
Oracle
Performance

Optimizing

A Practitioner's Guide to Optimizing Response Time

Cary Millsap
with Jeff Holt

ch01 // MS Word // 5/20/03 // Page 1 of 32

 1

A Better Way to Optimize

For many people, Oracle performance is a very difficult problem. Since 1990,

I’ve worked with thousands of professionals engaged in performance

improvement projects for their Oracle systems. Oracle performance

improvement projects appear to progress through standard stages over time. I

think the names of those stages are stored in a vault somewhere beneath Geneva.

If I remember correctly, the stages are:

Unrestrained optimism

Informed pessimism

Panic

Denial

Despair

Utter despair

Misery and famine

For some reason, my colleagues and I are rarely invited to participate in a project

until the misery and famine stage. Here is what performance improvement

projects often look like by the time we arrive. Do they sound like situations

you’ve seen before?

Technical experts disagree over root causes.

The severity of a performance problem is proportional to the number of

people who show up at meetings to talk about it. It’s a particularly bad sign

when several different companies’ “best experts” show up in the same

meeting. In dozens of meetings throughout my career, I’ve seen the “best

experts” from various consulting companies, computer and storage

subsystem manufacturers, software vendors, and network providers convene

to dismantle a performance problem. In exactly 100% of these meetings I’ve

attended, these groups have argued incessantly over the identity of a

performance problem’s root cause. For weeks. How can dedicated, smart,

ch01 // MS Word // 5/20/03 // Page 2 of 32

2

well-trained professionals all look at the same system and render different

opinions—often even contradictory opinions—on what’s causing a

performance problem? Apparently, Oracle system performance is a very

difficult problem.

Experts claim excellent progress, while users see no improvement.

Many of my students grin with memories when I tell stories of consultants

who announce proudly that they have increased some statistic markedly—

maybe they increased some hit ratio or reduced some extent count or some

such—only to be confronted with the indignity that the users can’t tell that

anything is any better at all. The usual result of such an experience is a long

report from the consultant explaining as politely as possible that, although

the users aren’t clever enough to tell, the system is eminently better off as a

result of the attached invoice.

The story is funny unless, of course, you’re either the owner of a company

who’s paying for all this wasted time, or the consultant who won’t get paid

because he didn’t actually accomplish anything meaningful. Maybe this

story seems funny because most of us at some time or another have been

that consultant. How is it possible to so obviously improve such important

system metrics as hit ratios, average latencies, and wait times, yet have users

who can’t even perceive the beneficial results of our effort? Apparently,

Oracle system performance is a very difficult problem.

Hardware upgrades either don’t help, or they slow the system further.

Since first picking up Neil Gunther’s The Practical Performance Analyst in

1998 [Gunther (1998)], I have presented to various audiences the possibility

of one particularly counterintuitive phenomenon. “Do you realize that a

hardware upgrade can actually degrade the performance of an important

application?” Every audience to which I’ve ever presented this question and

the facts pertaining to it have had virtually identical reactions. Most of the

audience smiles in disbelief while I describe how this can happen, and one

or two audience members come to the podium afterward to rejoice in finally

figuring out what had happened several months after their horrible “upgrade

gone wrong.”

Hardware upgrades may not often cause noticeable new performance

problems, but they can. Very often, hardware upgrades result in no

noticeable difference, except of course for the quite noticeable check that

goes out the door in return for no perceptible benefit. That a hardware

upgrade can result in no improvement is somewhat disturbing. The idea that

a hardware upgrade can actually result in a performance degradation, on its

face, is utterly incomprehensible. How is it possible that a hardware upgrade

might not only not improve performance, but that it might actually harm it?

Apparently, Oracle system performance is a very difficult problem.

The number one system resource consumer is waste.

Almost without exception, my colleagues and I find that 50 percent or more

of every system’s workload is waste. We define waste very carefully as any

system workload that could have been avoided with no loss of function to

the business. How can completely unnecessary workload be the number one

ch01 // MS Word // 5/20/03 // Page 3 of 32

 3

resource consumer on so many professionally managed systems?

Apparently, Oracle system performance is a very difficult problem.

These are smart people. How could their projects be so messed up? Apparently,

Oracle system optimization is very difficult. How else can you explain why so

many projects at so many companies that don’t talk to each other end up in

horrible predicaments that are so similar?

“You’re Doing It Wrong”

One of my hobbies involves building rather largish things out of wood. This

hobby involves the use of heavy machines that, given the choice, would prefer to

eat my fingers than a piece of five-quarters American Black Walnut. One of the

most fun things about the hobby for me is to read about a new technique that

improves accuracy and saves time, while dramatically reducing my personal risk

of accidental death and dismemberment. For me, getting the “D’oh, I’m doing it

wrong!” sensation is a pleasurable thing, because it means that I’m on the brink

of learning something that will make my life noticeably better. The net effect of

such events on my emotional well-being is overwhelmingly positive. Although

I’m of course a little disappointed every time I acquire more proof that I’m not

omniscient, I’m overjoyed at the notion that soon I’ll be better.

It is in the spirit of this story that I submit for your consideration the following

hypothesis:

If you find that Oracle performance tuning is really difficult, then chances are

excellent that you’re doing it wrong.

Now, here’s the scary part:

You’re doing it wrong because you’ve been taught to do it that way.

This is my gauntlet. I believe that most of the Oracle tuning methods either

implied or taught since the 1980s are fundamentally flawed. My motivation for

writing this book is to share with you the research that has convinced me that

there’s a vastly better way.

Let’s begin with a synopsis of the “method” that you’re probably using today. A

method is supposed to be a deterministic sequence of steps. One of the first

things you might notice in the literature available today is the striking absence of

actual method. Most authors focus far more attention on tips and techniques than

on methods. The result is a massive battery of “things you might want to do”

with virtually no structure present to tell you whether or when it’s appropriate to

do each. If you browse google.com hits on the string “Oracle performance

method,” you’ll see what I mean.

ch01 // MS Word // 5/20/03 // Page 4 of 32

4

Most of the Oracle performance improvement methods prescribed today can be

summarized as the sequence of steps described in Method C (the conventional

trial and error approach). If you have a difficult time with Oracle performance

optimization, the reason may dawn on you as you review Method C. One of the

few things that this method actually optimizes is the flow of revenue to

performance specialists who take a long time to solve performance problems.

Method C. The trial and error method that dominates the

Oracle performance tuning culture today.

1. Hypothesize that some performance metric x has an unacceptable value.

2. Try things with the intent of improving x. Undo any attempt that makes

performance noticeably worse.

3. If users do not perceive a satisfactory response time improvement, then go

to step 1.

4. If the performance improvement is satisfactory, then go to step 1 anyway,

because it may be possible to produce other performance improvements if

you just keep searching.

This trial-and-error approach is of course not the only performance improvement

method in town. The YAPP Method first described by Anjo Kolk and Shari

Yamaguchi in the 1990s [Kolk et al. (1999)] was probably the first to rise above

the inauspicious domain of tips and techniques to result in a truly usable

deterministic sequence of steps. YAPP truly revolutionized the process of

performance problem diagnosis, and it serves as one of the principal inspirations

for this text.

