
Oracle
Performance

Optimizing

A Practitioner's Guide to Optimizing Response Time

Cary Millsap
with Jeff Holt

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

45

Chapter 3 CHAPTER 3

Targeting the Right Diagnostic Data

Once you have correctly targeted the user actions for which the business most needs
performance improvement, it is data collection time. Diagnostic data collection is the
project phase in which the typical performance analyst really begins to feel a sense of
progress. There are very few arguments in Oracle literature today about how one
should go about collecting performance diagnostic data. However, there should be.
The way that you collect your diagnostic data has a tremendous influence over a
project’s potential for success. In fact, unless you are exceptionally lucky, a perfor-
mance improvement project cannot proceed beyond a botched data collection.

I hope that this chapter will surprise you. It describes a couple of very important
flaws in the standard data collection procedures that are deeply institutionalized in
the Oracle culture. In the hundreds of flawed Oracle performance improvement
projects that my colleagues and I have helped repair, a contributing factor to failure
in nearly every project was one or more errors in data collection. Unfortunately, vir-
tually every document written about Oracle performance prior to the year 2000 leads
its reader to make these errors. I believe that the commonsense examples described
in this chapter will forever change your attitude toward diagnostic data collection.

Expectations About Data Collection
The whole point of data collection in a performance improvement project using
Method R is to collect response time data for a correctly targeted user action. No more,
no less. Unfortunately, many application designers have complicated the data collec-
tion job significantly by providing insufficient instrumentation in their applications.

Many companies, especially Oracle Corporation, are improving the
response time instrumentation in newer application releases.

The data collection lessons you learn in this chapter will make data collection seem
more difficult than you had probably expected. The benefit of doing it right is that

optoraclep-veritas-feb2004-lc

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

46 | Chapter 3: Targeting the Right Diagnostic Data

you will reduce your overall project costs and durations by eliminating expensive and
frustrating trial-and-error analysis/response iterations.

A Method R performance improvement project proceeds much differently than a
project that uses the conventional trial-and-error approach introduced as Method C
in Chapter 1. Figure 3-1 illustrates the difference. A project practitioner typically
begins to feel like he is making real progress when the targeting and data collection
phases are complete and he enters the analysis/response phase of a performance
improvement project. The Method C practitioner typically reaches this milestone
(marked t1 in Figure 3-1) before the Method R practitioner working on the same
problem would (marked t2). If you don’t expect this, it can become a political sensi-
tivity in a Method R project. The time between t1 and t2 is when your risk of losing
commitment to the new method is at its greatest.

Finishing the data collection phase quickly is not the goal of a performance improve-
ment project. The correct goal is to optimize the system with the smallest possible
investment of resources. Method R is optimized for this goal. In fact, my colleagues
and I created Method R specifically to help our customers fix performance
improvement projects that had dragged on for weeks or even months without mean-
ingful progress. In the overwhelming majority of Method R projects we’ve led, we’ve

Figure 3-1. The targeting and diagnostic data collection phases of Method R consume more time
than in conventional methods, but total project duration is typically much shorter

weeks

Method C Method R
Targeting

Diagnostic data collection

Analysis/response
1

Analysis/response
2

Analysis/response
3

Analysis/response
n

Finished? Not sure. . .

Targeting

Diagnostic data collection

Analysis/response

Finished

t0

t1

t2

t3

t4

hours

time time

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Expectations About Data Collection | 47

been able to demonstrate how to achieve the optimization goal within one hour of
obtaining correctly scoped diagnostic data. Once you have collected the right perfor-
mance diagnostic data, Method R will require only a single analysis/response phase
before you’ll make progress against your targeted user action.

Method C practitioners spend most of their time in trial-and-error mode trying to
determine the cause-effect relationship between the hundreds of possible problem
causes and the business symptom that is most in need of improvement. A huge inef-
ficiency of Method C is the need to perform, on average, several iterations of analy-
sis and response activities before you’ll stumble upon a symptom’s root cause. Each
iteration of analysis and response tends to consume more time than the prior one,
because analysts usually try the easiest responses they can think of first, saving the
more time-consuming and expensive tuning activities for later in the project after the
cheaper ideas are discarded.

