:" g f}_ L

F

. ‘.__._; _,-" _.,.ﬂ'
cain
_,..-IJII‘ - lrz ;. ¢ ’ 3 ” . I 2 " .
;{; i - The Method
¥

Bellpd the Madness

Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
computer system, but they may not be reproduced for publication.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.
Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this

work and is not responsible for any errors or omissions or the results obtained from the use of such information.

Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
this Work, and is not responsible for any errors or omissions.

"

I 2 Oracle Performance Tuning 101

\ g

Myth & Folklore
Tuning the database always results in a better performing system.

Fact

Tuning a database may make the database perform more efficiently, but if the
application, the I/O subsystem, and the operating system (OS) are not equally tuned,
the user will not reap the benefits of your efforts. Users are the final measure of the
success of your tuning efforts. If they don’t see the performance gains, you might as
well stay home. Enhancing system performance requires a methodical and holistic
approach, not arbitrary hunt and peck efforts of just throwing more memory at the
Oracle System Global Area.

Myth & Folklore
If the cache-hit ratios of the Oracle database are fine (99.999 percent), the
performance of Oracle is at its best.

Fact

Not at all true. The cache-hit ratios could be inflated as result of a few correlated
subqueries in the application, which iteratively accesses the same set of blocks. In
this case, even though the cache-hit ratios may be fine, users could be waiting for
their output for a long time. The wait for output/data (on further investigation), could
be attributed to some significant I/O-related waits on the data and index segments
stored in the data files of the corresponding DATA and INDX tablespaces. There are
many aspects to tuning Oracle that do not involve ratios at all. The cornerstone of
tuning Oracle-based systems should be wait events, not ratios.

" n this chapter, you will learn about a holistic methodology and its

~ associated technical details for tuning Oracle-based systems. Though the
= details pertain to Oracle, the process can be applied to any system. While
Oracle Performance Management is not magic, there is some art to it and
plenty of science. The science is easily quantifiable. The artistry is unique
to each DBA, and you will surely develop your own as you gain experience. Every
Oracle Performance Management effort is potentially tri-faceted: tune, schedule, and
buy. The tune facet is the most important and the easiest facet to execute. However,

it needs to be done in a proactive, iterative, and methodical fashion. That is what this
chapter is all about.

The schedule aspect relates to the process of balancing the load on the system by
running jobs at appropriate/meaningful times, rather than launching too many of them
all in the same time window. The buy facet is the act of procuring more resources for
your system, but there is a definite need to control this almost involuntary urge. Beware
of reckless buying, as it is easy to execute (if you have the money), but it also holds the
highest risk. When you upgrade one or more components of your system without doing
a comprehensive impact analysis, you run the risk of putting yourself and your system in

Chapter 2: The Method Behind the Madness

a worse state than you were before the upgrade. In addition, if you upgrade components
that were not bottlenecks to begin with, you will push your system to a point of no
return—for example, a wholesale CPU upgrade on your system, when the CPU is really
not your bottleneck. For more information, visit http://www.hotsos.com/ and read
“Performance Management: Myths & Facts,” by Cary Millsap.

For practical purposes, Oracle Performance Management can further be classified
into two types, proactive and reactive. Proactive Performance Management involves
designing and developing comlpete systems with a high-performance architecture
in mind. It also involves monitoring system performance on a regular basis, noting
trends and proactively fixing potential issues before they become actual problems.
But if you look at the guts of proactive Performance Management from the architecture
perspective, it involves selection of the hardware, the operating system, performance
and capacity planning, mass storage system selection, I/O subsystem configuration
and tuning, including the selection and implementation of the appropriate level of
RAID. And it also includes tailoring all the components to suit the complex needs
of the application and Oracle.

From the scheduling aspect, proactive management may also involve logical and
rational balancing of jobs on a system. This scheduling is done to prevent overloading
the system within very finite time windows (the infamous batch window that we all
are so fondly aware of). Needless to say, work done in a proactive manner costs the
least and has the greatest impact on the final performance characteristics of all systems.

Reactive Performance Management involves performance evaluation,
troubleshooting, tuning, and fine-tuning the environment within the limitations of
the existing hardware and software architecture. It is the process of responding to a
problem as it is unfolding. You tend to do this after the system has been built. The
cost relative to the performance increase attained is often high. During this type of
Performance Management you will often uncover needs for different hardware,
software, or other basic components. This is also where you find out how well your
applications were designed.

With the methodology and its associated technical details presented here, you
will acquire a solid knowledge base for your reactive Performance Management
efforts (the tune facet). Of course, the same principles apply when designing the system
from the outset. This holistic methodology revolves around a core set of parameters
and components that benefit from proper configuration and tuning. By focusing
on these critical areas you will maximize the efficacy of your efforts in Oracle
Performance Management and avoid tuning by trial and error.

Why Should You Care About
a Tuning Methodology?

The amount of energy you expend to achieve a tuned database depends on your
tuning methodology. Your own job satisfaction can be tied to your choice of tuning
methodologies. As a DBA, you have to balance many responsibilities and therefore

13

14 Oracle Performance Tuning 101

cannot spend time and energy on unrewarding pursuits. Developing a good approach
to Performance Management will avoid wasted effort. Otherwise you may spend a
lot of time tuning without actually improving performance. Your methodology
should help determine when enough is enough.

The myths mentioned at the beginning of this chapter contribute to the failure
of many tuning methodologies. The first one is predicated on the idea that system
Performance Management is only a database issue. No consideration is given to
limitations on the database imposed by the operating system, the storage system,
the application, or even the network.

The second is based on ratios without consideration of what is the current state
of the Oracle database. It does not take into consideration things like what the
database is currently doing for the application. Both avoid the basic principle that
good Performance Management must be based on avoiding adverse system activity.
More importantly, one needs to tune those components that are causing the bottleneck,
instead of making far-reaching global changes.

A tuning methodology is not random acts of change to a system in the hope
of achieving the nebulous goal of better performance. Many a time, people who are
engaged in the faculty of tuning, especially Oracle tuning, don’t adhere to any
kind of methodical approach. This results in haphazard efforts lacking repeatability.
The number one offense committed in this style is how memory is just thrown at
the Oracle System Global Area (SGA), in the hope that the system performance
problem will cure itself. Haphazard increases in the amount of memory supplied to
the major components of the SGA do little at best, and can cause severe performance
degradation at worst.

Many of these kinds of efforts are based on the assumption that the database’s
cache-hit ratios should drive the tuning process. With this attitude, it is easy to get
trapped into the swirling vortex of more memory, more CPU, more memory, more
CPU... In one common example, in an effort to attain a high cache hit ratio (upper
90s), a significant amount of memory was configured for the database buffer cache. In
doing so, the system began experiencing significant levels of paging and swapping.

Here is another classic example of ratios-based tuning. In some cases, when the
size of the shared pool area is increased beyond reason, it is possible for parsing
hiccups to occur. Oracle can encounter difficulties managing unduly large memory
segments associated with the shared pool area. In some production environments,
it has been observed that an excessive amount of memory for the shared pool area
caused increased parse times, hanging of SQL statements, and in some cases a serious
case of library cache latch (an internal resource used within Oracle to manage the
library cache, which is a component of the shared pool area) contention.

Now, if the action was taken just to attain high cache-hit ratios for the shared
pool area (because we all know that high cache-hit ratios are good for the physical,
emotional, and mental happiness of a DBA!), suddenly there exists a problem
situation, where performance begins to wave a red flag, when there was no problem
to begin with.

Chapter 2: The Method Behind the Madness

This is one scenario, where everything was fine, but the must have 99.999
percent cache-hit ratio disease took over. Remember Compulsive Tuning Disorder
(Chapter 1)! To make matters worse, when such symptoms are noticed, some DBAs
resort to extreme measures, such as flushing the shared pool frequently. Instead of
engaging in a managed effort, tuning operations become hunt and peck or trial and
error fiascoes.

These examples highlight additional reasons why you should care about the
discipline of a sound and proven tuning methodology. The kind of tuning explained
in this section is best described as madness without a method. Good Performance
Management depends on having a method to the madness. And you have two
raving lunatics (us) who have been there, used the method, and done that!

What Is a Good Tuning Methodology?

So what is the method behind the madness? The method is a prioritized, orderly,
goal-oriented, holistic approach to Oracle Performance Management. The process
can be as simple as reacting to calls from users who say there is a problem or as
complex as calling in teams of experts to evaluate a system from top to bottom. But
to be effective it must consider the entire system in all phases. Any reliable tuning
methodology must include:

m Baseline readings
m Established performance goals

B Structure and tracking of changes that are made (some change-control
mechanism)

B Evaluation of the effects of those changes
B Comparison of the performance with the established goals

B Reiteration until the goals are met

If the process is complex, it is less likely that anyone will adhere to it. A good
methodology should be simple yet have all the core components of problem solving.
It must focus on specific issues and must have a definite end point. Too many efforts
fail because no definite end point is set. The very best methodology also considers the
effect that changing one component has on the other related components. It must be
holistic. You cannot increase the size of the database buffer cache of one instance
on a host without expecting to impact performance of other instances as well as the
operating system itself. You cannot add several indexes to a table to improve data
retrieval operations and not consider the impact on DML (Data Manipulation
Language) in the form of insert, update, or delete.

15

1 6 Oracle Performance Tuning 101

A good tuning methodology should allow you to quantify work and the desired
results in such a way that you can design changes that will achieve those results. It
allows you to reliably track the changes made to systems for repeatability and even
reversibility. And it allows you to say “I’'m done” when the goals are achieved.

The Oracle Performance
Tuning 101 Methodology

Now is the time to share a tried and true, reality test approach to Oracle Performance
Management that has stood the test of time. It is what we call the two-pronged
tuning approach. And it is very simple. Begin your troubleshooting efforts with the
operating system (OS) on one hand (first prong) and Oracle on the other (second
prong). Then consciously drive your research on each prong, and move toward the
other. When the information derived from the two prongs meets, you will have
your finger on the problem. Done. In fact, you might have a lot more than just your
finger on the problem when you use our approach. Remember, your research
efforts should be wait event driven, not cache-hit ratio driven. Keep this in mind as
you follow the steps below to setting goals and selecting your tuning targets:

I. Set reasonable performance tuning goals.

2. Measure and document current performance.

3. Identify the current Oracle performance bottlenecks (what Oracle is waiting
for, which SQL statements are part of that wait event).

