
ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:247

CHAPTER
10

Contention Tuning

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Myth & Folklore
Tuning contention in the database provides huge performance benefits. Hence, let’s
tune the daylights out of the latches on the system.

Fact
Avoiding or eliminating contention is important, but seldom should this be the first
thing you do in a managed performance tuning effort. Contention tuning should be a
part of overall database tuning strategy. More importantly, as a DBA you need to know
when and where to engage in such tuning efforts. However, tuning contention is not
magic and rarely brings about orders of magnitude of performance increase like in
application tuning. (One exception is I/O contention tuning, which is very important
and is covered in great detail in the chapter “I/O Tuning.”) As mentioned before, you
need to follow a methodical approach to tuning Oracle, and we have covered this in
detail in the chapter “The Method Behind the Madness.”

Tuning contention definitely takes lower precedence over application tuning
and instance tuning from the perspective of “What should I tune first?” Remember
one thing: the best way to deal with contention is to not have it. This is because we
want you to learn about the relevant issues, deal with them in a proactive manner,
and spend time on other important things. Do not waste too much time pondering
which latch needs tuning next! There is only so much latch tuning you can do. If
your database experiences latch contention (and you have already configured all
the relevant latches for your version of Oracle to its allowed maximum), you should
investigate the cause of the contention. Latch contention is caused by serialization
in one or more components of your application. Take all of the required and necessary
steps to fix your application problems. As mentioned before many times, the goal
in a performance tuning effort should be to treat the disease, not just the symptoms.
Latch contention is a symptom of the bad application code (the disease).

S
o what is contention in an Oracle database? Simply put, it is the
struggle between one or more processes to access the same resource
at approximately the same time. Just like two or more kids fighting for
the same toy to play with at the same time! If you had more than one
identical toy, some kids will be happy to get another one, but there will

be some kids who will want the exact same toy the other kid has. This is no different
in an Oracle system. Sometimes Oracle will work fine if you have multiple copies
of certain resource, but there may be situations where multiple processes will request
the same resource, pretty much at the very same time. However, in Oracle there is
a methodical approach to address and resolve such contention issues. With kids,
that is a totally different matter and you are on your own! But before you embark on
the journey to resolve contention, please note that there will always be some sort of

248 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:248

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:249

contention or bottleneck. It is practically impossible to eliminate all of the
contention and bottlenecks on your system all of the time. The bigger question is,
“How bad is this contention and what effect does it have on the application
performance?” This chapter is about understanding the common contention issues
and dealing with them in a proactive fashion.

Monitoring Oracle for Contention
In a busy system, if all processes are waiting for resources, they may be waiting for
the same resource more often than you think. This is what causes contention. As
described in the chapter titled “The Method Behind the Madness,” you must make
V$SYSTEM_EVENT, V$SESSION_EVENT, and the V$SESSION_WAIT views your
first line of offense when faced with an Oracle performance problem. The combined
information that is provided in those views will provide you with information about
the various types of contention related to latches, I/O, SGA structures, or database
buffers (to name a few). Hand in hand with these views, you should track down
the SQL statements causing the contention. In addition to all those V$ dynamic
performance views we discussed in that chapter, you’ll want to get familiar with the
V$WAITSTAT view. This will be useful in checking the statistics for contention.

In the following sections, we will discuss contention as it applies to rollback
segments, temporary segments, and latches. We have already discussed contention
tuning as it relates to freelists in the chapter “Database Tuning.” In this chapter, we
will also discuss how some of the application system-related issues can give you
a false impression of contention problems. These are the areas that a DBA can
monitor and tune if needed. Rollback and temporary segments are comparatively
easier to deal with. You need to get familiar with dynamic performance views such
as V$ROLLSTAT, V$SORT_SEGMENT, and V$SORT_USAGE.

However, there are more than 50 different latches in Oracle 7.3.x and around
150 in Oracle8i. Only a very few of them can be changed or adjusted by you or
even need to be changed. So get familiar with the ones you can change. Set them
to their allowed maximum values, and move on. Refer to dynamic performance
view V$LATCHNAME for the list of all latches on your system and take a look at
V$LATCH_CHILDREN to determine how many latches are configured for each type.

Rollback Segments: Why,
How, and How Much?
For an optimally performing Oracle database, proper configuration of rollback
segments is very crucial. Sometimes a novice DBA may ponder about how Oracle
actually uses rollback segments. He or she may also wonder why a database
requires both rollback segments and redo log files. Good questions. Redo logs are

Chapter 10: Contention Tuning 249

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

used to recover the database from an instance or media failure. However, redo logs
are not used when an application attempts to rollback (or undo) a transaction. In
such cases, Oracle will restore the old information from rollback segments. In
addition to this role as a custodian of the old data, rollback segments also facilitate
one of Oracle’s strongest features: multi-version read consistency.

What Is Multi-Version Read Consistency?
Read consistency is the act of providing all users with a consistent view of the data
that was asked for. The multi-version aspect provides that consistent view across
multiple user sessions. In very simplistic terms, it is a scenario where each user sees
his or her own copy of the data. You may ask the relevance of creating a copy per
user session. The answer is plain and simple: by default Oracle will always provide
data that was committed at the time a query was started. Any changes made to the
data while the query is executing will not be visible to you until you requery the
data. Why? If the data is not confirmed or committed, it cannot be trusted for its
accuracy or relevance. In industry lingo, Oracle will not perform “dirty reads.”
Some other relational databases allow and support dirty reads across user sessions.
However, please note that a user who makes changes to his or her data can view
the changes before committing (within the same session).

Dirty reads are exactly what you think—dirty data, data that is not committed.
Just imagine the havoc that dirty reads can wreak to some financial or healthcare
application. In Oracle, even if the changes are committed after your query started,
you will see the data as it existed at the start of your query. However, if rollback
segments are not configured properly and the query runs for a long time while
changes to the data are committed, you may encounter the error “Snapshot too
old.” This error has nothing to do with the Oracle object snapshots. We will tackle
this error very shortly. But first, let us review how rollback segments are used and
how read-consistent views of the data are created.

How Does Multi-Version
Read Consistency Work?
Oracle maintains information in its kernel to help generate a number (which sort of
acts like a sequence number) within the database called the system commit number
(SCN) to represent the state (incarnation) of the database at any given time. This
number advances on database changes caused by structural changes to the database
objects or committed DML operations. As discussed in the section “Configuring
initrans” in the chapter “Database Tuning,” each data block contains a header area
that stores transaction slots for transactions to identify themselves within a block as
they are modifying data. These slots are also called interested transaction lists (ITL).