The final blow to Method C is that there’s really no quantitative way to determine
when you’re “finished tuning.” In many projects, Method C users never positively
identify an actual contributory cause of a performance problem. Even in “success-
ful” projects, practitioners spend weeks, months, or even years without really know-
ing whether a targeted performance problem has been truly perfected (optimized) or
merely partially improved (tuned). The problem of not knowing whether a user
action could be further tuned leads to a condition that Gaja Vaidyanatha and Kirti
Deshpande cleverly call Compulsive Tuning Disorder, or CTD [Vaidyanatha and
Deshpande (2001) 8]. I joke that CTD is a debilitating condition caused by hope.
More specifically, CTD is caused by an absence of complete information that would
allow you to prove conclusively whether the performance of a given user action has
any room for improvement. Method R fills this information gap, eliminating the pos-
sibility of CTD.

The first time you use Method R, collecting the diagnostic data will probably be the
most difficult phase of your project. For some applications, diagnostic data collec-
tion is a cake walk. For other applications, proper diagnostic data collection can
legitimately become quite a difficult challenge. Chapter 6 describes which kinds of
applications are easy and which are hard, and it illustrates some of the techniques
that my colleagues and I have used to overcome various challenges. The good news is
that once you’ve figured out how to collect good diagnostic data for a targeted user
action in your application, the process will be much easier and less time-consuming
on your next performance improvement project. Method C, on the other hand, will
always suffer from the problem of multiple analysis/response iterations, regardless of
where you are on the experience curve.

I believe that in the future, most application software vendors will make it very easy
for users and analysts alike to collect precisely the diagnostic data that Method R
requires. Newer releases of Oracle’s E-Business Suite are simplifying the diagnostic
data collection process, and everything I hear indicates that the Oracle release 10

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

48 | Chapter 3: Targeting the Right Diagnostic Data

kernel and application server software are headed in the same direction. If the domi-
nance of methods analogous to Method R in other industries is any indication, then
success in simplifying diagnostic data collection should practically universalize the
adoption of Method R for Oracle performance improvement projects.

Data Scope
Good Oracle performance data collection requires good decision-making in two
dimensions. You must collect data for the right time scope and the right action scope.
Let’s begin by drawing a user action’s response time consumption as a sequence of
chunks of time spent consuming various resources. Figure 3-2 shows the result. To
keep it simple, our imaginary system consists of only three types of resource, called
C, D, and S. Imagine that these symbols stand for CPU, disk, and serialization (such
as the one-at-a-time access that the Oracle kernel imposes for locks, latches, and

Different Methods for Different Performance Problems?
Could it be that conventional methods are more effective for “simple” performance
tuning problems, and that Method R is more effective for “complex” ones? The prob-
lem with that question is this: How do you know whether a performance tuning prob-
lem is “simple” or “complex” without engaging in some kind of diagnostic data
collection?

One approach that we considered during the construction of Method R was to collect
very easy-to-obtain diagnostic data to use in deciding whether the more difficult-to-
obtain diagnostic data were even necessary to collect. We found this approach to be
sub-optimal. The problem with it is that there’s virtually no situation in which you can
be certain about cause-effect relationships without the correct diagnostic data (and of
course, sometimes the correct diagnostic data are difficult to obtain). The doubt and
ambiguity that are admitted into a project by the analysis of easy-to-obtain diagnostic
data rapidly deteriorate the efficiency of a performance improvement project. The
thought-blocking fixations that I’ve seen caused by bad diagnostic data at many
projects remind me of a wonderful quotation attributed to Cardinal Thomas Wolsey
(1471–1530): “Be very, very careful what you put into that head, because you will
never, ever get it out.”

A dominant goal during the construction of Method R was that it must be determinis-
tic. Determinism is a key attribute that determines how teachable (or automate-able) a
method can be. We wanted to ensure that any two people executing Method R upon
a given performance problem would perform the same sequence of tasks, without hav-
ing to appeal to experience, intuition, or luck to determine which step to take next.
Our method achieves this by creating a single point of entry, and a well-defined
sequence of if-then-else instructions at every decision point thereafter.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Data Scope | 49

certain memory buffer operations). In Figure 3-2, the time dimension extends in the
horizontal direction.