4. ldentify the current OS bottlenecks.

5. Tune the required component (application, database, 1/O, contention, OS,
and so on).

6. Track and exercise change-control procedures.
7. Measure and document current performance.

8. Repeat steps 3 through 7 until the tuning goal is met.

Do not tune a component if it is not the source of the bottleneck. Doing so
may cause serious negative repercussions. Remember, “If it ain’t broke, don’t fix it.”
And more importantly, cease all tuning efforts when the tuning goals are met.
Besides, if you overachieve today, what will you do tomorrow? Just kidding!

If some aspect of the systems hit ratios does not meet with your approval, but
is not a part of the current problem, addressing it now only makes the water murkier.
You can always establish a tuning effort to investigate that issue after you have

Chapter 2: The Method Behind the Madness

resolved the current issue. Tuning a system is a lot like white-water rafting. There

are backwashes, currents, and eddies, all trying to pull you toward them and into

wasted effort and danger. So it is important for you to stay on course, with your eye

on the goal of getting safely downstream, and you will live to tune another day.
Let’s talk about each of the steps in this process.

Set Reasonable Performance Tuning Goals

The major feature lacking in most methodologies and definitely lacking in haphazard
tuning is establishing specific, reasonable, attainable goals. Without a reasonable
goal you won't know if you have met your customer’s expectations and you won't
know if you have finished and therefore have time to have a drink.

Before launching into any tuning effort you will need to meet with your customer/
user and agree on specific and reasonable performance goals. Not only does this signify
when you are done, but also it facilitates benchmarking and consistent performance
measurement. The most important thing about setting goals is that they must be
quantifiable and attainable. It is meaningless to say, “This query runs poorly and it
needs to run faster.” You need to know that the query runs in one hour and twenty
minutes now, but needs to run in ten minutes or less. Or you need to know that a
given operation is performing ten sorts to disk, but should not perform any.

If you can’t make a similar statement, you don’t really know what your goal
is. Tuning without a goal can be compared to driving your car without having a
specific destination in mind. If you drive around the neighborhood in the middle
of the night just to put your kid to sleep on a very rough night (some of us have
done that), there is still a goal behind your driving exercise. But if you got into the
habit of driving your car around your neighborhood without any rhyme or reason,
all you would have achieved is to make some gas station in your neighborhood
rich and voluntarily contribute to the warming of our planet.

NOTE

Your goal should be in the form of a statement
that defines the current performance and the
desired performance. Just fill in the blanks in
the following box.

The takes (hours/minutes/seconds),
but we need it to run in (hours/minutes/seconds).
The uses (amount of resource), but it

can’t use more than

17

I 8 Oracle Performance Tuning 101

Now you know your target. Take aim and fire away!

Quantifying the required performance values gives direction on what to tune,
how to tune, when to tune, how much to tune, and more importantly when to stop
tuning. Failure to set specific goals results in unnecessary time spent on tuning the
system, without significant and measurable gains.

Now, please take our word of advice while working with customers to set
performance goals. The customer may need help in uncovering the real business
need. How do you recognize or handle unrealistic performance goals or unrealistic
business requirements? In a real-life example, a power user wanted an eight-hour
batch job to complete in half an hour or less, based on a business requirement.
Tests showed that the third-party application that contained the batch job could
be reduced to three stages:

I. A database read which loaded some tables in memory
2. A calculation part (entirely CPU) that processed these tables

3. A database write-back

When it was shown how this unrealistic goal cannot be achieved even with
the best-of-breed systems (due to its inherent workload), the user’s expectations
were realigned. Projected improvements trimmed the database part to about half
an hour, but there was no way to bring down the calculation to less than two hours.
It was important to show why the job in its entirety could not be run in half an
hour or less, and breaking the job down to its logical parts helped in resetting the
user’s expectation.

Many customers push their DBAs to have high hit ratios and incredible response
times that simply can’t be met. This is one of those backwater eddies that will eat
your lunch. You must dig down and understand what they are trying to accomplish
and then help them to help you set a reasonable goal. Not all operations performed
by a system must be performed with subsecond response times. Okay, you have
your tuning goals...let's move on.

Measure and Document Current Performance

This section (step 2) in the performance tuning methodology, and the next couple
of sections (steps 3 and 4) is where we will cover the technical aspects of the
methodology. While this might seem like a detour from a pure methodology
perspective, our goal is to provide the relevant technical details that go along with
the various steps in the methodology, and we could not think of another place to

Chapter 2: The Method Behind the Madness 19

put them but here. Ultimately, it is the underlying technical details that make or
break a methodology. In our view, it is important for you to be able to get a
packaged view of the methodology with its associated technical details. This detour
will cover all the vista points in our road trip to optimal Performance Management.

Before you can be expected to achieve a goal, you have to know where you are
in relation to that goal. Imagine trying to fill your pantry for the holidays without
knowing what you have and don’t have. Can you do it? Sure. Will you end up with
a lot of duplicate items and thus wasted effort? Sure. You will agree that it would
be better to know that you already have twelve cans of tuna (or kidney beans for us
vegetarians) before going to the store. The same applies to Oracle-based systems.
You have to know what it does well and what it does not do well before you start
hammering on it, trying to beat it into shape.

So the next step has to be to find out where the system is in relation to the goal
of subsecond responses and 100 percent uptime. Start by getting a good picture of
your system’s performance. Performance snapshots, benchmarks, before and after
images, or whatever you call them, need to be captured during peak activity
periods. Most businesses, and thus the databases that support them, have very
predictable load cycles.

In the course of the day in most business environments, things are slow at 8:00 AM.
and start to really hop around between 10:00-10:30 A.M.. Then it comes to a
screeching halt from 11:30 AM. until about 1:00 p.M. It then starts to pick up again,
achieving peak load around 3:30 p.M. and starts to trail off around 5:00 pP.M.
Additionally, the days at the end of the month and the very beginning of a month
tend to be busier. Therefore, taking snapshots of a database in a business like this
around 12:00 midnight is not very useful. Those statistics aren’t going to be very
helpful. Of course, many companies perform reporting and batch jobs at midnight.
So if those are the areas of concern, you would be right on target. The point is that
you need to gather information from the time period in which the questionable
performance occurs.

Another important note about gathering evidence for your investigation: don’t
try to get these statistics immediately after instance startup. When an instance has
just started, there is nothing in the SGA and you will have to give it some ramp-up
time. Statistics are only valuable over a large number of things or over a reasonable
period of time. Measuring statistics five minutes after the start of an Oracle database
is not only meaningless but also a waste of your precious time. It may also result in
misdirected efforts to tune your database. Your instance will appear to have all
kinds of problems it doesn’t, and you are not likely to see evidence of the problems
it does have.

Still another issue to keep in mind when gathering statistics is that they have to
be gathered over a reasonable period of time. Collecting statistics over a period of

20 Oracle Performance Tuning 101

many hours is not reasonable, as the problems with your system may get buried in
the depths of time. Many a time DBAs gather statistics starting at eight in the
morning and end at five in the afternoon. Then, based on those reports, they can say
the database performs well or it looks like the whole thing is going down the drain.

The smoothing effect of too much time can make poor performers look great
and cause some things like “log buffer space” to seem unreasonable. Our method of
gathering statistical information on Oracle is to take several snapshots of 15-minute
duration during peak periods. What will be of real use to you is if you can identify
the process or program that is suffering and gather statistics while it is running.

For the information that you are going after in the dynamic performance views
to have any significance, your instance needs to have the initialization parameter
TIMED_STATISTICS set to TRUE. This is accomplished in either of two ways in Oracle
8.0 or above (this may be back-ported on some platforms for release 7.3). You can
dynamically set this with the SQL command alter system set timed_statistics = true.
Execute this as the user SYS. Here is how:

(== 7 Oracle Server Manager Release 3.1.5.0.0—Production
(c) Copyright 1997, Oracle Corporation. All Rights Reserved.
Oracle8i Enterprise Edition Release 8.1.5.0.0—Production
With the Partitioning and Java options
PL/SQL Release 8.1.5.0.0—Production
SVRMGR> connect / as sysdba;
Connected.
SVRMGR> alter system set timed_ statistics=true;
Statement processed.

The second method is to keep the TIMED_STATISTICS initialization parameter
set permanently to TRUE in the Oracle initialization file (init.ora). On most versions of
Oracle across multiple operating system platforms, there is no measurable overhead
in setting this permanently at the instance level.

CAUTION

Before setting this or any other initialization
parameters that we recommend, you should take the
time to do your homework and ensure that there are
no “undocumented features” that crop up by setting
that parameter on your version of Oracle and your
OS platform. Please take the necessary steps to check
Metalink or open a “tar” with Oracle to accomplish
this. One test is worth a thousand speculations!

Chapter 2: The Method Behind the Madness

NOTE

All references to $ORACLE_HOME is specific to
Oracle on a UNIX platform. The equivalent on
Windows NT is %ORACLE_HOME%. Also, in UNIX,
subdirectories are indicated using the forward slash
() and on Windows NT they are indicated using the
backward slash (\). Please make the appropriate
changes depending on your operating system platform.

Running utlbstat.sql and utlestat.sql

To create a statistical picture of an instance, you can use the scripts provided with
every Oracle installation. There are two scripts located in the §ORACLE_HOME/
rdbms/admin directory. The first is utlbstat.sql. It is run as the user INTERNAL and
is run from Server Manager or SQL*Plus (Oracle8i and above). It creates a number
of interim tables that are snapshots from the various dynamic performance (V$)
views. Running this script begins the snapshot period and provides the beginning
point in statistics.