250 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:250

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The ITL contains three important structures: the transaction ID (TID), the undo
block address (UBA) pointing to where the before image is stored, and the SCN if
the transaction has been committed. Each transaction that modifies data in the data
block inserts its transaction ID in a transaction slot. The server process (servicing the
transaction), copies the before image of the columns that are to be changed (if
applicable) to the assigned rollback segment for that transaction. Once the data has
been modified, the transaction slot is not cleaned immediately, as that job is left for
the next process that reads from that block. This is called delayed block cleanout.

The header area of a block also contains a system change number (not to be
confused with the system commit number, even though they may be referenced in
some documents with the same acronym) and a sequence number used to determine
the version of the block. When you start to make changes, you get a new system
change number and start with sequence 1. This increases by one for each row
updated until you commit or reach sequence number 254, after which you must
get the SCN again. Similar to the transaction slots of the data block, each rollback
segment stores a transaction table in the first block (the header block), which
contains information about the transactions utilizing that rollback segment.
It also includes the data block address (DBA) of the last undo block used for that
transaction. The header block of a rollback segment is also known as the undo
header block ("undo" is another term used to describe rollback).

When a query is initiated, the server process derives the current system-wide
SCN of the database from the Oracle kernel to get a point of reference. As a server
process reads a block of data, it checks the system change number in the ITL to
verify whether the image of the block is read consistent. If the block’s ITL contains
a higher number, it knows that a change has occurred in that block and was
committed after the query was initiated. It now has to recreate the before image of
the block using the current version of the block and the before image of the data
(from the undo block in the rollback segment), as of the SCN that it started with.
This is to provide the read-consistent image of that block. It does this by getting the
list of transaction IDs from the block’s ITL and goes after the before image from one
or more rollback segments (if multiple transaction IDs exist in the block’s ITL). It is
important to note here that a transaction ID never really gets removed from the ITL.

Another scenario is that the number in the ITL is less than the current systemwide
SCN. This implies that data was committed before the query started. In this case, you
read the block as-is, in its current state.

The last scenario is when there is no number in the block’s ITL. The server process
reads the rollback segment header to find out if all of the transactions are committed.
If that is the case, the current SCN is stored in the transaction table located in the
rollback segment header. Oracle then copies the SCN from the rollback segment’s
transaction table to the ITL within the data block. In this case again, you read the
block as is. If not, Oracle will build a read-consistent version of the data block

Chapter 10: Contention Tuning 251

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:251

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

using the current version of the block and the data stored in the rollback segment
undo block.

The data for that block is rebuilt using the before image stored in one of the
rollback segments. The transaction ID(s) stored in the block’s ITL is then searched
in the transaction table stored in each rollback segment’s header block. If for some
reason the server process cannot reconstruct this read-consistent image (the before
image is not present in the rollback segment), the query fails with the error
“ORA- 01555 – Snapshot too old.” If you have not seen it in your environment,
you either have configured your rollback segments appropriately or you are just
plain lucky. Later in the chapter, we will discuss some methods to avoid the
“Snapshot too old” problem.

NOTE
When multiple transactions read and write the same
data block at the same time, there will be multiple
versions of the same data block in the buffer cache.
In such cases, Oracle may have to rebuild the before
image of the data block several times. This is known
as block cloning. Given that the blocks in the
database buffer cache are accessed using a hash
table, multiple clones of the same block will resolve
to the same hash address (the block's physical
address does not change regardless of the number
of clones. Excessive block cloning can cause severe
contention for the cache buffers chains latch.

Defining and Debunking the Wrap Myth
Printed documentation from many reliable Oracle sources may suggest that a wrap
occurs when a transaction writes back to the first extent of the rollback segment.
This is not the case. Each transaction writes to the allocated extents of the rollback
segment in an ordered and cyclical fashion. Allocated extents (initially) are those
that are assigned to the rollback segment during its creation using the minextents
parameter. The minimum number of extents with which a rollback segment can be
created is two.

When an extent is filled with undo entries, Oracle continues to write to the
next available extent. The count of such writing of the before image across extent
boundaries by the same transaction is called a wrap and is reported under the
column wraps in the V$ROLLSTAT view. In short, wraps indicates the number of
times transactions crossed extents while writing the before image to the rollback
segment. Further, it is useful to note that the column extends refers to the number
of times the rollback segment had to be extended by allocating one or more extents
above minextents since the last instance startup.

252 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:252

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The following code listings and outputs captured from a test we performed
corroborate our definition of wraps and extends in the previous paragraph. We
started out with one online rollback segment rbs02 (other than the system rollback
segment), and it was configured with a minextents of 2. The rbs02 rollback segment
is identified by the value 2 under the usn column in V$ROLLSTAT. We then chose
a table that had a million rows in it. We began deleting rows in multiple stages all
within the same transaction.

After a few deletes, the wraps column increased to 1, indicating that the server
process had advanced to the second extent of the rollback segment. The column
extends remained at 0 and the number of extents in the segment was 2 (please note
the difference between extends and extents). As more deletes were performed, the
writes column kept increasing. The final set of deletes allocated a third extent for
the rollback segment and increased the number of extents to 3, wraps to 2, and
incremented extends to 1. The moral of the story: wraps are incremented every time
a transaction starts writing across extent boundaries. Here is the proof:

Rem Run the first set of deletes and look at the rollback segment
Rem statistics.
SVRMGR> select Usn, Extents, Wraps, Extends, Writes

2> from V$ROLLSTAT;
USN EXTENTS WRAPS EXTENDS WRITES

------- ---------- ---------- ---------- ----------
0 8 0 0 1976
2 2 0 0 81605

2 rows selected.

Rem Run the second set of deletes and look at the rollback segment
Rem statistics.
SVRMGR> select Usn, Extents, Wraps, Extends, Writes

2> from V$ROLLSTAT;
USN EXTENTS WRAPS EXTENDS WRITES

------- ---------- ---------- ---------- ----------
0 8 0 0 1976
2 2 1 0 204173

2 rows selected.
Rem If you go by various documentation that defines what a wrap is,
Rem we should not wrap until we rewrite over the first extent.
Rem That is impossible in the above scenario as there is only 1
Rem transaction in our database and we are the only one using this
Rem rollback segment. We have just started writing to the second
Rem extent of the rollback segment and wraps rose to 1.

Rem Run the third set of deletes and look at the rollback segment
Rem statistics.
SVRMGR> select Usn, Extents, Wraps, Extends, Writes

2> from V$ROLLSTAT;

Chapter 10: Contention Tuning 253

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:253

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:02 PM

Color profile: Generic CMYK printer profile
Composite Default screen

USN EXTENTS WRAPS EXTENDS WRITES
------- ---------- ---------- ---------- ----------

0 8 0 0 1976
2 2 1 0 665350

2 rows selected.

