A Practitioner'’s Guide to Optimizing Response Time

Optimizing

Oracle
Performance

<
N
N

Cary Millsap

O'REILLY*" with Jeff ol

CHAPTER 1
A Better Way to Optimize

For many people, Oracle performance is a very difficult problem. Since 1990, I've
worked with thousands of professionals engaged in performance improvement
projects for their Oracle systems. Oracle performance improvement projects appear
to progress through standard stages over time. I think the names of those stages are
stored in a vault somewhere beneath Geneva. If I remember correctly, the stages are:

Unrestrained optimism
Informed pessimism
Panic

Denial

Despair

Utter despair

Misery and famine

For some reason, my colleagues and I are rarely invited to participate in a project
until the “misery and famine” stage. Here is what performance improvement projects
often look like by the time we arrive. Do they sound like situations you’ve seen
before?

Technical experts disagree over root causes

The severity of a performance problem is proportional to the number of people
who show up at meetings to talk about it. It’s a particularly bad sign when sev-
eral different companies’ “best experts” show up in the same meeting. In dozens
of meetings throughout my career, I've seen the “best experts” from various con-
sulting companies, computer and storage subsystem manufacturers, software
vendors, and network providers convene to dismantle a performance problem.
In exactly 100% of these meetings I've attended, these groups have argued inces-
santly over the identity of a performance problem’s root cause. For weeks. How
can dedicated, smart, well-trained, and well-intentioned professionals all look at
the same system and render different opinions—often even contradictory opin-
ions—on what’s causing a performance problem? Apparently, Oracle system
performance is a very difficult problem.

Experts claim excellent progress, while users see no improvement

Many of my students grin with memories when I tell stories of consultants who
announce proudly that they have increased some statistic markedly—maybe
they increased some hit ratio or reduced some extent count or some such—only
to be confronted with the indignity that the users can’t tell that anything is any
better at all. The usual result of such an experience is a long report from the con-
sultant explaining as politely as possible that, although the users aren’t clever
enough to tell, the system is eminently better off as a result of the attached
invoice.

The story is funny unless, of course, you’re either the owner of a company who’s
paying for all this wasted time, or the consultant who won’t get paid because he
didn’t actually accomplish anything meaningful. Maybe this story seems funny
because most of us at some time or another have been that consultant. How is it
possible to so obviously improve such important system metrics as hit ratios,
average latencies, and wait times, yet have users who can’t even perceive the
beneficial results of our effort? Apparently, Oracle system performance is a very
difficult problem.

Hardware upgrades either don’t help, or they slow the system further

Since first picking up Neil Gunther’s The Practical Performance Analyst in 1998
[Gunther (1998)], I have presented to various audiences the possibility of one
particularly counterintuitive phenomenon. “Do you realize that a hardware
upgrade can actually degrade the performance of an important application?”
Every audience to which I've ever presented this question and the facts pertain-
ing to it have had virtually identical reactions. Most of the audience smiles in dis-
belief while I describe how this can happen, and one or two audience members
come to the podium afterward to rejoice in finally figuring out what had hap-
pened several months after their horrible “upgrade gone wrong.”

Hardware upgrades may not often cause noticeable new performance problems,
but they can. Very often, hardware upgrades result in no noticeable difference,
except of course for the quite noticeable amount of cash that flows out the door
in return for no perceptible benefit. That a hardware upgrade can result in no
improvement is somewhat disturbing. The idea that a hardware upgrade can
actually result in a performance degradation, on its face, is utterly incomprehen-
sible. How is it possible that a hardware upgrade might not only not improve
performance, but that it might actually harm it? Apparently, Oracle system per-
formance is a very difficult problem.

The number one system resource consumer is waste

Almost without exception, my colleagues and I find that 50% or more of every
system’s workload is waste. We define “waste” very carefully as any system
workload that could have been avoided with no loss of function to the business.
How can completely unnecessary workload be the number one resource

4

Chapter 1: A Better Way to Optimize

consumer on so many professionally managed systems? Apparently, Oracle sys-
tem performance is a very difficult problem.

These are smart people. How could their projects be so messed up? Apparently, Ora-
cle system optimization is very difficult. How else can you explain why so many
projects at so many companies that don’t talk to each other end up in horrible pre-
dicaments that are so similar?

“You're Doing It Wrong”

One of my hobbies involves building rather largish things out of wood. This hobby
involves the use of heavy machines that, given the choice, would prefer to eat my fin-
gers instead of a piece of five-quarters American Black Walnut. One of the most fun
things about the hobby for me is to read about a new technique that improves accu-
racy and saves time, while dramatically reducing my personal risk of accidental death
and dismemberment. For me, getting the “D’oh, 'm doing it wrong!” sensation is a
pleasurable thing, because it means that I'm on the brink of learning something that
will make my life noticeably better. The net effect of such events on my emotional
well-being is overwhelmingly positive. Although I'm of course a little disappointed
every time [acquire more proof that 'm not omniscient, 'm overjoyed at the notion
that soon I'll be better.

It is in the spirit of this story that I submit for your consideration the following
hypothesis:

If you find that Oracle performance tuning is really difficult, then chances are excel-
lent that you’re doing it wrong.

Now, here’s the scary part:
You’re doing it wrong because you’ve been taught to do it that way.

This is my gauntlet. I believe that most of the Oracle tuning methods either implied
or taught since the 1980s are fundamentally flawed. My motivation for writing this
book is to share with you the research that has convinced me that there’s a vastly
better way.

Let’s begin with a synopsis of the “method” that you’re probably using today. A
method is supposed to be a deterministic sequence of steps. One of the first things
you might notice in the literature available today is the striking absence of actual
method. Most authors focus far more attention on tips and techniques than on meth-
ods. The result is a massive battery of “things you might want to do” with virtually
no structure present to tell you whether or when it’s appropriate to do each. If you
browse google.com hits on the string “Oracle performance method,” you’ll see what I
mean.

Most of the Oracle performance improvement methods prescribed today can be
summarized as the sequence of steps described in Method C (the conventional

“You're Doing It Wrong” | 5

trial-and-error approach). If you have a difficult time with Oracle performance
optimization, the reason may dawn on you as you review Method C. One of the
few things that this method actually optimizes is the flow of revenue to perfor-
mance specialists who take a long time to solve performance problems.

Method C: The Trial-and-Error Method That Dominates the Oracle
Performance Tuning Culture Today

1. Hypothesize that some performance metric x has an unacceptable value.

2. Try things with the intent of improving x. Undo any attempt that makes perfor-
mance noticeably worse.

3. If users do not perceive a satisfactory response time improvement, then go to
step 1.

4. If the performance improvement is satisfactory, then go to step 1 anyway,
because it may be possible to produce other performance improvements if you
just keep searching.

This trial-and-error approach is, of course, not the only performance improvement
method in town. The YAPP Method first described by Anjo Kolk and Shari Yamagu-
chi in the 1990s [Kolk et al. (1999)] was probably the first to rise above the inauspi-
cious domain of tips and techniques to result in a truly usable deterministic sequence
of steps. YAPP truly revolutionized the process of performance problem diagnosis,
and it serves as one of the principal inspirations for this text.

Requirements of a Good Method

What distinguishes a good method from a bad one? When we started hotsos.com in
1999, 1 began spending a lot of time identifying the inefficiencies of existing Oracle
performance improvement methods. It was a fun exercise. After much study, my col-
leagues and 1 were able to construct a list of objectively measurable criteria that
would assist in distinguishing good from bad in a method. We hoped that such a list
would serve as a yardstick that would allow us to measure the effectiveness of any
method refinements we would create. Here is the list of attributes that I believe dis-
tinguish good methods from bad ones:

Impact
If it is possible to improve performance, a method must deliver that improve-
ment. It is unacceptable for a performance remedy to require significant invest-
ment input but produce imperceptible or negative end-user impact.