Requirements of a Good Method

What distinguishes a good method from a bad one? When we started hotsos.com

in 1999, I began spending a lot of time identifying the inefficiencies of existing

Oracle performance improvement methods. It was a fun exercise After much

study, my colleagues and I were able to construct a list of objectively measurable

criteria that would assist in distinguishing good from bad in a method. We hoped

that such a list would serve as a yardstick that would allow us to measure the

effectiveness of any method refinements we would create. Here is the list of

attributes that I believe distinguish good methods from bad ones:

Impact

A method must not deliver less beneficial project impact than you expect. It

is unacceptable for a performance remedy to produce imperceptible or

negative end-user impact.

ch01 // MS Word // 5/20/03 // Page 5 of 32

 5

Efficiency

A method must always deliver performance improvement results with the

least possible economic sacrifice. A performance improvement method does

not optimize if another method could have achieved a suitable result less

expensively in equal or less time.

Measurability

A method must produce performance improvement results that can be

measured in units that make sense to the business. It is unacceptable to

measure performance improvement in technical units that do not correspond

directly to improvement in cash flow, net profit, and return on investment.

Predictive capacity

A method must enable the analyst to predict the impact of a proposed

remedy action. The unit of measure for the prediction must be the same as

that which the business will use to measure performance improvement.

Reliability

A method must identify the correct root cause of the problem, no matter

what that root cause may be.

Determinism

A method must guide the analyst through an unambiguous sequence of steps

that always rely upon documented axioms, not experience or intuition. It is

unacceptable for two analysts using the same method to draw different

conclusions about the root cause of a performance problem.

Finiteness

A method must have a well-defined terminating condition, such as a proof of

optimality.

Practicality

A method must be usable in any reasonable operating condition. For

example, it is unacceptable for a performance improvement method to rely

upon tools that exist in some operating environments but not others.

Method C suffers brutally on every single dimension of this eight-point

definition of “goodness.” I won’t belabor the point here, but I do encourage you

to consider, right now, how your existing performance improvement methods

score on each of the attributes listed here. You might find the analysis quite

motivating. When you’ve finished reading Part I of this book, I hope you will

revisit this list and see whether you think your scores have improved as a result

of your investment

Three Important Advances

In the preface, I began this book with the statement,

Optimizing Oracle response time is, for the most part, a solved problem.

ch01 // MS Word // 5/20/03 // Page 6 of 32

6

This statement stands in stark contrast to the gloomy picture I painted at the

beginning of this chapter—that, “Apparently, Oracle system performance is a

very difficult problem.” The contrast, of course, has a logical explanation. It is

this:

Several technological advances have added impact, efficiency, measurability,

predictive capacity, reliability, determinism, finiteness, and practicality to the

science of Oracle performance optimization.

In particular, I believe that three important advances are primarily responsible

for the improvements we have today. Curiously, while these advances are new to

most professionals who work with Oracle products, none of these advances is

really “new.” Each is used extensively by optimization analysts in non-Oracle

fields; some have been in use for over a century.

User Action Focus

The first important advance in Oracle optimization technology follows from a

simple mathematical observation:

You can’t extrapolate detail from an aggregate.

Here’s a puzzle to demonstrate my point. Imagine that I told you that a collection

of 1,000 rocks contains 999 grey rocks and one special rock that’s been painted

bright red. The collection weighs 1,000 pounds. Now, answer the following

question, “How much does the red rock weigh?” If your answer is, “I know that

the red rock weighs one pound,” then, whether you realize it or not, you’ve told a

lie. You don’t know that the red rock weighs 1 pound; with the information

you’ve been given, you can’t know. If your answer is, “I assume that the red rock

weighs one pound,” then you’re too generous in what you’re willing to assume.

Such an assumption puts you at risk of forming conclusions that are stunningly

incorrect.

The correct answer is that the red rock can weigh virtually any amount between

zero and 1,000 pounds. The only thing limiting the low end of the weight is the

definition of how many atoms must be present in order for a thing to be called a

rock. Once we define how small a rock can be, then we’ve defined the high end

of our answer. It is 1,000 pounds minus the weight of 999 of the smallest

possible rocks. The red rock can weigh virtually anything between zero and a

thousand pounds. Answering with any more precision is wrong unless you

happen to be very lucky. But being very lucky at games like this is a skill that

can be neither learned nor taught, nor repeated with acceptable reliability.

This is one reason why Oracle analysts find it so frustrating to diagnose

performance problems armed only with system-wide statistics such as those

produced by StatsPack (or any of its cousins derived from the old SQL scripts

called bstat and estat). Two analysts looking at exactly the same StatsPack

output can “see” two completely different things, neither of which is completely

ch01 // MS Word // 5/20/03 // Page 7 of 32

 7

provable or completely disprovable by the StatsPack output. It’s not StatsPack’s

fault. It’s a problem that is inherent in any performance analysis that uses system-

wide data as its starting point (V$SYSSTAT, V$SYSTEM_EVENT, and so on).

You can in fact instruct StatsPack to collect sufficiently granular data for you,

but no StatsPack documentation of which I’m aware makes any effort to tell you

why you might ever want to.

A fine illustration is the case of an Oracle system whose red rock was a payroll

processing problem. The officers of the company described a performance

problem with Oracle Payroll that was hurting their business. The database

administrators of the company described a performance problem with latches:

cache buffers chains latches to be specific. Both arguments were compelling.

The business truly was suffering from a problem with payroll being too slow.

You could see it, because checks weren’t coming out of the system fast enough.

The “system” truly was suffering from latch contention problems. You could see

it, because queries of V$SYSTEM_EVENT clearly showed that the system was

spending a lot of time waiting for the event called latch free.

The company’s database and system administration staff had invested three

frustrating months trying to fix the “latch free problem,” but the company had

found no relief for the payroll performance problem. The reason was simple:

payroll wasn’t spending time waiting for latches. How did we find out? We

acquired operational timing data for one execution of the slow payroll program.

What we found was amazing. Yes, lots of other application programs in fact

spent time waiting to acquire cache buffers chains latches. But of the slow

payroll program’s total 1,985.40-second execution time, only 23.69 seconds

were consumed waiting on latches. That’s 1.2% of the program’s total response

time. Even if the company had completely eradicated waits for latch free
from the face of their system, they would have made only a 1.2% performance

improvement in the response time of their payroll program.

How could system-wide statistics have been so misleading? Yes, lots of non-

payroll workload was prominently afflicted by latch free problems. But it

was a grave error to assume that the payroll program’s problem was the same as

the system-wide average problem. The error in assuming a cause-effect

relationship between latch free waiting and payroll performance cost the

company three months of wasted time and frustration and thousands of dollars in

labor and equipment upgrade costs. By contrast, diagnosing the real payroll

performance problem consumed only about ten minutes of diagnosis time once

the company saw the correct diagnostic data.

My colleagues and I encounter this type of problem repeatedly. The solution is

for you (the performance analyst) to focus entirely upon the user actions that

need optimizing. The business can tell you what the most important user actions

are. The system cannot. Once you have identified the user actions that require

optimization, then your first job is to collect operational data exactly for that user

action—no more, and no less.

ch01 // MS Word // 5/20/03 // Page 8 of 32

8

Response Time Focus

For a couple of decades now, Oracle performance analysts have labored under

the assumption that there’s really no objective way to measure Oracle response

times [Ault and Brinson (2000), 27]. In the perceived absence of objective ways

to measure response time, analysts have settled for the next-best thing: event

counts. And of course from event counts come ratios. And from ratios come all

sorts of arguments about which “tuning” actions are important, and which ones

are not.

However, users don’t care about event counts and ratios and arguments; they

care about response time. No matter how much complexity you build atop any

timing-free event-count data, you are fundamentally doomed by the following

inescapable truth, the subject of the second important advance:

You can’t tell how long something took by counting how many times it

happened.

