suffice for SQL statements
that use the Ord_Id column in their where clause. So your index creation should be
something like this:

(=« 7 create index U_ORD_ID_STATUS_DATE on ORDERS
(Ord_ld,Ord_Date,Ord_Status)
tablespace INDX;

Function-Based Indexes

Function-based indexes are new to Oracle8i and involve creating the index with
one or more functions such as upper, lower, round and so on, as part of your index
creation. This allows the query to utilize this index rather than performing a full
table scan. Prior to Oracle8i, any function or expression applied on an index
column would cause the index to be ignored. Here is an example of how to create
a function-based index:

(=w .« 9 create index U_ORD_ID_STATUS_DATE ON ORDERS
(upper(Ord_Id),Ord_Date,Ord_Status)
tablespace INDX;

A function-based index can also be created with a PL/SQL function embedded
in it. Here is an example of creating an index with the calc_profit PL/SQL function
embedded in it:

1 create index LINE_ITEM_CALC_PROFIT on LINE_ITEMS
(Calc_Profit(Iltem_lId, Item_Cost, Sticker_Price))
tablespace INDX;

The following query utilizes the line_item_calc_profit function-based index to
determine the LINE_ITEMS that generate more than $1,000 in profit:

S« 0 select Ord_Id, Item_lId, Item_Cost, Sticker_Price
from Line_Items
where Calc_Profit(ltem_Id, Item_Cost, Sticker_Price) > 1000;

Chapter 3: Application Tuning—Issues that Concern a DBA 8 |

When Do You Need to Rebuild Your Indexes?

Since an index is stored in a B*-tree, and the ultimate goal of an index is to provide
quick access to the data in a table, it is pretty obvious that any index lookup needs
to occur with the fewest possible node/block reads (reduction of I/O is key to an
index’s usability). The single most relevant factor here is the number of leaf blocks
that need to be accessed. The smaller the number of leaf blocks in an index, the
fewer 1/O operations a index will impose and the faster you can retrieve the rows
from the table. Having said that, it should be noted that indexes on tables that
undergo repeated insert and delete operations face the highest risk of fragmentation.

Now the question is, how fragmented are the leaf blocks in a given index? Is
there a significant number of leaf blocks that are read and empty? So it is extremely
important to determine the leaf block density of an index. The denser the contents
of the leaf blocks, the better health the index is in. It is very useful to determine the
density by running a script that retrieves the number of row values in the column(s)
of the index and number of leaf blocks present in the index.

For example, if there are 1,000 row values and 10 leaf blocks today, the leaf
block density is equal to 1,000/10 = 100 rows. If a week from today the number
of rows is 1,200, but there are 20 leaf blocks, the leaf block density is equal
to 1,200/20 = 60 rows. In raw numbers, there has been a 20 percent increase in
the number of rows, but a 40 percent decrease in leaf block density. It is time to
rebuild this index, and it potentially contains a lot of empty blocks.

Another data dictionary view that provides detailed information about indexes
is INDEX_STATS. This data dictionary view is populated when an analyze index
index_name validate structure command is executed. You can run this command
for a specific index on which you are trying to get more information. INDEX_STATS
also contains a column called Height, and this column starts counting from 1. Don’t
ask why—it is part of your job security. You might also observe, based on the data
distribution of the underlying table, that some rebuild operations do not decrease
the height of an index. Don’t try to fight that phenomenon, unless there are plans to
significantly change the underlying table or application design.

NOTE

The analyze index index_name validate structure
command populates INDEX_STATS with one row,
but does not retain the row in INDEX_STATS across
multiple sessions. The row in this view will be
removed when you exit your session. If you need to
save this information, please do so in a table of your
choice. This “feature” has been observed since
Oracle 7.3.0 and still exists even in Oracle 8.1.7.

82 Oracle Performance Tuning 101

It is obvious here that planning downtime for rebuilding your indexes (unless you
are in Oracle8i, which supports online rebuilds) is a required component of your job
description. And when you rebuild, you need to do it quickly and efficiently. The two
factors that assist you in your rebuilding efforts are parallelism and prevention of redo
generation. The first can be achieved by setting the parallel clause in the ALTER
index...rebuild command. The second can be achieved by using the unrecoverable
clause (prior to Oracle 8.0) or the nologging clause (Oracle 8.0 or above). Please note
that the relevant parallel query initialization parameters need to be set in the init.ora
before any parallel operations are attempted. This is covered in detail in the chapter
“Parallel Query Tuning.”