Rem No extends or wraps this time, as all of the undo entries
Rem fit into the current extent. However, the number of writes
Rem has increased showing that we are still writing undo entries.

Rem Run the last set of deletes and look at the rollback segment
Rem statistics.
SVRMGR> select Usn, Extents, Wraps, Extends, Writes

2> from V$ROLLSTAT;
USN EXTENTS WRAPS EXTENDS WRITES

------- ---------- ---------- ---------- ----------
0 8 0 0 1976
2 3 2 1 716940

2 rows selected.
Rem Bingo, now you see the number of extents at 3 and the number
Rem of extends at 1.

The bottom line is, when there are no extents available to write more undo
information, Oracle will allocate (add) a new extent based on the next_extent size
to the rollback segment. This is reported in the V$ROLLSTAT view under the
column extends. Oracle extends the allocated size of the rollback segment. It is
exactly the same thing that occurs when tables or indexes allocate new extents
dynamically as they run out of free space with the current extents. More than one
transaction can write to the same extent; however, each rollback segment block
contains information from only one transaction at a given time.

When a transaction commits, if there is at least 400 bytes available in an undo
block, it is put it into the free pool and another transaction can write to the space
that is available in that block (this is true since Oracle 7.3) This can continue until
free space within that block falls below 400 bytes. Now that we have reviewed
what a rollback segment is, why it is used, and how it is used by Oracle, it is time
to find out if there is contention for rollback segment information in your database.

Detecting Rollback Segment Contention
If the application system is DML intensive (for example, many updates and
deletes), the rollback activity will influence the buffer cache-hit ratio. Note that
in the case of insert operations, the previous ITL information (as of the start of the
DML operation) and information required to remove the row are stored in the
rollback segment. So, there is technically no before image for an insert operation.

254 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:254

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, if you need to roll back your insert operation, Oracle removes the
inserted row from the data block.

Write operations to rollback segments require usage of blocks in the database
buffer cache, as rollback segment blocks need to be read into memory first, before
they can be manipulated. Currently there is no support for directly writing to
rollback segments on disk. May we suggest an enhancement request and a name
for a new Oracle initialization parameter—UNDO_DIRECT_WRITES. Just kidding!

It is useful to know that rollback segment blocks will use some of the buffers in
the buffer cache that would otherwise be used for actual data or index blocks. You
need to factor that into your database buffer cache sizing and also when looking at
your cache-hit ratios (which by now should be a thing of the past). Queries that
need to build a read-consistent view of data will perform slower, as they need to
access both data and rollback segment blocks to rebuild the image of the data
blocks to the SCN value when the query was started.

As we just discussed, each rollback segment contains a transaction table in
the header of the rollback segment. This header is one block in size. It contains
information on all the transactions currently active in the rollback segment, and it
is frequently accessed and modified. Therefore, this rollback segment header block
will remain in the buffer cache for a long time. Frequent accesses to this header
block will contribute to an increase in the database buffer cache-hit ratio, although
it is not related to table or index data blocks. This can and will inflate your
database buffer cache-hit ratios, but as mentioned before (many times), a high
cache-hit ratio does not in any way suggest that your database is running fine. At
the same time, if there are multiple processes updating data, demand for rollback
segment header block increases and that can cause some contention problems.
Think of it as a case of more kids wanting the same toy!

So how do you find out if there is any rollback segment contention in your
database? Let us put into use what we have been saying throughout this book.
Start with the dynamic performance view, V$SYSTEM_EVENT. Since rollback
segment blocks come from the database buffer cache, you can check for any buffer
busy waits from this view. These waits would include waits for rollback segment
blocks among other data block waits. We will use the following example to
illustrate this:

SQL> select Event, Total_Waits, Time_Waited
2 from V$SYSTEM_EVENT
3 where Event = 'buffer busy waits';

EVENT TOTAL_WAITS TIME_WAITED
-- ----------- -----------
buffer busy waits 106021 46654
SQL>

Chapter 10: Contention Tuning 255

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:255

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:03 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Remember that the numbers in V$SYSTEM_EVENT are cumulative since the
last instance startup. Query V$SYSTEM_EVENT a few times to get the system-level
baseline and a delta. You can then drill down to V$SESSION_EVENT and run the
preceding query a few times to get the session-level baseline and delta. Armed
with that information, query V$SESSION_WAIT looking for the buffer busy waits
event(s) for the active sessions in the database. Jot down the values of P1 and P2.
P1 is the file number and P2 is the block number where the buffer busy waits are
occurring (these numbers may change rapidly, but you will at least be on the right
file to determine the source of your bottleneck). Use the file number to join with
the DBA_DATA_FILES view and use the block number to join with the DBA_
EXTENTS or UET$ views to determine the segment name that is experiencing
the contention. Now check the V$WAITSTAT view and check for any rollback (or
undo) block waits:

SQL> select *
2 from V$WAITSTAT
3 where Class in ('undo header','undo block');

CLASS COUNT TIME
------------------ ---------- ----------
undo header 43931 1922
undo block 34743 1121
2 rows selected.
SQL>

Again, run this query a few times to get the undo block-related baseline and
a delta. If the delta is non-zero for the COUNT and TIME columns, this indicates
some contention for both the rollback segment header and rollback segment
blocks. Remember that these numbers are cumulative since the last instance
startup.

Now that you have this information, how do you go about correcting the
contention? Well, our answer to this question is: it depends. You can either add
more rollback segments or find how the application is using the rollback segments.
Adding more rollback segments is the quick and easy answer, but is it the final
answer? There are many situations when that is not the final answer.

Rollback Segment Contention War Story
Let us share with you our experience with a production system where we noticed
intermittent slow performance and contention for rollback segment blocks. The
application otherwise ran with acceptable performance with no contention for
rollback segments. We used the statspack tool to take snapshots at multiple intervals.
We also asked the application programmer to take a snapshot before and after a

256 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:256

P:\010Comp\Oracle8\145-4\ch10.vp
Wednesday, July 11, 2001 3:59:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

suspect process. This process typically ran for about 10–15 minutes and updated
a couple of tables based on a data file that was uploaded to the server. Many times
there was more than one such file uploaded. The statspack snapshots included user
comments to identify the before process and after process snapshot. We expected
a series of before and after snapshot combinations for these processes.

The application did not have any scheduling mechanism and fired away multiple
processes that updated that same set of tables for multiple input files. Sometimes
there were more than a couple of dozen processes, all executing around the same
time. It was evident when comparing the series of before process snapshots with
the corresponding after process snapshots, that these processes would be the
source of the contention and slow response. When we questioned the need for
such concurrent processing of the files, there was none. Those could have been
processed in sequence and all the processing would have fit in the batch window.
So, by merely changing the way the application processed these files, the problem
of slow response time and rollback segment contention was eliminated.