We can denote a system that is executing several user actions at the same time by
stacking such drawings vertically, as shown in Figure 3-3. In this drawing, the action
dimension extends in the vertical direction.

The following sections use this graphical notation to illustrate why the data collec-
tion methods that many Oracle experts have been teaching since the 1980s are actu-
ally what have been killing performance improvement projects all over the world.

Scoping Errors
In the system shown in Figure 3-3, imagine that the targeting process described in
Chapter 2 has revealed the following: the most important performance problem for
the business is that a user named Wallace endures an unacceptably long response
time between times t1 and t2, as shown in Figure 3-4.

In the following discussions, I shall use the mathematical notation for
a closed interval. The notation [a, b] represents the set of values
between a and b, inclusive:

[a, b] = {all x values for which a ≤ x ≤b}

Figure 3-2. The consumption of three types of resource over the duration of a user action

Figure 3-3. By adding a vertical dimension, this drawing depicts a system containing seven
concurrent actions, each consuming three different types of resource through time

D C S S C D C D D D C D D D D D C C C C

time

time dimension

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

C C C D D C S S S C C D D D C S C D D D

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

ac
tio

n
di

m
en

sio
n

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

50 | Chapter 3: Targeting the Right Diagnostic Data

From the picture in Figure 3-4, it is easy to see that during the problem time interval,
Wallace’s response time was consumed predominantly by S and secondarily by C, as
shown in Table 3-1. Of course, repairing Wallace’s performance problem will require
a reduction in time for Wallace’s action spent consuming either S, or C, or both.
Amdahl’s Law indicates that any percentage reduction in consumption of S will have
1.5 times the response time impact that an equivalent percentage reduction in con-
sumption of C will have, because the response time contribution of S is 1.5 times the
size of the response time contribution of C.

Perhaps the most common data collection error is to collect data that are aggregated
in both dimensions. Figure 3-5 shows what this mistake looks like. The heavy, dark
line around all the blocks in the entire figure indicate that data were aggregated for all
processes (not just Wallace’s), and for the whole time interval [t0, t3] (not just [t1, t2]).
Counting the time units attributable system-wide during the [t0, t3] interval produces
the resource profile shown in Table 3-2. As you can see, Wallace’s performance prob-
lem—which we know to have been too much time spent doing S—has been thor-
oughly buried by all of the irrelevant data that we collected. The result of the botched
data collection will be a longer and probably less fruitful performance improvement
project than we want.

Figure 3-4. This system’s most important user, Wallace, experiences unacceptable performance in
the time interval [t1, t2]

Table 3-1. Resource profile for Wallace’s action for the time interval [t1, t2]

Resource Elapsed time Percentage of total time

S 3 60.0%

C 2 40.0%

Total 5 100.0%

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

C C C D D C S S S C C D D D C S C D D D

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

Wendolene

Preston

Alexander

Wallace

Gromit

Nikolas

Shaun

t0 t1 t2 t3

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

C C C D D C S S S C C D D D C S C D D D

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Data Scope | 51

From the data shown in Table 3-2, you simply cannot see that S is Wallace’s princi-
pal problem root cause. It would actually be irresponsible to assume that S might be
the root cause of Wallace’s problem.

Unfortunately, the deeply flawed data collection method illustrated here is the
default behavior of Statspack, the utlbstat.sql and utlestat.sql script pair, and virtually
every other Oracle performance tool created between 1980 and 2000. Of the most
deeply frustrating performance improvement projects with which I’ve ever assisted,
this type of data collection error is far and away the most common root cause of their
failure.

The remedy to the data collection problem must be executed on both dimensions.
Repairing the collection error in only one dimension is not enough. Observe, for
example, the result of collecting the data shown in Figure 3-6. Here, the time scop-
ing is done correctly, but the action scope is still too broad. The accompanying
resource profile is shown in Table 3-3. Again, remember that you know the root
cause of Wallace’s performance problem: it is a combination of S and C. But the data
collected system-wide provides apparent “evidence” quite to the contrary, even
though the data were collected for the correct time interval.