Users care only about response times. If you’re measuring only event counts,

then you’re not measuring what the users care about. If you liked the red rock

quiz, here’s another one for you: What’s causing the performance problem in the

program that produced the data in Example 1-1?

Example 1-1. Components of response time listed in descending order of call

volume.

Response Time Component # Calls
------------------------------ ---------
CPU service 18,750
SQL*Net message to client 6,094
SQL*Net message from client 6,094
db file sequential read 1,740
log file sync 681
SQL*Net more data to client 108
SQL*Net more data from client 71
db file scattered read 34
direct path read 5
free buffer waits 4
log buffer space 2
direct path write 2
log file switch completion 1
latch free 1

Example 1-2 shows the same data from the same program execution, this time

augmented with timing data (reported in seconds) and sorted by descending

response time impact. Does it change your answer?

Example 1-2. Components of response time listed in descending order of

contribution to response time.

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 166.6s 91.7% 6,094 0.027338s
CPU service 9.7s 5.3% 18,750 0.000515s

ch01 // MS Word // 5/20/03 // Page 9 of 32

 9

unaccounted-for 2.2s 1.2%
db file sequential read 1.6s 0.9% 1,740 0.000914s
log file sync 1.1s 0.6% 681 0.001645s
SQL*Net more data from client 0.3s 0.1% 71 0.003521s
SQL*Net more data to client 0.1s 0.1% 108 0.001019s
free buffer waits 0.1s 0.0% 4 0.022500s
SQL*Net message to client 0.0s 0.0% 6,094 0.000007s
db file scattered read 0.0s 0.0% 34 0.001176s
log file switch completion 0.0s 0.0% 1 0.030000s
log buffer space 0.0s 0.0% 2 0.005000s
latch free 0.0s 0.0% 1 0.010000s
direct path read 0.0s 0.0% 5 0.000000s
direct path write 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 181.8s 100.0%

Of course it changes your answer, because response time is dominatingly

important, and event counts are inconsequential by comparison. The problem

with the program that generated this data is what’s going on with SQL*Net
message from client, not what’s going on with CPU service.

If you are an experienced Oracle performance analyst, you

may have heard that SQL*Net message from client
is an idle event that can be ignored. You must not ignore the

so-called idle events if you collect your diagnostic data in the

manner I describe in Chapter 3.

If the year were 1991, we’d be in big trouble right now, because in 1991 the data

that I’ve shown in this second table wasn’t available from the Oracle kernel. But

if you’ve upgraded by now to at least Oracle7, then you don’t need to settle for

event counts as the “next-best thing” to response time data. The basic

assumption that you can’t tell how long the Oracle kernel takes to do things is

simply incorrect, and it has been since Oracle release 7.0.12.

Amdahl’s Law

The final “great advance” in Oracle performance optimization that I’ll mention is

an observation published in 1967 by Gene Amdahl, which has become known as

Amdahl’s Law [Amdahl (1967)]:

The performance enhancement possible with a given improvement is limited by

the fraction of the execution time that the improved feature is used

In other words, performance improvement is proportional to how much a

program uses the thing you improved. Amdahl’s Law is why you should view

response time components in descending response time order. In Example 1-2,

it’s why you don’t work on the CPU service “problem” before figuring out

the SQL*Net message from client problem. If you were to reduce total

CPU consumption by 50%, you’d improve response time by only about 2%. But

if you could reduce the response time attributable to SQL*Net message

ch01 // MS Word // 5/20/03 // Page 10 of 32

10

from client by the same 50%, you’ll reduce total response time by 46%. In

Example 1-2, each percentage point of reduction in SQL*Net message
from client duration produces nearly twenty times the impact of a

percentage point of CPU service reduction.

Amdahl’s Law is a formalization of optimization common sense. It tells you how

to get the biggest “bang for the buck” from your performance improvement

efforts.

All Together Now

Combining the three advances in Oracle optimization technology into one

statement results in the following simple performance method:

Work first to reduce the biggest response time component of a business’ most

important user action.

It sounds easy, right? Yet I can be almost certain that this is not how you

optimize your Oracle system back home. It’s not what your consultants do or

what your tools do. This way of “tuning” is nothing like how your books or

virtually any of the other papers presented at Oracle seminars and conferences

since 1980 tell you to do. So what is the missing link?

The missing link is that unless you know how to extract and interpret response

time measurements from your Oracle system, you can’t implement this simple

optimization method. Explaining how to extract and interpret response time

measurements from your Oracle system is a main point of this book.

I hope that by the time you read this book, my claims that “this

is not how you do it today” don’t make sense anymore. As I

write this chapter, many factors are converging to make the

type of optimization I’m describing in this book much more

common among Oracle practitioners. If the book you’re

holding has played an influencing role in that evolution, then

so much the better.

Tools for Analyzing Response Time

The definition of response time set forth by the International Organization for

Standardization is plain but useful:

Response time is the elapsed time between the end of an inquiry or demand on

a computer system and the beginning of a response; for example, the length of

the time between an indication of the end of an inquiry and the display of the

first character of the response at a user terminal (source:

ch01 // MS Word // 5/20/03 // Page 11 of 32

 11

http://searchnetworking.techtarget.com/sDefinition/0,,sid7_gci212896,00.html

).

Response time is an objective measure of the interaction between a consumer

and a provider. Consumers of computer service want the right answer with the

best response time for the lowest cost. Your goal as an Oracle performance

analyst is to minimize response time within the confines of the system owner’s

economic constraints. The ways to do that become more evident when you

consider the components of response time.

Sequence Diagram

A sequence diagram is a convenient way to depict the response time components

of a user action. A sequence diagram shows the flow of control as a user action

consumes time in different layers of a technology stack. The technology stack is

a model that considers system components such as the business users, the

network, the application software, the database kernel, and the hardware in a

stratified architecture. The component at each layer in the stack demands service

from the layer beneath it and supplies service to the layer above it. Figure 1-1

shows a sequence diagram for a multi-tier Oracle system.

time

Response

time

3

5

User

1

10

Browser WAN
Apps

Server
LAN

DB

CPU

DB

Disk

2

4

8

6

7

9

Figure 1-1. A sequence diagram for a multi-tier Oracle

system.

Figure 1-1 denotes the following sequence of actions, allowing us to literally see

how each layer in the technology stack contributes to the consumption of

response time:

1. After considering what she wants from the system, a user initiates a request

for data from a browser by pressing the OK button. Almost instantaneously,

the request arrives at the browser. The user’s perception of response time

begins with the click of the OK button.

ch01 // MS Word // 5/20/03 // Page 12 of 32

12

2. After devoting a short bit of time to rendering the pixels on the screen to

make the OK button look like it has been depressed, the browser sends an

HTTP packet to the wide-area network (WAN). The request spends some

time on the WAN before arriving at the application server.

3. After executing some application code on the middle tier, the application

server issues a database call via SQL*Net across the local-area network

(LAN). The request spends some time on the LAN (less than a request

across a WAN) before arriving at the database server.

4. After consuming some CPU time on the database server, the Oracle kernel

process issues an operating system function call to perform a read from disk.

5. After consuming some time in the disk subsystem, the read call returns

control of the request back to the database CPU.

6. After consuming more CPU time on the database server, the Oracle kernel

process issues another read request.

7. After consuming some more time in the disk subsystem, the read call returns

control of the request again to the database CPU.

8. After a final bit of CPU consumption on the database server, the Oracle

kernel process passes the results of the application server’s database call.

