
Oracle
Performance

Optimizing

A Practitioner's Guide to Optimizing Response Time

Cary Millsap
with Jeff Holt

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

33

Chapter 2 CHAPTER 2

Targeting the Right User Actions

One of the first steps in any project is to figure out what the project is supposed to
accomplish. The formal written result of figuring out the project’s goal is called the
project’s specification. An Oracle performance improvement project, like all sorts of
other projects, needs a specification. Otherwise, you have nothing that you can use
to measure the success or failure of your project.

Many Oracle performance improvement projects are crippled from their beginnings
with poor specifications. You’ve probably seen the cartoon in which a programmer’s
manager says, “You start coding. I’ll go find out what they want.” A lot of people try
to “tune their systems” without ever really knowing what they’re out to accomplish.
On the other hand, there’s no need for a system to languish for months while ana-
lysts try to construct the “ultimate” project specification, charging time and materi-
als rates while they inch forward. Constructing a good specification for an Oracle
performance improvement project should usually consume no more than a couple of
hours.

The aim of this chapter is to help you get your performance improvement project
started on the right foot, so that your project will optimize the economic value of a
system. I’ll explore some bad project specifications and explain why they hurt the
projects they were supposed to help. I’ll describe some specifications that have
worked well, resulting in projects that have quickly created great positive economic
impact to their systems. Throughout the chapter, I’ll list some attributes that have
distinguished good specifications from bad ones.

Specification Reliability
A project specification can be called “reliable” only if any project that successfully
fulfills the letter of that specification also fulfills the specification’s true intent.

optoraclep-veritas-feb2004-lc

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

34 | Chapter 2: Targeting the Right User Actions

Unfortunately, the most commonly used specifications for performance improve-
ment projects are unreliable. Examples of specifications include:

• Distribute disk I/O as uniformly as possible across many disk drives.

• Ensure that there is at least x% of unused CPU capacity during peak hours.

• Increase the database buffer cache hit ratio to at least x%.

• Eliminate all full-table scans from the system.

Each of these specifications is unreliable because the letter of each specification can
be accomplished without actually producing a desired impact upon your system.
There is a simple game that enables you to determine whether you have a reliable
specification or not:

To establish whether or not the specification for a performance improvement project is
reliable, ask yourself the question: “Is it possible to achieve the stated goal (the specifi-
cation) of such a project without actually improving system performance?”

One easy way to get the game going is to imagine the existence of an evil genie. Is it
possible for an evil genie to adhere to the letter of your “wish” (the project specifica-
tion) while producing a project result that actually contradicts your obvious underly-
ing goal? If the evil genie can create a system on which she could meet your project
specification but still produce an unsatisfactory performance result, then the project
specification has been proved unreliable.

The evil genie game is a technique employed in thought experiments by René Des-
cartes in the 1600s and, more recently, by Elizabeth Hurley’s character in the film
Bedazzled. Here’s how the evil genie game can play out for the bad specifications
listed earlier:

Distribute disk I/O as uniformly as possible across many disk drives
This specification is a perfectly legitimate goal for trying to prevent performance
problems when you are configuring a new system, but it is an unreliable specifi-
cation for performance improvement projects. There are many systems on which
making significant improvement to disk I/O performance will cause either negli-
gible or even negative performance impact.

For example, imagine a system in which each of the most important business
processes needing performance repair consumes less than 5% of the system’s
total response time performing disk I/O operations. (We have hundreds of trace
files that fit this description at hotsos.com.) On such a system, no amount of I/O
“tuning” can create meaningful response time improvement of more than 5%.
Since distributing disk I/O uniformly across many disk drives can result in a sys-
tem without meaningfully improved performance, this specification is unreliable.

Ensure that there is at least x% of unused CPU capacity during peak hours
There are several ways that an evil genie could accomplish this goal without
helping the performance of your system. One way is to introduce a horrific disk
I/O bottleneck, such as by placing the entire database on one gigantic disk drive

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Specification Reliability | 35

with excessively poor I/O-per-second capacity. As more and more user pro-
cesses stack up in the disk I/O queue, much CPU capacity will go unused. Since
increasing the amount of unused CPU can result in worse performance, this
specification is unreliable.