7 alter index U_ORD_ID_STATUS_DATE rebuild

parallel (degree 4)

nologging

tablespace INDX
/* You can use the ONLINE clause for the above statement if your
database version is Oracle8i or above */;

NOTE

It usually makes no business sense to generate redo
logs when you rebuild your indexes. Not generating
redo logs and rebuilding your indexes using the
parallel clause will facilitate quick and efficient
rebuilding of your indexes. For that reason, it is
customary to schedule a backup of the index
tablespace(s) after the rebuild operation, to reduce the
risk of downtime if a media failure were to occur in
the index tablespace(s) before the next full backup.

You should also compact or coalesce the leaf nodes of an index by using the
coalesce option in the alter index statement. This facilitates combination of leaf
blocks and/or levels in an index, so that free blocks could be reused. Realize that
an empty index block does not get reused until the index is coalesced or the index
is rebuilt. Over time, leaf blocks can get fragmented due to block splits. All in all,
the height of an index is one of the keys to reducing the amount of I/O on that
index and thus should be closely monitored. Use this option on those indexes that
undergo a significant amount of repetitive insert and delete operations.

Chapter 3: Application Tuning—Issues that Concern a DBA

Which Join Method Should
You Use, and When?

Monitoring and choosing the type of join operation can provide good performance
improvements. Actually, choosing the right join mechanism and the right index can
provide the some of the greatest positive impacts on SQL performance. There are
three join methodologies available since Oracle 7.3. These are sort merge join,
nested loops join and the newest, hash joins. Each offers different performance
characteristics and is suitable for different situations. The challenge, as usual, is to
evaluate the requirements and structure the SQL to provide the best access path for
the operation.

A sort merge join is a set operation. This means that each step of a sort merge
join must be completed before the data can be passed on to the next step. A set
operation works on all rows as a single unit. Sort merge joins should be considered
when indexing is not available to the query. Inability to use an index could be
caused by the lack of an appropriate index that supports the where clause or
perhaps a function was used on the indexed column in the where clause.

A nested loops join is a row operation and is often preferred for transactional
processing. It can send processed rows from one step to the next step before having
completed all processing in the previous step. The nested loops join methodology
reminds us of the first programming class we took many years ago. Notable in that
class was the assignment where we had to write a Pascal program to manipulate
a two-dimensional array. We had to use a loop within a loop—nested loops—to
accomplish that.

A nested loops join is the most commonly seen join operation for OLTP
applications and is usually fairly efficient. This is because this join methodology
makes use of indexes to a high degree and, given that every application vendor
seems to be indexing their tables to death, this join method works. Unfortunately,
if your system has too many wacky indexes on its tables, you could end up with
the nested loops method when full table scans with merge or hash joins could give
better performance. Watch out for that!

A hash joins is quite different because the implementation is mostly done using
full table scans of the tables that are joined. Oracle performs a full table scan on
each of the tables and splits each into as many hash partitions (not to be confused
with table and index partitioning) as necessary based on the available memory.
Oracle then builds a hash table from one of the hash partitions. If possible, Oracle

83

84 Oracle Performance Tuning 101

will select a partition that fits into available memory. It then uses the corresponding
partition in the other table to probe the hash table. For each pair of partitions (one
from each table), Oracle uses the smaller one to build a hash table and the larger
one to probe the hash table. All partition pairs that do not fit into memory are
written to disk.

Hash joins were introduced in Oracle 7.3. To make the best use of them,
you need to configure the initialization parameters HASH_AREA_SIZF and
HASH_MULTIBLOCK_IO_COUNT. Hash joins are useful for joining large tables to
each other or when a small table is joined with a very large table and the where
clause predicates process of a significant portion of the large table. Even though
Oracle will incur a lot of 1/O doing full table scans on both tables, it will more than
make up for it with the speed of joining the rows in memory and moving rows from
and to the disk. One caveat, though: if the tables are large, you should expect a
certain amount of physical I/O as Oracle writes the hash segments that it created in
memory to disk for further processing. You can set hash_area_size appropriately to
minimize this, and this parameter can be set at the session level.