6 | Chapter1: ABetter Way to Optimize

Efficiency
A method must always deliver performance improvement results with the least
possible economic sacrifice. A performance improvement method is not optimal
if another method could have achieved a suitable result less expensively in equal
or less time.

Measurability
A method must produce performance improvement results that can be mea-
sured in units that make sense to the business. Performance improvement mea-
surements are inadequate if they can be expressed only in technical units that do
not correspond directly to improvement in cash flow, net profit, and return on
investment.

Predictive capacity
A method must enable the analyst to predict the impact of a proposed remedy
action. The unit of measure for the prediction must be the same as that which
the business will use to measure performance improvement.

Reliability
A method must identify the correct root cause of the problem, no matter what
that root cause may be.

Determinism
A method must guide the analyst through an unambiguous sequence of steps
that always rely upon documented axioms, not experience or intuition. It is
unacceptable for two analysts using the same method to draw different conclu-
sions about the root cause of a performance problem.

Finiteness
A method must have a well-defined terminating condition, such as a proof of
optimality.

Practicality
A method must be usable in any reasonable operating condition. For example, it
is unacceptable for a performance improvement method to rely upon tools that
exist in some operating environments but not others.

Method C suffers brutally on every single dimension of this eight-point definition of
“goodness.” I won’t belabor the point here, but I do encourage you to consider, right
now, how your existing performance improvement methods score on each of the
attributes listed here. You might find the analysis quite motivating. When you’ve fin-
ished reading Part I of this book, I hope you will revisit this list and see whether you
think your scores have improved as a result of what you have read.

Requirements of a Good Method | 7

Three Important Advances

In the Preface, I began with the statement:
Optimizing Oracle response time is, for the most part, a solved problem.

This statement stands in stark contrast to the gloomy picture I painted at the begin-
ning of this chapter—that, “For many people, Oracle system performance is a very
difficult problem.” The contrast, of course, has a logical explanation. It is this:

Several technological advances have added impact, efficiency, measurability, predic-

tive capacity, reliability, determinism, finiteness, and practicality to the science of Ora-

cle performance optimization.
In particular, I believe that three important advances are primarily responsible for the
improvements we have today. Curiously, while these advances are new to most pro-
fessionals who work with Oracle products, none of these advances is really “new.”
Each is used extensively by optimization analysts in non-Oracle fields; some have
been in use for over a century.

User Action Focus

The first important advance in Oracle optimization technology follows from a sim-
ple mathematical observation:

You can’t extrapolate detail from an aggregate.

Here’s a puzzle to demonstrate my point. Imagine that I told you that a collection of
1,000 rocks contains 999 grey rocks and one special rock that’s been painted bright
red. The collection weighs 1,000 pounds. Now, answer the following question: “How
much does the red rock weigh?” If your answer is, “I know that the red rock weighs
one pound,” then, whether you realize it or not, you’ve told a lie. You don’t know
that the red rock weighs one pound. With the information you’ve been given, you
can’t know. If your answer is, “I assume that the red rock weighs one pound,” then
you’re too generous in what you’re willing to assume. Such an assumption puts you
at risk of forming conclusions that are incorrect—perhaps even stunningly incorrect.

The correct answer is that the red rock can weigh virtually any amount between zero
and 1,000 pounds. The only thing limiting the low end of the weight is the defini-
tion of how many atoms must be present in order for a thing to be called a rock.
Once we define how small a rock can be, then we’ve defined the high end of our
answer. It is 1,000 pounds minus the weight of 999 of the smallest possible rocks.
The red rock can weigh virtually anything between zero and a thousand pounds.
Answering with any more precision is wrong unless you happen to be very lucky. But
being very lucky at games like this is a skill that can be neither learned nor taught,
nor repeated with acceptable reliability.

8 | Chapter1: ABetter Way to Optimize

This is one reason why Oracle analysts find it so frustrating to diagnose performance
problems armed only with system-wide statistics such as those produced by
Statspack (or any of its cousins derived from the old SQL scripts called bstat and
estat). Two analysts looking at exactly the same Statspack output can “see” two com-
pletely different things, neither of which is completely provable or completely dis-
provable by the Statspack output. It’s not Statspack’s fault. It’s a problem that is
inherent in any performance analysis that uses system-wide data as its starting point
(V$SYSSTAT, V$SYSTEM EVENT, and so on). You can in fact instruct Statspack to collect
sufficiently granular data for you, but no Statspack documentation of which I'm
aware makes any effort to tell you why you might ever want to.

A fine illustration is the case of an Oracle system whose red rock was a payroll pro-
cessing problem. The officers of the company described a performance problem with
Oracle Payroll that was hurting their business. The database administrators of the
company described a performance problem with latches: cache buffers chains latches,
to be specific. Both arguments were compelling. The business truly was suffering
from a problem with payroll being too slow. You could see it, because checks
weren’t coming out of the system fast enough. The “system” truly was suffering from
latch contention problems. You could see it, because queries of V$SYSTEM_EVENT
clearly showed that the system was spending a lot of time waiting for the event called
latch free.

The company’s database and system administration staff had invested three frustrat-
ing months trying to fix the “latch free problem,” but the company had found no
relief for the payroll performance problem. The reason was simple: payroll wasn’t
spending time waiting for latches. How did we find out? We acquired operational
timing data for one execution of the slow payroll program. What we found was
amazing. Yes, lots of other application programs in fact spent time waiting to acquire
cache buffers chains latches. But of the slow payroll program’s total 1,985.40-second
execution time, only 23.69 seconds were consumed waiting on latches. That’s 1.2%
of the program’s total response time. Had the company completely eradicated waits
for latch free from the face of their system, they would have made only a 1.2% per-
formance improvement in the response time of their payroll program.

How could system-wide statistics have been so misleading? Yes, lots of non-payroll
workload was prominently afflicted by latch free problems. But it was a grave error
to assume that the payroll program’s problem was the same as the system-wide aver-
age problem. The error in assuming a cause-effect relationship between latch free
waiting and payroll performance cost the company three months of wasted time and
frustration and thousands of dollars in labor and equipment upgrade costs. By con-
trast, diagnosing the real payroll performance problem consumed only about ten
minutes of diagnosis time once the company saw the correct diagnostic data.

My colleagues and I encounter this type of problem repeatedly. The solution is for
you (the performance analyst) to focus entirely upon the user actions that need opti-
mizing. The business can tell you what the most important user actions are. The

Three Important Advances | 9

system cannot. Once you have identified a user action that requires optimization,
then your first job is to collect operational data exactly for that user action—no
more, and no less.

Response Time Focus

For a couple of decades now, Oracle performance analysts have labored under the
assumption that there’s really no objective way to measure Oracle response time
[Ault and Brinson (2000), 27]. In the perceived absence of objective ways to measure
response time, analysts have settled for the next-best thing: event counts. And of
course from event counts come ratios. And from ratios come all sorts of arguments
about which “tuning” actions are important, and which ones are not.

However, users don’t care about event counts and ratios and arguments; they care
about response time: the duration that begins when they request something and ends
when they get their answer. No matter how much complexity you build atop any
timing-free event-count data, you are fundamentally doomed by the following ines-
capable truth, the subject of the second important advance:

You can’t tell how long something took by counting how many times it happened.

Users care only about response times. If you’re measuring only event counts, then
you’re not measuring what the users care about. If you liked the red rock quiz, here’s
another one for you: What'’s causing the performance problem in the program that
produced the data in Example 1-1?