Increase the database buffer cache hit ratio to at least x%
This one’s easy: simply use Connor McDonald’s innovative demonstration that I
include in Appendix C. The application will show you how to increase your
database buffer cache hit ratio to as many nines as you like, by adding CPU-
wasting unnecessary workload. This additional wasted workload will of course
degrade the performance of your system, but it will “improve” your buffer cache
hit ratio. Connor’s application is, of course, a trick designed to demonstrate that
it is a mistake to rely on the buffer cache hit ratio as a measure of system “good-
ness.” (I happen to know that Connor is definitely not evil, although I have on
occasion noticed him exhibit behavior that is at least marginally genie-like.)

There are subtler ways to degrade a system’s performance while “improving” its
cache hit ratio. For example, SQL “tuners” often do it when they engage in
projects to eradicate TABLE SCAN FULL row source operations (discussed again in
the next specification I’ll show). Another way an evil genie could improve your
cache hit ratio in a way that harms performance is to reduce all your array fetch
sizes to a single row [Millsap (2001b)]. Because it is so easy to increase the value
of your buffer cache hit ratio in ways that degrade system performance, this
specification is particularly unreliable.

Eliminate all full-table scans from the system
Unfortunately, many students of SQL performance optimization learn early the
untrue rule of thumb that “all full-table scans are bad.” An evil genie would have
an easy time concocting hundreds of SQL statements whose performance would
degrade as TABLE SCAN FULL row source operations were eliminated [Millsap
(2001b); (2002)]. Because eliminating full-table scans can actually degrade per-
formance, the action is an unreliable basis for a performance improvement
project specification.

The cure for unreliable performance improvement specifications is conceptually sim-
ple. Just say what you mean. But of course, by the same logic, golf is simple: just hit
the ball into the hole every time you swing. The problem in curing unreliable perfor-
mance improvement specifications is to figure out how to specify what you really
mean in a manner that doesn’t lead to other errors. For example, a performance
specification that comes closer to saying what you really mean is this one:

Make the system go faster.

However, even this specification is unreliable. I’ve seen dozens of projects with this
specification result in ostensible success but practical failure. For example, a consult-
ant finds, by examining V$SQL, a batch job that consumes four hours. He “tunes” it
so that it runs in 30 minutes. This is a project success; the consulting engagement
summary says so. However, the success was meaningless. The batch program was

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

36 | Chapter 2: Targeting the Right User Actions

already as fast as it needed to be, because it ran in an otherwise vacant eight-hour
batch window. The expensive input into performance improvement (the consult-
ant’s fee) produced no positive value to the business.

Worse yet, I’ve seen analysts make some program A go faster, but at the expense of
making another vastly more important program B go slower. Many systems contain
process interdependencies that can cause this situation. On these systems, “tuning”
the wrong program not only consumes time and money to execute the tuning
project, it results in actual degradation of a system’s value to the business (see the
section “Case 1: Misled by System-Wide Data” in Chapter 12 for an example).

This “make the system go faster” specification is just too vague to be useful. In my
service line management role at Oracle Corporation, I had many discussions about
how to specify projects—the whole idea of packaged services requires contract-qual-
ity specification of project goals. Most participants in those meetings understood
very quickly that “make the system go faster” is too vague. What I find remarkable
today is that most of these people saw the vagueness in entirely the wrong place.

Most people identify the go faster part of the specification as the root of the prob-
lem. People commonly suggest that “make the system go faster” is deficient because
the statement doesn’t say, numerically, how much faster. In my Oracle meetings,
explorations of how to improve “make the system go faster” generally led to discus-
sion of various ways to measure actual and perceived speeds, ways to establish
“equivalency” metrics such as count-based utilization measures (like hit ratios), and
so on. Of course, the search for “equivalency” measures finds a dead end quickly
because—if you execute the evil genie test correctly—such presumed equivalency
measures are usually unreliable.