NOTE

Setting HASH_AREA_SIZE and
HASH_MULTIBLOCK_ IO_COUNT to very

high values can cause the Oracle optimizer to

prefer and pick hash joins as the default optimization
plan. Care needs to be taken to balance the setting
of these parameters with the transactional needs of
your system. We will cover this in more detail in the
chapter “InstanceTuning—The Redo Log Buffer and
Miscellaneous Tuning.”

When selecting a methodology, consider the size of the tables, the selectivity of
the indexes, and the availability of the tables. Most importantly, test the choices and
see which returns data in the least elapsed time and/or with the least physical I/O.
These last two points are what define a well-tuned SQL statement.

How Not to Write SQL

The focus of this chapter is to prep you, the DBA, for the application-tuning
challenges ahead of you. In doing so, it is relevant to document some bad SQL
programming practices that we have encountered, which have been observed
to kill application performance on a consistent basis. This is by no means a
comprehensive list. Some of the pitfalls (where applicable) contain code examples

Chapter 3: Application Tuning—Issues that Concern a DBA 85

that show you the before and after. These are things to avoid and/or rewrite. Here
are some not-so-best practices for writing SQL statements that should be avoided:

m Disallow the use of indexes when the where clause predicates for SQL
statements visit more data blocks when using an index, rather than
performing a full table scan. This can be done either by applying a harmless
expression on the indexed column (such as +0 for a numeric column, or
concatenate a null string * for an alphanumeric column) or by hinting the
SQL statement with a FULL hint (if you are using the cost-based optimizer).

Consider the following:
I. The LINE_ITEMS table has 1,000,000 rows in it.

2. There is an index on the Shipped_Date column and it is used by the
following query.

3. The distribution of data on the Shipped_Date column is such that the
rows are disbursed across a significant number of blocks in the table.

4. The selectivity of the index is good.

Before:

select *
from LINE_ITEMS
where Shipped_Date between SYSDATE
and (SYSDATE - 30);

The preceding query uses the index on the Shipped_Date column, even
though it is not optimal to do so. Hence, the above query needs to be
hinted with a FULL (to force a full table scan) and may be even a PARALLEL
hint (need to set init.ora parameters for this before you use it), given the size
of the LINE_ITEMS table. The query is rewritten as:

After:

select /*+ FULL(LINE_ITEMS) PARALLEL(LINE_ITEMS, 2) */ *
from LINE_ITEMS
where Shipped_Date between SYSDATE
and (SYSDATE — 30);

m Disallow full table scans, when the where clause predicates for SQL
statements process or return a very small portion of the table, unless the
table is highly fragmented (small number of rows in a few blocks, but the
high-water mark is very high). An obvious exception to this rule is if the
table itself is very small (the definition of small is relative to the size of your
database). This can be done by explicitly providing an INDEX hint or by

86 Oracle Performance Tuning 101

creating appropriate indexes for the table. Be cautious when creating
additional indexes, especially on tables that are transactional in nature, as
they will impact the time it takes to insert, update or delete rows into that
table. Consider the following:

I. The ORDERS table has 1,00,000 rows in it.

2. The Ord_Id column can contain alphanumeric values (combination of
numbers and alphabetic data) and the values are stored in uppercase.
But the application allows entry of the Ord_Id in upper- or lowercase.

3. There is a composite index on the Ord_Id, Ord_Status, and Ord_Date
columns.

4. The selectivity of the index is good.

Before:

select *
from ORDERS
where upper(Ord_Id) = ":b1'
and Ord_Status = 'Not Filled'
and Ord_Date = SYSDATE;

The preceding query does not use the index, because the upper function
has been applied on the leading column of the index, thus preventing
the use of the index. The bind variable “:b1’ is on the right side of the
expression. Removing the upper function from the leading column of the
index and moving it to the right side of the expression allows the index to
be used. The query is rewritten as follows:

After:

select *
from ORDERS
where Ord_ld = upper(:b1")
and Ord_Status = 'Not Filled'
and Ord_Date = SYSDATE;

If the values in the Ord_Ild column are not stored in any predetermined
format—such as uppercase—and the database version is Oracle8i,
function-based indexes could be created to prevent the full table scan. If
your database version is prior to Oracle8i, consider storing the values for
this column in some standard case (upper, lower, or initcap). Yes, you are
denormalizing your data, but the founding fathers of relational databases
and normalization rules will understand your predicament and forgive you.

