
Scaling Oracle8i™

Creative Commons licensed release version 1.0

s c a l e
a b i l i t i e s

2

INTRODUCTION (TO A GREAT BOOK) 3
Introduction (to a Great Book)

Once upon a time Jonathan Lewis was asked if his book Practical Oracle8i
would ever be published in an updated 9i version? His response was to
suggest that you put a sticker with a ‘9’ over the ‘8’ on the cover of his
book, because the advise, methods and techniques described in the book
were still very valid with Oracle9i. How true.

It is even more true for James’ book Scaling Oracle8i. As you can read in
his welcome note, a few of the technologies mentioned have vanished or
shifted, but most of the contents are more valid than ever.

It always was, and still is, one of the very, very few books on the Oracle
scene that resulted from real research – which is obvious when you read it.
The goal was to write about Oracle AND all the things surrounding it,
including operating systems, middle-tiers and I/O sub-systems.

James spent more than two years writing this book, and that’s how he
goes about things: Do it right or not at all. His relative youth (well, he’s
much younger than me!) and his many impressive achievements show a
man of dedication.

It is typical of James to take the problem of the ‘8i’ (and therefore sacking
sales) and find a unique solution: Offer the book free via a new GPL-like
license. He is very good both at finding solutions to problems – and also to
locate solutions in need of problems. For instance, in the last month or so
(I’m writing this in July 2004) I have seen him fill up his garage with a lot
of sound equipment (I believe we passed the 12,500 Watt output mark
recently) and create a new outfit called “Scalable Sound Systems”. Now all
he needs is to find a concert somewhere that can use all this stuff. His
garage also features an EMC SAN, fibre optics to his house, a 4-5 node
RAC cluster and all his guitar and drum kit (he plays rather well).

James is always full of ideas and projects. The whole idea of the BAARF
Party (Battle Against Any RAID Five – www.baarf.com), the idea of the

INTRODUCTION (TO A GREAT BOOK)4
OakTable Press series (by Apress), and papers like Unbreakable and Sane
SAN – and now the Turbosound madness in his garage - show you a
person to watch.

It is with great honour that I invite you to read this book.

Maaloev, Denmark

July, 2004-07-16

Mogens Nørgaard

WELCOME! 5
Welcome!

Welcome to the Creative Commons version of my book. It’s been a few
years since I wrote this book. In fact, it has been nearly five years, and
three to four Oracle releases since the last edits were dispatched. Five
years is a long time in the computer business, and four Oracle releases
would allude to this book now being totally out of date. Not so, however,
as the underpinnings of this book are those of timeless computer science
principles and approaches, and basic physics. Nevertheless, the title of this
book, Scaling Oracle8i, is very guilty of hiding the true messages of this
text.

So what’s changed since the book went to press? Well, hardware
companies such as Sequent have been acquired and closed down, leaving
the hardware chapter looking a little dated. However, the principles of
NUMA have been widely adopted on platforms such as the Sun Fire 15K
and the HP Superdome, so the knowledge of NUMA principles is still
highly valuable. Parallel Server has been superceded by Real Application
Clusters (RAC), but the principles behind minimizing the overhead of
cross-instance coherency are still hugely important aspects of imple-
menting RAC.

I have intentionally not changed or edited the text in any way, other than
including this new foreword, and the addition of the Creative Commons
licensing information. For those not familiar with Creative Commons, it is
a GPL-style licensing for non-software articles. Yes, that’s right - you can
distribute this book freely to whomever you wish, subject to the restric-
tions in the Creative Commons license, detailed at the end of this intro-
duction.

In 2000 I founded Scale Abilities Ltd., a specialist consulting company
based in the UK. I sometimes tell my clients that my area of depth is my
breadth. This sounds like a strange thing to say, but in a world where
technicians are adopting an increasingly narrow focus, it is tremendously
valuable to be able to advise on almost any part of the technology stack.
Coupled with the experience that can only be gained building some of the

WELCOME!6
largest Oracle systems, Scale Abilities is able to authoritively guide our
clients through their challenges. In addition, I try to devote a reasonable
proportion of my business days to R&D projects - software development
prototypes, idea development, and free tools for download from the Scale
Abilities website:

http://www.scaleabilities.co.uk

The book will be available in two forms: An Adobe Acrobat PDF format,
containing the whole text, and an online HTML version that can easily be
linked to and referenced online. The PDF version is fully distributable,
and anybody can make it available on their own website for download.
The HTML version will only be available at the Scale Abilities website.