Figuring out how much faster a system “needs to go” often leads into expensive
project rat holes. (An exception is when an analyst has found the maximum allow-
able service time for an operation by using a model like the queueing theory one that
I describe in Chapter 9.) When our students today discuss the “make the system go
faster” spec, it usually takes very little leading for students to realize that the real
problem is actually hidden in the word system. For example, consider the following
commonly suggested “improvements” to the original “make the system go faster”
specification:

• Make the system go 10% faster.

• Make the system complete all business functions in less than one second.

First of all, each specification expressed in this style is susceptible to the same evil
genie tricks as the original spec. But by adding detail, we’ve actually weakened the
original statement. For example:

Make the system go 10% faster
Do you really expect that every business transaction on the system can go 10%
faster? Even those that perform only a couple of Oracle logical I/O calls (LIOs)

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Specification Reliability | 37

to begin with? On the other hand, is 10% really enough of an improvement for
an online query that consumes seventeen minutes of response time?

Make the system complete all business functions in less than one second
Is it really good enough for a single-row fetch via a primary key to consume 0.99
seconds of response time? On the other hand, is it really reasonable to expect
that an Oracle application should be able to emit a 72-page report in less than
one second?

Do these two formats actually lead to an improvement of the original “make the sys-
tem go faster” specification? They do not. A bigger problem is actually the lack of
definition for the word “system.”

The System
What is the system? Most database and system administrators interpret the term
much differently than anyone else in the business does. To most database and sys-
tem administrators, the system is a complex collection of processes and shared mem-
ory and files and locks and latches, and all sorts of technical things that can be
measured by looking at “V$ tables” and operating system utilities and maybe even
graphical system monitoring dashboards. However, nobody else in the business sees
a system this way. A user thinks of the system as the collection of the few forms and
batch jobs in that user’s specific job domain. A manager thinks of the system as a
means for helping improve the efficiency of the business. To users and managers, the
redness, yellowness, or greenness of your dashboard dials is completely and utterly
irrelevant.

Here’s a simple test to determine for yourself whether I’m telling the truth. Try to
imagine yourself as a user who has just waited two hours past your reporting dead-
line this morning because your “fifteen-minute report” required three full hours to
run. Try to imagine your reaction to a database administrator who would say the fol-
lowing words in front of your colleagues during a staff meeting: “There was abso-
lutely nothing wrong with the system while your report was running, because all our
dashboard dials were green during the entire three-hour period.”

Please remember this when you are acting in the role of performance analyst: a sys-
tem is a collection of end-user programs. An end-user is watching each of these pro-
grams attentively. (If no one is watching a particular program attentively, then it
should be running only during off-peak time periods, or perhaps not at all.) The
duration that each program requires to deliver a requested chunk of business value is
that program’s response time. The response time of an individual user action is prac-
tically the only performance metric that your business cares about. Hence:

Response time for an end-user action is the first metric that you should care about.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

38 | Chapter 2: Targeting the Right User Actions

Economic Constraints
When you eliminate the ambiguity of the word “system,” you take one big step
closer to a foolproof goal:

Improving the performance of program A during the weekday 2:00 p.m. to 3:00 p.m.
window is critical to the business. Improve the performance of A as much as possible
for this time period.

But is this specification evil genie–proof? Not yet. Imagine that the average run time
of program A is two minutes. Suppose that the evil genie could reduce the response
time from two minutes to 0.25 seconds. Great… But at a cost of $1,000,000,000.
Oops. Maybe improving response time only to 0.5 seconds would have been good
enough and would only have cost $2,000. The specification omits any mention of an
economic constraint.

There is an optimization project specification that I believe may actually be evil genie–
proof. It is the optimization goal described by Eli Goldratt in [Goldratt (1992), 49]:

Make money by increasing net profit, while simultaneously increasing return on
investment, and simultaneously increasing cash flow.

This specification gives us the ultimate acid test by which to judge any other project
specification. However, it does fall prey to the same “hit the ball into the hole on
every swing” lack of detail that I discussed earlier.

Making a Good Specification
Let’s stop fooling around with faulty project specifications and start constructing
some good ones. It shouldn’t take you more than a couple of hours to create a good
specification for most performance improvement projects. Here’s how:

1. Identify the user actions that the business needs you to optimize, and identify the
contexts in which those actions are important.