The return is issued via SQL*Net across the LAN.

9. After the application server process converts the results of the database call

into the appropriate HTML, it passes the results to the browser across the

WAN via HTTP.

10. After rendering the result on the user’s display device, the browser returns

control of the request back to the user. The user’s perception of response

time ends when she sees the information she requested.

In my opinion, the ideal Oracle performance optimization tool does not exist yet.

The graphical user interface of the ideal performance optimization tool would be

a sequence diagram that could show how every microsecond of response time

had been consumed for any specified user action. Such an application would

have so much information to manage that it would have to make clever use of

summary and drill-down features to show you exactly what you wanted when

you wanted it.

Such an application will probably be built soon. As you shall see throughout this

book, much of the information that is needed to build such an application is

already available from the Oracle kernel. The biggest problems today are:

• Most of the non-database tiers in a multi-tier system aren’t instrumented to

provide the type of response time data that the Oracle kernel provides.

Chapter 8 details the response time data that I’m talking about.

ch01 // MS Word // 5/20/03 // Page 13 of 32

 13

• Depending upon your application architecture, it can be very difficult to

collect properly scoped performance diagnostic data for a specific user

action. Chapter 3 explains what constitutes proper scoping for diagnostic

data, and Chapter 7 explains how to work around the data collection

difficulties presented by various application architectures.

However, much of what we need already exists. Beginning with Oracle

release 7.0.12, and improving ever since, the Oracle kernel is well instrumented

for response time measurement. This book will help you understand exactly how

to take advantage of those measurements to optimize your approach to the

performance improvement of Oracle systems.

Resource Profile

A complete sequence diagram for anything but a very simple user action would

show so much data that it would be difficult to use all of it. Therefore, you need

a way to summarize the details of response time in a useful way. In Example 1-2,

I showed a sample of such a summary, called a resource profile. A resource

profile is simply a table that reveals a useful decomposition of response time.

Typically, a resource profile reveals at least the following attributes:

• Response time category

• Total duration consumed by actions in that category

• Number of calls to actions in that category

A resource profile is most useful when it lists its categories in descending order

of elapsed time consumption per category. The resource profile is an especially

handy format for performance analysts because it focuses your attention on

exactly the problem you should solve first. The resource profile is the most

important tool in my performance diagnostic repertory.

The idea of the resource profile is nothing new, actually. The idea for using the

resource profile as our company’s focus was inspired by an article on profilers

published in the 1980s [Bentley (1988) 3–13], which itself was based on work

that Donald Knuth published in the early 1970s [Knuth (1971)]. The idea of

decomposing response time into components is so sensible that you probably do

it often without realizing it. Consider how you optimize your route to your

favorite driving destination. Think of a “happy place” where you go when you

want to feel better. For me it’s my local Woodcraft Supply Corp. store

(www.woodcraft.com), which sells all sorts of tools that can cut fingers or crush

rib cages, and all sorts of books and magazines that explain how not to.

If you live in a busy city, the resource profile for such a trip might resemble the

following (expressed in minutes), if you were to schedule the activity during

rush-hour traffic:

ch01 // MS Word // 5/20/03 // Page 14 of 32

14

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
rush-hour expressway driving 90m 90% 2 45m
neighborhood driving 10m 10% 2 5m
----------------------------- ----------------- -------------- ------------
Total 100m 100%

If the store were, say, only fifteen miles away, you might find the prospect of

sitting for an hour and a half in rush-hour traffic to be disappointing. Whether or

not you believe that your brain works in the format of a resource profile, you

probably would consider the same optimization that I’m thinking of right now:

perhaps you could go to the store during an off-peak driving period.

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
off-peak expressway driving 30m 75% 2 15m
neighborhood driving 10m 25% 2 5m
----------------------------- ----------------- -------------- ------------
Total 40m 100%

The driving example is simple enough, and the stakes are low enough that a

formal analysis is almost definitely unnecessary. However, for more complex

performance problems, the resource profile provides a convenient format for

proving a point, especially when decisions about whether or not to invest lots of

time and money are involved.

Resource profiles add unequivocal relevance to Oracle performance

improvement projects. Example 1-3 shows a resource profile for the Oracle

Payroll program described earlier in “User Action Focus.” Before the database

administrators saw this resource profile, they had worked for three months

fighting a perceived problem with latch contention. In desperation, they had

spent several thousand dollars on a CPU upgrade, which had actually degraded

the response time of the payroll action whose performance they were trying to

improve. Within ten minutes of creating this resource profile, the database

administrator knew exactly how to cut this program’s response time by

roughly 50%. The problem and its solution are detailed in Chapter 5.

Example 1-3. The resource profile for a network configuration problem that

had previously been misdiagnosed as both a latch contention problem and a

CPU capacity problem.

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
SQL*Net message from client 984.0s 49.6% 95,161 0.010340s
SQL*Net more data from client 418.8s 21.1% 3,345 0.125208s
db file sequential read 279.3s 14.1% 45,084 0.006196s
CPU service 248.7s 12.5% 222,760 0.001116s
unaccounted-for 27.9s 1.4%
latch free 23.7s 1.2% 34,695 0.000683s
log file sync 1.1s 0.1% 506 0.002154s
SQL*Net more data to client 0.8s 0.0% 15,982 0.000052s
log file switch completion 0.3s 0.0% 3 0.093333s
enqueue 0.3s 0.0% 106 0.002358s
SQL*Net message to client 0.2s 0.0% 95,161 0.000003s
buffer busy waits 0.2s 0.0% 67 0.003284s

ch01 // MS Word // 5/20/03 // Page 15 of 32

 15

db file scattered read 0.0s 0.0% 2 0.005000s
SQL*Net break/reset to client 0.0s 0.0% 2 0.000000s
----------------------------- ----------------- -------------- ------------
Total 1,985.4s 100.0%

Example 1-4 shows another resource profile that saved a project from a

frustrating and expensive ride down a rat-hole. Before seeing the resource profile

shown here, the proposed solution to this report’s performance problem was to

upgrade either memory or the I/O subsystem. The resource profile proved

unequivocally that upgrading either could result in no more than a 2% response

time improvement. Almost all of this program’s response time was attributable to

a single SQL statement that motivated nearly a billion visits to blocks stored in

the database buffer cache.

You can’t tell by looking at the resource profile in Example 1-

4 that the CPU capacity was consumed by nearly a billion

memory reads. Each of the 192,072 “calls” to the CPU
service resource represents one Oracle database call (for

example, a parse, an execute, or a fetch). From the detailed

SQL trace information collected for each of these calls, I could

determine that the 192,072 database calls had issued nearly a

billion memory reads. How you can do this is detailed in

Chapter 6.

Problems like this are commonly caused by operational errors like the accidental

deletion of schema statistics used by the Oracle cost-based query optimizer

(CBO).

Example 1-4. The resource profile for an inefficient SQL problem that had

previously been diagnosed as an I/O subsystem problem.

Response Time Component Duration # Calls Dur/Call
----------------------------- ----------------- -------------- ------------
CPU service 48,946.7s 98.0% 192,072 0.254835s
db file sequential read 940.1s 2.0% 507,385 0.001853s
SQL*Net message from client 60.9s 0.0% 191,609 0.000318s
latch free 2.2s 0.0% 171 0.012690s
other 1.4s 0.0%
----------------------------- ----------------- -------------- ------------
Total 49,951.3s 100.0%

Example 1-4 is a beautiful example of how a resource profile can free you from

victimization to myth. In this case, the myth that had confused the analyst about

this slow session was the proposition that a high database buffer cache hit ratio

is an indication of SQL statement efficiency. The statement causing this slow

session had an exceptionally high buffer cache hit ratio. It is easy to understand

why, by looking at the computation of the cache hit ratio (CHR) metric for this

case:

ch01 // MS Word // 5/20/03 // Page 16 of 32

16

9

9

10 507385

10
0.9995.