If we reacted by increasing the rollback segments, we are sure the contention
problem would have come back to haunt us again, when the application processed
even more numbers of files or more data in the same number of files. Besides,
the slow response time would still be a problem, because Oracle would have to
reconstruct the read-consistent view of the data by reading more information from
the rollback segments.

However, this solution may not be applicable in all cases. Therefore, it is worth
an exercise to review if there are enough rollback segments in your database that
are sized appropriately to support required application processing.

Understanding Rollback Segment Usage
The V$ROLLSTAT view provides statistics pertaining to how rollback segments are
used in the database. By joining this view with V$ROLLNAME you can get all the
required information, as shown in the following example:

SQL> select N.Name,S.Xacts,S.Gets,S.Waits,
2 S.Extents,S.Wraps,S.Extends,S.Hwmsize
3 from V$ROLLNAME N, V$ROLLSTAT S
4 where N.Usn = S.Usn;

NAME XACTS GETS WAITS EXTENTS WRAPS EXTENDS HWMSIZE
------- ----- ------ ------- -------- ------- --------- ----------
SYSTEM 0 6925 0 13 0 0 794624
RBS01 2 56337 1877 11 1247 48 2146304
RBS02 3 162501 2298 11 1363 85 2043904
3 rows selected.

Chapter 10: Contention Tuning 257

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:257

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

In this example, the column gets show the number of times the transactions
were successful to access the undo header, while the column waits shows the
number of times they had to wait to access it. Ideally, there should not be any
waits for accessing the undo header.

Looking at this example, we also see a large number of extends. The xacts
column shows that there are five transactions currently active. The column
hwmsize shows the high-water mark or the upper limit, in terms of bytes, reached
by the rollback segment, while column extends shows the number of times the
segment had to dynamically allocate more extents.

The rather high numbers in these columns certainly indicate that the rollback
segments are not appropriately configured for the number of transactions the
database must support. A look at the storage parameters for these rollback
segments confirms that they are not sized correctly, causing so many extends.
Here is what we found out from view DBA_ROLLBACK_SEGS:

SQL> select Segment_Name Name, Initial_Extent,
2 Next_Extent, Min_Extents
3 from DBA_ROLLBACK_SEGS;

NAME INITIAL_EXTENT NEXT_EXTENT MIN_EXTENTS
--------------- -------------- ----------- -----------
SYSTEM 53248 53248 2
RBS01 102400 102400 10
RBS02 102400 102400 10
3 rows selected.
SQL>

As you can see, the rollback segments were initially created with about 1MB
space allocated to each of them. However, from the earlier example, we see that
these segments reached almost twice the initial size, reported under hwmsize.

So how do you size a rollback segment? In addition, how do you determine
how many rollback segments you should have in the database? That is precisely
what we discuss in the next section.

How to Configure Rollback Segments
Before we get into the rollback sizing discussion, keep in mind that a transaction
(in its lifetime) can only use one rollback segment to save the before image of the
data. However, a rollback segment can have multiple transactions write their data
into its single extent. When a wrap occurs, and the server process cannot write to
an extent that already has data from one or more active transactions, it will need
to extend the rollback segment. The wrapping and extending are functions of time
and the amount of undo information generated. If the transaction takes too long
to commit its change, it may cause too much extending of the rollback segment.
The wrapping without extending (a sign of a small rollback segment) will cause

258 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:258

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

overwriting of committed changes and may cause the “ORA-01555 – Snapshot
too old” error for long-running queries.

However, the size and number of the rollback segments should depend on
the transaction activity in the database. The needs of an OLTP system will be far
different than those of a data warehouse or a DSS system. OLTP systems tend to
have a large number of short transactions, whereas in a data warehouse system
the transactions will tend to be fewer in number but of longer duration. Most
systems fall in a hybrid category with some OLTP and some data warehouse type
activity. Managing rollback segments and their contention can be very tricky in
such cases.

How Large Should I Size My Rollback Segments?
First let us address the situation with regular rollback segments, the ones typically
used by not-so-large transactions. You can find out the size of a rollback or undo
information from the transactions in your database. You can take the maximum
size of such undo information to calculate the size of the rollback segments.

Here is how it is done:

1. The Oracle-supplied view V$TRANSACTION reports in its column
used_ublk the number of data blocks used by the transaction for its undo
information before committing its changes. The following simple query
reports the maximum size of such blocks from all the current transactions.
If you were to take multiple readings at regular intervals when the database
is processing its peak transaction volume, you will get an idea of the
maximum amount of undo information generated by those transactions.

SQL> select Max(Used_Ublk)

2 from V$TRANSACTION;

MAX(USED_UBLK)

250

SQL>

2. Once you have taken multiple readings and have established this value,
multiply it by the database block size to get information in bytes.

3. Round up the bytes to the next multiple of power of 2, ensuring that it
rounds up to the next multiple of your database block size.

4. This will give you the value for the initial and next extents for your
rollback segment.

Suppose from this example that the maximum value of Max(Used_Ublk) is 250.
If the database block size is 8192 bytes, the maximum amount of undo information
generated by each transaction is 2048000 bytes (250×8192). Rounding this number

Chapter 10: Contention Tuning 259

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:259

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:04 PM

Color profile: Generic CMYK printer profile
Composite Default screen

to the next multiple of power of 2 gives us 2097152 or 2MB. Thus, the initial and
next extent size of your rollback segment should be 2MB. If the size of your
existing rollback segments is nowhere near what you have just calculated, you
may want to consider recreating those with the proper size. Each rollback segment
requires a minimum of two extents (minextents) allocated to it when created.
Certain simulations and tests conducted at Oracle’s internal labs in the past have
shown that when minextents was set to 20 (with initial and next extent sized as
just shown), the probability of the “Snapshot too old” error was reduced. Your
mileage may vary, but the goals here are to avoid dynamic extension of rollback
segments and to avoid contention when possible.

The downside of creating minextents of 20 for every rollback segment is
usually a nominal wastage of disk space. Although dynamic extension of a single
extent may not be as costly, for rollback segments it can add up rather fast, if it
constantly allocates and de-allocates (with use of the optimal parameter) extents.
This can adversely affect performance. So go ahead and set minextents to 20 (in
some cases it may be more, in others it can be less). It is very easy to estimate
the amount of rollback that you generate on a typical business day. You can
sum up the writes column in V$ROLLSTAT for each rollback segment. Another
method is to look at the number of extends for each rollback segment on a
daily basis.