2. Prioritize these user actions into buckets of five.

3. For each of the actions in your top bucket, determine whom you can observe
executing the action in its suboptimal context and when you can make the
observation.

User Action
In this book, I try to make a careful distinction between user actions, programs, and
Oracle sessions. A user action is exactly what it sounds like: an action executed by a
user. Such an action might be the entry of a field in a form or the execution of one or
more whole programs. A user action is defined as some unit of work whose output
and whose performance have meaning to the business. The notion of user action is
especially important during project specification because the user action is precisely
the unit of work that has business meaning.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Making a Good Specification | 39

A program is of course a sequence of computer instructions that carries out some
business function. A user action might be a program, a part of a program, or multi-
ple programs. An Oracle session is a specific sequence of database calls that flow
through a connection between a user process and an Oracle instance. A program can
initiate zero or more Oracle sessions, and in some configurations, more than one
program can share a single Oracle session. The notion of an Oracle session is impor-
tant during data collection because the Oracle kernel keeps track of performance sta-
tistics at the Oracle session level.

Oracle does make a distinction between a connection (a communica-
tion pathway) and a session. You can be connected to Oracle and not
have any sessions. On the other hand, you can be connected and have
many simultaneous sessions on that single connection.

Identifying the Right User Actions and Contexts
The first step in your specification is to identify the user actions that the business
needs you to optimize. If you mess up this step, it is likely that your performance
improvement project will fail. It is vital for you to obtain a list of specific user actions.
The ones you select should be the ones that are the most important in the business’s
pursuit of net profit, return on investment, and cash flow.

I emphasize “that the business needs you to optimize” because you are specifically
not looking for a database administrator’s opinion about performance at this point.
One of the most common mistakes that Oracle performance analysts make is that
they consult their V$ views to learn where their system needs “tuning.” Your V$ views
can’t tell you. I’ll describe in Chapter 3 some of the technical reasons why it’s unreli-
able to consult your V$ views for this information.

Finding out what your business needs is usually easy. It is almost never the result of a
long goal-definition project. It is almost always the result of asking a business leader
who speaks in commonsense language, “If we could make one program faster by the
end of work today, which program would you choose?” The following examples
illustrate the type of response that you’re looking for:

• We manufacture disk drives. We have a warehouse full of disk drives that are
ready to ship. We receive hundreds of telephone calls each morning from angry
customers who placed orders with us over two weeks ago, demanding to know
the status of their shipments. At any given time, there is an average of over two
dozen empty FedEx trucks parked at our loading dock. If you go down to the
loading dock, you can see that our packers and the truck drivers are sitting on
boxes drinking coffee right now. They can’t load the boxes on the trucks
because the program that prints shipping labels is too slow. Our business’s most
important performance problem is the program that prints shipping labels.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

40 | Chapter 2: Targeting the Right User Actions

• We’re spending too much on server license and maintenance fees. We have 57
enterprise-class servers in our shop, and we need to cut that number to ten or
fewer. We already house 80% of our enterprise data on one large storage area
network (SAN). However, our total CPU workload that is presently distributed
across 57 servers is probably too large to fit onto ten machines. Our business’s
most important performance problem is eliminating enough unnecessary CPU
workload so that we can perform the server consolidation effort and ditch about
fifty of our servers.

The hardest part is usually gaining access to the right people in the business to get
the information you need. You might have to dig a little bit for your list. The follow-
ing techniques can help:

Ask your boss where the performance risks are
Steer him away from answers that refer to technical components of the data-
base. Force the conversation into the domain of user language. Ask which user is
giving him the most flak about system performance, and then book a lunch with
the user. The loudest user is not necessarily the one with the business’s most
critical problem, but understanding that user’s problems are probably a good
start.

Take a user to lunch
Buy him a sandwich, and ask down-to-earth questions like, “If I could make
something you use faster today, what would you want it to be?”

Find a sales forecast for your business
Consider which application processes are going to be the most important ones to
facilitate your company’s planned sales growth. Are those processes running as
efficiently as they can?