LIO PIO
CHR

LIO

−=

−≈

≈

Although most analysts would probably consider this ratio value to be “good,” it

is of course not “perfect.” In the absence of the data shown in Example 1-4,

many analysts I’ve met would have assumed that it was the imperfection in the

cache hit ratio that was causing the performance problem. But the resource

profile shows clearly that even if the 507,385 physical read operations could

have been serviced from the database buffer cache, the best possible total time

savings would have been only 940.1 seconds. The maximum possible impact of

fixing this “problem” would have been to shave a 14-hour execution by a mere

16 minutes.

ch01 // MS Word // 5/20/03 // Page 17 of 32

 17

Considering the performance of user actions using the resource profile format

has revolutionized the effectiveness of many performance analysts. For starters,

it is the perfect tool for determining what to work on first, in accordance with our

stated objective:

Work first to reduce the biggest response time component of a business’ most

important user action.

Another huge payoff of using the resource profile format is that it is virtually

impossible for a performance problem to hide from it. The informal proof of this

conjecture requires only two steps:

Proof: If something is a response time problem, then it shows up in the

resource profile. If it’s not a response time problem, then it’s not a performance

problem. QED

In Case You’ve Heard that More

Memory Makes All Your Performance

Problems Go Away

Example 1-4 brings to mind the first “tuning” class I ever attended. The

year was 1989, during one of my first weeks as a new Oracle

Corporation employee. Our instructor advised us that the way to tune an

Oracle query was simple: just eliminate physical I/O operations. I

asked, “What about memory accesses?” referring to a big number in the

query column of the tkprof output we were looking at. Our instructor

responded that fetches from memory are so fast that their performance

impact is negligible. I thought this was a weird answer, because prior to

the beginning of my Oracle career, I had tuned a lot of C code. One of

the most important tools in doing that job was to eliminate unnecessary

memory accesses [Dowd (1993)].

Example 1-4 illustrates why eliminating unnecessary memory accesses

should be a priority for you too. Unnecessary memory accesses

consume response time. Lots of them can consume lots of response

time. Even with 1GHz CPUs, the code path associated with each Oracle

logical I/O operation (LIO) typically motivates tens of microseconds of

user-mode CPU time consumption. Therefore, a million LIOs will

consume tens of seconds of response time. LIOs also serialize on

latches; hence, excessive LIO processing creates a system scalability

barrier [Millsap (2001c)].

ch01 // MS Word // 5/20/03 // Page 18 of 32

18

Part II of this text describes how to create resource profiles from which

performance problems cannot hide.

Method R

The real goal of this book is not just to help you make an Oracle system go

faster. The real goal of this book is to optimize the project that makes an Oracle

system go faster. I don’t just want to help you make one system faster. I want to

help you make any system faster, and I want you to be able to accomplish that

task in the most economically efficient way possible for your business.

Method R is the method I will describe by which you can achieve this goal.

Method R is in fact the basis for the remainder of this book.

Method R. A response time-based performance improvement

method that yields maximum economic value to your business.

1. Select the user actions for which the business needs improved performance.

2. Collect properly scoped diagnostic data that will allow you to identify the

causes of response time consumption for each selected user action while it is

performing sub-optimally.

3. Execute the candidate optimization activity that will have the greatest net

payoff to the business. If even the best net-payoff activity produces

insufficient net payoff, then suspend your performance improvement

activities until something changes.

4. Go to step 1.

Method R is conceptually very simple. As you should expect, it is merely a

formalization of the simple “Work first to reduce the biggest response time

component of a business’ most important user action” objective that you’ve seen

many times by now.

ch01 // MS Word // 5/20/03 // Page 19 of 32

 19

Who Uses the Method

An immediately noticeable distinction of Method R is the type of person who

will be required to execute it. Method R specifically can not be performed in

isolation by a technician who has no interest in your business. As I have said, the

goal of Method R is to improve the overall value of the system to the business.

This goal cannot be achieved in isolation from the business. But how does a

person who leads the execution of Method R fit into an information technology

department?

The Goal

One inspiration behind Method R is the story told in Eli Goldratt’s The

Goal [Goldratt (1992)]. The Goal describes the victory of a

revolutionary new performance optimization method over a method that

is culturally ingrained but produces inferior results. Goldratt’s method

applies to factory optimization, but his story is eerily reminiscent of

what the Oracle community is going through today: the overthrow of an

optimization method based upon a faulty measurement system.

The Goal dismantles a lot of false ideas that a lot of analysts think they

“know” about optimization. Two of the most illuminating lessons that I

learned from the book were:

• Cost accounting practices often promote bad optimization

decisions. Oracle practitioners use cost accounting practices when

they target a system’s hit ratios for optimization.

• A collection of optimized components is itself not necessarily

optimized. This explains why systems with 100% “best in class”

componentry can have performance problems. It explains why so

many slow Oracle systems have dozens of component

administrators standing behind them who each swears that his

component “can’t possibly be the cause of a performance

problem.”

If you haven’t read The Goal, then I think you’re in for a real treat. If

you have read it already, then consider reading it again with the intent

to apply what you read by analogy to the world of Oracle performance.

The cover says that “Goal readers are now doing the best work of their

lives.” This statement is a completely accurate portrayal of my personal

relationship with the book.

ch01 // MS Word // 5/20/03 // Page 20 of 32

20

The abominable smokestack

Most large companies organize their technical infrastructure support staff in a

manner that I call the “abominable smokestacks,” like the departmental

segmentation shown in Figure 1-2. Organizational structures like this increase

the difficult of optimizing the performance of a system, for one fundamental

reason:

Compartmentalized organizational units tend to optimize in isolation from

other organizational units, resulting in locally optimized components. Even if

they succeed in doing this, it’s not necessarily good enough. A system

consisting of locally optimized components is not necessarily itself an

optimized system.

One of Goldratt’s many contributions to the body of system optimization

knowledge is a compelling illustration of how local optimization does not

necessarily lead to global optimization [Goldratt (1992)].

To O’Reilly Art: The following rectangles need to look like smokestacks. The

more abominable you can make them look, the better. Make sure there’s some

smoke in the top of the picture, because I refer to this area later with the term “in

the smoke.”—Cary

It appears to me, from Cary’s later reference, that he needs smoke from all the

smokestacks to come together in one, large cloud. Thus the successful

performance analyst can engage “in the smoke” where everything comes

together.—Jonathan

Yes, exactly —Cary

Operating system

administration

Network

administration

Database

administration

Disk

administration

Application

development

Figure 1-2. Typical organizational structure for a technical

infrastructure department.

The smokestack mentality is pervasive. Even the abstract submission forms we

use to participate in Oracle conferences require that we choose a smokestack for

each of our presentations (conference organizers tend to call them tracks instead

of smokestacks). There is, for example, one track for papers pertaining to

database tuning, and a completely distinct track for papers pertaining to

operating system tuning. What if a performance optimization solution requires

that attention be paid iteratively to both components of the technology stack? I

ch01 // MS Word // 5/20/03 // Page 21 of 32

 21

believe the mere attempt at categorization discourages analysts from considering

such solutions. At least analysts who do implement solutions that span stack

layers are ensured of having a difficult time choosing the perfect track for their

paper proposals.