Chapter 3: Application Tuning—Issues that Concern a DBA

Do not mix and match values with column data types. This will result in
the optimizer ignoring the index. For example, if the column data type is

a number, do not use single quotes around the value in the where clause.
Likewise, do not fail to use single quotes around a value when it is defined
as an alphanumeric column. For example, if a column is defined as a
varchar2(10) and if there is an index built on that column, reference the
column values within single quotes. Even if you only store numbers in it,
you still need to use single quotes around your values in the where clause,
as not doing so will result in a full table scan.

Do not use the is null operator on a column that is indexed, as the
optimizer will ignore the index.

Do not build applications that contain SQL statements that are identical
except for their hard-coded values for their where clauses. This effect is
normally observed in applications that build dynamic SQL. By their
inherent design, hard-coded values in the where clause prevent reusability
of the SQL statements in the shared pool area. Supporting multiple SQL
statements with hard-coded values in the shared pool area begs the issue of
huge amounts of memory allocation for that memory structure. This is
because the application that you support is designed in such a way that it
prevents anything from being shared.

Before:

select First_Name, Last_Name, Hire_Date
from EMP
where Empno = 1234;

select First_Name, Last Name, Hire_Date

from EMP
where Empno = 9876;
After:
select First_Name, Last Name, Hire_Date
from EMP

where Empno = :b1;

If the application cannot be recoded with bind variables, and if the
database version is Oracle8i (8.1.6), using the init.ora parameter
CURSOR_SHARING=force will help significantly. Not only will you
introduce the novel concept of SQL sharing, but you will also reduce
the amount of library cache latch contention. The parameter

87

88 Oracle Performance Tuning 101

CURSOR _SHARING can also be set at the session level. You should know
that setting CURSOR_SHARING=force can cause some significant parsing
delays, so ideally rewriting the application should be the preferred method
(if possible).

B Do not code iterative single insert, update, or delete statements on a table
within a PL/SQL loop when they can be done in bulk. This is a classic
iterative PL/SQL application design performance problem. For example,
if a bulk insert is feasible and the operation does not need recovery, it can
be performed with the /*+ APPEND */ hint, which will provide direct-load
capability and virtually eliminate redo generation for that operation.
Unfortunately, this option is not available for the delete and update
operations. At any rate, operations that can be done in bulk should not be
done in an iterative fashion, as the operations themselves will not scale,
when the number of rows iteratively processed increases in a significant
manner. Following is one example:

Before:

declare
Ord_Struct ORDERS%ROWTYPE;
Cursor c_ord is
select *
from ORDERS
where Ord_Status = 'Not Filled'
and Ord Date = SYSDATE;
begin
open c_ord,
loop
fetch c_ord into Ord_Sturct;
exit when c_ord%NOTFOUND;
insert into TEMP_ORD values (Ord_Struct.Ord_Id, Ord_Struct.Ord_Date,
(Ord_Struct.Ord_Price * 1.1),0rd_Struct.Ord_Status);
commit;
end loop;
close c_ord;
end;
/

The preceding PL/SQL block of code is a simplified example that uses the
classic iterative technique to input and calculate values for processing. It
calculates the new price for TEMP_ORD by increasing it by 10 percent. The
equivalent code below will accomplish the same in a fraction of the time
and cost it would take to run the above code. This is true even if the /*+
APPEND */ hint cannot be used.

Chapter 3: Application Tuning—Issues that Concern a DBA 89

Please note that the nologging attribute on the TEMP_ORD table should

be set before the following is attempted. This can be accomplished by
executing an alter table command. And, yes, that means Oracle will not
perform full-fledged logging for your insert operations, which implies that if
the job gets terminated due to any kind of failure, the data in TEMP_ORD is
unrecoverable. But given the temporary nature of the job, all you will have
to do is to restart it after the failure is resolved. Also note that the commit in
the tuned version is done once for the entire operation, instead of once per
iteration of the loop.