For long-running updates in a data warehouse environment or for batch jobs
that perform quite a bit of DML activity, sizing the rollback segment needs some
work. You need to find out the amount of undo generation for a typical job that
updates or deletes rows. The view V$ROLLSTAT reports, under the column writes,
the number of bytes written to the rollback segment. Select a typical job for your
test, and then keep only one rollback segment online that the job will use. Note
down the current value of writes. Run the job and check the value of writes again.
The difference between these two values is the amount of rollback information
generated by the job. Most likely, this will be a somewhat large number. You can
then decide on initial, next, and minextents values to assign to this rollback
segment, keeping in mind that the rollback segment would not extend. Rebuild
the rollback segment with these sizes, and run the test again to confirm that the
sizing is acceptable.

To make sure this larger rollback segment is used by intended batch jobs,
use the command set transaction use rollback segment rbs01, where rbs01 is
the rollback segment. You can also use the PL/SQL package dbms_transaction.use_
rollback_ segment to set a specific rollback segment within a PL/SQL block of
code. However, such a setting is in effect only for the duration of one transaction—that
is, the first commit or rollback. Also, realize that pointing your transaction to a

260 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:260

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

specific rollback segment should be done as the first statement of your transaction,
immediately following a commit or rollback of the previous transaction.

How Many Rollback Segments Do I Need?
After sizing the rollback segments, obviously the next question is, how many?
Again, the answer depends on the type of transactions the database is supporting.
For OLTP or not-so-large-transactions, you can derive the number of rollback
segments by the following formula: number of concurrent transactions / 4.

However, you can only bring online as many rollback segments up to the
value set in the Oracle initialization parameter MAX_ROLLBACK_SEGMENTS. It
typically defaults to 30 and you may have to increase it. Further, for large batch
jobs and data warehouse environments, you should create one large rollback
segment for each concurrent job.

In the V$ROLLSTAT view, there are two other columns that need to be
mentioned here rather briefly. Those are optsize and shrinks (no, this is not
about the number of psychiatric professionals). In addition to initial, next, and
minextents, a rollback segment can optionally be defined with an optimal size.
In the event the rollback segment extends beyond the optimal size, Oracle can
automatically (sure!) de-allocate or shrink extents to bring its size back to the
optimal setting. Thus, Oracle will try to keep the segment’s size at the optimal
level at all times! The column shrinks reports the number of such downsizing
efforts on the rollback segments. However, the de-allocation of these extents
does not happen instantaneously after the transaction has committed. It is useful
to note here that the transaction that extended a rollback segment beyond optimal
does not shrink it back to size. It is the next transaction that visits this rollback
segment that does the shrinking.

NOTE
Be aware that if rollback segment ever reaches the
maxextents, Oracle will not shrink it automatically.

Setting optimal to control the size of the rollback segments may be a good
idea, however, the allocation and de-allocation of extents to comply with optimal
settings will degrade the performance, particularly when optimal is set low.
Secondly, the rollback segment could shrink at any time and thus increase the
likelihood of the ORA-01555 error. So beware of the downside of using the
optimal setting for your rollback segments. Instead, consider shrinking of rollback
segments manually when required.

Chapter 10: Contention Tuning 261

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:261

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
We have made it a habit of not setting the optimal
clause for the rollback segments, as it causes a lot
of overhead on the system. This is because of the
constant allocation and de-allocation of extents in
the rollback segments that have this attribute turned
on. As mentioned before, the worst-case scenario of
not using the optimal clause is a nominal wastage
of disk storage. The other bane that optimal inflicts is
a potential increase in the ORA-01555 errors. We
avoid it for that very reason. Also, there is no
performance difference while using public versus
private rollback segments (the keyword public is
used while creating the rollback segment). It is our
recommendation that you create private rollback
segments for better manageability, as public rollback
segments have a life of their own and they are
brought online based on the formula:
TRANSACTIONS/TRANSACTIONS_ PER_
ROLLBACK_SEGMENT. The TRANSACTIONS_
PER_ ROLLBACK_SEGMENT parameter is not what
you think. The number of transactions that a given
rollback segment can support is not dependent on
this parameter, but is dependent on the size of the
database block. Use private rollback segments as
you can control them via the ROLLBACK_
SEGMENTS initialization parameter. You can’t do
the same with public rollback segments.

How to Avoid the “ORA-01555 –
Snapshot Too Old” Error
We have talked about the ORA-01555 error a few times in previous sections, but not
all the possible solutions were presented. So here we go again. The basic reason for
this error is the failure to reconstruct the read-consistent image or snapshot of the data
from rollback segments. Following are some recommendations to avoid this problem.

Increase the Size of the Rollback Segments
and/or Add More Rollback Segments
The most common reason ORA-01555 occurs is due to fewer and/or smaller
rollback segments. When rollback segments are not sized appropriately, the undo
information will be overwritten as rollback segments reuse their existing extents to

262 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:262

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

write new undo information. If your database processes many transactions that
frequently modify and commit data, any long-running queries will not be able
to reconstruct the read-consistent snapshot of the data and will receive this error.
In this case, you have two choices to avoid this error. First, follow the methodology
presented earlier in this chapter to size the rollback segments appropriately.
Second, reschedule long-running queries to run when there is less DML activity
in the database. Easier said than done!

Modify Application Code that Commits
Across Fetches in a Cursor
The second most common cause of this error is the application code itself. Boy,
here is your chance to pick on your friendly developers. But really, it is Oracle
that is allowing them to code nonstandard SQL. Per ANSI standards, a cursor
becomes invalid on a commit and must be reopened. But Oracle allows applications
to fetch rows from the cursor across commits, which increases the likelihood of
this error.

Although the application code is to blame here, you will get the wake-up call!
In this case, Oracle marks the SCN at the time when the cursor is opened to present
the read-consistent view of data. Subsequent processing takes place in a loop where
data gets committed. Thus, the SCN for fetched and processed blocks is incremented.
Any subsequent fetch operation against the committed blocks requires rebuilding
of the block with a read-consistent view per the marked SCN. If Oracle can find
the undo information pertaining to the marked SCN, there is no problem, but at
times it cannot and issues this error.

Typically, such code works fine with small volumes of data, but as the table
grows, so does the likelihood of this error. To solve this problem, consider
committing less frequently, at the cost of larger rollback segments to keep undo
information in them a little longer. Better yet, take a six-pack to the developer,
explain to him or her the benefits of complying with ANSI standards, and suggest
that he or she should consider closing the cursor after each commit. That would
surely stop the wake-up calls. It may add some overhead to how the code is
written, but it will avoid the cleanup by Oracle (rollback of failed transaction)
and the need for the developer to deal with data inconsistency issues. However,
such code modification may not be possible in all cases, since some time-sensitive
applications cannot be changed very easily to access the same set of rows when
closing and opening the cursor. Committing less often and configuring larger
rollback segments may be the only choice in that case.