If you get stuck in your conversations with people with whom you’re trying to iden-
tify user actions that are important to the business, ask them which actions fit into
these categories:

• Actions that are business critical

• Actions that run a long time

• Actions that are run extremely often

• Actions that consume a lot of capacity of a resource you’re trying to conserve

In addition to identifying which user actions require optimization, you need to iden-
tify the context in which those actions are important. For example:

• Is the action always slow?

• Is it slow only at a particular time of day (week, month, or year)?

• Is it slow only when it runs at the same time as some other program(s)?

• Is it slow only when the number of connected users exceeds some threshold?

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Making a Good Specification | 41

• Is it slow only after some other program runs (upload, delete, etc.)?

Without context, you run the risk that you’ll collect performance diagnostic data for
the “problem” action and then find after all your effort that there’s apparently noth-
ing wrong with it. You have to identify how to find the user action when it is per-
forming at its worst. Otherwise, you’re not going to be able to see the problem. This
concept is so important that I’ll say it again:

You have to identify how to find the user action when it is performing at its worst.

In this step, it is usually important to select more than one user action, especially in
situations where many users perceive many different performance problems. This is
true even in situations where the number-one system performance problem has a pri-
ority that clearly exceeds everything else on the system. The reasons for this advice
come from the experience of using the method many times:

• Because cost is a factor in net benefit, the business net benefit of improving, for
example, user action #3 may actually exceed the business net benefit of improv-
ing user action #1.

• Producing significant improvement quickly in any of a system’s top five most
important performance problems can create a significant political advantage,
including factors like project team morale and project sponsor confidence.

• You might not know how to improve performance for user action #1. But fix-
ing, for example, user action #3 may eliminate so much unnecessary workload
that #1 becomes a non-issue.

• You can’t tell which performance improvement action will produce the greatest
net benefit to the business until you can see a high-level cost-benefit analysis for
the user actions in your top-five bucket.

Prioritizing the User Actions
Once you have constructed the list of candidate user actions, you need to rank the
importance of their improvement to the business. Everything you do later will
require that you have chosen the most important actions to optimize first. Business
prioritization is vital for several reasons, including:

The most important actions will get fixed the soonest
This is the most important reason. Quite simply, if you don’t optimize the most
important business processes first, then you’re not optimizing.

Trade-off decisions will always favor more important user actions
On occasion, you may find that an optimization for one user action inflicts a per-
formance penalty upon another. This happens frequently when the optimization
strategy you choose is to increase the capacity of some component. However,
because I hope to convince you to increase capacity only when necessary (that is,
rarely), such trade-offs should be rare.

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

42 | Chapter 2: Targeting the Right User Actions

Less important user actions enjoy collateral benefits
The term collateral damage has been introduced into our language by discus-
sions of accidents that occur during wartime. The opposite of collateral damage
is collateral benefit—a benefit yielded serendipitously by attending to something
else. Collateral performance benefits occur frequently on computer systems in
which we eliminate huge amounts of unnecessary work.

It’s easy to over-analyze at this stage, but there’s actually no need to spend much
time here. All you need are rough categories. I recommend grouping your user
actions into prioritized buckets of no fewer than five. This way, you won’t be
tempted to obsess over the precise ranking of actions that are close in importance.
For example, if you have ten important problem user actions, then create no more
than two groups of five. If you have more than ten problem actions (I’ve visited sites
whose lists numbered in excess of fifty), then I suggest partitioning your list into
three parts:

1. The five most important user actions (your first bucket).

2. The five next most important user actions (your second bucket).

3. The remainder of the important user actions you’ve listed (the union of your
third and subsequent buckets)

Be especially wary of executing any prioritization task with the participation of large
groups. Every user, of course, will try to convince you that his actions are the very
most supremely important actions on the entire system. And of course, every action
on the system cannot take top priority. Most of the time that you might spend nego-
tiating whether a user action belongs in one group or another could be invested more
wisely in other steps of the method. If you find that the whole prioritization task is
consuming more than just a few minutes, then step back and just make some sensi-
ble decisions. Assure the users whose actions don’t fall into the top priority class that
they haven’t lost anything; you’ll attend to their problems too.