The optimal performance analyst

A company’s best defense against performance problems begins with a good

performance analyst who can diagnose and discourse intelligently in all the

layers of the technology stack. In the context of Figure 1-2, this person is able to

engage successfully “in the smoke.” The performance analyst can navigate above

the smokestacks long enough to diagnose which pipes to dive into. And the best

analyst has the knowledge, intelligence, charisma, and motivation to drive

change in the interactions among smokestacks once he’s proven where the best

leverage is.

Of the dozens of great Oracle performance analysts I’ve had the honor of

meeting, most share a common set of behavioral qualities that I believe form the

basis for their success. The best means I know for describing the capabilities of

these talented analysts is a structure described by Jim Kennedy and Anna Everest

[Kennedy and Everest (1994)], which decomposes personal behavioral qualities

into four groups:

Education/experience/knowledge factors

In the education/experience/knowledge category, the capabilities required of

the optimal analyst are knowledge of the business goals, processes, and user

actions that comprise the life of the business. The optimal analyst knows

enough about finance to understand the types of input information that will

be required for a financially-minded project sponsor to make informed

investment decisions during a performance improvement project. And the

optimal analyst of course understands the technical components of his

application system, including the hardware, the operating system, the

database server, the application programs, and any other computing tiers

that join clients to servers. I describe many important technical factors in

Part II of this book.

Intellectual factors

The optimal performance analyst exhibits several intellectual factors as well.

Foremost, I believe, is the strong sense of relevance—the ability to

understand what’s important and what’s not. Sense of relevance is a broad

category. It combines the attributes of perceptiveness, common sense, and

good judgment. General problem solving skills are indispensable, as is the

ability to acquire and assimilate new information quickly.

Interpersonal factors

The optimal performance analyst exhibits several interpersonal factors.

Empathy is key to acquiring accurate information from users, business

owners, and component administration staff. Poise is critical for maintaining

order during a performance crisis, especially during the regularly scheduled

ch01 // MS Word // 5/20/03 // Page 22 of 32

22

panic phase of a project. Self-confidence is necessary to inspire adequate

morale among the various project victims and perpetrators to ensure that the

project is allowed to complete. The optimal analyst is tactful and successful

in creating collaborative effort to implement a solution plan.

Motivational factors

Finally, the optimal performance analyst exhibits several important

motivational factors. She is customer oriented and interested in the

business. She enjoys a difficult challenge, and she is resourceful. I have

found the best performance analysts to be always mindful that technical,

intellectual, interpersonal, and motivational challenges are all surmountable,

but that different problem types often require drastically different solution

approaches. The best performance analysts seem not only to understand this,

but to actually thrive on the variety.

Your role

As a result of buying this book, I want you to become so confident in your

performance problem diagnosis skills that a scenario like the following doesn’t

scare you one bit.

Scene: Big meeting. Participants include several infrastructure department

managers, you, and a special guest: the CEO, whose concerns about online

order form performance are critical enough that he has descended upon your

meeting to find out what you’re going to do about it….

Senior manager of the system administration department (“System manager”):

In two weeks, we’re going to upgrade our CPU capacity, at a cost to the

business of US$65,000 in hardware and upgraded software license fees.

However, we expect that because we’re doubling our CPU speeds, this upgrade

will improve performance significantly for our users.

CEO: (Nods.) We must improve the performance of our online order form, or

we’ll lose one of our biggest retail customers.

You: But our online order form consumes CPU service for only about

1.2 seconds of the order form’s 45-second commit time. Even if we could

totally eliminate the response time consumed by CPU service, we would make

only about a 1-second improvement in the form’s response time.

System manager: I disagree. I think there are so many unexplained

discrepancies in the response time data you’re looking at that there’s no way

you can prove what you’re saying.

You: Let’s cover this offline. I’ll show you how I know.

(Later, after reconvening the meeting.)

System manager: Okay, I get it. He’s right. Upgrading our CPU capacity won’t

help order form performance in the way that we’d hoped.

You: But by modifying our workload in a way that I can describe, we can

achieve at least a 95% improvement in the form’s commit, without having to

spend the money on upgrading our CPUs. As you can see in this profile of the

ch01 // MS Word // 5/20/03 // Page 23 of 32

 23

order form’s response time, upgrading CPU capacity wouldn’t have helped us

here anyway.

I’ve witnessed the results of a lot of conversations that began this way but never

veered back on-course when it was the You character’s first turn to speak. The

result is often horrifying. A company works its way through the alphabet in

search of something that might help performance. Sometimes it stops only when

the company runs out of time or money, or both.

Perhaps even more painful to watch is the conversation in which the You

character does speak up on cue but then is essentially shouted down by a group

of people who don’t believe the data. Unless you can defend your diagnostic

data set all the way to its origin—and how it fits in with the data your debaters

are collecting—you stand a frighteningly large chance of losing important

debates, even when you’re right.

Overcoming Common Objections

I hope that I’ve written this book effectively enough that you will want to try

Method R on your own system. If you can work alone, then most of the obstacles

along your way will be purely technical, and you’ll probably do a great job of

figuring those out. I’ve tried hard to help you overcome those with the

information in this book.

However, it’s more likely that improving the performance of your system will be

a collaborative effort. You’ll probably have to engage your colleagues in order

to implement your recommendations. The activities you recommend as a result

of using Method R will fall into one of two categories:

• Either your colleagues have heard the ideas before and rejected them;

• Or they’re never heard the ideas before.

Otherwise, your system would have been fixed by now. Either way, you will

probably find yourself in an environment that is ready to challenge your ideas.

To make any progress, you will have to justify your recommendations in

language that makes sense to the people who doubt you.

Justifying your recommendations this way is healthy for you to

do anyway, even in the friendliest of environments where your

words become other people’s deeds almost instantaneously.

The most effective ways I’ve found to justify such recommendations are:

Proof-of-concept tests

There’s no better way to prove a result than to actually demonstrate it. Dave

Ensor describes this as the Jeweler’s Method. Any good jeweler will place

interesting merchandise into a prospective customer’s hands as early in the

ch01 // MS Word // 5/20/03 // Page 24 of 32

24

sales process as possible. Holding the piece activates all the buyer’s senses

in appreciating the beauty and goodness of the thing being sold. The buyer’s

full imagination goes to work for the seller as the buyer locks in on the

vision of how much better life would become if only the thing being held

could be obtained. The method works wonderfully for big-ticket items,

including jewelry, cars, houses, boats, and system performance. There’s

probably no surer way to build enthusiasm for your proposal than to let your

users actually feel how much better their lives will become as a result of

your work.

Direct statistics that make sense to end users

If proof-of-concept tests are too complicated to provide, then the next best

thing is to speak in direct statistics that make sense to end users. There are

only two acceptable units of measure for such statistics:

• Your local currency.

• The duration by which you’ll reduce someone’s response time.

Any other measure will cause one of two problems. Either your argument

will be too weak to convince the people you’re trying to persuade. Or, worse

yet, you’ll succeed in your persuasions, but because you were thinking in the

wrong units of measure, you’ll risk producing end results with inadequate

“real” benefit. Real benefit is always measured in units of either money or

time. Succeeding in your proposal but failing in your end result of course

causes an erosion of your credibility for future recommendations.