Perform Full Table Scans on All Modified Tables Before
Changing a Tablespace to READ ONLY Mode
Before we discuss this solution, let us first understand what is meant by a delayed
block cleanout. As transactions commit data, Oracle performs what is known as a

Chapter 10: Contention Tuning 263

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:263

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

264 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:264

fast commit. This updates the rollback segment header to mark that the transaction
as committed, but it does not visit the changed data or index block to update (or
clean) its header. It leaves that task to the next transaction that reads that block,
however, it needs to access the rollback segment to confirm the commit. This is
called delayed block cleanout. It is also relevant to note that the DBWR process
will clean out the ITL if the block is still in memory after you commit.

Under very peculiar conditions, the query may fail to find the confirmation of
the commits in the rollback segment header to clean the data block, and Oracle
may issue the ORA-01555 error. In normal operation of the database, it is very
rare to get ORA-01555 due to the delayed block cleanout issue. Generally, having
appropriately sized rollback segments should solve this problem as well. However,
you may encounter it when least suspected. We came across it at one of our
clients’ site. After performing a rather large update job, the tablespace was changed
to read-only mode. No data was accessed from the updated tables before changing
its mode.

Subsequent transactions in the database had recycled the rollback segments
and the transaction ID associated with the large update was long gone. When
queries were issued against the updated tables in the read-only tablespace, it
encountered ORA-01555 errors. Data blocks in those tables were not clean—the
SCNs in the ITLs were not cleaned out. Normally, queries to data in those blocks
would have cleaned up the block headers, but since the tablespace was immediately
put into read-only mode, no modifications to the data blocks were possible. The
solution to prevent such errors from occurring is to perform a full table scan on
all modified tables before changing the tablespace to read-only mode. This causes
the blocks in those tables to be cleaned out and thus any subsequent queries do
not need to visit the rollback segments.

Proactively Managing Contention
on Temporary Segments
Temporary segments are created by Oracle primarily during a sort operation. In
addition, from Oracle8i, global temporary tables are created as temporary segments.
We will first discuss the ones created during the sort operation. Oracle performs a
sort operation in a number of cases, such as when building indexes, using the order
by, group by, distinct, union, intersect, or minus operations in a SQL statement. A
sort-merge join will also trigger a sort, as well as the analyze command and so on.
The actual sorting takes place in the memory. However, we all know that the data
will always be larger than any available memory, at least for most of us. So how
does Oracle go about sorting large volumes of data? When the allocated sort
memory gets full, Oracle writes the sorted data to temporary segments to free up
some space in the memory to get more data to sort. It creates these temporary

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

segments as needed, in the TEMP tablespace assigned to the user. Once the sorting
is completed, Oracle reads all these temporary segments (fetch operation) and
presents the sorted data to the application. The temporary segments are then
dropped. You may ask, how do these segments create contention problems if
those are just used in sort and then dropped?

Understanding Temporary Segment Contention
Remember the case of some kids wanting the same exact toy the other one has?
Well, a similar thing happens when a sort operation creates a temporary segment
and drops it when the sort operation is complete. For creating and dropping any
segment in the database, the process needs to acquire a space management
transaction (ST) enqueue. It is required to serialize the operation as it updates
data dictionary tables. An enqueue is a mechanism within Oracle to lock shared
resources, such as data dictionary tables. This is the one toy all kids must have!
There is only one such ST enqueue resource in the database. Every space
management routine, such as allocating extents, deallocating extents, or coalescing
of free space (by background process SMON or manually by you) must acquire and
retain the ST enqueue until the activity is complete. The demand for this single
resource increases when the sorting operation uses temporary segments.
Sometimes when such a wait is too long, Oracle will issue the “ORA-01575 –
Timeout waiting for space management resource” error. Needless to say, it is a
good policy to conserve this resource as much as possible by finding ways to
minimize space management events.

You can start by checking if your database is using disk space while performing
sorts. The following example shows how to do it:

SQL> select Name, Value
2 from V$SYSSTAT
3 where Name like '%sort%';

NAME VALUE
--------------- ---------------
sorts (memory) 77027
sorts (disk) 8471
sorts (rows) 138003699
3 rows selected.
SQL>

This example shows how many sorts took place in the memory and how
many had to use disk (again remember this number is cumulative since the last
instance startup). It also shows the total number of rows sorted. As you can see,
there are quite a number of sorts using disk. Although it may not be possible to
eliminate disk sorts completely, adjusting the init.ora parameters SORT_ AREA_SIZE
and SORT_AREA_ RETAINED_SIZE can minimize them considerably. It is

Chapter 10: Contention Tuning 265

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:265

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

266 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:266

advisable to set a higher value for SORT_ AREA_ SIZE in a session by using
the alter session set sort_area_size=<bytes>; command before a batch job that
involves large sort operations or before building large indexes. This will be in effect
for that particular session and will not be applicable to any other sessions
performing sorts. Using a higher value for SORT_AREA_SIZE will improve the
sort performance while reducing the contention for ST enqueue resource.

To further reduce the dynamic allocation of temporary segment extents, you
can configure tablespaces of type temporary and size the initial and next extents for
those tablespaces appropriately. This is available since Oracle 7.3. Please refer to
the section “Configuring Temporary Tablespaces” in the chapter “Database Tuning”
for more information on this feature and its role in sort operations in particular.

Recall that when pure temporary tablespaces are used, there is only one temporary
segment for the entire tablespace and Oracle manages it using a sort-extent pool
algorithm. Oracle will always write SORT_AREA_SIZE worth of data to the temporary
segment. You can use the following formula to arrive at the initial and next extent size:

(SORT_AREA_SIZE in bytes)×(an arbitrary number, say 1–4)

NOTE
There are many sources of documentation that
suggest adding a database block for sizing the
default initial and next for the temporary
tablespace. Although that may be relevant for
temporary segments that are created in permanent
tablespaces, such recommendations are invalid
when using pure temporary tablespaces. Every file
is going to be off by one block (due to the file
header), so if you are worried about losing that last
extent in your datafile to wasted free space, you
might want to add one block to the size of the
datafile, rather than adding one block to each
extent of the temporary segment.

Keep initial and next extent sizes the same and set pctincrease to 0. Remember,
you want equal-sized extents in all of your tablespaces. The arbitrary number is geared
toward arriving at an extent size large enough for multiples of SORT_AREA_SIZE. As
each sort has two phases—the sort phase and the fetch phase—it is useful to note that
SORT_AREA_SIZE will be used during the sort phase and SORT_AREA_RETAINED_SIZE
will be used by the fetch phase of the sort.