The licensing of the work is what is known as a Creative Commons Attri-
bution-NonCommercial-NoDerivs license. This is one of the more
restrictive versions of the CC license, but if somebody can convince me
otherwise I might consider relaxing some more of these restrictions. The
full legal description of the license is available at:

http://creativecommons.org/licenses/by-nc-nd/2.0/legalcode

A more human-readable version is available at:

http://creativecommons.org/licenses/by-nc-nd/2.0

I dedicate this book to my long suffering wife, Elaine, and my children
Becky, Connor and Holly. Due to an administrative error going to press,
the hard copy of the book never included this much deserved dedication,
so I hope I can make up for this in the electronic version.

I hope you enjoy reading the book, and that it somehow builds and adds
value to your professional life.

James Morle
Cirencester, United Kingdom, July 2004

James.Morle@scaleabilities.co.uk

Scaling Oracle8i™

Building Highly Scalable OLTP
System Architectures

James Morle

ADDISON–WESLEY
An Imprint of Addison Wesley Longman, Inc.
Reading, Massachusetts • Harlow, England • Menlo Park, California
Berkeley, California • Don Mills, Ontario • Sydney
Bonn • Amsterdam • Tokyo • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison
Wesley Longman, Inc. was aware of a trademark claim, the designations have been printed
with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omis-
sions. No liability is assumed for incidental or consequential damages in connection with
or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for special sales. For
more information, please contact

AWL Direct Sales
Addison Wesley Longman, Inc.
One Jacob Way
Reading, Massachusetts 01867
(781) 944-3700

Visit AW on the Web: www.awl.com/cseng/

Library of Congress Cataloging-in-Publication Data

Morle, James, 1970–
Scaling Oracle8i : building highly scalable OLTP system architectures / James Morle.

p. cm.
Includes bibliographical references and index.
ISBN 0-201-32574-8
1. Oracle (Computer file) 2. Relational databases. I. Title.

QA76.9.D3 m658 2000
005.75’85—dc21 99–051334

CIP

Copyright © 2000 by Addison Wesley Longman, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval sys-
tem, or transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher. Printed in the United
States of America. Published simultaneously in Canada.

ISBN 0-201-32574-8
Text printed on recycled paper
1 2 3 4 5 6 7 8 9 10—MA—0302010099
First printing, December 1999

Contents

Figure List xv
Preface xix
Introduction xxiii

PART I CONCEPTS AND ARCHITECTURE 1

CHAPTER 1 Scaling Concepts. 3
1.1 What Is Scaling? . 3

1.1.1 Speedup . 5
1.1.2 Concurrency (Scaleup) 8

1.2 Latches and Locks . 9
1.2.1 Why Lock?. 10
1.2.2 Things That Need Locking/Latching 14
1.2.3 Waiting on Latches and Locks 15
1.2.4 Design Considerations to Reduce

Lock Contention . 17
1.3 Linked Lists . 20

1.3.1 What Is a Linked List? 20
1.3.2 What Are Linked Lists Used For? 22
1.3.3 Optimizing Chain Lengths 24

1.4 Hashing . 25
1.4.1 What Is Hashing? . 25

1.5 Caching . 28
1.5.1 Cache Fundamentals 28
1.5.2 Memory Hierarchies 29
cxvii

CONTENTScxviii
1.5.3 Cache Reference Patterns30
1.5.4 I/O Caching .31
1.5.5 CPU Cache Concepts 33

1.6 Chapter Summary .40
1.7 Further Reading. .40

CHAPTER 2 Hardware Architectures and I/O Subsystems41
2.1 Introduction to Hardware Architectures41

2.1.1 System Interconnects 42
2.1.2 Bus Architecture .43
2.1.3 Direct Memory Access (DMA) 46
2.1.4 Cache Coherency. .47

2.2 Single Processor Architectures (Uniprocessors) . .51
2.2.1 Advantages. .51
2.2.2 Oracle on Uniprocessors 54
2.2.3 Other Disadvantages 54
2.2.4 Summary .55