To end the snapshot period, you will need to run utlestat.sql. This script takes
another snapshot from the same dynamic performance views. It subtracts the original
values stored in the interim tables from the new values and saves the differences
to a file called report.txt. It then drops all the interim tables. This report gets written
to the directory from which you ran Server Manager or SQL*Plus. This report
contains all the relevant metrics that were captured for that Oracle instance during
the time interval that elapsed between utlbstat.sql and utlestat.sql. It also contains
a bunch of stuff you don’t even want to know about. But don’t worry—you’ll know
the important stuff after you have digested this book. Be sure to rename the report
before running utlbstat.sql/utlestat.sql again if you want to keep a history of
performance statistics. Consider appending the date/time to the file name, such as
report.txt.20011031-11:15. The following is a sample utlbstat/estat run. The output
has been formatted to provide you with the highlights of what Oracle does when
you run the two scripts:

(=« 1 SVRMGR> connect / as sysdba;

Connected.
SVRMGR> @$ORACLE_HOME/rdbms/admin/utlbstat
SVRMGR> Rem

SVRMGR> Rem First create all the tables
SVRMGR> Rem

21

2?2 Oracle Performance Tuning 101

SVRMGR>
SVRMGR> Rem

SVRMGR> Rem Gather start statistics
SVRMGR> Rem

SVRMGR> Rem Wait for 15 minutes
SVRMGR> Rem

*

SVRMGR> @$ORACLE_HOME/rdbms/admin/utlestat
SVRMGR> Rem

SVRMGR> Rem Gather Ending Statistics
SVRMGR> Rem

SVRMGR>
SVRMGR> Rem

SVRMGR> Rem Create Summary Tables
SVRMGR> Rem

SVRMGR>

SVRMGR> Rem

SVRMGR> Rem Output statistics
SVRMGR> Rem

SVRMGR>

. NOTE

. Since Oracle8i, these scripts can be run in SQL*Plus
by connect internal or connect / as sysdba. The
Server Manager tool is not part of the Oracle9i
database toolset. Hence, all DBA and development
tasks from Oracle8i and up should be performed
just using SQL*Plus.

The customary way to review report.txt is to grab a calculator, go down and
gather your favorite statistics, and see how they add up. This is a perfectly good time
to find out about such things as all the different cache-hit ratios. But more importantly,
you will want to look at the wait events described in the file. The report also gives
great information about I/O characteristics of the data files. You can definitely find
the hot spots here.

Chapter 2: The Method Behind the Madness

If you support multiple databases, you might want to take the easier road to
analyzing your report.txt. At the time of writing this chapter, there was an online
report.txt analyzer available at http://www.oraperf.com/. This Web site—Yet Another
Performance Profiling (YAPP) Method—has expert analysis information on the
contents of your report.txt from some of the performance-tuning experts in the
industry. All you need to do is to point the tool to the location of your report.txt
on your PC and it will do the rest. It also provides additional information on the
meaning of some of the values and parameters listed in the file. It is a great tool to
learn the core elements in the report.txt. Within a short time after you submit the
report.txt, you will be presented with useful interpretations and recommendations
right on your screen.

When we last checked, this Web site also allowed comparison of two report.txt
files, and supported analysis and comparison of report files generated by STATSPACK
(covered in the next paragraph). Save this information for use later to see if you are
making progress in your tuning efforts.

Running STATSPACK (Available in Oracle 8.1.6 and Above)
With Oracle8i (8.1.6) comes a brand new package called STATSPACK, which
promises to be the new and improved version of utlbstat.sql/utlestat.sql. It is
considered the replacement for the age-old BSTAT/ESTAT method.

STATSPACK collects more relevant performance data than BSTAT/ESTAT,
precalculates some of the performance ratios, stores them in a schema for future
use, and provides the capability to refer data from prior runs by supporting history.

NOTE

f"f " Even though STATSPACK is shipped with 8.1.6 and

above, it can be run on Oracle 8.0 databases.

The following table lists the major differences between BSTAT/ESTAT and
STATSPACK:

Underlying Characteristic/Feature BSTAT/ESTAT STATSPACK
Data capture is configurable No Yes

Summary page for report No Yes

Identify SQL that consume a lot of No Yes

resources

Ability to store performance snapshots No Yes

in a database

23

24 Oracle Performance Tuning 101

STATSPACK can be installed by running the script statscre.sql(spcreate.sql in
Oracle 8.1.7), which is located under $§ORACLE_HOME/rdbms/admin directory,
within a SQL*Plus session logged in as Connect / as SYSDBA. This script creates a
user called Perfstat, a set of tables, and a package. All commands and procedures
mentioned as follows need to be run as user Perfstat.

w21 NOTE

. "f This script should be run with SQL*Plus and not

' under Server Manager. Also, it must be noted here
that a STATSPACK report should be run in the
same recommended frequency as a BSTAT/ESTAT
report—15 minutes. Also, it is recommended that
the tables created under this user not be created in
the SYSTEM tablespace, as the size of the tables
owned by Perfstat is dependent on the number of
snapshots you save.

To capture performance data, use execute statspack.snap. This should be
done when the system supports peak loads and across various workloads in the
environment (OLTP, Batch etc.). It may be advisable to schedule the execution of this
via DBMS_JOB or an operating system scheduler like cron on UNIX. There is an
example file—statsauto.sql (spauto.sql in Oracle 8.1.7) that can be used as
reference.

The relevant parameters are:

B i_snap_level takes values such as O for instance statistics, 5 for information
about SQL statements (default), and 10 for determining child latch
information and some low-level investigative purposes (turn on only upon
Oracle Support’s request).

B i_executions_th, i_buffer_gets_th, i_disk_reads_th, i_version_count_th,
i_parse_calls_th, and i_sharable_mem_th are all parameters that are relevant
for setting thresholds for identification of high-resource SQL statements.

B i_ucomment allows you to name a given snapshot.
B i_session_id provides capture of session-level information (not done

by default).

All default values of the aforementioned parameters are stored in a table and
can be changed by executing the statspack.modify_statspack_parameter procedure.

Chapter 2: The Method Behind the Madness 25

The report on performance snapshots is generated by executing statsrep.sql
(spreport.sql in Oracle 8.1.7). The data for the report is stored in the database, and
it is useful to note here that these reports cannot span to remote databases nor
can they currently span across an instance/database startups. This script takes runtime
arguments of beginning and ending snap_ids. Each run of a performance snapshot
will generate a value for snap_id. The value for snap_id is populated using an Oracle
sequence generator.

The report itself should be read sequentially and is similar to the output
generated by BSTAT/ESTAT. The summary page does include information about the
top five wait events (hello there...this is what you need to tune), shared pool cache
usage, the profile of the load on the system, general environment information, and
the level of efficiency of the instance.

The following is a sample report generated from a STATSPACK report run
of a production environment. This report is formatted to display only the summary
page. Realistically, the summary page should provide you with the state of the
union. Again, your primary goal should be to investigate the top five wait events in
your database. Once that is done, you may want to tackle the next five top events
by another run of STATSPACK. The database and instance names in the sample
run below have been modified to maintain customer confidentiality.

("= | STATSPACK report for

DB Name DB Id Instance Inst Num Release OPS Host
ACME 708513117 acme 1 8.05.00 NO hp6
Snap Length
Start Id End Id Start Time End Time (Minutes)
3 4 30-Oct-00 13:12:15 30-Oct-00 13:27:39 15.24
Cache Sizes
db_block_buffers: 40000
db_block_size: 16384

log_buffer: 13107200
shared_pool_size: 100000000

Load Profile
Per Second Per Transaction
Redo size: 12,924.49 5,739.29
Logical reads: 2,901.46 1,288.43
Block changes: 51.98 23.08
Physical reads: 313.53 139.23
Physical writes: 471 2.09

User calls: 88.15 39.14

26 Oracle Performance Tuning 101

Parses: 8.76 3.89
Hard parses: 0.08 0.04
Sorts: 3.46 154
Transactions: 2.25
Rows per Sort: 691.26
Pct Blocks changed / Read: 1.79
Recursive Call Pct: 11.13
Rollback / transaction Pct: 8.54

Instance Efficiency Percentages (Target 100%)

Buffer Nowait Ratio: 100.00
Buffer Hit Ratio: 89.19
Library Hit Ratio: 99.70
Redo NoWait Ratio: 100.00
In-memory Sort Ratio: 100.00
Soft Parse Ratio: 99.05
Latch Hit Ratio: 100.00

Top 5 Wait Events

Wait % Total

Event Waits Time (cs) Wt Time
slave wait 7437 720443 55.3
library cache pin 1204 362531 27.8
Parallel Query Idle Wait - Slaves 662 121720 9.35

db file scattered read 99776 51846 3.98

db file sequential read 18386 11504 .88

Wait Events for DB: PKMS Instance: pkms Snaps: 3 - 4

->cs - centisecond - 100th of a second
->ms - millisecond - 1000th of a second (unit often used for disk 10 timings)

More information about STATSPACK can be acquired by accessing the Oracle
Technology Network at http:/technet.oracle.com/deploy/performance/ and the
documentation that is supplied with Oracle release (statspack.doc in 8.1.6 and spdoc.txt
in 8.1.7). This file is also located in the § ORACLE_HOME/rdbms/admin directory.

NOTE

It is our recommendation that you use STATSPACK
instead of BSTAT/ESTAT, if your database version
is 8.0 or above. STATSPACK provides the same
numbers as BSTAT/ESTAT in a more meaningful
fashion, with a good Load Profile and Instance
Efficiency section. Also please note that there have
been many changes to the names of the scripts in
Oracle 8.1.7. You can find the complete list of
changes in the spdoc.txt file.

Chapter 2: The Method Behind the Madness

Identify the Current Oracle

Performance Bottlenecks

In addition to what you will find in the report.txt and STATSPACK, there is a
wealth of information about Oracle’s current health in V§SYSTEM_EVENT,
V$SESSION_EVENT, and V$SESSION_WAIT. In some circles, these three dynamic
performance views are referred to as the “wait interface”. In fact, when dealing with
a performance problem, these should be among your first stops in understanding
where the bottleneck really is. If you don’t spend time on these three V$ views,
you really are not looking in the right place. Not a good use of your time. Not
convinced? Read what Craig Shallahamer has to say in his paper “Direct
Contention Identification Using Oracle’s Session Wait Tables,” available at
http://www.orapub.com/. To get another perspective of the wait-event-based
method, check out a presentation titled “Oracle Performance Problem Diagnosis,”
by Cary Millsap, available at http://www.hotsos.com/, under the OAUG 2000
Database SIG Meeting link. Both of the aforementioned Web sites have a variety
of tools that will assist you in bottleneck detection and analysis.