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 10: Contention Tuning 267

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:267

Monitoring Temporary Segment
Tablespace Usage
You can query V$SORT_USAGE (available from Oracle 8.0) to view the space
used by the current sort operation. Once the sort operation completes, this view
will not show any information. The following example shows that two sessions
are sorting data using the temporary segment in TEMP tablespace. The segblk#
shows the block number of the initial extent for each of these sorts and blocks
shows the number of blocks used by each of them at the time the query was run.

SQL> select User, Session_Addr Saddr, Session_Num SerNbr,
2 Extents, Blocks, Segblk#
3 from V$SORT_USAGE;

USER SADDR SERNBR TABLESPACE EXTENTS BLOCKS SEGBLK#
------- --------- ------ ------------ -------- --------- ---------
ACME 95BCA778 7733 TEMP 34 4420 12480
APPS 95BCAFB8 1550 TEMP 35 4550 65650
2 rows selected.
SQL>

If you are using true temporary tablespaces for sort operations, Oracle creates one
sort segment for each temporary tablespace as soon as the first disk sort takes place
after the instance is started. The view V$SORT_SEGMENT provides ample information
to you about all space usage for sort operations in your database. The following
example shows some of the information when the sort operation was in progress:

SQL> s elect Tablespace_Name TSNAME, Current_Users USERS, Total_Extents TOTEXT,
2 Total_Blocks TOTBLKS, Used_Extents USEDEXT, Used_Blocks USEDBLKS
3 from V$SORT_SEGMENT;

TSNAME USERS TOTEXT TOTBLKS USEDEXT USEDBLKS
------------ ------ --------- --------- --------- ----------
TEMP 2 211 27430 211 27430
1 row selected.

However, after a given sort operation is complete, the preceding query reported
the following, summarizing the total number of blocks and extents ever created by
all the sort operations:

TSNAME USERS TOTEXT TOTBLKS USEDEXT USEDBLKS
------------ ------ --------- --------- --------- ----------
TEMP 0 220 28600 0 0
1 row selected.

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

268 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:268

Tracking space usage by all the sorts in your database by querying V$SORT_
SEGMENT view will help you size the temporary tablespace appropriately. The
following query shows additional information from the view that would be useful
to do just that. It reports the maximum space ever used by all the sort operations
in the database:

SQL > select Tablespace_Name TSNAME, Max_Blocks,
2 Max_Used_Blocks, Max_Sort_Size, Max_Sort_Blocks
3 from V$SORT_SEGMENT;

TSNAME MAX_BLOCKS MAX_USED_BLOCKS MAX_SORT_SIZE MAX_SORT_BLOCKS
---------------- ---------- --------------- ------------- ---------------
TEMP 28600 28600 111 14430
1 row selected.
SQL>

You can refer to the Oracle8i Reference Guide for more information on the
V$SORT_USAGE and V$SORT_SEGMENT views.

At the beginning of this section, we briefly mentioned the global temporary
tables. These were introduced in Oracle8i. Global temporary tables are created
as temporary segments in user’s temporary tablespace. The chapter “Database
Tuning” discusses these tables in the section “Global Temporary Tables and
Temporary Tablespaces.” You can refer to that chapter for more information. We
just wanted to make it clear to you that if you are using global temporary tables
and the user performs sorts, use of temporary segments will increase. It is advisable
to use different temporary tablespaces for global temporary tables for groups of
users who run applications that use these global temporary tables. This will surely
help minimize contention and improve performance of sort operations as well as
the use of global temporary tables.

To virtually eliminate contention for the ST enqueue resource during disk sort
operations in Oracle8i, we would like to suggest that you use locally managed
temporary tablespaces. Please refer to the section “Configuring Locally Managed
Tablespaces” in the chapter “Database Tuning” for more information. As we said
earlier, with Oracle you can manage contention, even for a single resource.
However, you are on your own to manage those kids fighting for the same toy!

Latches
Latches are nothing but a specialized locking mechanism employed by Oracle to
serialize access to shared data structures in the SGA. There are a number of data
structures in the SGA that are concurrently accessed by many processes. Oracle

P:\010Comp\Oracle8\145-4\ch10.vp
Wednesday, July 11, 2001 4:00:18 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:269

Chapter 10: Contention Tuning 269

uses latches to prevent more than one process from modifying or accessing such
shared structures. Latches differ from locks in the sense that locks can be held for
a long time and can be shared among processes. Most latches cannot be shared
(from Oracle 7.3 and up, redo copy latches can be shared on some platforms).
If a process acquires a particular latch, all other processes requiring that latch to
perform identical operations must wait until the previous process releases the latch.
As you can imagine, there are several latches, each protecting a set of data
structures within the SGA.

You can get a complete list of all latches by querying the V$LATCHNAME view.
From Oracle 7.3 to Oracle8i, the number of latches increased from around 50 to
around 150. So, let’s get busy: we have plenty of tuning to do!

Well, let us make your job very easy. Out of all these latches there are only
a few that you can actually tune. The majority of them are just not accessible, so
don’t spend your time and energy to track them down and wonder what to do next.
As we have said before, if you have tuned the applications, the I/O, and the various
components of the database, there will be no need to worry about latch contention.
Almost every time, latch contention problems are symptoms of bigger problems—
unoptimized applications. Go get those problems resolved first!

However, as a DBA you should know a few of these latches and what to do to
tune them before they become a problem later. Following this principle will relieve
you from worrying about latch contention problems for the most part, so you can
address the real cause of performance degradation in your database.

The latches you should be concerned with are cache buffers lru chain, redo
copy, and cache buffers chains. The following Oracle initialization parameters can
be set proactively to alleviate any contention problems with these latches.

Initialization Parameter Meaning or Relevance

DB_BLOCK_LRU_LATCHES This parameter defines the number of latches
that are configured for the LRU list(s) of the
database buffer cache. It can be set to its
maximum value of between 2–12 times the
number of CPUs, depending on your version of
Oracle. This can be done without any
measurable degradation in performance. Once
set, you can quit worrying about cache buffers
lru chain latch contention caused due to lack
of latches. You still need to track down your
application that is causing the problem. (SQL
statements performing excessive logical I/O).

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:270

270 Oracle Performance Tuning 101

Initialization Parameter Meaning or Relevance

LOG_SIMULTANEOUS_COPIES This parameter defines the number of redo
copy latches used for copying redo entries
into the redo log buffer. It can be safely set to
its maximum value of 2–8 times the number
of CPUs, depending on your version of Oracle
without any measurable degradation in
performance. Once set, you can quit worrying
about redo copy latch contention caused
due to lack of latches. You still need to track
down your application that is causing the
problem. However, this parameter is obsolete
in Oracle8i, and Oracle defaults to the
maximum number as 2 times the number of
CPUs. Surprised? On some platforms, with
Oracle 7.3.4, you can set this parameter to
an even higher number value of 8 times the
number of CPUs.