2.3 Symmetric Multiprocessors (SMPs)56
2.3.1 SMP Advantages .56
2.3.2 Kernel Challenges .58
2.3.3 Oracle on SMP Architectures.59
2.3.4 Shared-Bus Limitations 60
2.3.5 Summary .60

2.4 Point-to-Point SMP .61
2.4.1 Cache Coherency. .63
2.4.2 Summary .64

2.5 Clustered SMP .64
2.5.1 Clustering Types .65
2.5.2 Summary .67

2.6 Massively Parallel Processors (MPPs) 68
2.6.1 Definition .68
2.6.2 Oracle on MPP Systems71
2.6.3 Summary .72

2.7 Cache Coherent Nonuniform
Memory Access (ccNUMA)73
2.7.1 Definition .73

CONTENTS cxix
2.7.2 Sequent NUMA-Q 2000. 74
2.7.3 SGI Origin 2000. 79
2.7.4 Oracle on NUMA Systems 80
2.7.5 Summary . 84

2.8 Storage Systems . 85
2.8.1 I/O Busses . 86
2.8.2 Controllers. 87
2.8.3 Disk Drives . 92
2.8.4 Disk Drive Sizing . 95
2.8.5 Redundancy . 97
2.8.6 RAID Levels . 97
2.8.7 RAID-5 . 107
2.8.8 Cached Disk Arrays: EMC Symmetrix . . 110

2.9 Chapter Summary . 114
2.10 Further Reading . 115

PART II BUILDING SUPPORT SOFTWARE 117

CHAPTER 3 Benchmark Concepts and Design 119
3.1 Why Develop a Benchmark?. 119

3.1.1 Capacity Planning 120
3.1.2 Upgrades . 123
3.1.3 Platform Changes . 124

3.2 What Are We Simulating?. 125
3.2.1 Defining Application Areas 125
3.2.2 Defining the Application Split 125
3.2.3 Careful with Those Assumptions,

Eugene . 126
3.3 Selecting a Development Approach 128

3.3.1 Using Remote Terminal Emulation
Software . 128

3.3.2 Custom Simulation Development 129
3.4 Building a Simulator Using RTE Software 130
3.5 Building a Custom Benchmark Suite. 131

3.5.1 Programming Environment 131

CONTENTScxx
3.5.2 When the Application Has Not
Been Written. .132

3.5.3 If the Application Exists:
Trap and Emulate All SQL Calls.133

3.5.4 Using Tracefiles to Generate a
Simulation: An Introduction to dbaman. . . .145

3.5.5 Validate Server-Side System Utilization .152
3.5.6 Building a Multiuser Framework156

3.6 Scale the Simulator .157
3.6.1 Data Problems .157
3.6.2 User Control Problems158
3.6.3 Simpler Methods for Use with dbaman 160

3.7 Make It Easy to Run .163
3.7.1 Portability .163
3.7.2 Packaging .164
3.7.3 Start-Up Scripts .164
3.7.4 Automating Information

Retrieval at Closedown 164
3.8 Define Limitations in Advance165

3.8.1 A Benchmark Is Never Perfect 165
3.8.2 Measure the Impact of the Inaccuracies. .165

3.9 Chapter Summary .166
3.10 Further Reading. .166

CHAPTER 4 System/Database Monitoring .167
4.1 Why Monitor? .167

4.1.1 Proactive Fault Detection167
4.1.2 Rapid Fault Diagnosis 168
4.1.3 Historical Performance Records169

4.2 Low-Intrusion Techniques170
4.2.1 Go Easy on the System170
4.2.2 Avoiding Single-Threaded Resources . . .171

4.3 Introduction to V$ Views .173
4.3.1 What Are the V$ Views ?173
4.3.2 Accessing the V$ Views174
4.3.3 Structure of the V$ Views 174
4.3.4 Overhead of Using V$ Views 175

CONTENTS cxxi
4.4 Minimizing Overhead . 177
4.5 Using dbaman to Optimize Data Collection 177

4.5.1 Defining the Cursors 177
4.5.2 Parsing and Executing the SQL 179
4.5.3 Process the Result Sets. 180
4.5.4 Pulling it Together with a Main Loop. . . 181