What Is a Wait Event?

A wait event is a named section of the Oracle kernel code. The concept of wait
events was introduced in Oracle 7.0.12. With Oracle 7.3, there were approximately
100 wait events. This number increased to approximately 150 in Oracle 8.0 and

is now at approximately 200 events in Oracle8i.

There are two categories of wait events, namely idle and non-idle. The idle
events indicate that Oracle is waiting for some work. Some common idle events are
client message, NULL event, pipe get, pmon timer, rdbms ipc message, smon timer,
SQL*Net message from client, and so on.

Non-idle wait events are actions that are specific to Oracle. Some common
non-idle wait events are buffer busy waits, db file scattered read, db file sequential
read, enqueue, free buffer waits, latch free, log file parallel write, log file sync,
and so on.

Where Is the Bottleneck?

Performance may be slow, but if you don’t know what the user processes are waiting
for, you will only be guessing as you make arbitrary changes. Once you become
familiar with the wait events for your system, you will be able to get right to the crux
of the matter. You will be able to use your resources to tune the component that is
bottlenecking the system. You will not engage in arbitrary tuning efforts.

27

28 Oracle Performance Tuning 101

What Can Be Learned from V$SYSTEM_EVENT?
To get the best possible understanding of what things are keeping your system
from optimal performance and thus keeping you from that beloved beer, get familiar
with the V$SYSTEM_EVENT dynamic performance view. The V§SYSTEM_EVENT
view provides a bird’s eye view of all the events in an Oracle system. Even though it
does not contain session-level specific information (current or past), it does sum
up all the waits since the last time the instance was started. The statistics in this dynamic
performance view are reset to zero on instance startup. For that reason, the information
in this and all the V$ views must be sampled over time.

The columns in the V$SYSTEM_EVENT dynamic performance view are

B Event This is the name of an event. Some of the more common meaningful
events are enqueue, buffer busy waits, latch free, db file scattered read, db
file sequential read, and free buffer waits.

B Total_Waits This is the total number of waits for a given event since the
time the instance was started.

m Total_Timeouts This column provides the total number of wait timeouts
for the specific event since the time the instance was started.

m Time_Waited This is the total wait time (in 1/100ths of a second, also
known as centiseconds) by all sessions for a given event since the time the
instance was started.

m Average_Wait This is the average wait time (in 1/100ths of a second)
by all sessions for a given event since the instance was started.
Average_Wait = (time_waited/total_waits).

The following script will assist in determining the delta for the current waits
within a time interval (T2-T1) for each of the wait events on the system, if you are
looking for the “delta”:

| drop table BEGIN_SYS_EVENT;
drop table END_SYS EVENT;
/* Create Begin Table at Time T1 */
create table BEGIN_SYS EVENT as
select * from V$SYSTEM_EVENT;
/* Wait n seconds or n minutes */
/* Create End Table at Time T2 */
create table END_SYS EVENT as
select * from V$SYSTEM_EVENT;
/* View delta numbers for wait events between Begin (T1) and End (T2) */

(5N

Chapter 2: The Method Behind the Madness

select T1.Event, (T2.Total_Waits—T1.Total_Waits) "Delta Waits",
(T2.Total_Timeouts—T1.Total_Timeouts) "Delta Timeouts",
(T2.Time_Waited—T1.Time_Waited) "Delta Time Waited",
(T2.Average_Wait—T1.Average_Wait) "Delta Average Wait"
from BEGIN_SYS_EVENT T1, END_SYS_EVENT T2
where T1.Event = T2.Event;

After reviewing this information, it is easy to pick out the areas of concern.
Look at the items with the most time waited and try to categorize them. Are they
I/O-based events like db file scattered read, db file sequential read, or free buffer
waits? Or are they memory-based events like buffer busy waits? Now you can zero
in on the system resources that need augmentation. No time is wasted on areas
that are doing well. But before you run off and start changing things, it behooves
you to drill down further by visiting additional V$ views.

Drilling Down Further: VSSESSION_EVENT

The V$SESSION_EVENT view provides the same information as V$SYSTEM_EVENT,
but at the session level. Of course, it also includes session information, such as the SID.
Use this information to join with V$SESSION and you can see how individual sessions
are performing. It's a good idea to look for the same events in V$SESSION_EVENT that
were observed to be problematic at the system level. Sometimes you will find that many
of the system-level events can be tied back to a single session or just a few sessions
doing the same or similar work. The following is a sample query for drilling down into
the sessions:

select S.Username, S.Program, S.Status,
SE.Event, SE.Total_Waits, SE.Total_Timeouts,
SE.Time_Waited, SE.Average_Wait
from VSSESSION S, V$SESSION_EVENT SE
where S.Sid = SE.Sid

and SE.Event not like 'SQL*Net%'

and S.status = 'ACTIVE'

and S.Username is not null;

. NOTE
The previous query excludes information where the

username in V$SESSION is NULL. Remove this line
if you want to see what events are associated with
background processes such as PMON and SMON.
After reviewing the output from V$SESSION_EVENT
and comparing it to V§SYSTEM_EVENT, you will
want to drill down even further.

29

30 Oracle Performance Tuning 101

Formatted sample output from the preceding query without the Program Name
and TimeOuts columns:

| USERNAME STATUS EVENT TOTAL_WAITS TIME_WAITED AVERAGE_WAIT

UREG ACTIVE db file scattered read 15 10 66666667
AREG ACTIVE latch free 12 27 44444444

Cutting to the Chase: V$SESSION_WAIT

The V$SESSION_WAIT view provides the lowest-level information for each event.
As the name implies, it is based on waits at the session level. Unlike some of the
other views, which display totals, this view displays session-level wait information
in real time. This is the real stuff, as it unfolds. Because the information in
V$SESSION_WAIT is real time, it may show different results each time you query
it. Since the needs of each process change from time to time, it is easy to see that
the differences in output are based on the activity on the database at the time of the
query. Repeatedly querying V$SESSION_WAIT can reveal patterns in events and
processes as well as point out who is using a given resource and which other processes
are waiting for the same resource. Most importantly, since this view displays the
drill-down information for the wait events and the associated resource, you can
definitively identify the areas to tune.

For example, if a session is waiting on an index scan, denoted by the event db
file sequential read (yes, we know...whoever named this was not smoking the right
stuff and had it all backwards), the file number and data block number where the
wait is occurring will be provided. This is the actual location from which the process
needs to get its data. Now, that is useful information! Let’s get to the heart of this
by defining the important columns in V$SESSION_WAIT:

m SID This is the session identifier number.

m Seq# This number is an internal sequence number for the wait event
related to this session. Use this value to determine the number of waits for
a given event that a session has endured.

B Event This is the name of the event. Some of the more common events
are enqueue, buffer busy waits, latch free, db file scattered read, db file
sequential read, and free buffer waits. Look for recurring events, but avoid
concern over events such as PMON Timer, RDBMS timer, and so on.
These are normal and indicate that the instance is waiting for things to do.

m P[1-3] Here itis folks! This is the treasure we have been digging around
for. These three columns contain the detail information that really tells us
what a given wait event means. The values in these columns are the logical

Chapter 2: The Method Behind the Madness 31

relationships (foreign keys) to other V$ views. This is also where you have
to really pay attention, because the interpretation of a value here is
wait-event dependent.

For example, for the wait event db file scattered read (which denotes a full
table scan in progress...yes, we know), P1 contains the file number, P2 contains
the block number the process is waiting for, and P3 contains the number of blocks
to be read from the block number specified in P2. By using P1 to query V$FILESTAT
or DBA_DATA_FILES and P2 to query DBA_EXTENTS or SYS.UET$, you can
determine the object this session is waiting for. If you have several processes waiting
for the same file or files on the same file system, you can start looking at 1/O
distribution as a way of fixing the problem.

But wait, what if the event is a latch free? Well, then P2 is the number of the
latch, which points to V$LATCH. So query V$LATCH and you will see which latch
is the problem. Instead of running around tuning every little thing, you can now
tune what needs to be tuned. For the complete list of the waits with their associated
parameters, please refer to Appendix A in the Oracle Reference Manual.

NOTE
An l/O request in this context is for a set of blocks,
not just one block.

m State The state of given event is a very important indicator, as it provides
details for interpreting the following two columns, wait_time and
seconds_in_wait. Without fully understanding the state, the wait_time and
seconds_in_wait numbers can be worthless. There are four possible states
(not counting Texas, of course):

B WAITING The session is currently waiting for the event. That was not
so tough.

m WAITED UNKNOWN TIME This is true if TIMED_STATISTICS is set
to FALSE.

m WAITED SHORT TIME This value means the session has waited for
an insignificant amount of time (less than 1/100ths of a second). Don’t
worry about these events, unless they occur very frequently.

m WAITED KNOWN TIME When and if a process acquires the resource
it has been waiting for, the value in the STATE column will change to
WAITED KNOWN TIME.

32 Oracle Performance Tuning 101

B Wait_time The value of this column is STATE dependent and is measured
in seconds:

If STATE in (WAITING',WAITED UNKNOWN TIME',WAITED SHORT TIME') then
WAIT_TIME = Irrelevant;

End If;

If STATE = 'WAITED KNOWN TIME' then
WAIT_TIME = Actual wait time, in seconds;

End If;

Okay, now to explain the previous text in plain English. If you have
WAITED_SHORT_TIME, the wait event is really not a problem, unless the
wait event keeps occurring over and over again. If you are currently
WAITING, you really don’t know what your final WAIT_TIME is, hence
WAIT_TIME is currently not useful (look at SECONDS_IN_WAIT). If you
have WAITED UNKNOWN TIME, it is because TIMED_STATISTICS is
not set to TRUE, hence not relevant. Got it?

But one thing to note here is that if the system is very busy, and the session
is waiting on multiple resources and begins to wait for another resource, the
STATUS for a wait event will change back to WAITING, and WAIT_TIME =
Irrelevant again, per the first If condition. You might want to read the last
couple of pages again to get a better understanding.