Track record of actualized predictions

If you have the luxury of a strong reputation to enhance your persuasive

power, then merely making your wishes known may be enough to inspire

action. However, if this is the case, beware. Every prediction you make runs

the risk of eroding your credibility. Even if you have the power to convert

your instructions into other people’s tasks, I strongly encourage you to

assess your recommendations privately using proof-of-concept tests or

direct statistics that make sense to end users. Don’t borrow from the account

of your own credibility until you’re certain of your recommendations.

“But my whole system is slow”

At hotsos.com, we use Method R for our living. After using the method many

times, I can state categorically that the most difficult step of Method R is one

that’s not even listed—it is the step of convincing people to use it. The first

objection my colleagues and I encounter to our focus on user actions is as

predictable as the sunrise:

“But my whole system is slow.”

“I need to tune my whole system, not just one user.”

“When are you going to come out with a method that helps me tune my whole

system?”

ch01 // MS Word // 5/20/03 // Page 25 of 32

 25

We hear it everywhere we go.

What if the whole system is slow? Practitioners often react nervously to a

performance improvement method that restricts analysis to just one user action at

a time. Especially if users perceive that the “whole system” is slow, there is often

an overwhelming compulsion to begin an analysis with the collection of system-

wide statistics. The fear is that if you restrict the scope of analysis to anything

less than the entire system, you might miss something important. Well, in fact, a

focus on prioritized user actions does cause you to miss some things:

A focus on high-priority user actions causes you to overlook performance data

that would abate your progress in identifying and repairing the most important

performance problems on a system.

Here’s why Method R works regardless of whether a system’s problem is an

individual user action or a whole mess of different user actions. Figure 1-3

shows the first information that analysts get when they learn of system

performance problems. Legitimate information about performance problems

usually comes first from the business in the form of user complaints.

It is possible for information providers to be the first to know

about performance problems. In Chapter 10 I describe one way

in which you can acquire such a priori knowledge. But it is

rare for information providers to know about performance

problems before their information consumers tell them.

To O’Reilly Art: I’m not attached to the exact format of the following sequence

of drawings. However, one attribute that I need for you to preserve when you

transform them into something nicer is the apparent randomness in how user

actions and application system components are organized. It is in fact a feature

of my argument that no matter how hard you try to force-fit user actions and

performance problem root causes into a hierarchy, it can’t be done. –Cary

Symptoms

Figure 1-3. What performance analysts first see when there’s

a performance problem. Shaded circles represent user actions

that are experiencing performance problems.

Upon receipt of such information, the first impulse of most analysts is to

establish a cause-effect relationship between the symptoms being observed and

one or more root causes that might be motivating the symptoms. I

wholeheartedly agree that this step is the right step. However, many projects fail

because analysts fail to establish the correct cause-effect relationships. A core

ch01 // MS Word // 5/20/03 // Page 26 of 32

26

strength of Method R is that it allows you to determine cause-effect relationships

more quickly and accurately than with any other method.

Figure 1-4 shows why. It depicts three possible sets of cause-effect relationships

between problem root causes and performance problem symptoms.

Understanding the effectiveness of Method R for each of these scenarios,

compared to conventional tuning methods will help you decide for yourself

whether Method R is an effective system-wide optimization or not. The three

possible scenarios depicted in Figure 1-4 are:

• At one extreme, case (a) depicts that every user-discernable symptom on the

system is caused by a single “universal” root cause.

• In case (b), there is a many-to-many relationship between symptoms and

root causes. Some symptoms have two or more contributory root causes, and

some root causes contribute to more than one symptom.

• At the other extreme, case (c) depicts a situation in which every symptom is

linked to its own distinct root cause. No single root cause creates negative

performance impact for more than one user action.

Symptoms Symptoms Symptoms

Root causesRoot causesRoot causes

(a) (b) (c)

Figure 1-4. Three possible sets of cause-effect relationships

(depicted by arrows) between root causes and performance

problem symptoms.

Of course it is easy to draw pictures of cause-effect relationships between root

causes and performance problem symptoms. It’s another matter entirely to

determine such cause-effect relationships in reality. The ability to do this is, I

believe, the most distinguishing strength of Method R. Let me explain.

For problems resembling Figure 1-4(a), Method R works quite well. Even if you

were to completely botch the business prioritization task inherent in the method’s

ch01 // MS Word // 5/20/03 // Page 27 of 32

 27

step 1, you’d still stumble upon the root cause in the first diagnostic data you

examined. The reason is simple. If all symptoms have the same root cause, then

no matter which symptom you investigate, you’ll find the single, universal root

cause in that symptom’s response time profile.

Method R also works well for problems resembling Figure 1-4(b) and (c). In

these cases, the only way to provide system-wide relief is to respond to each of

the root causes that contributes to a symptom. Constraints on analyst labor (your

time) probably make it impossible to respond to all the symptoms

simultaneously, so it will probably be important to prioritize which activities

you’ll conduct first. This requirement is precisely the motive for the work

prioritization inherent in Method R. Remembering that the true goal of any

performance improvement project is economic, the proper way to prioritize the

project activities is to respond to the most important symptoms first. Method R is

distinctive in that it encourages alignment of project priorities with business

priorities.

By contrast, let’s examine the effectiveness of Method C for each of the same

three scenarios. Remember, the first step of Method C is:

Hypothesize that some performance metric x has an unacceptable value.

In the context of Figure 1-4, this step is analogous to searching for the shaded

circles in portion of the diagram labeled root causes. After identifying probable

root causes of performance problems, Method C next requires the analyst to

establish a cause-effect relationship between root causes and symptoms. One

problem with Method C is that it forces you to compute this cause-effect

relationship rather more by accident than by plan. The conventional method for

determining this cause-effect relationship is literally to “fix” something and then

see what impact you created. It’s a trial-and-error approach.

The challenge of succeeding with Method C is how quickly you can identify the

right “unacceptable” system metric value. The longer it takes you to find it, the

longer your project will drag on. Certainly, your chances of finding the right

problem to solve are at their greatest when there’s only one problem in the whole

system. However, it’s not certain that finding the root cause will be easy, even in

an “easy” case like Figure 1-4(a). Just because there’s only one root cause for a

bunch of problems doesn’t mean that there will be only one system-wide

performance statistic that looks “unacceptable.”

The real problem with Method C becomes apparent when you consider its

effectiveness in response to the cases shown in Figure 1-4(b) and (c). In both of

these cases, when we look “from the bottom up,” there are several root causes to

choose from. How will you determine which root cause to work on first? The

best prioritization scheme would be to “follow the arrows” backward from the

most important business symptoms to their root causes. The root causes you’d

like to address first are the ones causing the most important symptoms.

ch01 // MS Word // 5/20/03 // Page 28 of 32

28

However, Method C creates a big problem for you at this point:

System-wide performance metrics provide insufficient information to enable

you to draw the cause-effect arrows.

You cannot reliably compute the cause-effect relationships shown in Figure 1-4

unless you measure response time consumption for each user action—“from the

top down” in the context of the drawing. Understanding what information is

required to draw the cause-effect arrows reveals both the crippling flaw of

Method C and the distinctive strength of Method R. It is impossible to draw the

cause-effect arrows reliably from root causes to symptoms (from the bottom to

the top). However, it is very easy to draw the arrows from symptoms to root

causes (from the top down), because the resource profile format for targeted user

actions tells you exactly where the arrows belong.