After:

declare
begin

insert /*+ APPEND */ into TEMP_ORD
select Ord_ld, Ord_Date, (Ord_Price * 1.1),0rd_Status
from ORDERS
where Ord_Status = 'Not Filled'
and Ord_Date = SYSDATE;
commit;
end;
/

Do not code correlated subqueries in your applications, as they will
adversely impact system performance, consume significant amounts of
CPU resources, potentially cause CPU bottlenecks, and disallow
application scalability. This means if the number of rows in your table in
your correlated subquery increases, you are personally writing the death
certificate of your CPUs. Alternatively, use inline views (subqueries in the
from clause of your select statements which have been available from
version 7.3), which perform orders of magnitude faster and are much more
scalable. The query below displays all employees who make more than the
average salary of the department that they work in. Watch the fun!

Before:

select OUTER.*
from EMP OUTER
where OUTER.Salary >
(select Avg(Salary)
from EMP INNER
where INNER.Dept_Id = OUTER.Dept_Id);

90 Oracle Performance Tuning 101

The preceding query contains a correlated subquery, which is extremely
inefficient and is very CPU intensive. The subquery will be run for every
employee record in the EMP table. As the number of records in EMP
increase, the performance can degrade exponentially. This query will
artificially increase the database buffer cache-hit ratio to such heights that
you will think that your database is performing well, when in reality it is not.
The query when rewritten with inline views is functionally equivalent, but is
significantly more scalable and is guaranteed to outperform its predecessor.

After:
select E1.*
from EMP E1, (select E2.Dept_Id Dept_Id, Avg(E2.Salary) Avg_Sal

from EMP E2

group by Dept_Id) DEPT_AVG_SAL
where E1.Dept_I|d = DEPT_AVG_SAL.Dept id
and El.Salary > DEPT_AVG_SAL.Avg_Sal;

B This one is a no-brainer, but we have to mention it for the sake of
completeness. Do not build the where clause predicates for a select statement
without having all the join conditions for all tables in your from clause. You
do not want Mr. Descartes around to assist you with a Cartesian product in
your query execution plan. You will be surprised how many SQL statements
we've found that did not have this critical component.

B Do not code the transaction logic of your applications literally in the
sequence that is specified in the design document. That sounds pretty
radical, but let us explain. Realize that both SQL and PL/SQL allow
combination of multiple operations into one. Let us provide you an
example. The design document defines the transaction logic as follows: 1
million rows should be inserted into a temporary table, followed by 12
updates on all of those rows in sequence. But you really don’t have to do
exactly that. Investigate the use of the decode function (it supports
if..then..else..end if logic within the SQL statement) in your insert statement
to avoid as many update statements as possible. In fact, decode is
amazingly powerful and, if treated just so, can be used to do greater than or
less than operations. Investigate the use of the outer join (+) operator; it is
useful in quite a few applications and facilitates multiple operations to be
combined into a single operation. Remember that it is okay to perform
some additional computation for the insert operation, thus making it
slower. On the other hand, the resource and computational savings of not
performing one or more update statements will justify the additional cost on
the insert operation. Just trying to optimize the response time of each SQL
statement without focusing on the total response time of the batch job

Chapter 3: Application Tuning—Issues that Concern a DBA 9|

makes no computational and resource management sense. The following
pseudo code is for a create table statement that combines multiple
operations into one and optimizes the use of resources:

create table DM_SUMMARY_TBL
(Fact_Id
,D2_Key
,D1_key
,Datekey
,D2_Col
,D1_Coll
,D1_Col2
)
parallel (degree 12)
nologging
partition by range (datekey)
(P1 values less than...P36 values less than NOMAXVALUE)
as
select /*+ FULL(F) FULL(D1) FULL(D2) */
F.Fact_Id,
F.D2_Key,
F.D1_Key,
F.Datekey,
D2.D2_Caol,
D1.D1_Coll,
D1.D1_Col2
from FACT F, DIMENSION1 D1, DIMENSION2 D2
where D1.D1_key(+) = F.D1_Key
and F.D2_key = D2.D2_Key(+);