B Seconds_in_wait The value of this column is also STATE dependent.
If STATE in (WAITED UNKNOWN TIME''WAITED_SHORT TIMEWAITED KNOWN TIME) then
SECONDS_IN_WAIT = Irrelevant;
End If;
If STATE = 'WAITING' then
SECONDS_IN_WAIT = Actual Wait Time in seconds;

End If;

Wow! Did you catch the difference between SECONDS_IN_WAIT and
WAIT_TIME? Okay, let’s try that in another way. We are trying to find
out the current value for SECONDS_IN_WAIT. If the process has
WAITED_UNKNOWN_TIME, again TIMED_STATISTICS is not set, hence
it is irrelevant. If the process has WAITED_SHORT_TIME, it is really not
currently waiting, hence SECONDS_IN_WAIT is meaningless. Lastly, if
the process had WAITED_KNOWN_TIME, SECONDS_IN_WAIT is again
meaningless (look at WAIT_TIME instead), as it is currently not waiting.

Chapter 2: The Method Behind the Madness

Values in this column may not reappear on multiple iterations of querying.
Now you have got it...right?

If the values do reappear, the session is waiting for a long time for the given
event. Multiple queries against this view provide information about the
duration of the wait by a session for a given event. Now you really know
what is important.

Putting it All Together The following code examples illustrate the wait_event-

based

performance tuning methodology.

First we run the following query to check some common wait events in the
database using V$SYSTEM_EVENT view:

SQL> select *

33

2 from V$SYSTEM_EVENT

3 where Event in (buffer busy waits',

4 'db file sequential read’,

5 'db file scattered read',

6 ‘enqueue’,

7 ‘free buffer waits',

8 'latch free',

9 'log file parallel write',

10 'log file sync');
EVENT TOTAL_WAITS TOTAL_TIMEOUTS TIME_WAITED AVERAGE_WAIT
latch free 236563 230494 41893 .177090247
enqueue 424 40 343 .808962264
free buffer waits 4232 3561 28201 6.66375236
buffer busy waits 894377 2502 181907 .203389622
log file parallel write 3938548 0 804870 .204357037
log file sync 1890409 890 544425 287993233
db file sequential read 62769635 0 311819246 4.96767658
db file scattered read 17928634 0 3843986 .214404845
8 rows selected.
SQL>

Next, we drill down to the sessions with wait events that are contributing to the

above display using the following query against the V§SESSION_EVENT and

V$SESSION views:

SQL> select SE.Sid, S.Username, SE.Event,

~No O~ WwN

SE.Total_Waits, SE.Time_Waited, SE.Average_Wait
from V$SESSION S, V$SESSION_EVENT SE
where S.Username is not null
and SE.Sid = S.Sid
and S.Status = 'ACTIVE'
and SE.Event not like '%SQL*Net%";

34 Oracle Performance Tuning 101

SID USERNAME EVENT

TOTAL_WAITS TIME_WAITED AVERAGE_WAIT

29 OLUSER14
29 OLUSER14
29 OLUSER14
29 OLUSER14
29 OLUSER14

latch free

file open

db file scattered read
db file sequential read
buffer busy waits

32 ID2USER latch free
32 ID2USER file open
32 ID2USER db file sequential read
32 ID2USER db file scattered read
32 ID2USER log file sync
32 ID2USER buffer busy waits
51 VENDOR1 latch free
51 VENDOR1 file open
51 VENDOR1 db file scattered read
51 VENDOR1 buffer busy waits
51 VENDOR1 db file sequential read
16 rows selected.
SQL>

108
16
7241 36357
1010122 4611646
6509 2592
49
9
8755 10056
3 10
72739 47177
1
214
20
57469 207155
3091 1221
656434 245814

1.90740741

.0625

5.02099158
4.56543467
.398217852
1.28571429
111111111
1.1486008
3.33333333
648579167

0

1.57943925

.05

3.60463902
395017794
37446872

To find the current wait events associated with the connected sessions, we use
the following query. This is very dynamic information and the query will need to be

run multiple times to see what the most waited events for a session are.

SQL> select SW.Sid, S.Username, SW.Event, SW.Wait_Time,

where S.Usemame is not null

and SW.Sid = S.Sid

and SW.Event not like '%SQL*Net%'
order by SW.Wait_Time Desc;
USERNAME EVENT

OvdouobwN

Sl

SW.State, SW.Seconds_In_Wait SEC_IN_WAIT
from V$SESSION S, V$SESSION_WAIT SW

WAIT_TIME STATE

29 OLUSER14 db file sequential read
32 ID2USER db file scattered read
51 VENDOR1 log file sync

3 rows selected.

SQL>

12 WAITED KNOWN TIME
0 WAITING
0 WAITING

SEC_IN_WAIT

1
0
0

Session 29 is waiting for db file sequential read. In our testing that event showed
up quite a few numbers of times, and got our attention. Following query shows
additional information related to its wait event. We have restricted the query to

show only a few sessions of our interest.

SQL> select Sid, Event, Pltext, P1, P2text, P2, P3text, P3

2 from V$SESSION_WAIT

3 where Sid between 28 and 52
4 and Event not like '%SQL%'
5 and Event not like '%rdbms%’;

Chapter 2: The Method Behind the Madness

SID EVENT P1TEXT P1 P2TEXT P2 P3TEXT P3
29 db file sequential read file# 67 block# 19718 blocks 1
32 db file scattered read file# 67 block# 17140 blocks 32
51 db file sequential read file# 63 block# 7556 blocks 1

3 rows selected.

SQL >

Here it is folks! Two sessions are accessing the same data file and possibly the
same segment. P1 shows this fact clearly. One session is performing a full table scan
whereas other is using an index scan. With the information from P1 and P2, it is
easy to find out what this segment is. Following query does just that.

SQL> select Owner, Segment_Name, Segment_Type, Tablespace_Name
2 from DBA_EXTENTS
3 where File_Id = &Fileld_In
4 and &Blockld_In between Block_Id and Block_Id + Blocks - 1;

Enter value for fileid_in: 67

old 3: where File_id = &Fileid_In

new 3: where File_id = 67

Enter value for blockid_in: 19718

old 4: and &Blockid_In between Block_Ild and Block_Id + Blocks - 1
new 4: and 19718 between Block_Id and Block_Id + Blocks - 1

OWNER SEGMENT_NAME SEGMENT_TYPE TABLESPACE_NAME
MARKET ITEM_MASTER_INFO TABLE ITEM_MASTER

1 row selected.

SQL>

There you have it! Queries accessing table ITEM_MASTER_INFO are causing
some waits. Let us see what SQL session 29 is running at the moment.

We have created a small function to retrieve the SQL text for the session from
view V$SQLTEXT. Following is that function:

-- GetSQLtext.sql
-- Simple function to access address, hash_value and return
-- SQL statement (will fail if stmt size > 32 k)
CREATE OR REPLACE
FUNCTION GetSQLTxt (HashAddr_In IN V$SQLTEXT.Hash_Value%TYPE
,Addr_In IN V$SQLTEXT.Address%TYPE)
RETURN VARCHAR2
IS
Temp_SQLTxt varchar2(32767);

CURSOR SQLPiece_Cur
IS

35

36 Oracle Performance Tuning 101

select Piece, Sql_Text
from VSSQLTEXT
where Hash_Value = HashAddr_In
and Address = Addr_In
order by Piece;

BEGIN
FOR SQLPiece_Rec IN SQLPiece_Cur
LOOP
Temp_SQLTxt := Temp_SQLTxt || SQLPiece_Rec.Sql_Text;
END LOOP;

RETURN Temp_SQLTxt;
END GetSQLTXxt;
/

Here is a simple SQL query to use the above function to get the SQL Text:

SQL> select Sid, GetSQLtxt(Sgl_Hash_Value, Sql_Address)
2 from V$SESSION
3 where Sid = &Sid_In;

Enter value for sid_in: 29
old 2: where Sid = &Sid_In
new 2: where Sid = 29

SID GETSQLTXT(SQL_HASH_VALUE,SQL_ADDRESS)

29 select sum(decode(im.action_code,'A',1,'1'2,'P''1',0) * im.disc_amt),
sum(im.last_amt), sum(decode(im.action_code,’A',1,1'2,'P",1,0) * im.m
isc_amt) - sum(im.ast_amt) from items_detail info id, item_master_in
fo@INVP im where id.period_num in ('00','02'/04) and id.item_flg = '1'
and im.action_code in (A,I'P) and (im.suff_code id <> 0 or im.stat
us in (R,S) or imtype in (C,'S))

SQL>

We have found the culprit!

So, from knowing that event db file sequential read was experiencing some
waits, we have identified not only the sessions contributing to those waits, but the
exact SQL.

Some Common Events

It is very important for those of us who are involved in tuning engagements to become
familiar with the common wait events that occur on most systems. A very good source
of information for all the events on the system is available in Appendix A of the Oracle
Reference Manual. We urge you to study that reference, as it is essential to understanding
what each wait event means. Table 2-1 lists some common events that we have
encountered across many systems over the past years. The Meaning/Relevance section

Chapter 2: The Method Behind the Madness

for this should not be considered as the end-all for a given wait event. Table 2-1 is
meant to be a general overview of the events, not necessarily a comprehensive
description of every event and is not intended as a checklist.

Wait Event Name

buffer busy waits

db file parallel write

db file scattered read

db file sequential read

db file single write

direct path read

direct path write

enqueue

free buffer inspected

Meaning/Relevance

Indicates wait for buffers in the database buffer cache.
This indicates that a session is reading this buffer into
the cache and/or modifying it. Can also be a symptom
of lack of enough free lists on tables that support many
concurrent INSERT operations.

Indicates waits related to the DBWR process. May be
related to the number of DBWR processes or DBWR 1/O
slaves configured. May also indicate slow or high
contention devices.

Indicates waits associated with a full table scan. May
indicate 1/O contention or an excessive amount of 1/O.

Indicates (among other things) waits associated with an
index scan. May indicate I/O contention or an excessive
amount of 1/O.

Indicates waits associated with header writes during
a checkpoint. Typical in an environment with an
inordinate number of data files.

Indicates waits associated with direct I/O enabled.
Usually indicates 1/O contention on devices.

Same as above. Relevant to writes.