Figure 3-5. Collecting data that are improperly scoped on both the time and action dimensions will
completely conceal the nature of Wallace’s problem in the time interval [t1, t2]

Table 3-2. Resource profile for the entire system for the time interval [t0, t3]

Resource Elapsed time Percentage of total time

D 66 47.1%

C 58 41.4%

S 16 11.4%

Total 140 100.0%

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

C C C D D C S S S C C D D D C S C D D D

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

Wendolene

Preston

Alexander

Wallace

Gromit

Nikolas

Shaun

t0 t1 t2 t3

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

52 | Chapter 3: Targeting the Right Diagnostic Data

Finally, examine the result of collecting data for the correct action scope but the
wrong time scope, as shown in Figure 3-7. Table 3-4 shows the resource profile.
Once again, presented with these data, even a competent performance analyst will
botch the problem diagnosis job. Wallace’s problem is S and C, but you certainly
wouldn’t figure it out by looking at Table 3-4.

Figure 3-6. Collecting data that are scoped improperly on the action dimension also conceals the
nature of Wallace’s performance problem, even though the data were collected for the correct time
scope

Table 3-3. Resource profile for the entire system for the time interval [t1, t2]

Resource Elapsed time Percentage of total time

D 23 65.7%

C 9 25.7%

S 3 8.6%

Total 35 100.0%

Figure 3-7. Collecting data that are scoped improperly on the time dimension also conceals the
nature of Wallace’s performance problem, even though the data were collected for the correct
action scope

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

C C C D D C S S S C C D D D C S C D D D

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

Wendolene

Preston

Alexander

Wallace

Gromit

Nikolas

Shaun

t0 t1 t2 t3

S C D D D

C C S C D

D D D C S

C C C D D

S C C C C

C C C S D

D C S S C

D D D C S C C D D D

D D C S C S C C C C

C C S C C D D D D C

C D D D C S C D D D

D C S C C C D C C C

D D D C C D D C D D

C D D D D D C C C C

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

C C C D D C S S S C C D D D C S C D D D

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

Wendolene

Preston

Alexander

Wallace

Gromit

Nikolas

Shaun

t0 t1 t2 t3

S C D D D D D D D C D D D C S C C D D D

C C S C D D D C D D D D C S C S C C C C

D D D C S C D D D D C C S C C D D D D C

S C C C C C D D D D D C S C C C D C C C

C C C S D D D C C D D D D C C D D C D D

D C S S C D C D D D C D D D D D C C C C

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Data Scope | 53

From this sequence of simple examples, it is easy to see why proper diagnostic data
collection is so vital to a performance improvement project. The examples also
clearly reveal the identity of the two dimensions along which you can assess whether
or not a given diagnostic data collection can be deemed proper:

Reliable problem diagnosis cannot proceed unless the data collection phase produces
response time data for exactly the right time scope and exactly the right action scope.

Long-Running User Actions
When you have a really long-running user action, do you need to collect perfor-
mance diagnostic data for the whole thing? Perhaps you have an action that ran in
ten minutes last week, but today it has already run for over four hours, and you’re
wondering whether you should kill it. Do you have to restart the job in order to col-
lect diagnostic data for it? Sometimes, I hear about batch jobs that run for several
days before their users give up and terminate the jobs instead of letting them finish.*

Do you really need to collect performance diagnostic data for the whole job?

The answer is no. Of course, collecting performance diagnostic data for some subset
of an action’s performance problem duration introduces a type of time-scoping error,
but it is actually useful to collect time-subset diagnostic data in some circumstances.
For example:

• If a user action is supposed to run in n minutes, then collecting data for just n +
m minutes will reveal at least m minutes of response time that shouldn’t exist.
For example, if a job is supposed to run in 10 minutes, then 25 minutes’ worth
of diagnostic data will reveal at least 15 minutes of workload that shouldn’t
exist.

• If a user action consists of a long sequence of repetitive tasks, then performance
diagnostic data collected for a small number of the tasks will reveal the resources
consumed by the whole action, as long as the tasks are homogeneous.