4.6 Processing Statistics . 182
4.6.1 Data Transports . 182
4.6.2 Alarm Propagation. 185

4.7 Defining the “Flight Envelope” 186
4.7.1 What Is a “Flight Envelope”? 186
4.7.2 How Do I Define a Flight

Envelope for the System? 187
4.8 Using Excel Spreadsheets for

Data Visualization . 188
4.9 Chapter Summary . 193

PART III HOW ORACLE WORKS . 195

CHAPTER 5 Physical Oracle . 197
5.1 Introduction. 197
5.2 Overview . 197
5.3 Control Files . 198

5.3.1 Datafile Information. 199
5.3.2 Operating Information 200
5.3.3 Redo Log Information 200
5.3.4 Log History . 200
5.3.5 Backup Information 200

5.4 The INIT.ORA File . 200
5.4.1 Rules for init.ora Creation 201

5.5 Data Storage . 209
5.5.1 Overview: The Physical Picture 209
5.5.2 Blocks: An Introduction. 209
5.5.3 Block Cleanout . 223

5.6 Redo Logfiles. 224
5.7 Key Database Objects. 226

5.7.1 Rollback Segments 226

CONTENTScxxii
5.7.2 Read-Only Tablespaces 228
5.7.3 Temporary Tablespaces and Temporary

Segments. .229
5.7.4 Tables .230
5.7.5 Indexes .235
5.7.6 Other Database Objects 244

5.8 The Data Dictionary .249
5.9 Chapter Summary .250
5.10 Further Reading. .250

CHAPTER 6 Oracle8 in Operation. .253
6.1 Introduction .253

6.1.1 The Oracle Kernel .253
6.2 Process Architecture .254

6.2.1 Shadow Processes .255
6.3 Net8 .258
6.4 The SGA Components .259

6.4.1 High-Level View .259
6.4.2 Fixed Region .260
6.4.3 Variable Region .262
6.4.4 Buffer Cache. .263

6.5 Operation of the Buffer Cache.266
6.5.1 Introduction .266
6.5.2 Hash Chains .266
6.5.3 LRU Chains .268
6.5.4 Latch Coverage .270
6.5.5 CR Versions .272
6.5.6 DBWR Operation. .273
6.5.7 Flowchart Summary of Buffer Cache Opera-

tion274
6.6 Shared Pool Structure .275
6.7 Shared Pool: The Library Cache276

6.7.1 Introduction .276
6.7.2 Cursors .276
6.7.3 The Parsing Mechanism277
6.7.4 Latch Coverage .280

CONTENTS cxxiii
6.8 Other Memory Structures 282
6.8.1 Dictionary Cache . 282
6.8.2 Log Buffer . 283

6.9 Oracle Parallel Server Concepts 285
6.9.1 Introduction . 285
6.9.2 Distributed Lock Manager (DLM) 286
6.9.3 Parallel Cache Management 287
6.9.4 Design Considerations for OPS 293
6.9.5 Summary . 300
6.9.6 Further Reading for OPS 300

6.10 V$ Views Exposed . 300
6.10.1 Session-Level Information 301
6.10.2 V$SESSION_EVENT . 312
6.10.3 System-Level Information. 314

6.11 Chapter Summary . 318
6.12 Further Reading . 318

PART IV HOW UNIX WORKS. 319

CHAPTER 7 Introduction to UNIX. 321
7.1 What Is a Kernel? . 321

7.1.1 “That Picture” . 321
7.1.2 Execution Modes . 323
7.1.3 Explicit Kernel Processing

(Process Context Kernel Mode) 324
7.1.4 Implicit Kernel Processing

(System Context Kernel Mode) 326
7.2 Processes . 329

7.2.1 The Process “Table” 329
7.2.2 Process Scheduling. 331
7.2.3 Signals . 335
7.2.4 Process Lifecycle. 338

7.3 Memory Management:
The Virtual Memory System. 340
7.3.1 Introduction . 340
7.3.2 Virtual Memory Introduction. 340

CONTENTScxxiv
7.4 Virtual Memory Hierarchy 348
7.4.1 The Memory/Disk Hierarchy348
7.4.2 Implementing the Hierarchy349
7.4.3 Implications of fork() and exec()358
7.4.4 Summary .359

7.5 I/O System .360
7.5.1 Everything Is a File360
7.5.2 Filesystems .361
7.5.3 Raw Disk. .365
7.5.4 Filesystems Versus Raw Disk369
7.5.5 Logical Volume Managers370