Example 1-1. Components of response time listed in descending order of call volume

Response Time Component # Calls
CPU service 18,750
SOL*Net message to client 6,094
SQL*Net message from client 6,094
db file sequential read 1,740
log file sync 681
SQL*Net more data to client 108
SOL*Net more data from client 71
db file scattered read 34

direct path read 5
free buffer waits 4
log buffer space 2
direct path write 2
log file switch completion 1
latch free 1

Example 1-2 shows the same data from the same program execution, this time aug-
mented with timing data (reported in seconds) and sorted by descending response
time impact. Does it change your answer?

10 | Chapter1: ABetter Way to Optimize

Example 1-2. Components of response time listed in descending order of contribution to response time

Response Time Component Duration # Calls Dur/Call
SQL*Net message from client 166.6s 91.7% 6,094 0.027338s
CPU service 9.7s 5.3% 18,750 0.000515s
unaccounted-for 2.2s 1.2%

db file sequential read 1.6s 0.9% 1,740 0.000914s
log file sync 1.1s 0.6% 681 0.001645s
SQL*Net more data from client 0.3s 0.1% 71 0.003521s
SOL*Net more data to client 0.1s 0.1% 108 0.001019s
free buffer waits 0.1s 0.0% 4 0.022500s
SOL*Net message to client 0.0s 0.0% 6,094 0.000007s
db file scattered read 0.0s 0.0% 34 0.001176s
log file switch completion 0.0s 0.0% 1 0.030000s
log buffer space 0.0s 0.0% 2 0.0050005
latch free 0.0s 0.0% 1 0.010000s
direct path read 0.0s 0.0% 5 0.000000s
direct path write 0.0s 0.0% 2 0.000000s
Total 181.8s 100.0%

Of course it changes your answer, because response time is dominatingly important,
and event counts are inconsequential by comparison. The problem with the pro-
gram that generated this data is what’s going on with SQL*Net message from client,
not what’s going on with CPU service.

W N
5 If you are an experienced Oracle performance analyst, you may have
ﬁ:\ heard that SQL*Net message from client is an idle event that can be
N\ &
s ignored. You must not ignore the so-called idle events if you collect

your diagnostic data in the manner I describe in Chapter 3.

If the year were 1991, we’d be in big trouble right now, because in 1991 the data that
I’ve shown in this second table wasn’t available from the Oracle kernel. But if you’ve
upgraded by now to at least Oracle7, then you don’t need to settle for event counts
as the “next-best thing” to response time data. The basic assumption that you can’t
tell how long the Oracle kernel takes to do things is simply incorrect, and it has been
since Oracle release 7.0.12.

Amdahl’s Law

The final “great advance” in Oracle performance optimization that I’ll mention is an
observation published in 1967 by Gene Amdahl, which has become known as
Amdahl’s Law [Amdahl (1967)]:

The performance enhancement possible with a given improvement is limited by the
fraction of the execution time that the improved feature is used.

In other words, performance improvement is proportional to how much a program
uses the thing you improved. Amdahl’s Law is why you should view response time

Three Important Advances | 11

components in descending response time order. In Example 1-2, it’s why you don’t
work on the CPU service “problem” before figuring out the SQL*Net message from
client problem. If you were to reduce total CPU consumption by 50%, you’d
improve response time by only about 2%. But if you could reduce the response time
attributable to SQL*Net message from client by the same 50%, you’ll reduce total
response time by 46%. In Example 1-2, each percentage point of reduction in
SQL*Net message from client duration produces nearly twenty times the impact of a
percentage point of CPU service reduction.

Amdahl’s Law is a formalization of optimization common sense. It tells you how to
p Yy
get the biggest “bang for the buck” from your performance improvement efforts.

All Together Now

Combining the three advances in Oracle optimization technology into one statement
results in the following simple performance method:

Work first to reduce the biggest response time component of a business’ most impor-
tant user action.

It sounds easy, right? Yet I can be almost certain that this is not how you optimize
your Oracle system back home. It’s not what your consultants do or what your tools
do. This way of “tuning” is nothing like what your books or virtually any of the other
papers presented at Oracle seminars and conferences since 1980 tell you to do. So
what is the missing link?

The missing link is that unless you know how to extract and interpret response time
measurements from your Oracle system, you can’t implement this simple optimiza-
tion method. Explaining how to extract and interpret response time measurements
from your Oracle system is a main point of this book.
W N
: I hope that by the time you read this book, my claims that “this is not
"‘.“ . how you do it today” don’t make sense anymore. As I write this chap-
s ter, many factors are converging to make the type of optimization I'm
" describing in this book much more common among Oracle practitio-

ners. If the book you’re holding has played an influencing role in that
evolution, then so much the better.

Tools for Analyzing Response Time

The definition of response time set forth by the International Organization for Stan-
dardization is plain but useful:

Response time is the elapsed time between the end of an inquiry or demand on a com-
puter system and the beginning of a response; for example, the length of the time
between an indication of the end of an inquiry and the display of the first character of
the response at a user terminal (source: http://searchnetworking.techtarget.com/
sDefinition/0,,sid7_gci212896,00.himl).

12 | (Chapter1: ABetter Way to Optimize

Response time is an objective measure of the interaction between a consumer and a
provider. Consumers of computer service want the right answer with the best
response time for the lowest cost. Your goal as an Oracle performance analyst is to
minimize response time within the confines of the system owner’s economic con-
straints. The ways to do that become more evident when you consider the compo-
nents of response time.

Sequence Diagram

A sequence diagram is a convenient way to depict the response time components of a
user action. A sequence diagram shows the flow of control as a user action con-
sumes time in different layers of a technology stack. The technology stack is a model
that considers system components such as the business users, the network, the appli-
cation software, the database kernel, and the hardware in a stratified architecture.
The component at each layer in the stack demands service from the layer beneath it
and supplies service to the layer above it. Figure 1-1 shows a sequence diagram for a
multi-tier Oracle system.

User Browser WAN Appsserver ~ LAN DB CPU DB disk

| |
— Pl |
> |
| |

I . R

! ! <5 _:I

| |

! ! 6—>

Response | | :I

time \ \ 7
| |
| .
I < 8
| |
| |
9 |
PR |
v _:l I I
:|<- 10 | |

Y Y v v v Y v

time

Figure 1-1. A sequence diagram for a multi-tier Oracle system

Figure 1-1 denotes the following sequence of actions, allowing us to literally see how
each layer in the technology stack contributes to the consumption of response time:

1. After considering what she wants from the system, a user initiates a request for
data from a browser by pressing the OK button. Almost instantaneously, the
request arrives at the browser. The user’s perception of response time begins
with the click of the OK button.

Tools for Analyzing Response Time | 13

2. After devoting a short bit of time to rendering the pixels on the screen to make
the OK button look like it has been depressed, the browser sends an HTTP
packet to the wide-area network (WAN). The request spends some time on the
WAN before arriving at the application server.

3. After executing some application code on the middle tier, the application server
issues a database call via SQL*Net across the local-area network (LAN). The
request spends some time on the LAN (less than a request across a WAN) before
arriving at the database server.

4. After consuming some CPU time on the database server, the Oracle kernel pro-
cess issues an operating system function call to perform a read from disk.

5. After consuming some time in the disk subsystem, the read call returns control
of the request back to the database CPU.

6. After consuming more CPU time on the database server, the Oracle kernel pro-
cess issues another read request.

7. After consuming some more time in the disk subsystem, the read call returns
control of the request again to the database CPU.