Do not force every SQL statement to be executed using the nested loops
join methodology. While most transactional SQL statements do perform
optimally using this methodology, certain batch jobs definitely will benefit
from the use of hash joins. For example, if your select statement joins two
or more tables and the join pairs in the where clause are such that one of
the tables is very small (say, 1,000 rows) and the other is very large (say,
1,000,000), and if the where clause predicates are such that a significant
portion of the large table will be processed, hash joins should be the
preferred join methodology for that join pair. If you religiously attempt

to eliminate full table scans by forcing every SQL statement in your
environment to use nested loops, you will end up with an Oracle database
with a fantastic 99.999 percent buffer cache-hit ratio, but whose
performance would leave a lot to be desired.

92 Oracle Performance Tuning 101

B Avoid the use of select x from DUAL; wherever possible. As innocent as
this looks, it can eat up system performance in a hurry. For example, if a
numeric column needs to be populated by a sequence generator, do not
code an independent select statement to select its nextval into a PL/SQL
variable and then use the value of the variable in the values clause of the
insert statement. Alternatively, use the nextval operation on the sequence
(sequence_name.nextval) in the values clause of the insert statement.
Observe the key difference between the before and after code shown below.
The after code has the unnecessary references to the table DUAL removed.

Before:

declare
Ord_Seq_Val ORDERS.Ord_Id%TYPE;
begin
foriin 1..10000
loop
select Ord_Seq.NEXTVAL
into Ord_Seq_Val
from DUAL;
insert into TEMP_ORD(Ord_Id)
values (Ord_Seq_Val);
/* Do more misc. processing */
end loop;
/

After:

declare
begin
foriin 1..10000
loop
insert into TEMP_ORD(Ord_Id)
values (Ord_Seq.NEXTVAL);
/* Do more misc. processing */
end loop;
/

B And lastly (this one is not for Performance Management, but rather, for
sanity management), do not design table/column names and write SQL
statements in a foreign language (such as Pali or Prakrit). Use meaningful
aliases, consistent naming conventions, and for the sake of Jamba, please
desist from using your native language if you want any one of us to help
you out when you have a problem. We have one ERP vendor who forces
us to be bilingual. Enough already!

Chapter 3: Application Tuning—Issues that Concern a DBA 93

The Basics of Optimal SQL

Now that we have been through the list of what not to do, allow us to introduce you
to the things we think you should consider while designing, rewriting, and tuning
SQL statements. If you avoid the potholes described in the previous section, you
will be closer to the desired path of coding optimal SQL.

The ultimate goal in writing any SQL statement has three facets: quick response
times, the least usage of your CPU’s resources, and the fewest number of 1/O
operations. But many a time, you may have to compromise on one of the three
facets. While quick response times of individual SQL statements are often a required
component, it is not the end of all SQL statements. The key thing to remember here
is system throughput. How successful are you in getting through your day, doing
everything you need to get done in a timely and accurate fashion?

For example, if it makes sense for a given SQL statement to do a full table scan
from the perspective of processing, you may end up reading more blocks than, say,
an index lookup. But if the index lookup takes twice as long to complete, even
though from the pure sense of 1/O it is better, it actually hinders system throughput.
This is because your system could have been utilized to process other operations if
the job had been completed in half the time.

Tips for Facilitating Optimal SQL
The following are a few tips, in no particular order, for optimizing SQL
performance. These tips are not restricted to just queries:

m Encouraging full table scans when using an index does not make sense from
an 1/O perspective. Keep in mind that a full table scan will be very effective
when using an index is counterproductive, such as when the index scan
performs more block visitations than a full table scan.

m If your SQL contains subqueries, tune them. In fact, tune them first. The
main query will not perform well if the subqueries can’t perform well
themselves. If a join will provide you with the functionality of the subquery,
try the join method first, before trying the subquery method. Pay attention
to correlated subqueries, as they tend to be very costly and CPU-intensive.

B Use not exists instead of not in in the where clause predicates of your
SQL statements.

m Use the /ike operator with a leading character instead of a substr function.
The like operator with a leading character such as ‘A%’ in the value that is
compared will use the index. The substr function will invalidate the index,
unless your database version is Oracle8i and you have created a
function-based index.