_DB_BLOCK_HASH_BUCKETS Yes, this is an undocumented parameter,
which implies exactly that—don’t use it unless
advised otherwise. This parameter generally
does not need to be modified from its default
value, unless you notice contention for the
cache buffers chains latch. This parameter
defines the number of hash buckets that are
available for faciliating access to the database
buffer cache. This has a direct impact on the
length of a chain that a server process has to
traverse to identify and read a given data
block in the database buffer cache. The
default value for this parameter is the next
prime number above DB_BLOCK_BUFFERS/4.
You still need to track down the application
that is causing the problem (SQL statements
performing excessive logical I/Os and excessive
block cloning).

A few other latches that will get your attention from time to time are the library
cache/load/lock/pin latches. However, realize that library cache latch contention is
an indication of a lack of reused SQL in the shared pool area, too much parsing, or
in some cases a sizing problem with the shared pool area memory structure. For

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

more information on this, please refer the “Parsing SQL” section in the chapter “Instance
Tuning—The Shared Pool Area.”

If you still want to find out what other latches may be experiencing contention
problems in your database, you can follow the methodology presented in the
chapter “The Method Behind the Madness.” The views V$SYSTEM_EVENT and
V$SESSION_EVENT will provide the wait times for the latch free event. The view
V$SESSION_WAIT can provide you the latch number experiencing the contention
problem in a session (column P2). You should then use this number to query the
V$LATCH view to get more information on that specific latch statistics. Just in case!

In a Nutshell
It is our sincere hope that you are content with the level of contention tuning that
you can engage. For some strange reason, contention tuning gets a lot more
attention than it really deserves. What we attempted to show you in this chapter is
how to proactively avoid or minimize contention, and not make it a part of your job
that needs constant attention.

Every database will have bottlenecks and contention issues to deal with. There
will be more processes competing for limited resources. The key to your success
lies in how well you allocate and manage these resources to minimize such
bottlenecks and contention.

Configuring appropriate rollback segments is important to a well-performing
database in any environment, DSS or OLTP. If there are not enough properly sized
rollback segments, performance of all DML activities will suffer. Application
programmers and database administrators have seen the ORA-01555 error quite
a few times. It is just not the database administrator’s fault that there is not enough
larger rollback segments to avoid these errors. But many times it is the way the
code is written that causes this error to surface. Addressing it only from the database
standpoint will have its limitations as well. Sometimes the code does require change.

All applications will perform sorts in addition to database maintenance tasks.
This should be expected with a relational database like Oracle. Configuring
appropriate temporary tablespaces to carry on sort operations is also very important.
At the same time, care must be taken to find ways to avoid resource contention.
When sorts are taking place on disk, the extent allocation and de-allocation will
cause contention for space management transaction enqueue (ST enqueue)
resources in a busy database. Proper values selected for the init.ora parameters
SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE will minimize the need to
use the disk for sorts. When disk sorts cannot be avoided, it is important that the
storage for the temporary segments is properly sized. With the introduction of true
temporary tablespaces, sort processes do not have to deal with multiple allocation
and de-allocation of extents for temporary segments. With true temporary
tablespaces, one large segment is used by all sorting operations. When possible,

Chapter 10: Contention Tuning 271

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:271

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

consider using multiple temporary tablespaces with data files on different disks to
reduce contention for I/O. In addition to using true temporary tablespaces, consider
using locally managed tablespaces for temporary segments. This combination will
ensure that you will have minimum requirement for using ST enqueue resources.

Lastly, there is no magic to managing or tuning latch contention. Neither is it
the most important thing to worry about. However, it gets a lot of attention, just
like a squeaky wheel. People drive themselves crazy trying to tune their latches
without really digging deep into what is causing the contention. If you track the
trend that Oracle is following, many of the latches are slowly but surely becoming
undocumented parameters, which implies that you do not touch it unless advised
otherwise. A DBA can tune just a few latches. Fortunately, there are corresponding
Oracle initialization parameters. So set those appropriately and forget about latch
contention (at least from a parameter configuration perspective). Besides, almost
all the time, latch contention is a symptom of a serious application problem: too
much serialization. Stick to the tuning methodology and you will be content with
not finding any latch contention! There are other fun things that need your attention.
Like grabbing that toy the other kid has had for a long time!

272 Oracle Performance Tuning 101

ORACLE Series / Oracle Performance Tuning 101 / Vaidyanatha & Kostelac Jr. / 3145-4 / Chapter 10
Blind Folio 10:272

P:\010Comp\Oracle8\145-4\ch10.vp
Sunday, May 13, 2001 5:15:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Online, you'll find:

• FREE code for selected books

• FREE sample chapters

• Complete online Oracle Press catalog

• Details on new and upcoming

Oracle Press titles

• Special offers and discounts

• Enter-to-win contests

• News and press information

• Information about our expert authors

• Details on how to write for Oracle Press

• And much more!

From a full selection of titles focusing

on Oracle’s core database products to

our in-depth coverage of emerging

applications, Web development tools,

and e-Business initiatives, Oracle Press

continues to provide essential resources

for every Oracle professional. For a

complete list of Oracle Press titles—

from the exclusive publishers of

Oracle Press books—and other valuable

resources, go to

OraclePressBooks.com.

Get the most complete information on

Oracle's #1 line of e-Business and database

technologies at OraclePressBooks.com

Expert authors, cutting-edge coverage, the latest

releases…find it all at OraclePressBooks.com

ORIGINAL • AUTHENTIC

O N LY F R O M O S B O R N E

O R A C L E P R E S S T M— E X C L U S I V E LY F R O M M c G R AW- H I L L / O S B O R N E

1002

	copyright: Copyright © 2001 by The McGraw-Hill Companies. All rights reserved. Printed in the United States of America. Except as permitted under the
 Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval
 system, without the prior written permission of the publisher, with the exception that the program listings may be entered, stored, and executed in a
 computer system, but they may not be reproduced for publication.

 Oracle is a registered trademark of Oracle Corporation and/or its affiliates.

 Screen displays of copyrighted Oracle software programs have been reproduced herein with the permission of Oracle Corporation and/or its affiliates.

 Information has been obtained by Publisher from sources believed to be reliable. However, because of the possibility of human or mechanical error
 by our sources, Publisher, or others, Publisher does not guarantee to the accuracy, adequacy, or completeness of any information included in this
 work and is not responsible for any errors or omissions or the results obtained from the use of such information.

 Oracle Corporation does not make any representations or warranties as to the accuracy, adequacy, or completeness of any information contained in
 this Work, and is not responsible for any errors or omissions.