8. After a final bit of CPU consumption on the database server, the Oracle kernel
process passes the results of the application server’s database call. The return is
issued via SQL*Net across the LAN.

9. After the application server process converts the results of the database call into
the appropriate HTML, it passes the results to the browser across the WAN via
HTTP.

10. After rendering the result on the user’s display device, the browser returns con-
trol of the request back to the user. The user’s perception of response time ends
when she sees the information she requested.

A good sequence diagram reveals only the amount of detail that is
appropriate for the analysis at hand. For example, to simplify the con-
tent of Figure 1-1, I have made no effort to show the tiny latencies that
occur within the Browser, Apps Server, and DB CPU tiers as their
operating systems’ schedulers transition processes among running and
ready to run states. In some performance improvement projects,
understanding this level of detail will be vital. I describe the perfor-
mance impact of such state transitions in Chapter 7.

In my opinion, the ideal Oracle performance optimization tool does not exist yet.
The graphical user interface of the ideal performance optimization tool would be a
sequence diagram that could show how every microsecond of response time had
been consumed for any specified user action. Such an application would have so
much information to manage that it would have to make clever use of summary and
drill-down features to show you exactly what you wanted when you wanted it.

14 | Chapter1: ABetter Way to Optimize

Such an application will probably be built soon. As you shall see throughout this
book, much of the information that is needed to build such an application is already
available from the Oracle kernel. The biggest problems today are:

* Most of the non-database tiers in a multi-tier system aren’t instrumented to pro-
vide the type of response time data that the Oracle kernel provides. Chapter 7
details the response time data that I'm talking about.

* Depending upon your application architecture, it can be very difficult to collect
properly scoped performance diagnostic data for a specific user action.
Chapter 3 explains what constitutes proper scoping for diagnostic data, and
Chapter 6 explains how to work around the data collection difficulties pre-
sented by various application architectures.

However, much of what we need already exists. Beginning with Oracle release 7.0.12,
and improving ever since, the Oracle kernel is well instrumented for response time
measurement. This book will help you understand exactly how to take advantage of
those measurements to optimize your approach to the performance improvement of
Oracle systems.

Resource Profile

A complete sequence diagram for anything but a very simple user action would show
so much data that it would be difficult to use all of it. Therefore, you need a way to
summarize the details of response time in a useful way. In Example 1-2, I showed a
sample of such a summary, called a resource profile. A resource profile is simply a
table that reveals a useful decomposition of response time. Typically, a resource pro-
file reveals at least the following attributes:

* Response time category
* Total duration consumed by actions in that category

* Number of calls to actions in that category

A resource profile is most useful when it lists its categories in descending order of
elapsed time consumption per category. The resource profile is an especially handy
format for performance analysts because it focuses your attention on exactly the
problem you should solve first. The resource profile is the most important tool in my
performance diagnostic repertory.

The idea of the resource profile is nothing new, actually. The idea for using the
resource profile as our company’s focus was inspired by an article on profilers pub-
lished in the 1980s [Bentley (1988) 3-13], which itself was based on work that
Donald Knuth published in the early 1970s [Knuth (1971)]. The idea of decompos-
ing response time into components is so sensible that you probably do it often with-
out realizing it. Consider how you optimize your driving route to your favorite
destination. Think of a “happy place” where you go when you want to feel better.

Tools for Analyzing Response Time | 15

For me it’s my local Woodcraft Supply store (http://www.woodcraft.com), which sells
all sorts of tools that can cut fingers or crush rib cages, and all sorts of books and
magazines that explain how not to.

If you live in a busy city and schedule the activity during rush-hour traffic, the
resource profile for such a trip might resemble the following (expressed in minutes):

Response Time Component Duration # Calls Dur/Call
rush-hour expressway driving 90m 90% 2 45m
neighborhood driving 10m 10% 2 5m
Total 100m 100%

If the store were, say, only fifteen miles away, you might find the prospect of sitting
for an hour and a half in rush-hour traffic to be disappointing. Whether or not you
believe that your brain works in the format of a resource profile, you probably would
consider the same optimization that I'm thinking of right now: perhaps you could go
to the store during an off-peak driving period.

Response Time Component Duration # Calls Dur/Call
off-peak expressway driving 30m 75% 2 15m
neighborhood driving 10m 25% 2 5m
Total 40m 100%

The driving example is simple enough, and the stakes are low enough, that a formal
analysis is almost definitely unnecessary. However, for more complex performance
problems, the resource profile provides a convenient format for proving a point,
especially when decisions about whether or not to invest lots of time and money are
involved.

Resource profiles add unequivocal relevance to Oracle performance improvement
projects. Example 1-3 shows a resource profile for the Oracle Payroll program
described earlier in “User Action Focus.” Before the database administrators saw this
resource profile, they had worked for three months fighting a perceived problem
with latch contention. In desperation, they had spent several thousand dollars on a
CPU upgrade, which had actually degraded the response time of the payroll action
whose performance they were trying to improve. Within ten minutes of creating this
resource profile, the database administrator knew exactly how to cut this program’s
response time by roughly 50%. The problem and its solution are detailed in Part III
of this book.

Example 1-3. The resource profile for a network configuration problem that had previously been
misdiagnosed as both a latch contention problem and a CPU capacity problem

Response Time Component Duration # Calls Dur/Call
SOL*Net message from client 984.0s 49.6% 95,161 0.010340s
SQL*Net more data from client 418.8s 21.1% 3,345 0.125208s

16 | Chapter1: ABetter Way to Optimize

Example 1-3. The resource profile for a network configuration problem that had previously been

misdiagnosed as both a latch contention problem and a CPU capacity problem (continued)

db file sequential read

CPU service

unaccounted-for

latch free

log file sync

SQL*Net more data to client
log file switch completion
enqueue

SOL*Net message to client
buffer busy waits

db file scattered read
SQL*Net break/reset to client

279.3s
248.7s
27.9s
23.7s
1.1s
0.8s
0.3s
0.3s
0.2s
0
0
0

14.1%
.5%
4%
2%
1%
.0%

0%

=
N

O O O OO OO O R K.
o
3R

45,084 0.0061965

222,760 0.0011165
34,695 0.000683s
506 0.002154s
15,982 0.000052s
3 0.093333s

106 0.002358s
95,161 0.000003s
67 0.003284s

2 0.005000s

2 0.000000s

Example 1-4 shows another resource profile that saved a project from a frustrating

and expensive ride down a rat hole. Before seeing the resource profile shown here,
the proposed solution to this report’s performance problem was to upgrade either
memory or the I/O subsystem. The resource profile proved unequivocally that
upgrading either could result in no more than a 2% response time improvement.
Almost all of this program’s response time was attributable to a single SQL state-
ment that motivated nearly a billion visits to blocks stored in the database buffer

cache.

W N

You can’t tell by looking at the resource profile in Example 1-4 that
the CPU capacity was consumed by nearly a billion memory reads.
% Each of the 192,072 “calls” to the CPU service resource represents one

Oracle database call (for example, a parse, an execute, or a fetch).
From the detailed SQL trace information collected for each of these
calls, T could determine that the 192,072 database calls had issued
nearly a billion memory reads. How you can do this is detailed in

Chapter 5.

Problems like this are commonly caused by operational errors like the accidental

deletion of schema statistics used by the Oracle cost-based query optimizer (CBO).