Determining Who Will Execute Each Action and When
The final step in the construction of a good spec for your performance improvement
project is the specification of how you’ll be able to find each targeted action when it
next runs in its targeted context. This information will allow you to find the pro-
grams implementing those actions so that you can measure their performance.

Often, the success of a diagnostic data collection effort will be determined by your
ability to establish simple human contact with a person who will execute the slow
action and answer the following simple questions:

• When is the next time that this person expects for the action to exhibit the per-
formance problem?

• How can you watch?

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

Specification Over-Constraint | 43

The answers to these questions unambiguously define the parameters you’ll use for
your diagnostic data collection process, which I describe in Chapter 3.

If you have a tool that constantly monitors the appropriate performance statistics for
every individual user action on your system, then predicting who will run a problem
program and when it will happen becomes unnecessary. The luxury of having such
data for every user action on your system will allow you to respond to a complaint
about an action in the recent past instead of having to predict their occurrences in
the imminent future. Such tools are expensive, but they do exist.

If you do not own such a tool, then you’ll have to be more selective in which diag-
nostic data you’ll want to collect, and the step described in this section will be essen-
tial. For you, I hope that Chapters 6 and 8 will provide significant value.

Specification Over-Constraint
I’ve discussed the reliability problems introduced by specifications that are too
vague. Equally devastating is the specification that is too precise. Many specifica-
tions that go into too much detail actually conflict with the optimization goal. A
specification that requires some specific program performance improvement and a
10-point improvement in the database buffer cache hit ratio might actually be impos-
sible to achieve. It is entirely possible that improving the performance of a specified
program might result in a dramatically lower system-wide cache hit ratio. (See [Mill-
sap (2001b)] for an example.)

Another fun example occurred several years ago when I was an Oracle Corporation
employee. A performance specification required that, on a particular client-server
application form, navigation from one field to the next must occur within 0.5 sec-
onds. The specification further required for the client system to be in Singapore and
for the server system to be in Chicago. Furthermore, the specification required that
we could not modify the prepackaged application, which made an average of six syn-
chronous database calls across the wide-area network (WAN) per field.

The objective as stated in the specification was unachievable, because the specifica-
tion is over-constrained; it in fact conflicts with the physical laws of our universe.
There is no way that six round-trip network transmissions can occur between Sin-
gapore and Chicago within the span of half a second. Even if we could eliminate all
components of response time except for the theoretically smallest amount of time
required for the data transmission at its fastest theoretically possible rate (that is, if
we could ignore the time consumed by cable, hubs, routers, the database, and so
on), executing six round-trip communications per field will require at least 0.6 sec-
onds per field.

Proof: Assume that all practical influences other than the speed of light have no effect
upon performance of field-to-field navigation. The speed of light in a vacuum is
approximately 299,792,458 meters per second. The distance along the Earth’s surface

This is the Title of the Book, eMatter Edition
Copyright © 2004 O’Reilly & Associates, Inc. All rights reserved.

44 | Chapter 2: Targeting the Right User Actions

from Singapore to Chicago is approximately 15,000,000 meters. Therefore, the dis-
tance traversed by six round-trips for each field is 2 × 6 × 15,000,000 meters, or
approximately 180,000,000 meters per field. Obeying the relationship d = rt, we find
that t = d/r ≈ 0.6 seconds per field. Reintroducing all of the practical influences upon
performance that we have ignored up to now will only degrade performance further.
Therefore, the requirement specification cannot be met. QED.

There is no way to meet this specification without relaxing at least one of its con-
straints. The most important constraint to eliminate first was the requirement that
each field must execute an average of six round-trips between the client and the data-
base server. The most important task of the existing performance improvement
project was to show the proof of why any project with the given specification was
doomed to failure. Until this proof became known, people on the project had contin-
ued to waste time and money in pursuit of an unattainable goal.

Good projects don’t come from bad project specifications. Whether the problem is
sloppy targeting or a specification that is utterly unattainable, you cannot afford to
base your performance improvement project upon a faulty specification.