In Chapter 6, I discuss some collection errors that might occur if your data collec-
tion process begins in the midst of a database action. But in many cases, collecting
time-subset diagnostic data can help you along your way.

Table 3-4. Resource profile for Wallace’s action for the time interval [t0, t3]

Resource Elapsed time Percentage of total time

D 8 40.0%

C 8 40.0%

S 4 20.0%

Total 20 100.0%

* In some of these cases, I’ve been able to prove that if the job were left to run to completion, it would not be
able to complete in our lifetimes.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

54 | Chapter 3: Targeting the Right Diagnostic Data

“Too Much Data” Is Really Not Enough Data
It is tempting to say that the scoping problems in Tables 3-2 through 3-4 were the
result of collecting “too much data.” However, the problem with these three resource
profiles was not necessarily in what data were collected, it is more an issue of how the
data were aggregated. Look again at Figure 3-5. There is plenty of information here
to produce a correctly scoped resource profile. The problem with Table 3-2 is in how
the data from Figure 3-5 were aggregated. The same can be said for Figures 3-6 and
3-7 and their resource profiles. The problem is not that the figures contain too much
data, it’s that their corresponding resource profiles are aggregated incorrectly.

Poor aggregation is an especially big problem for projects that use SQL queries of
Oracle V$ fixed views as their performance diagnostic data sources. Oracle V$ views
by their nature provide data that are either aggregated for an entire instance since
instance startup, or for an entire session since connection. For example, using
V$SYSSTAT or V$SYSTEM_EVENT is guaranteed to produce the action scoping errors
depicted in Tables 3-2 and 3-3. Even meticulous use of V$SESSTAT and V$SESSION_
EVENT makes you prone to the type of time scoping error depicted in Table 3-4 (as
you can see by experimenting with my vprof program described in Chapter 8).

When used with careful attention to time scope, Oracle’s V$SESSTAT and V$SESSION_
EVENT views provide a high-level perspective of why a user action is taking so long.
However, for the next level of your diagnosis, you’ll need to know details that
V$SESSTAT and V$SESSION_EVENT can’t provide. For example, what if your preliminary
analysis indicates that your targeted user action is spending most of its time waiting
for the event called latch free? Then you’ll wish you had collected data from
V$LATCH (and perhaps V$LATCH_CHILDREN) for the same time interval. But even if you
had, you’ll notice that neither fixed view contains a session ID attribute, so collect-
ing properly action-scoped data about latches on a busy system will be impossible.

The problem of acquiring secondary detail data from V$ views is an extremely seri-
ous one. It’s by no means just a problem with V$LATCH. What if the dominant con-
sumer of response time had been CPU service? Then you need properly time- and
action-scoped data at least from V$SQL. What if the dominant consumer had been
waits for db file scattered read? Then you need properly time- and action-scoped
data at least from V$FILESTAT. What if the problem had been waits for buffer busy
waits? Then you need V$WAITSTAT. In Oracle9i there are roughly 300 events that beg
for details from any of dozens of V$ fixed views. Even if you could query from all
these V$ views at exactly the right times to produce accurately time-scoped data,
you’d still be left with aggregations whose values fall short of what you could acquire
through other means.

Happily, there are at least three ways to acquire the drill-down data you need. The
first doesn’t work very well. The second is expensive, but you might already have the
capability. The third is available to you for the price of the book that you are hold-
ing. The following section explains.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Oracle Diagnostic Data Sources | 55

Oracle Diagnostic Data Sources
There are at least three distinct ways to access Oracle’s operational timing data:

• Querying Oracle fixed views using SQL (fixed views are the views whose names
begin with the prefix V$, GV$, or X$).

• Polling Oracle shared memory segments directly to obtain the same V$ data (that
is, accessing the same V$ data without using SQL).

• Activating Oracle’s extended SQL trace facility to emit the complete historical
timing activity of an Oracle session to a trace file.

Although V$ data and extended SQL trace data look like quite different things, it’s all
the same data, just presented through different user interfaces. In Chapter 7, I
describe where the base information comes from.