Example 1-4. The resource profile for an inefficient SQL problem that had previously been diagnosed

as an 1/O subsystem problem

Response Time Component

CPU service

db file sequential read
SOL*Net message from client
latch free

other

Duration
48,946.7s 98.0%
940.1s 2.0%
60.9s 0.0%
2.2s 0.0%

1.4s 0.0%

Calls Dur/Call
192,072 0.254835s
507,385 0.001853s
191,609 0.000318s

171 0.012690s

49,951.3s 100.0%

Tools for Analyzing Response Time

17

Example 1-4 is a beautiful example of how a resource profile can free you from vic-
timization to myth. In this case, the myth that had confused the analyst about this
slow session was the proposition that a high database buffer cache hit ratio is an indi-
cation of SQL statement efficiency. The statement causing this slow session had an
exceptionally high buffer cache hit ratio. It is easy to understand why, by looking at
the computation of the cache hit ratio (CHR) metric for this case:

LIO—-PIO
LIO
10° —=507385
10°
~0.9995

CHR =

~

In this formula, LIO (logical I/O) represents the number of Oracle blocks obtained
from Oracle memory (the database buffer cache), and PIO (physical I/O) represents
the number of Oracle blocks obtained from operating system read calls.” The expres-
sion LIO — PIO thus represents the number of blocks obtained from Oracle memory
that did not motivate an operating system read call.

Although most analysts would probably consider a ratio value of 0.9995 to be
“good,” it is of course not “perfect.” In the absence of the data shown in
Example 1-4, many analysts I've met would have assumed that it was the imperfec-
tion in the cache hit ratio that was causing the performance problem. But the
resource profile shows clearly that even if the 507,385 physical read operations could
have been serviced from the database buffer cache, the best possible total time sav-
ings would have been only 940.1 seconds. The maximum possible impact of fixing
this “problem” would have been to shave a 14-hour execution by a mere 16 minutes.

Considering the performance of user actions using the resource profile format has revo-
lutionized the effectiveness of many performance analysts. For starters, it is the perfect
tool for determining what to work on first, in accordance with our stated objective:

Work first to reduce the biggest response time component of a business’ most impor-

tant user action.
Another huge payoff of using the resource profile format is that it is virtually impos-
sible for a performance problem to hide from it. The informal proof of this conjec-
ture requires only two steps:

Proof: If something is a response time problem, then it shows up in the resource pro-

file. If it’s not a response time problem, then it’s not a performance problem. QED

Part IT of this book describes how to create resource profiles from which perfor-
mance problems cannot hide.

* This formula has many problems other than the one illustrated in this example. Many authors—including
Adams, Lewis, Kyte, and myself—have identified dozens of critical flaws in the definition of the database
buffer cache hit ratio statistic. See especially [Lewis (2003)] for more information.

18 | (Chapter1: ABetter Way to Optimize

In Case You've Heard That More Memory Makes All Your
Performance Problems Go Away

Example 1-4 brings to mind the first “tuning” class I ever attended. The year was
1989, during one of my first weeks as a new Oracle Corporation employee. Our
instructor advised us that the way to tune an Oracle query was simple: just eliminate
physical I/O operations. I asked, “What about memory accesses?”, referring to a big
number in the query column of the tkprof output we were looking at. Our instructor
responded that fetches from memory are so fast that their performance impact is neg-
ligible. I thought this was a weird answer, because prior to the beginning of my Oracle
career, | had tuned a lot of C code. One of the most important steps in doing that job
was eliminating unnecessary memory accesses [Dowd (1993)].

Example 1-4 illustrates why eliminating unnecessary memory accesses should be a pri-
ority for you, too. Unnecessary memory accesses consume response time. Lots of them
can consume lots of response time. With 2GHz CPUs, the code path associated with
each Oracle logical I/0 operation (LIO) typically motivates tens of microseconds of
user-mode CPU time consumption. Therefore, a million LIOs will consume tens of
seconds of response time. Excessive LIO processing inhibits system scalability in a
number of other ways as well, as I explain in Parts II and III of this book. See [Millsap
(2001c¢)] for even more information.

Method R

The real goal of this book is not just to help you make an Oracle system go faster.
The real goal of this book is to optimize the project that makes an Oracle system go
faster. I don’t just want to help you make one system faster. I want to help you make
any system faster, and I want you to be able to accomplish that task in the most eco-
nomically efficient way possible for your business. Method R is the method I will
describe by which you can achieve this goal. Method R is in fact the basis for the
remainder of this book.

Method R is conceptually very simple. As you should expect, it is merely a formaliza-
tion of the simple “Work first to reduce the biggest response time component of a
business’ most important user action” objective that you’ve seen many times by now.

Who Uses the Method

An immediately noticeable distinction of Method R is the type of person who will be
required to execute it. Method R specifically can not be performed in isolation by a
technician who has no interest in your business. As I have said, the goal of Method R
is to improve the overall value of the system to the business. This goal cannot be
achieved in isolation from the business. But how does a person who leads the execu-
tion of Method R fit into an information technology department?

MethodR | 19

Method R: A Response Time—Based Performance Improvement
Method That Yields Maximum Economic Value to Your Business

1. Select the user actions for which the business needs improved performance.

2. Collect properly scoped diagnostic data that will allow you to identify the causes
of response time consumption for each selected user action while it is perform-
ing sub-optimally.

3. Execute the candidate optimization activity that will have the greatest net payoff
to the business. If even the best net-payoff activity produces insufficient net pay-
off, then suspend your performance improvement activities until something
changes.

4. Go to step 1.

The abominable smokestack

Most large companies organize their technical infrastructure support staff in a man-
ner that I call the “abominable smokestacks,” like the departmental segmentation
shown in Figure 1-2. Organizational structures like this increase the difficulty of opti-
mizing the performance of a system, for one fundamental reason:

Compartmentalized organizational units tend to optimize in isolation from other orga-
nizational units, resulting in locally optimized components. Even if they succeed in
doing this, it’s not necessarily good enough. A system consisting of locally optimized
components is not necessarily itself an optimized system.

One of Goldratt’s many contributions to the body of system optimization knowl-
edge is a compelling illustration of how local optimization does not necessarily lead
to global optimization [Goldratt (1992)].

Operating system Disk Network Database Application
administration administration administration administration development

Figure 1-2. Typical organizational structure for a technical infrastructure department

20 | Chapter1: ABetter Way to Optimize

The smokestack mentality is pervasive. Even the abstract submission forms we use to
participate in Oracle conferences require that we choose a smokestack for each of
our presentations (conference organizers tend to call them tracks instead of smoke-
stacks). There is, for example, one track for papers pertaining to database tuning,
and a completely distinct track for papers pertaining to operating system tuning.
What if a performance optimization solution requires that attention be paid itera-
tively to both components of the technology stack? I believe the mere attempt at cat-
egorization discourages analysts from considering such solutions. At least analysts
who do implement solutions that span stack layers are ensured of having a difficult
time choosing the perfect track for their paper proposals.

W N

One classic aspect of segmentation is particularly troublesome for
almost every Oracle system owner I've ever talked with: the distinc-
W tion between application developers and database administrators.
Which group is responsible for system performance? The answer is
both. There are performance problems that application developers will
not detect without assistance from database administrators. Likewise,
there are performance problems that database administrators will not
be able to repair without assistance from application developers.

The Goal

One inspiration behind Method R is the story told in Eli Goldratt’s The Goal [Goldratt
(1992)]. The Goal describes the victory of a revolutionary new performance optimiza-
tion method over a method that is culturally ingrained but produces inferior results.
Goldratt’s method applies to factory optimization, but his story is eerily reminiscent of
what the Oracle community is going through today: the overthrow of an optimization
method based upon a faulty measurement system.

The Goal dismantles a lot of false ideas that a lot of analysts think they “know” about
optimization. Two of the most illuminating lessons that [learned from the book were:

* Cost accounting practices often promote bad optimization decisions. Oracle
practitioners use cost accounting practices when they target a system’s hit ratios
for optimization.