Indicates waits associated with internal queuing
mechanism for locking various resources and
components of Oracle. Please refer to Appendix B
of the Oracle8i Reference Manual for the complete
list of enqueues in Oracle.

Indicates waits associated with the process of identifying
a free buffer in the database buffer cache to bring data
into the cache.

TABLE 2-1. Some Wait Events and Their Relevance

37

38 Oracle Performance Tuning 101

Wait Event Name

free buffer waits

latch free

library cache load lock

library cache lock

library cache pin

Meaning/Relevance

Indicates lack of free buffers in the database buffer
cache. This could mean either the database buffer cache
is too small or the dirty list (list of modified blocks in the
cache) is not getting written to disk fast enough. If that is
the case, configure more DBWR processes or I/O slaves,
as the case may be. This event occurs when the free
buffer inspected event does not find any free buffers.

Indicates latch contention for the latch# that is being
waited on. Ensure that you already have tuned the
number of latches to their allowed maximums by setting
the relevant init.ora parameters. If the problem persists,
you should determine what is causing the contention for
the latch and fix the underlying problem. Your goal
should be to cure the disease not the symptom. A latch
free event is a symptom of a bigger problem. For
example, if the latch# derived from this is a library
cache latch (assuming that the shared pool is configured
appropriately), it may indicate a significant amount of
hard parsing. This usually is a problem with applications
that have hard-coded values in them. Either rewrite
them with bind variables or upgrade to Oracle8i and use
CURSOR_SHARING=force (or just look the other way).

This is required to load objects into the library cache.
This wait event can occur when a significant amount
of reloads/loads are occurring (normally caused due to
either lack of reuse of SQL statements or a improperly
sized shared pool area).

Indicates waits associated with concurrency of multiple
processes accessing the library cache. Can indicate an
improperly sized shared pool area, as this lock needs to
be acquired to locate objects in the library cache.

This wait event is also associated with library cache
concurrency and can occur when a given object needs
to be modified or examined in the library cache.

TABLE 2-1. Some Wait Events and Their Relevance (continued)

Chapter 2: The Method Behind the Madness 39

Wait Event Name

log buffer space

log file parallel write

log file single write

log file switch
(archiving needed)

log file switch
(checkpoint incomplete)

log file sync

SQL*Net message
from/to client

Meaning/Relevance

Indicates a potential problem of LGWR not being able
to keep up with the rate of writes into the redo log buffer
by server processes. Usually indicates a log buffer size
problem (too small) or slow device(s) or contention
where the online redo logs are located.

Indicates waits associated with the writing of redo records
from the redo log buffer to disk. Usually indicates slow
device(s) or contention where the online redo logs are
located.

Indicates writing to the header block of the log files.
May indicate waits during checkpoints.

Waits indicate ARCH is not keeping up with LGWR. Could
be because of online redo logs being too small, slow
devices, or high contention on devices (usually caused by
the log files placed on the devices where data files are).
May also want to investigate the possibility of multiple
ARCH processes or I/O slaves, as the case may be.

Indicates waits associated with improperly sized online
redo log files (usually too small).

Indicates waits associated with the flushing of the redo
buffers on a user commit. If the waits are persistent, it
may indicate device contention where the online redo
log files are placed and/or slow devices.

Indicates elapsed time during communication between
the user process and the server process. In some rare
cases can shed light on a network transmission problem,
but for the most part can be ignored. If the application
supports the configuration of ARRAYSIZE (for example,
Oracle Forms, SQL*Plus, Pro*C, and so on), configuring
ARRAYSIZE to a value greater than its default value can
potentially decrease the waits for this event.

TABLE 2-1. Some Wait Events and Their Relevance (continued)

40 Oracle Performance Tuning 101

Wait Event Name Meaning/Relevance
SQL*Net message Indicates wait associated with distributed processing
from dblink (SELECTs from other databases). This event occurs

when online lookups to other databases are done via
DBLINKS. If the data being looked up is mostly static,
moving the data to a local table and refreshing it as
needed can make a significant performance difference.

timer in sksawat Again indicates a slow ARCH process, either due to
contention of multiple components of the database or
not enough I/O processes/slaves to perform the archival.

transaction Indicates waits associated with a blocking transaction to
a rollback operation.

undo segment extension Indicates dynamic allocation of extents and extension
of rollback segments. This may indicate the lack of the
optimal number of rollback segments or the lack of the
optimal number of MINEXTENTS for those segments.

write complete waits Indicates waits associated with buffers to be written down
to disk. This write may be caused by normal aging of
blocks from the database buffer cache.

TABLE 2-1. Some Wait Events and Their Relevance (continued)

NOTE

It is useful to note here that the Oracle Wait Interface
does not directly identify wait events associated with
memory operations, CPU operations, or even logical
/O calls. But the list of such events is very finite and
this should not in any way deter you from using the
Oracle wait interface. This is because if you don’t see
the event in the wait interface, it should indirectly lead
you to the potential problem areas. Given that what
we have described here is a two-pronged approach,
where the second prong is operating system statistics
and monitoring, the culprit will be found either in
Oracle or in the operating system. It is very rare that
the culprit will fall through the cracks and go
undetected in either prong.

Chapter 2: The Method Behind the Madness

VIP

Although your primary goal should be to take
corrective action for the wait events with the STATE
of WAITED_KNOWN_TIME, it should be noted here
that if there are a significant number of sessions in
your system that wait for an event with the STATE

of WAITED_SHORT_TIME (less than 1/100ths of a
second), you need to calculate the weighted average
of the amount of time waited by those sessions. If the
resulting number is greater than 1/100ths of a second,
you need to pay attention to those events, which you
may have originally ignored due to the event’s
WAITED_SHORT_TIME value in the STATE column.

Miscellaneous Sources of Performance Clues

More clues for the Oracle Performance Management sleuth can be found in the Oracle
trace files and the alert log. These files may actually serve as the first warning that
something is not going exactly the way it should. In particular, monitoring the alert
log should be a routine part of the daily care and feeding of a database. Look for
any kinds of errors. Things like deadlocks will be noted in the alert log. Space
allocation errors and the infamous ORA-00600 errors are all listed here. Some of
these errors do appear once in a while and can be considered normal. Repeated
occurrences are grounds for suspicion.

Adding the parameter LOG_CHECKPOINTS_TO_ALERT = TRUE will cause
checkpoint events to be written to the alert log. If a checkpoint doesn’t finish before
the next one starts, there will be some notice. Routinely reviewing these files can
provide a heads-up that the instance is starting to go astray or that developers are
writing code that doesn’t take best advantage of Oracle’s locking mechanism.

Trapping Wait Events to a Trace File

If you are having trouble tracking down the wait events on your system (for
whatever reason), you can trace these wait events and trap them to a trace file.
Here are the steps.

For your current session:

T] alter session set timed_statistics=true; /* If not already set */
_ y

alter session set max_dump_file_size=unlimited; /* Just to make sure your
trace file does not get truncated, due to current setting in the database */

alter session set events '10046 trace name context forever, level X';
/* Wher e X = (1,4,8,12) */
1 = Statistics

41

4?2 Oracle Performance Tuning 101

4 = Statistics, Bind Variable Values
= Statistics, Wait Event Information
12 = Statistics, Bind Variable Values, Wait Event Information

I. Run your application and then look for the trace file in the directory location
pointed by USER_DUMP_DEST.

2. Scan the file for all lines that begin with the word WAIT.
For someone else’s session:

I. Identify the session’s process ID (SPID). The following query identifies the
session process ID of all users whose name begins with A:

select S.Username, P.Spid
from V$SESSION S, V$PROCESS P
where S.PADDR = P.ADDR
and S.Username like 'A%";

2. Launch SQL*Plus or svrmgrl and connect as internal or connect/ as sysdba:

alter system set timed_statistics=true; [* If not already set */

alter system set max_dump_file_size=unlimited ; /¥ Just to make sure your trace
file does not get truncated, due to current setting in the database */

oradebug setospid <SPID>

oradebug unlimit

oradebug event 10046 trace name context forever, level X [* Wher e X = (1,4,8,16) */
3. Trace session application for some time interval.

4. Look for the trace file using the SPID in the directory location pointed by
the value of USER_DUMP_DEST.

5. Scan the file for all lines that begin with the word WAIT.

Identify the Current OS Bottlenecks

Now that you have taken the time to gather information about the database, you
will want to compare those with statistics for the operating system during the
same period. What? You didn’t gather any? Well, now is the time. On UNIX and
Windows NT, some of the core system metrics that need to be measured include
CPU utilization, device utilization, and virtual memory statistics.

Chapter 2: The Method Behind the Madness

NOTE

We’d like to make a special mention here for our
readers using Oracle on Windows NT. Although the
following sections are UNIX-heavy, the issues and
the key metrics that you deal with on Windows NT
are no different on UNIX. We have provided

the relevant equivalents on the Windows NT
Performance Monitor when discussing the UNIX
commands/tools. Please realize that the UNIX
commands need to be explained in far more detail,
due to their inherent complexity. We sincerely
apologize for not incorporating sample outputs from
the Windows NT Performance Monitor.

Monitoring on Windows NT

On Windows NT, monitoring the operating system is as simple as launching the
Windows NT Performance Monitor (Start | Programs Administrative Tools (Common) |
Performance Monitor). When you see the blank chart or an existing chart, you can
Edit | Add to Chart, and a whole slew of options and information is at your fingertips.
The Explain button details the meaning of each option/value. We urge you to read on
and understand the issues you need to deal with, even though the following sections
are UNIX-heavy. Look for the comparable Windows NT equivalents in each section.
For a very high-level overview of your Windows NT system performance, you can use
the Task Manager (right-click on your taskbar and order your applications by either
CPU or memory, by clicking the header buttons).

Also, when you feel you do not have the time or the patience to build your
Windows NT monitoring toolkit, you might want to check SyslInternals Inc.’s Web
site at http://www.sysinternals.com/. There is a wealth of Windows NT-specific free
tools and information available.