7.6 Interprocess Communication (IPC) 373
7.6.1 Pipe Communication 373
7.6.2 System V IPC .374

7.7 More on System Calls .376
7.8 Chapter Summary .380
7.9 Further Reading. .381

CHAPTER 8 Oracle User’s Guide to UNIX .383
8.1 Coengineering the Oracle Kernel383

8.1.1 VOS Responsibilities.384
8.1.2 Vendor Coengineering387

8.2 UNIX Tools. .392
8.2.1 top .392
8.2.2 Tcl and expect .393
8.2.3 Korn Shell .394
8.2.4 awk. .396

8.3 Further Reading. .397

PART V IMPLEMENTING ORACLE. .399

CHAPTER 9 Scalable Transaction Processing.401
9.1 Scalable Applications .401

9.1.1 Application Design401
9.1.2 Scalable SQL. .404
9.1.3 Transaction Processing Monitors419

CONTENTS cxxv
9.1.4 Purge . 427
9.2 Tuning Transaction Processing Systems. 431

9.2.1 Goals for Tuning. 431
9.2.2 Where to Tune . 432
9.2.3 Tuning Modes . 436

9.3 Chapter Summary . 445
9.4 Further Reading . 445

CHAPTER 10 Pulling It All Together: A Case Study 447
10.1 Introduction. 447
10.2 Engagement Overview . 448

10.2.1 The Business . 448
10.2.2 Perot Systems Corporation:

The IT Partner . 449
10.2.3 The Application . 449
10.2.4 The Technical Solution 453

10.3 Chapter Summary . 467

PART VI FURTHER CONSIDERATIONS 469

CHAPTER 11 Building a Successful Team . 471
11.1 Introduction. 471
11.2 Immediate Team Attributes 472
11.3 Virtual Team Attributes. 475
11.4 Chapter Summary . 476

CHAPTER 12 Pitfalls . 477
12.1 Introduction. 477
12.2 Avoiding Bugs . 477

12.2.1 Initial Releases . 477
12.2.2 Known Problems . 478

12.3 Bug Diagnosis and Resolution 478
12.3.1 Finding and Fixing Bugs 479
12.3.2 Oracle Parallel Server Problems. 483

12.4 Chapter Summary . 484

CONTENTScxxvi
CHAPTER 13 Internet Applications and the Future 485
13.1 E-Commerce Systems .485

13.1.1 The Implications .485
13.1.2 The Implication for

Business Computing488
13.2 Oracle8i Technology .488

13.2.1 Java Integration .488
13.2.2 New Data Services 490

13.3 Future Oracle Releases .493
13.4 Chapter Summary .494

Index 495

Figure List

Figure 1.1 Good scaling . 4
Figure 1.2 Poor scaling . 5
Figure 1.3 Nonparallel query. 7
Figure 1.4 Parallel query. 7
Figure 1.5 Multiuser memory buffer . 11
Figure 1.6 Inserting an entry into the hot end of a linked list. . . 23
Figure 1.7 Hashing to obtain a cache line identifier 27
Figure 1.8 The memory hierarchy . 29
Figure 1.9 Least recently used list . 32
Figure 1.10 Memory hierarchy closeup . 34
Figure 1.11 CPU cache organization. 36
Figure 1.12 Obtaining the line id through hashing. 37
Figure 1.13 Cache line sharing. 38
Figure 1.14 Different addresses that share the same cache line . . 38

Figure 2.1 Simplistic bus view . 44
Figure 2.2 Multiple device bus view. 45
Figure 2.3 Non-DMA I/O operation . 46
Figure 2.4 DMA I/O operation . 47
Figure 2.5 “Snoopy” bus. 50
Figure 2.6 Directory protocol . 51
Figure 2.7 Uniprocessor architecture . 52
Figure 2.8 Shared global bus SMP architecture. 56
Figure 2.9 Crossbar switch interconnect SMP architecture 61
Figure 2.10 Crossbar switch . 62
cxxvii