* A collection of optimized components is itself not necessarily optimized. This
explains why systems with 100% “best in class” componentry can have perfor-
mance problems. It explains why so many slow Oracle systems have dozens of
component administrators standing behind them who each swears that his com-
ponent “can’t possibly be the cause of a performance problem.”

If you haven’t read The Goal, then I think you’re in for a real treat. If you have read it
already, then consider reading it again with the intent to apply what you read by anal-
ogy to the world of Oracle performance. The cover says that “Goal readers are now
doing the best work of their lives.” This statement is a completely accurate portrayal
of my personal relationship with the book.

MethodR | 21

The optimal performance analyst

A company’s best defense against performance problems begins with a good perfor-
mance analyst who can diagnose and discourse intelligently in all the layers of the
technology stack. In the context of Figure 1-2, this person is able to engage success-
fully “in the smoke.” The performance analyst can navigate above the smokestacks
long enough to diagnose which pipes to dive into. And the best analyst has the
knowledge, intelligence, charisma, and motivation to drive change in the interac-
tions among smokestacks once he’s proven where the best leverage is.

Of the dozens of great Oracle performance analysts I've had the honor of meeting,
most share a common set of behavioral qualities that I believe form the basis for their
success. The best means I know for describing the capabilities of these talented ana-
lysts is a structure described by Jim Kennedy and Anna Everest [Kennedy and Ever-
est (1994)], which decomposes personal behavioral qualities into four groups:

Education/experience/knowledge factors

In the education/experience/knowledge category, the capabilities required of the
optimal analyst are knowledge of the business goals, processes, and user actions
that comprise the life of the business. The optimal analyst knows enough about
finance to understand the types of input information that will be required for a
financially-minded project sponsor to make informed investment decisions dur-
ing a performance improvement project. And the optimal analyst of course
understands the technical components of his application system, including the
hardware, the operating system, the database server, the application programs,
and any other computing tiers that join clients to servers. I describe many impor-
tant technical factors in Part II of this book.

Intellectual factors
The optimal performance analyst exhibits several intellectual factors as well.
Foremost, I believe, is the strong sense of relevance—the ability to understand
what’s important and what’s not. Sense of relevance is a broad category. It com-
bines the attributes of perceptiveness, common sense, and good judgment. Gen-
eral problem solving skills are indispensable, as is the ability to acquire and
assimilate new information quickly.

Interpersonal factors

The optimal performance analyst exhibits several interpersonal factors. Empa-
thy is key to acquiring accurate information from users, business owners, and
component administration staff. Poise is critical for maintaining order during a
performance crisis, especially during the regularly scheduled panic phase of a
project. Self-confidence is necessary to inspire adequate morale among the vari-
ous project victims and perpetrators to ensure that the project is allowed to com-
plete. The optimal analyst is tactful and successful in creating collaborative effort
to implement a solution plan.

22 | Chapter1: ABetter Way to Optimize

Motivational factors

Finally, the optimal performance analyst exhibits several important motiva-
tional factors. She is customer oriented and interested in the business. She enjoys a
difficult challenge, and she is resourceful. T have found the best performance ana-
lysts to be always mindful that technical, intellectual, interpersonal, and motiva-
tional challenges are all surmountable, but that different problem types often
require drastically different solution approaches. The best performance analysts
seem not only to understand this, but to actually thrive on the variety.

Your role

As a result of buying this book, I want you to become so confident in your perfor-
mance problem diagnosis skills that a scenario like the following doesn’t scare you
one bit:

Scene: Big meeting. Participants include several infrastructure department managers,
you, and a special guest: the CEO, whose concerns about online order form perfor-
mance are critical enough that he has descended upon your meeting to find out what
you’re going to do about it....

Senior manager of the system administration department (“System manager”): In two
weeks, we’re going to upgrade our CPU capacity, at a cost to the business of
US$65,000 in hardware and upgraded software license fees. However, we expect that
because we’re doubling our CPU speeds, this upgrade will improve performance sig-
nificantly for our users.

CEO: (Nods.) We must improve the performance of our online order form, or we’ll
lose one of our biggest retail customers.

You: But our online order form consumes CPU service for only about 1.2 seconds of
the order form’s 45-second commit time. Even if we could totally eliminate the
response time consumed by CPU service, we would make only about a one-second
improvement in the form’s response time.

System manager: 1 disagree. I think there are so many unexplained discrepancies in the
response time data you're looking at that there’s no way you can prove what you’re
saying.

You: Let’s cover this offline. I'll show you how I know.
(Later, after reconvening the meeting.)

System manager: Okay, 1 get it. He’s right. Upgrading our CPU capacity won’t help
order form performance in the way that we’d hoped.

You: But by modifying our workload in a way that I can describe, we can achieve at
least a 95% improvement in the form’s commit response time, without having to
spend the money on upgrading our CPUs. As you can see in this profile of the order
form’s response time, upgrading CPU capacity wouldn’t have helped us here anyway.

I've witnessed the results of a lot of conversations that began this way but never
veered back on-course when it was the You character’s first turn to speak. The result
is often horrifying. A company works its way through the alphabet in search of some-
thing that might help performance. Sometimes it stops only when the company runs
out of time or money, or both.

MethodR | 23

Perhaps even more painful to watch is the conversation in which the You character
does speak up on cue but then is essentially shouted down by a group of people who
don’t believe the data. Unless you can defend your diagnostic data set all the way to
its origin—and how it fits in with the data your debaters are collecting—you stand a
frighteningly large chance of losing important debates, even when you’re right.

Overcoming Common Objections

I hope that I've written this book effectively enough that you will want to try
Method R on your own system. If you can work alone, then most of the obstacles
along your way will be purely technical, and you’ll probably do a great job of figur-
ing those out. I've tried hard to help you overcome those with the information in this
book.

However, it’s more likely that improving the performance of your system will be a
collaborative effort. You’ll probably have to engage your colleagues in order to
implement your recommendations. The activities you recommend as a result of using
Method R will fall into one of two categories:

* Your colleagues have heard the ideas before and rejected them

* They’ve never heard the ideas before

Otherwise, your system would have been fixed by now. Either way, you will proba-
bly find yourself in an environment that is ready to challenge your ideas. To make
any progress, you will have to justify your recommendations in language that makes
sense to the people who doubt you.

W 8
A
Y Justifying your recommendations this way is healthy for you to do
ﬁ{ anyway, even in the friendliest of environments where your words
& - .
113 become other people’s deeds almost instantaneously.

The most effective ways I've found to justify such recommendations are:

Proof-of-concept tests

There’s no better way to prove a result than to actually demonstrate it. Dave
Ensor describes this as the Jeweler’s Method. Any good jeweler will place inter-
esting merchandise into a prospective customer’s hands as early in the sales pro-
cess as possible. Holding the piece activates all the buyer’s senses in appreciating
the beauty and goodness of the thing being sold. The buyer’s full imagination
goes to work for the seller as the buyer locks in on the vision of how much bet-
ter life will become if only the thing being held can be obtained. The method
works wonderfully for big-ticket items, including jewelry, cars, houses, boats,
and system performance. There’s probably no surer way to build enthusiasm for
your proposal than to let your users actually feel how much better their lives will
become as a result of your work.