94 Oracle Performance Tuning 101

m Use the nv/ function wherever appropriate, as it does not require you to
know the data type of the column on which the function is applied and
hence greatly reduces the probability of accidental typecasting. Secondly,
nvl was observed to be microscopically faster than concatenation (if you
have a choice to do a concatenation versus an NVL) by some performance
analysts in the early 1990s.

m For very complex queries with many OR conditions, consider rewriting
them using union all. By doing so, you will break down the query into
good-size chunks and will be able to optimize better. This works on the
concept of divide and rule.

B Use appropriate indexes. That means only create and use the most selective
indexes possible. Data selectivity is the ratio of distinct keys to rows. The
closer it is to 1.00, the better it is, and the more sense it makes to consider
creating an index on that column. Appropriate indexes will not only
improve access, but also eliminate the overhead of updating many useless
indexes when the data in the table is updated.

m Create indexes on foreign key columns if the queries always retrieve
master-detail relationship-based rows.

B Make use of composite indexes (indexes with two or more columns). These
need to be ordered in the decreasing order of selectivity. Fewer indexes
used within a specific query imply fewer physical I/O operations in most
cases, which in turn translates to better performance.

m Consider using non-unique indexes to support the unique constraint.
This is supported in Oracle8 and above and is very powerful. The greatest
advantage here is that the index is not dropped when the constraint is
disabled. This also eliminates redundant indexes. For example, if a primary
key constraint needs to be created on the Ord_Id column in the ORDERS
table, it does not require an independent unique index if another composite
index with Ord_Id as the leading column already exists.

m Consider using the enable novalidate clause while enabling constraints, as
they do not perform a data check of your data. This is especially true if you
have summary tables that contain data from one or more base tables, and
the integrity of the data is already checked in the base tables.

m Consider bitmap indexes when the where clause predicates contain
low-data-cardinality columns, contain logical operations such as or, and,
or not on those columns, or return a large number of rows from a table with
a large number of rows. Bitmap indexes are usually avoided on tables with
heavy concurrent DML operations, due to their inherent locking behavior,
which is based on a range of rowids, even if the number of rows that need
to be updated is only one.

Chapter 3: Application Tuning—Issues that Concern a DBA 95

Consider single-table hash or index clusters (depending on your application),
as they provide excellent performance on those tables that are relatively
static, but are normally queried for a range of values. Given that a cluster
stores the data within a block in an ordered fashion, a range scan using an
index on this cluster will perform fewer I/O operations to service the query.

Beware of SQL statements with views in them. Odd as it may seem, Oracle
does not necessarily execute a view the same way by itself as it does in a
complex SQL statement containing tables. Consider including the view
definition in the main query by actually including its code without the
actual view name. In some cases, we have observed significant performance
improvement, as there were documented problems with how the optimizer
dealt with the views and tables when faced with a complex multitable and
multiview join.

Avoid remote access when possible. Be particularly careful when joining

a local table to a remote table or view. Oracle (depending on your version)
can end up sending the entire remote table to the local database to resolve
the join. This can foul up performance of not only the query, but also

the network.

Proactively decide on nested loops, merge joins, or hash joins. When doing
a join of three or more tables, try to structure the query to do the greatest
elimination on the first join. This can often be done by incorporating all of
the restrictive where clause conditions on one table. The result is a smaller
driving set.

Identify and use array processing and bulk collections whenever relevant
and wherever possible. This is true even if your processing environment is
PL/SQL. Here is an example of how to set up array processing in PL/SQL.
This example retrieves a significant portion of the values in the Product_Id
column (using the new bulk collect feature in Oracle8i) and then utilizes
those values to decrease the Reorder_Level column values of those
PRODUCTS table by 20 percent. The reduction in reorder levels has been
initiated due to some recent inventory management process re-engineering
that has been implemented.

declare
TYPE Ord_Id_Tab IS TABLE OF PRODUCTS.Product_Id%TYPE;
begin

/* Retrieve all values of Product_ld that are relevant /
select /+ FULL (PRODUCTS) */ Product_Id BULK COLLECT into
Product_Id_Tab;
from PRODUCTS
where Product_Name like 'A%,