Monitoring on UNIX

All right, you UNIXoids. Your life is not as easy as that of your Windows NT
compatriots. There are several tools you can use on UNIX to provide some interesting
information on the OS for the same period. These tools are available on most flavors
of UNIX and we have tried to keep them as generic as possible. They include sar,
vmstat, iostat, cpustat, mpstat, netstat, top, and osview. Please note that these
commands display varied output, depending on the flavor of UNIX you use, hence

43

44 Oracle Performance Tuning 101

we recommend that you get more information about the various tools mentioned
above in the manual pages of your UNIX (a.k.a. man pages). The sample commands
and their relevant switches, along with their outputs in this chapter, were produced
from a Sun Solaris system (version 2.61).

Many operating systems offer more advanced tools such as PerfMon and Glance
Plus, and many companies purchase tools for the express purpose of monitoring the
operating system. You will also want to be aware of how the hardware and operating
system is configured. How much memory does it have, how many CPUs, controllers,
disks, disk groups, and so on. After you have this and the previous Oracle reports, you
can move on to the next task: identifying the bottlenecks.

CPU Utilization = CPU utilization can be measured on most flavors of UNIX,
by executing the sar -u 5 1000 command. The command sar is short for system
activity reporter. The switch -u is for CPU numbers. The first number represents
the measurement frequency (in seconds), while the second number represents the
number of iterations of measurement for each elapsed measurement frequency.

One of the classic myths about CPU utilization is that a system with O percent
idle is categorized as a system undergoing CPU bottlenecks. The real issue here is,
how many processes are waiting for the CPU? It is perfectly okay to have a system
with 0 percent idle, so long as the average runnable queue for the CPU is less than
(2 x number of CPUs).

NOTE

This number (2 X number of CPUs) has been used
for a few years now, based on current processor
architectures and speeds, personal experience, and
recommendations from some of the UNIX experts
in the industry. It is a yardstick, not a high-precision
measurement tool.

If your runnable queue is less than the mentioned threshold and your %idle is 0,
go ahead and pat yourself on your back, as you are utilizing 100 percent of the
system you purchased. You are getting your money’s worth. In the coming pages,
we will help you determine the runnable queue on your system using the vmstat or
sar -q commands. On Windows NT, if you launch the Task Manager and select the
Performance tab, you can view your overall CPU utilization numbers, under the
Processor Object. You can also break down the CPU numbers into %Privileged
Time, %Processor Time, %User Time, as well as get queue information such as
DPC Queued per second and so on. A sample sar -u output is as follows:

Chapter 2: The Method Behind the Madness 45

(== SunOS ganymede 5.7 Generic sun4u 10/30/00
18:58:12 %usr %sys %wio %idle

18:58:17 68 4 22 4
18:58:22 61 2 22 15
18:58:27 57 4 11 28
18:58:32 46 5 23 27
18:58:37 67 2 10 21
18:58:42 67 4 20 9
18:58:47 73 3 15 9
18:58:52 75 5 4 16
18:58:57 79 4 18 0
18:59:02 69 3 12 17
Average 66 4 16 14

The CPU utilization is broken down into various components: %usr, %sys,
%wio, and %idle. The first component, %usr, refers to the percentage of the CPU
that is utilized by user processes (mind you, the term “user processes” here is
from the perspective of the operating system). Oracle is considered a user of the
operating system. The second component, %sys, measures the amount of CPU
utilized by the operating system to do its job (context switches when a process
needs to perform I/O and currently has the CPU or vice versa, servicing of interrupts,
servicing signals, and so on). The third component, %wio, is a measure of processes
that are currently utilizing the CPU, but are waiting for I/O requests to be serviced
and hence are not making prudent use of the CPU. Depending on the amount of
I/O and the load on the system, any time a process currently holding the CPU
has to perform I/O, will cause the operating system to perform a context switch
by de-assigning the CPU from the process and giving it to another process in the
runnable queue. When the original process has completed the 1/O operation, it will
get back into the runnable queue to get a slice of the CPU time. Depending on
which school of thought you are from, you may consider %wio a wasteful use of
CPU or potential idle time. The fourth and final component, %idle, refers to the
percentage of available CPU or in simple terms the amount of idle CPU capacity.

Everything remaining constant, the numbers that come out of the %sys and
%wio should be less than 10-15 percent. If you consistently notice numbers higher
than that, it is pretty obvious that your system is experiencing a very high number of
context switches and interrupts (%sys) and also experiencing a significant amount of
wait-for-1/O (%wio). If you do observe high numbers, you need to get to the bottom
of it and find out what is causing it. It is an application problem 9.9 out of 10 times.

Device Utilization Device utilization numbers can be acquired by executing
sar -d 5 1000. This command provides useful information such as the device name,
the %busy for a given device, the average length of the device queue (avque), the
number of reads+writes per second (r+w/s), blocks transferred (blks/s measured

in 512 byte chunks), the average wait time for each I/O operation during that period
of five seconds (avwait, in milliseconds), and the average time it took to service I/O

46 Oracle Performance Tuning 101

operations (avserv). Again, comparable settings and values are available in the
Windows NT Performance Monitor under the Logical Disk Object.

Optimal device utilization starts to degrade when the %busy exceeds 60
percent. There is also a direct correlation between an increase in %busy and the
average device queue length, average wait time, and average service time (avque,
avwait, avserv). On current disk systems (with significant amounts of disk cache),
a value of 100 milliseconds for avserv is considered very high. If you see such
high numbers, you should start an investigation to unearth the cause.

NOTE

When using third-party storage systems, investing
in a tool that will provide you with the necessary
information (inside the storage arrays) is not only
useful but required. This is due to the fact that the
numbers from the sar -d output have been observed
to be bogus. It will make you believe that there is
no real I/O contention or bottlenecks when such
beasts exist in your /O subsystem. You will see
evidence of that in the wait events of Oracle. This
phenomenon is due to multiple levels of cache
between what the operating system views as a
device and what really ends up being a disk

on a storage system.

Sample output from a sar -d command:

| SunOS ganymede 5.7 Generic sun4u 10/30/00
19:09:51 device %busy avque r+w/s blks/s avwait avserv

19:09:56 dad1l 30 05 59 964 06 7.3
dadl,d 21 02 21 350 0.7 104
dad1l,f 18 02 34 543 06 54
19:10:01 dadl 25 04 46 735 03 8.0
dadl,d 22 02 23 377 00 93
dad1l,f 14 01 16 259 00 84
19:10:06 dadl 28 05 50 814 11 84
dadl,d 22 02 15 249 11 143
dad1l,f 18 02 29 469 05 6.1
Average dadl 29 05 61 750 05 6.9
dadl,d 23 03 30 249 02 82

dadl,f 15 02 25 348 04 59

Chapter 2: The Method Behind the Madness

Virtual Memory Utilization Virtual memory statistics can be acquired by
executing vmstat -S 5 1000. This command provides in-depth information not only
about various virtual memory statistics but also on any current CPU bottlenecks that
the system is experiencing. The preference of -S is to focus on processes that are
swapping rather than the ones that are just paging. The output from this command

is very comprehensive and is divided into six distinct sections: process information,
memory usage, paging activity, some rudimentary disk usage numbers (not very
useful), system-wide traps/faults, and CPU utilization. On the Windows NT Performance
Monitor, you need to focus your attention on the memory object. The following is

a sample output from a vmstat -S command:

| procs memory page disk faults cpu
rbw swap free si so pi po frde srdd dd fO sO in sy c¢s us sy id
100 1864 168 0 0124 7293 011 21 7 0 0O 471 554 1208 23 9 68
0 0 0 1906800 10808 O 0 0 0O0O OO O 2 0 0 191 13616 201 98 2 O
2 0 0 1906800 10800 O 0 00O OO0 11 2 0 0 172 136711759 4 0
3 0 0 1907288 11112 O 0O 0 0 0O0OO O 2 O O 174 13584 170 9% 4 O
2 0 0 1907288 11112 O 0 00O O OO 2 0 0 172 13630 164 97 3 O

In the output for virtual memory statistics, r b w belongs to process information,
swap free belongs to memory usage for these processes, si so pi po fr de sr belongs
to paging activity of the processes (also related to memory), dd dd f0 s0 relates to
rudimentary disk usage information, in sy cs belongs to system-wide traps/faults, and
last but not least, us sy id belongs to CPU utilization (the only difference between sar
-u and this output is that this output combines %wio and %idle into one bucket).
Table 2-2 summarizes and explains the output from a vmstat -S command.

The key things to look for here is the size of the runnable and blocked queues
(r and b), the rate of swapping, if any (si and so), the amount of short-term memory
shortfall (de), and the scan rate of the clock algorithm (sr). The value of r should
definitely average less than (2 x number of CPUs), failing which your system could
be experiencing CPU bottlenecks. The value of b should indicate the number of
processes blocking (usually for 1/0), and this should again provide insight into the
performance of the system from the operating system’s perspective. si and so
provide swapping information (ideally this should be always 0 if you have not gone
overboard on memory allocation for the Oracle SGA or components of the PGA).
de and sr provide any indications of memory starvation in kilobytes and also in the
form of whether the clock algorithm is scanning the memory freelist for available
pages. On more recent versions of some operating systems (Solaris 2.8), sr should
be 0 or very close to it. In prior releases of Solaris, you may see some high numbers
for sr, but that by itself should not cause any alarm.

47

48 Oracle Performance Tuning 101

vmstat -S (Output
Information)

Procs (r b w)

Memory (swap free)

Page (si so pi po fr de sr)

Disk (dd dd f0 s0)

Faults (in sy cs)

CPU (us sy id)

Meaning/Relevance

r refers to processes in the run queue (waiting to run
with the CPU).

b refers to processes that are blocked for resources such
as 1/0, paging, and so on.

w refers to processes that are runnable, but are
currently swapped (possibly due to extreme memory
starvation).

swap refers to the amount of swap space currently
available in kilobytes.

free refers to the size of the freelist of memory (also in
kilobytes).

si and so refer to the number of kilobytes of memory
swapped in and out.

pi and po refer to the number of kilobytes of memory
paged in and out.

fr refers to the number of kilobytes freed.

de refers to the anticipated short-term memory shortfall
in kilobytes.

sr refers to the number of pages (sized in pagesize)
scanned by the clock algorithm.