24 | Chapter1: ABetter Way to Optimize

Direct statistics that make sense to end users
If proof-of-concept tests are too complicated to provide, the next best thing is to
speak in direct statistics that make sense to end users. There are only three
acceptable units of measure for such statistics:

* Your local currency
* The duration by which you’ll improve someone’s response time

* The number of business actions per unit of time by which you’ll improve
someone’s throughput

Any other measure will cause one of two problems. Either your argument will be
too weak to convince the people you're trying to persuade, or, worse yet, you’ll
succeed in your persuasions, but because you were thinking in the wrong units
of measure you’ll risk producing end results with inadequate “real” benefit. Real
benefit is always measured in units of either money or time. Succeeding in your
proposal but failing in your end result of course causes an erosion of your credi-
bility for future recommendations.

Track record of actualized predictions

If you have the luxury of a strong reputation to enhance your persuasive power,
then merely making your wishes known may be enough to inspire action. How-
ever, if this is the case, beware. Every prediction you make runs the risk of erod-
ing your credibility. Even if you have the power to convert your instructions into
other people’s tasks, I strongly encourage you to assess your recommendations
privately using proof-of-concept tests or direct statistics that make sense to end
users. Don’t borrow from the account of your own credibility until you’re cer-
tain of your recommendations.

“But my whole system is slow”

At hotsos.com, we use Method R for our living. After using the method many times, I
can state categorically that the most difficult step of Method R is one that’s not even
listed: it is the step of convincing people to use it. The first objection my colleagues
and [encounter to our focus on user actions is as predictable as the sunrise:

“But my whole system is slow.”
“I need to tune my whole system, not just one user.”

“When are you going to come out with a method that helps me tune my whole system?”

We hear it everywhere we go.

What if the whole system is slow? Practitioners often react nervously to a perfor-
mance improvement method that restricts analysis to just one user action at a time.
Especially if users perceive that the “whole system” is slow, there is often an over-
whelming compulsion to begin an analysis with the collection of system-wide statis-
tics. The fear is that if you restrict the scope of analysis to anything less than the

MethodR | 25

entire system, you might miss something important. Well, in fact, a focus on priori-
tized user actions does cause you to miss some things:

A focus on high-priority user actions causes you to overlook irrelevant performance

data. By “irrelevant,” I mean any data that would abate your progress in identifying

and repairing your system’s most important performance problem.
Here’s why Method R works regardless of whether a system’s problem is an individ-
ual user action or a whole mess of different user actions. Figure 1-3 shows the first
information that analysts get when they learn of system performance problems.
Legitimate information about performance problems usually comes first from the
business in the form of user complaints.

WS
A}
Y It is possible for information providers to be the first to know about
ﬁ:\ performance problems. In Chapter 9 I describe one way in which you
& o
ol can acquire such a priori knowledge. But it is rare for information pro-

viders to know about performance problems before their information
consumers tell them.

Symptoms

Figure 1-3. What performance analysts first see when there’s a performance problem. Shaded
circles represent user actions that are experiencing performance problems

Upon receipt of such information, the first impulse of most analysts is to establish a
cause-effect relationship between the symptoms being observed and one or more root
causes that might be motivating the symptoms. I wholeheartedly agree that this step
is the right step. However, many projects fail because analysts fail to establish the
correct cause-effect relationships. A core strength of Method R is that it allows you to
determine cause-effect relationships more quickly and accurately than with any other
method.

Figure 1-4 shows why. It depicts three possible sets of cause-effect relationships
between problem root causes and performance problem symptoms. Understanding the
effectiveness of Method R for each of these scenarios compared to conventional tuning
methods will help you decide for yourself whether Method R is an effective system-
wide optimization or not. The three possible scenarios depicted in Figure 1-4 are:

* At one extreme, case (a) depicts that every user-discernible symptom on the sys-
tem is caused by a single “universal” root cause.

* In case (b), there is a many-to-many relationship between symptoms and root
causes. Some symptoms have two or more contributory root causes, and some
root causes contribute to more than one symptom.

26 | Chapter1: ABetter Way to Optimize

* At the other extreme, case (c) depicts a situation in which every symptom is
linked to its own distinct root cause. No single root cause creates negative per-
formance impact for more than one user action.

Symptoms Symptoms Symptoms
| Rt
:%\k ‘\\x 4/ A | T 4/1] i T T 4T
T/ AT/ P/
Root causes Root causes\ Root causes
@ (b) (@

Figure 1-4. Three possible sets of cause-effect relationships (depicted by arrows) between root
causes and performance problem symptoms

Of course it is easy to draw pictures of cause-effect relationships between root causes
and performance problem symptoms. It’s another matter entirely to determine such
cause-effect relationships in reality. The ability to do this is, I believe, the most dis-
tinguishing strength of Method R. Let me explain.

For problems resembling Figure 1-4(a), Method R works quite well. Even if you were
to completely botch the business prioritization task inherent in the method’s step 1,
you’d still stumble upon the root cause in the first diagnostic data you examined.
The reason is simple. If all symptoms have the same root cause, then no matter
which symptom you investigate, you’ll find the single, universal root cause in that
symptom’s response time profile.

Method R also works well for problems resembling Figure 1-4(b) and (c). In these
cases, the only way to provide system-wide relief is to respond to each of the root
causes that contributes to a symptom. Constraints on analyst labor (your time) prob-
ably make it impossible to respond to all the symptoms simultaneously, so it will
probably be important to prioritize which activities you’ll conduct first. This require-
ment is precisely the motive for the work prioritization inherent in Method R.
Remembering that the true goal of any performance improvement project is eco-
nomic, the proper way to prioritize the project activities is to respond to the most
important symptoms first. Method R is distinctive in that it encourages alignment of
project priorities with business priorities.

MethodR | 27

By contrast, let’s examine the effectiveness of Method C for each of the same three
scenarios. Remember, the first step of Method C is:

Hypothesize that some performance metric x has an unacceptable value.

In the context of Figure 1-4, this step is analogous to searching for the shaded circles
in the portion of the diagram labeled root causes. After identifying probable root
causes of performance problems, Method C next requires the analyst to establish a
cause-effect relationship between root causes and symptoms. One problem with
Method C is that it forces you to compute this cause-effect relationship rather more
by accident than by plan. The conventional method for determining this cause-effect
relationship is literally to “fix” something and then see what impact you created. It’s
a trial-and-error approach.

The challenge to succeeding with Method C is how quickly you can identify the right
“unacceptable” system metric value. The longer it takes you to find it, the longer
your project will drag on. Certainly, your chances of finding the right problem to
solve are greatest when there’s only one problem in the whole system. However, it’s
not certain that finding the root cause will be easy, even in an “easy” case like
Figure 1-4(a). Just because there’s only one root cause for a bunch of problems
doesn’t mean that there will be only one system-wide performance statistic that
looks “unacceptable.”

The real problem with Method C becomes apparent when you consider its effective-
ness in response to the cases shown in Figure 1-4(b) and (c). In both of these cases,
when we look “from the bottom up,” there are several potential root causes to
choose from. How will you determine which root cause to work on first? The best
prioritization scheme would be to “follow the arrows” backward from the most
important business symptoms to their root causes. The root causes you’d like to
address first are the ones causing the most important symptoms.

However, Method C creates a big problem for you at this point:

System-wide performance metrics provide insufficient information to enable you to
draw the cause-effect arrows.

You cannot reliably compute the cause-effect relationships shown in Figure 1-4
unless you measure response time consumption for each user action—“from the top
down” in the context of the drawing. Understanding what information is required to
draw the cause-effect arrows reveals both the crippling flaw of Method C and the dis-
tinctive strength of Method R. It is impossible to draw the cause-effect arrows reli-
ably from root causes to symptoms (from the bottom to the top). However, it is very
easy to draw the arrows from symptoms to root causes (from the top down), because
the resource profile format for targeted user actions tells you exactly where the
arrows belong.