96 Oracle Performance Tuning 101

forall i in 1..Product_Id_Tab.LAST
update PRODUCTS
set REORDER_LEVEL = (REORDER_LEVEL * 0.8)
where Product_Id = Product_Id_Tab(i);
/* Do more processing */
end;
/

NOTE

Although there may be other methods to implement
this functionality, the goal here is to provide some
insight into these new powerful processing
capabilities of PL/SQL.

m If the database version is Oracle8i and the application contains a lot of
dynamic SQL generation (using DBMS_SQL), consider using the new
PL/SQL feature execute immediate, which performs significantly better
than DBMS_SQL. The following is a simple PL/SQL block that uses execute
immediate to increase the column width of the Ord_Id column in the
ORDERS table from its current size of 8 to 10. This new feature also
supports DDL commands within PL/SQL without having to write many
lines of code to accomplish something really simple:

declare

begin

execute immediate 'alter table ORDERS modify (Ord_ld VARCHAR(10))"
end;

/

B For very large tables, consider taking advantage of table and index
partitioning. Very large tables pose special challenges because of the way
they impact the consumption of space in the database buffer cache of the
Oracle SGA. Partitioning should be designed and planned keeping in mind
the requirements of the application.

m If you are still using the rule-based optimizer (you really should not be
using this for much longer), structure your from clause so that your smallest
table is the last one defined in the list of tables.

B If you need to speed up the time it takes for an index build, you can modify
the SORT_AREA_SIZE parameter at the session level to a large value, so that
most of the sorting for the index build will occur in memory.

Chapter 3: Application Tuning—Issues that Concern a DBA

m Last but not least, you need to continually test all of your queries. Keep in
mind that as the data changes, the execution plan may change and not
necessarily for the better. What worked well six months ago may be a real
mess now. Remember, you need to perform maintenance inspections on
your car frequently. The whole key to Performance Management is the
management aspect.

NOTE

In the cost-based optimizer, there is really no
relevance of the order of the tables in a from clause,
unless you use the /*+ ORDERED */ hint, in which
case the driving table for your join will be the first
table in your from clause. Also, in the cost-based
optimizer, there is really no relevance to the order of
the where clause predicates. As long as you reference
the leading column of an index in your where clause,
it will be considered for the execution plan.

In a Nutshell

Eighty percent of your performance problems arise due to bad SQL. Designing

and developing optimal SQL is quintessential to scalable system performance

and consistent response times. As a DBA, you need to be aware of the type of
optimization methodology you are using, the method and frequency of calculating
statistics, optimal indexing strategies, and selecting the right join methodology for a
given SQL statement. Remember, it is not always beneficial to use an index. Care
needs to be taken to identify this on a case-by-case basis.

While we identified some commonly observed pitfalls of SQL programming,
there is more to optimal application design and tuning than what we or anyone else
can write. It is like an endless ocean. What we have shared with you here is a few
buckets and what we all need to know far exceeds what we currently know. Isn’t
life wonderful when you learn something new every single day? But knowing that
you can dramatically transform system-wide performance by just adding an index,
changing the join methodology of a SQL statement, or providing a /*+ HINT */ is
very powerful. Again, we are talking about many orders of magnitude in potential
performance increase. Go get those bad SQL and fix them. Make it a habit...and
stick with it.

97

1002
1l

ORIGINAL * AUTHENTIC

Oracle Press

ONLY FROM OSBORNE

Expert authors, cutting-edge coverage, the latest
releases...find it all at OraclePressBooks.com

Oracle Press

[T e P

From a full selection of titles focusing
on Oracle’s core database products to
our in-depth coverage of emerging
applications, Web development tools,
and e-Business initiatives, Oracle Press
continues to provide essential resources
for every Oracle professional. For a
complete list of Oracle Press titles—
from the exclusive publishers of
Oracle Press books—and other valuable
resources, go to

OraclePressBooks.com.

Get the most complete information on
Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

i

OsBORNE
ORACLE PRESS™—EXCLUSIVELY FROM McGRAW-HILL/OSBORNE www.osborne.com

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