Up to four devices worth of information is provided.
The numbers indicate the number of I/O operations per
second. Not very useful, can get better information from
the sar -d command.

in refers to the number of device interrupts.
sy refers to the number of system calls.
cs refers to the number of CPU context switches.

us refers to the percentage of time utilized by user
processes.

sy refers to the percentage of time utilized by system
processes.

id refers to the percentage of time not currently utilized
(includes all wait-for-1/O numbers).

TABLE 2-2. Keys to Understanding Vmstat —S Output

Chapter 2: The Method Behind the Madness

[t is also useful to run commands such as top and osview or any other operating
system performance monitor that provides information and metrics about the health
of the system. The sar command itself has many switches that provide various
information such as rate of paging (-p option), size of the CPU run queue (-q option),
and so on. It is useful to understand the various options that the sar command
provides, as it is more readily available across all flavors of UNIX, when compared
to commands such as vmstat that may not be readily available. For example, the
output of a sar -q 5 1000 command has two important columns of information,
rung-sz and runocc. The first column provides information on the number of
processes awaiting the CPU (run queue) and the second column provides information
on the percentage of time the CPU is occupied or busy. There are two other
columns of output (swpg-sz and swpocc), and they provide information related
to the swap queues.

The commands netstat -v and netstat -s provide detailed network statistics,
including information about various open sockets and some basic routing information.
Please refer to the man pages to get a better understanding about this and other OS
commands used here. On Windows NT, there are scores of graphical tools that
provide network performance analysis. Hang out with your network administrator
for a few hours and you will become familiar with the tools he or she uses.

There are many ways to find out the health of your operating system; what we
have described here is a subset of the various methods. We have shared with you
the methods we have used at various sites and that have worked for us.

Tune the Required Component

What does that mean? It means change the one thing that will cause the wait event
to become insignificant or just go away. But be careful. This is the point at which
self-control comes into play. Now you have to resist all temptation to do more than
your well-reasoned, well-researched study indicates.

If you have identified that you have a serious resource shortfall in the
allocation of memory to the shared pool, now is the time to change the value
of SHARED_POOL_SIZE. But if the research did not indicate a need for more
database blocks to be cached, don’t even think of increasing the value of
DB_BLOCK_BUFFERS.

If you find that your application is joining a local table with 10,000 rows with
a remote table with 10 million rows, adding anything to either of those areas isn’t
going to help. So don't. Believe it or not, nine out of ten times, if you tune or rewrite
the SQL statements that were causing the problem, the problem goes away. There
is no substitute to optimal SQL statements. No amount of memory, CPU power, and
disk storage can replace good old-fashioned, reasonable, decent SQL code. You
might want to take your developers out to happy hour and try teaching them SQL
optimization techniques. You may be surprised at their problem-solving techniques

49

50 Oracle Performance Tuning 101

when the level of inebriation goes up and the creative juices start to flow.
Insurmountable problems and issues will get solved faster than you can imagine.

Also, understand the options and limitations of the version of Oracle you are
working on, and get to know what it has to offer with respect to the situation you are
in and the solution you are trying to implement. Research implementation options
on Oracle forums, such as list servers on the Internet, access forums like Oracle
Metalink, the Oracle Technology Network (OTN), and such, to find out how someone
has fixed the same problem you are having. But before you post any queries, please
Read The Fine Manual.

You may find there is something amiss with the operating system. If that is
truly the case, then say so. Tell the system administrator you don’t have enough
independent devices to separate your hot files that are experiencing the maximum
amount of I/O. But don’t just add more memory or even start rearranging files
when you know that it won't help.

Figuring out which component to tune is accomplished by comparing information
from the investigation of the OS and the investigation of the Oracle instance. The
primary goal is to see where the two overlap. For instance, if the V$ views show
wait events associated with index scans, you should drill down to the file and the
segment on that file that is causing the wait event. Look at what the OS is doing—
do you see significant %wio numbers in your sar -d 5 1000 output for the specific
device where that file system is mounted (in which the specific file and segment are
housed)? If that is the case, congratulations, you might have your finger on your
problem. The index scan-related wait event could be a case of poor disk layout, poor
application design, or poor SQL. Once you have made the few controlled changes
that were defined by your analysis, it’s time to go to the next step. You have to
see if you hit your target.

Track and Exercise Change-Control Procedures

It is extremely important to track the changes you make in your environment, so
that if things do not go according to your grand plan, you at least have a fallback
option. Having your Plan B ready to deploy when you need it is the sign of a good
DBA who plans for Mr. Murphy being in your neighborhood. Deploying change-control
procedures that will work for your environment is your responsibility and your

first order of business. You should not attempt any tuning efforts before setting up
your change-control procedures. Said in another way, you need some method

of doing a rollback of your tuning efforts. Your tuning efforts should not be similar
to operations that cannot be rolled back, such as the truncate operation on a
production table. Don’t make us say “We told you so!”

Chapter 2: The Method Behind the Madness

Measure and Document Current Performance

This part of the process looks a lot like the first part. That’s because it is. It's time

to gather statistics all over again. Get them from the same time frames as before,
otherwise you will be comparing apples and oranges. The idea is to see if the things
that were a problem are still a problem and to what degree. If there were lots of “redo
space wait requests” before, do you have fewer now? Of course, statistics such as
these won’t answer the ultimate question: is the customer satisfied? Does the query
run in the time required? If so, you are finished. If not, go to the next step.

Repeat Steps 3 Through 7 Until
the Tuning Goal Is Met

This one is pretty self-explanatory. Since tuning is known to be an iterative process,
now is the time to go to the next iteration. Be prepared to go through the process
several times before hitting your target. And, of course, when you do hit that set of
targets and your reputation for success spreads, you will have many other systems
to tune.

In a Nutshell

Every Oracle Performance Management effort is potentially tri-faceted: tune, schedule,
or buy. Ultimately, the point we are trying to make regarding the tune facet is very
simple: don’t bet your professional life on performance tuning systems based solely
on cache-hit ratios. By following the process of setting attainable goals, measuring
current performance, making deliberate, well-considered changes, and reevaluating
and reiterating the process, you can be assured of making positive progress in your
tuning effort. Taking the two-pronged parallel approach to monitoring the operating
system for resource bottlenecks, and using session wait statistics within Oracle to
determine the exact nature of the performance difficulties, allows for a very productive
Performance Management effort. The key to this method is drilling down to the
heart of the problem. So, here we go again:

I. Start with V$SYSTEM_EVENT and determine what resource is in highest
demand, such as db file sequential read (the wait event for index scans—
really, it is for index scans even though it sounds like it is for full table
scans), and so on.

2. Drill down further to V$SESSION_EVENT and see which and how many
sessions are involved for any given wait event.

51

5?2 Oracle Performance Tuning 101

N o v »

Next, look at V$SESSION_WAIT to find the details of the resource contention,
for example, which files, tables, latches, and so on.

Check the values for P1-P3 to find the relationships to other views.
Consider the time waited for these and other events. Pick the top five events.
Continue this process until all of the contention-related events are unearthed.

At the same time, determine which SQL statements are contributing to
these wait events. Is it the same statement repeated? Remember that a large
percentage of tuning problems originate with SQL that has not been
optimized for the current architecture.

In a parallel effort, analyze the OS statistics. Perform this operation focusing
on the issues that confront the Oracle environment. That means you should
read the OS statistics as they relate to Oracle. For example, nine times out
of ten, if you have an index block or full-table scan related wait, the I/O
statistics at the OS will show their equivalent event “wait of I/O”. Figuring
out which device is the problem is then just a matter of drilling down using
the OS tools described earlier. Also, the values in P1 and P2 will provide
the perspective from Oracle’s side.

Once you have determined the problem area, decide on a solution and
implement it.

. Deploy adequate change-control mechanisms so you can track what

changes you have made and what effect they have had on the system.

After the solution is implemented, reevaluate to see if you have met your goals.
If so, well, you know what to do. Cheers!

NOTE
If the source of a system performance problem is
created by a user because of an application that he

or she is running, it is okay to start from step 2 of
the above checklist, as the problem is specific to a
user’s session. This is relevant when a user says that
“Query X is running slow.”

Just to recap, if the database buffer cache-hit ratio is low and you are beginning
to get alarmed, stop and look at the wait events for the sessions. If there are no
I/O-related wait events, your suspicion of a performance problem is unfounded. On
the flip side, if your cache-hit ratios are in the upper 90s, don’t just sit back thinking

Chapter 2: The Method Behind the Madness 53

that everything is fine, because in reality it may not be. All you have to do is check
for the wait events. Don’t assume that a 99.999 cache-hit ratio implies that your
Oracle database is performing at its peak efficiency, because even with that kind

of cache-hit ratio, something nasty could be brewing. The cornerstone of tuning
Oracle-based systems should be wait events, not ratios. If you were on a desert island
with no documentation, without any of your tuning tools, and you were asked to
troubleshoot an Oracle performance problem using five V$ views or less, you should
pick V$SYSTEM_EVENT, V$SESSION_EVENT, and V$SESSION_WAIT (in that order).
Have we made our point?

One more thing: This chapter is the core of this book. Our primary goal behind
this book rests on the number of times you reuse this chapter in your tuning efforts.
Well, the other chapters also contain valuable information, but this chapter is key to
your continued success in performance engagements. So go ahead, enjoy your tuning
efforts, and, please do take the time for your family and loved ones. Ultimately, they
are paramount to everything. And, by engaging in methodical and organized tuning
efforts, you might actually find the time to spend with your family and loved ones.

1002
1l

ORIGINAL * AUTHENTIC

Oracle Press

ONLY FROM OSBORNE

Expert authors, cutting-edge coverage, the latest
releases...find it all at OraclePressBooks.com

Oracle Press

[T e P

From a full selection of titles focusing
on Oracle’s core database products to
our in-depth coverage of emerging
applications, Web development tools,
and e-Business initiatives, Oracle Press
continues to provide essential resources
for every Oracle professional. For a
complete list of Oracle Press titles—
from the exclusive publishers of
Oracle Press books—and other valuable
resources, go to

OraclePressBooks.com.

Get the most complete information on
Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

i

OsBORNE
ORACLE PRESS™—EXCLUSIVELY FROM McGRAW-HILL/OSBORNE www.osborne.com

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