Without the cause-effect arrows, a project is rudderless. Any legitimate prioritization
of performance improvement activities must be driven top-down by the economic

28 | Chapter1: ABetter Way to Optimize

priorities of the business. Without the arrows, you can’t prioritize your responses to
the internal performance metrics you might find in your Statspack reports. Without
the arrows, about the only place you can turn is to “cost accounting” metrics like hit
ratios, but unfortunately, these metrics don’t reliably correspond to the economic
motives of the business. The Oracle Payroll situation that I described earlier in this
chapter was rudderless for three months. The project concluded on the day that the
team acquired the data shown in Example 1-3.

Ironically, then, the popular objection to Method R actually show-
as cases the method’s greatest advantage. We in fact designed Method R
e specifically to respond efficiently to systems afflicted with several per-
* formance root causes at once.

The reason Method R works so well in system-wide performance crises is that your
“whole system” is not a single entity; it’s a collection of user actions, some more
important than others. Your slow user actions may not all be slow for the same rea-
son. If they’re not, then how will you decide which root cause to attack first? The
smart way is by prioritizing your user actions in descending order of value to your
business. What if all your slow user actions actually are caused by the same root
cause? Then it’s your lucky day, because the first diagnostic data you collect for a
single process is going to show you the root cause of your single system-wide perfor-
mance problem. When you fix it for one session, you’ll have fixed it for every ses-
sion. Table 1-1 summarizes the merits of conventional methods versus the new
method.

Table 1-1. The merits of Method C and Method R. Method R yields its greatest comparative
advantage when “the whole system is slow”

Figure 1-4 case Method C effectiveness Method R effectiveness

(a) Effective in some cases. Existence of only one problem Effective. Even if business prioritization is per-
root cause increases the likelihood that this root cause formed incorrectly, the method will successfully
will be prominent in the analysis of system-wide sta- ~ identify the sole root cause on the first attempt.

tistics.

(b) Unacceptable. Inability to link cause with effect Effective. Business prioritization of user actions
means that problems are attacked “from the bottom ensures that the most important root cause will
up”in an order that may not suit business priorities. be found and addressed first.

(9 Unacceptable. Same reasons as for (b). Effective. Same reasons as above.

“The method only works if the problem is the database”

Another common objection to Method R is the perception that it is incapable of find-
ing and responding to performance problems whose root causes originate outside the
database tier. In a world whose new applications are almost all complicated multi-
tier affairs, this perception causes a feeling that Method R is severely limited in its
effective scope.

MethodR | 29

Method R itself is actually not restricted at all in this manner. Notice that nowhere in
the four-step method is there any directive to collect response time data just for the
database. The perception of database focus arises in the implementation of step 2,
which is the step in which you will collect detailed response time diagnostic data.
This book, as you shall see, provides coverage only of the response time metrics pro-
duced specifically by the Oracle kernel. There are several reasons for my writing the
book this way:

* When performance problems occur, people tend to point the finger of blame
first at the least well-understood component of a system. Thus, the Oracle data-
base is often the first component blamed for performance problems. The Oracle
kernel indeed emits sufficient diagnostic data to enable you to prove conclu-
sively whether or not a performance problem’s root cause lies within the data-
base kernel.

* At the time of this writing, the Oracle kernel is in fact the most robustly instru-
mented layer in the technology stack; however, many analysts fail to exploit the
diagnostic power inherent in the data this instrumentation emits. Oracle’s diag-
nostic instrumentation model is very robust in spite of its simplicity and effi-
ciency (Chapter 7). Vendors of other layers in the application technology stack
have already begun to catch onto this notion. I believe that the response time
diagnostic instrumentation built into the Oracle kernel will become the stan-
dard model for instrumenting other application tiers.

Even without further instrumentation of non-database tiers, if your performance
problem is in the database, Method R helps you solve it quickly and efficiently. If
your problem is not caused by something going on in your database, then Method R
helps you prove that fact quickly and efficiently. Regardless of where in your archi-
tecture your root cause resides, Method R prevents you from trying to fix the wrong
problem.

The proof is in the experience. Method R routinely leads us to the doorstep of prob-
lems whose repair must be enacted either inside or outside of the database, includ-
ing such cases as:

* Query mistakes caused by inefficiently written application SQL statements, poor
data designs, ill-advised indexing strategies, data density mistakes, etc.

* Application software mistakes caused by excessive parsing, poorly designed seri-
alization (locking) mechanisms, misuse (or disuse) of array processing features,
etc.

* Operational mistakes caused by errors in collection of statistics used by the cost-
based optimizer, accidental schema changes (e.g., dropped indexes), inattention
to full file systems, etc.

* Network mistakes caused by software configuration mistakes, hardware faults,
topology design errors, etc.

30 | Chapter1: ABetter Way to Optimize

* Disk I/O mistakes caused by poorly sized caches, imbalances in I/O load to dif-
ferent devices, etc.

* Capacity planning mistakes resulting in capacity shortages of resources like
CPU, memory, disk, network, etc.

“The method is unconventional”

Even if Method R could prove to be the best thing since the invention of rows and
columns, T expect for some pockets of resistance to exist for at least a couple of years
after the publication of this book. The method is new and different, and it’s not what
people are accustomed to seeing. As more practitioners, books, and tools adopt the
techniques described in this book, I expect that resistance will fade. In the mean-
time, some of your colleagues are going to require careful explanations about why
you're recommending a completely unconventional performance optimization
method that doesn’t rely on Statspack or any of the several popular performance
monitoring tools for which your company may have paid dearly. They may cite your
use of an unconventional method as one of the reasons to reject your proposals.

One of my goals for this book is certainly to arm you with enough knowledge about
Oracle technology that you can exploit your data to its fullest diagnostic capacity. I
hope by the end of this book I'll have given you enough ammunition that you can
defend your recommendations to the limit of their validity. I hope this is enough to
level the playing field for you so that any debates about your proposed performance
improvement activities can be judged on their economic merits, and not on the name
of the method you used to derive them.

Evaluation of Effectiveness

Earlier in this chapter, I listed eight criteria against which I believe you should judge a
performance improvement method. T'll finish the chapter by describing how
Method R has measured up against these criteria in contrast to conventional methods:

Impact
Method R causes you to produce the highest possible impact because you are
always focused on the goal that has meaning to the business: the response time
of targeted user actions.

Efficiency
Method R provides excellent project efficiency because it keeps you focused on
the top priorities for the business, and because it allows you to make fully
informed decisions during every step of the project. Project efficiency is in fact
the method’s key design constraint.

Measurability
Method R uses end-user response time as its measurement criterion, not inter-
nal technical metrics that may or may not translate directly to end-user benefit.

MethodR | 31

Predictive capacity
Method R gives the unprecedented ability to predict the impact of a proposed
tuning activity upon a targeted user action, without having to invest in expen-
sive experimentation.

Reliability
Method R performs reliably in virtually every performance problem situation
imaginable; a distinction of the method is its ability to pinpoint the root cause of
any type of performance problem without having to resort to experience, intu-
ition, or luck.

Determinism
Method R eliminates diagnostic guesswork first by maintaining your focus on
business priority, and second by providing a foolproof method for determining
the true relationships between problem symptoms and their root causes.

Finiteness
Method R has a clearly stated termination condition. The method provides the
distinctive capacity to prove when no further optimization effort is economically
justifiable.

Practicality
Method R is a teachable method that has been used successfully by hundreds of
analysts of widely varying experience levels to resolve Oracle performance prob-
lems quickly and permanently.

The next chapters show you how to use Method R.

32 | Chapter1: ABetter Way to Optimize