Without the cause-effect arrows, a project is rudderless. Any legitimate

prioritization of performance improvement activities must be driven top-down by

the economic priorities of the business. Without the arrows, you can’t prioritize

your responses to the internal performance metrics you might find in your

StatsPack reports. Without the arrows, about the only place you can turn is to

“cost accounting” metrics like hit ratios, but unfortunately, these metrics don’t

reliably correspond to the economic motives of the business. The Oracle Payroll

situation that I described earlier in this chapter was rudderless for three months.

The project concluded on the day that the team acquired the data shown in

Example 1-3.

Ironically, then, the popular objection to Method R actually showcases the

method’s greatest advantage. We in fact designed Method R specifically to

respond efficiently to systems afflicted with several performance root causes at

once.

The reason Method R works so well in system-wide performance crises is that

your “whole system” is not a single entity; it’s a collection of user actions, some

more important than others. Your slow user actions may not all be slow for the

same reason. If they’re not, then how will you decide which root cause to attack

first? The smart way is by prioritizing your user actions in descending order of

value to your business. What if all your slow user actions actually are caused by

the same root cause? Then it’s your lucky day, because the first diagnostic data

you collect for a single process is going to show you the root cause of your

single system-wide performance problem. When you fix it for one session, you’ll

have fixed it for every session. Table 1-1 summarizes the merits of conventional

methods versus the new method.

Table 1-1. The merits of Method C and Method R. Method R

yields its greatest comparative advantage when “the whole

system is slow.”

Figure 1-4

case
Method C effectiveness Method R effectiveness

ch01 // MS Word // 5/20/03 // Page 29 of 32

 29

(a) Effective in some cases.

Existence of only one problem

root cause increases the

likelihood that this root cause

will be prominent in the

analyst’s analysis of system-

wide statistics.

Effective. Even if business

prioritization is performed

incorrectly, the method will

successfully identify the sole

root cause on the first attempt.

(b) Unacceptable. Inability to link

cause with effect means that

problems are attacked “from

the bottom up” in an order that

may not suit business priorities.

Effective. Business

prioritization of user actions

ensures that the most important

root cause will be found and

addressed first.

(c) Unacceptable. Same reasons as

above.

Effective. Same reasons as

above.

“The method only works if the problem is the database”

Another common objection to Method R is that the perception that it is incapable

of finding and responding to performance problems whose root causes originate

outside the database tier. In a world whose new applications are almost all

complicated multi-tier affairs, this perception causes a feeling that Method R is

severely limited in its effective scope.

Method R itself is actually not restricted at all in this manner. Notice that

nowhere in the four-step method is there any directive to collect response time

data just for the database. The perception of database focus arises in the

implementation of step 2, which is the step in which you will collect detailed

response time diagnostic data. This book, as you shall see, provides coverage

only of the response time metrics produced specifically by the Oracle kernel.

There are several reasons for my writing the book this way:

• When performance problems occur, people tend to point the finger of blame

first at the least well-understood component of a system. Thus, the Oracle

database is often the first component blamed for performance problems. The

Oracle kernel indeed emits sufficient diagnostic data to enable you to prove

conclusively whether or not a performance problem’s root cause lies within

the database kernel.

• At the time of this writing, the Oracle kernel is in fact the most robustly

instrumented layer in the technology stack; however, many analysts fail to

exploit the diagnostic power inherent in the data this instrumentation emits.

Oracle’s diagnostic instrumentation model is very robust in spite of its

simplicity and efficiency (Chapter 8). Vendors of other layers in the

application technology stack have already begun to catch onto this notion. I

believe that the response time diagnostic instrumentation built into the

Oracle kernel will become the standard model for instrumenting other

application tiers.

ch01 // MS Word // 5/20/03 // Page 30 of 32

30

Even without further instrumentation of non-database tiers, if your performance

problem is in the database, Method R helps you solve it quickly and efficiently.

If your problem is not caused by something going on in your database, then

Method R helps you prove that fact quickly and efficiently. Regardless of where

in your architecture your root cause resides, Method R prevents you from trying

to fix the wrong problem.

The proof is in the experience. Method R routinely leads us to the doorstep of

problems whose repair must be enacted either inside or outside of the database,

including such cases as:

• Query mistakes caused by inefficiently written application SQL statements,

poor data designs, ill-advised indexing strategies, data density mistakes, etc.

• Application software mistakes caused by excessive parsing, poorly designed

serialization (locking) mechanisms, misuse (or omission) of array

processing features, etc.

• Operational mistakes caused by errors in collection of statistics used by the

cost-based optimizer, accidental schema changes (e.g., dropped indexes),

inattention to full file systems, etc.

• Network mistakes caused by software configuration mistakes, hardware

faults, topology design errors, etc.

• Disk I/O mistakes caused by poorly sized caches, imbalances in I/O load to

different devices, etc.

• Capacity planning mistakes resulting in capacity shortages of resources like

CPU, memory, disk, network, etc.

“The method is unconventional”

Even if Method R could prove to be the best thing since the invention of rows

and columns, I expect for some pockets of resistance to exist for at least a couple

of years after the publication of this book. The method is new and different, and

it’s not what people are accustomed to seeing. As more practitioners, books, and

tools adopt the techniques described in this book, I expect that resistance will

fade. In the meantime, some of your colleagues are going to require careful

explanations about why you’re recommending a completely unconventional

performance optimization method that doesn’t rely on StatsPack or any of the

several popular performance monitoring tools for which your company may have

paid dearly. They may cite your use of an unconventional method as one of the

reasons to reject your proposals.

One of my goals for this book is certainly to arm you with enough knowledge

about Oracle technology that you can exploit your data to its fullest diagnostic

capacity. And frankly I hope by the end of this book I’ll have given you enough

ammunition that you can defend your recommendations to the limit of their

ch01 // MS Word // 5/20/03 // Page 31 of 32

 31

validity. I hope this is enough to level the playing field for you so that any

debates about your proposed performance improvement activities can be judged

on their economic merits, and not on the name of the method you used to derive

them.

Evaluation of Effectiveness

Earlier in this chapter, I listed eight criteria against which I believe you should

judge a performance improvement method. I’ll finish the chapter by describing

how Method R has measured up against these criteria in contrast to conventional

methods.

Impact

Method R causes you to produce the highest possible impact because you

are always focused on the goal that has meaning to the business: the

response time of targeted user actions.

Efficiency

Method R provides excellent project efficiency because it keeps you

focused on the top priorities for the business, and because it allows you to

make fully informed decisions during every step of the project. Project

efficiency is in fact the method’s key design constraint.

Measurability

Method R uses end-user response time as its measurement criterion, not

internal technical metrics that may or may not translate directly to end-user

benefit.

Predictive capacity

Method R gives the unprecedented ability to predict the impact of a

proposed tuning activity upon a targeted user action, without having to

invest into expensive experimentation.

Reliability

Method R performs reliability in virtually every performance problem

situation imaginable; a distinction of the method is its ability to pinpoint the

root cause of any type of performance problem without having to resort to

experience, intuition, or luck.

Determinism

Method R eliminates diagnostic guesswork first by maintaining your focus

on business priority, and second by providing a foolproof method for

determining the true relationships between problem symptoms and their root

causes.

Finiteness

Method R has a clearly stated termination condition. The method provides

the distinctive capacity to prove when no further optimization effort is

economically justifiable.

ch01 // MS Word // 5/20/03 // Page 32 of 32

32

Practicality

Method R is a teachable method that has been used successfully by

hundreds of analysts of widely varying experience levels to resolve Oracle

performance problems faster quickly and permanently.

The following chapters show you how to use Method R.