After devoting three years full-time to studying Method R and its data collection
requirements, my personal opinion on the merits of these three approaches is as
follows:

Querying V$ data through SQL
Using SQL to acquire data from V$ fixed views is an excellent way to compile
information about resource consumption (that is, to acquire information about
how many times various resources have been visited). See Tom Kyte’s excellent
example at http://asktom.oracle.com/~tkyte/runstats.html for more information.
V$ data are especially valuable during application development. Using SQL to
acquire timing data through the V$ fixed views, it’s easy to get started experi-
menting with Oracle’s operational timing data. But for several reasons listed in
Chapter 8, the timing data you will obtain from this data source are unreliable
for several problem types. Using SQL to acquire timing data from V$ fixed views
provides much less capability than the other two approaches.

One fixed view called X$TRACE does provide a means to access extended
SQL trace data through SQL. However, the X$TRACE feature is presently
undocumented, unsupported, and unstable. If Oracle Corporation for-
tifies the X$TRACE facility in the future, it may render obsolete my pessi-
mistic comments about drill-down with fixed view data. But as of
Oracle release 9.2, the feature is not ready for production use.

Polling V$ data directly from Oracle shared memory
If you already own a tool that allows you to properly manipulate the time scope
and action scope of your diagnostic data, then high-frequency polling directly
from shared memory is probably an excellent approach for you. High-frequency
polling gives you diagnostic data that reliably help you solve many types of per-
formance problem. However, attaching to shared memory and then storing
gigantic masses of data requires either a lot of study and hard work, or a finan-
cial investment in a tool to do it for you. Such tools are expensive.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

56 | Chapter 3: Targeting the Right Diagnostic Data

Activating the extended SQL trace facility
The extended SQL trace facility also offers outstanding diagnostic reliability, but
without the research or investment pain that high-frequency polling requires.
The principal disadvantage of using extended SQL trace is that you’ll be able to
collect diagnostic data only for those user actions that you can expect before-
hand to exhibit suboptimal performance behavior. This can require some
patience when a performance problem occurs only intermittently. With polling,
you’ll be able to construct properly scoped diagnostic data for any historical user
action that you might like to analyze, but only if you have invested into enough
un-aggregated diagnostic data storage. Extended SQL trace data provides an
excellent low-cost substitute for high-frequency polling.

In Table 3-5, I’ve tried to translate my opinion into a numerical format for your
convenience.

This technique of creating the illusion that a man’s opinion can be
manipulated arithmetically is something I picked up from reading Car
& Driver magazine.

I believe that extended SQL trace data offers the best performance optimization
value of the three diagnostic data sources identified in this chapter. In the past three
years, my colleagues and I at hotsos.com have helped to diagnose and repair produc-
tion performance problems in well over 1,000 cases using only extended SQL trace
data. Our field testing has shown that, when used properly, the extended SQL trace
feature is a stunningly reliable performance diagnostic tool.

Table 3-5. My opinion on the relative merits of the three Oracle operational timing data sources.
Scores range from 1 to 10, with higher scores representing better performance in the named
attribute

Diagnostic data source

Attribute
V$ fixed
views

Oracle shared
memory

Extended SQL
trace data

Ease of getting results now 9 1 8

Ease of storing the retrieved data 7 1 10

Ease of parsing the retrieved data 8 1 7

Minimal invasiveness upon Oracle kernel 2 10 7

Minimal invasiveness upon other resources 8 4 7

Capacity for historical drill-down analysis 1 8 7

Cost to develop tools to assist in analysis 9 1 6

Diagnostic reliability 3 9 9

Total 45 35 61

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

For More Information | 57

For More Information
Chapters 5 and 6 contain the information you will need to put extended SQL trace
data to use, as soon as you’re ready for it. Chapter 8 provides some guidance for you
in the domain of Oracle’s V$ data sources. I do not discuss in this text how to obtain
performance information directly from an Oracle SGA. Very few of the people who
have figured out how to map the Oracle SGA are willing to talk about it publicly.
Kyle Hailey is one professional who has figured it out and who has been willing to
describe the process [Hailey (2002)]. As a technician, I find the subject of direct Ora-
cle SGA memory access to be irresistible. However, as a practitioner and a student of
optimization economics, I have found Oracle extended SQL trace data absolutely
unbeatable.