FIGURE LISTcxxviii
Figure 2.11 Clustered SMP systems. .65
Figure 2.12 Massively parallel processors. .68
Figure 2.13 Last name partitioning .70
Figure 2.14 Nonuniform memory access

building block: Sequent NUMA 73
Figure 2.15 Nonuniform memory access system.75
Figure 2.16 Sequent NUMA-Q memory hierarchy75
Figure 2.17 Sequent IQ-Link .78
Figure 2.18 SGI Origin 2000 schematic .80
Figure 2.19 Fibre channel arbitrated loop .91
Figure 2.20 Switched fibre channel fabric .92
Figure 2.21 Disk drive organization. .93
Figure 2.22 Zone bit recording format. .94
Figure 2.23 RAID-0 physical organization .99
Figure 2.24 Host-based RAID-1 implementation.101
Figure 2.25 RAID-1 write penalty. .102
Figure 2.26 RAID-1 hardware implementation104
Figure 2.27 RAID-0+1 implementation .106
Figure 2.28 Stripe-centric versus disk-centric RAID-10 106
Figure 2.29 RAID-5 organization .107
Figure 2.30 EMC symmetrix architecture .110

Figure 3.1 Transaction scenario development process127
Figure 3.2 OCI call flow .143
Figure 3.3 dbaman processing hierarchy .145
Figure 3.4 Simulation control and data supply159

Figure 4.1 Data sources for V$ views. .173
Figure 4.2 Running dbaman in client/server configuration182
Figure 4.3 Latch gets versus idle CPU flight envelope188
Figure 4.4 Using pivot tables with ODBC connections.193

Figure 5.1 The physical Oracle .198
Figure 5.2 Oracle physical storage hierarchy210
Figure 5.3 Oracle datafile. .210
Figure 5.4 Oracle data block format. .211

FIGURE LIST cxxix
Figure 5.5 Hot backup recovery principle 218
Figure 5.6 “Free” definition in Oracle freelist management . . . 221
Figure 5.7 Freelist allocation algorithm . 222
Figure 5.8 Optimal redo log placement . 225
Figure 5.9 Partitioned table “bookings”. 231
Figure 5.10 Hash cluster access method. 234
Figure 5.11 B-tree structure. 235
Figure 5.12 Reverse key indexes . 237
Figure 5.13 Nonpartitioned global index on a

partitioned table . 240
Figure 5.14 Partitioned global index on a partitioned table 241
Figure 5.15 Local index partitions. 242
Figure 5.16 Index-organized tables . 243

Figure 6.1 MTS operation . 257
Figure 6.2 SGA components. 260
Figure 6.3 Conceptual view of a latch structure 262
Figure 6.4 Organization of buffer pools . 264
Figure 6.5 Hash chains . 267
Figure 6.6 Buffer cache flowchart . 274
Figure 6.7 Shared pool composition . 276
Figure 6.8 Circular redo buffer . 283
Figure 6.9 High-level view of OPS . 285
Figure 6.10 OPS ping for READ . 289
Figure 6.11 Hashed PCM locks distribution 291
Figure 6.12 Session information . 302

Figure 7.1 UNIX hierarchy . 322
Figure 7.2 Process memory map . 324
Figure 7.3 Signal bitmask in proc structure 336
Figure 7.4 Listener application . 339
Figure 7.5 Address translation. 341
Figure 7.6 Process page table . 343
Figure 7.7 Physically mapped cache. 344
Figure 7.8 Virtual mapped cache. 345
Figure 7.9 Memory/disk hierarchy . 348

FIGURE LISTcxxx
Figure 7.10 Memory objects .351
Figure 7.11 Paging interfaces .353
Figure 7.12 Paging thresholds. .355
Figure 7.13 Two-handed clock algorithm .356
Figure 7.14 Filesystem hierarchy .361
Figure 7.15 Filesystem layers .362
Figure 7.16 s5 Filesystem organization .362
Figure 7.17 Volume group .371
Figure 7.18 Logical volumes .372

Figure 8.1 Software layers prior to Oracle8 384
Figure 8.2 Oracle8+ software layers. .384

Figure 9.1 Two-tier application architecture.419
Figure 9.2 Three-tier application architecture 421
Figure 9.3 Banking application. .422
Figure 9.4 Banking application with middleware

transaction management. .425
Figure 9.5 Tuning hierarchy .433
Figure 9.6 Hash Bucket File Coverage. .440

Figure 10.1 Silverstone storage architecture459

Preface

This is a book about getting the most out of Oracle8i on UNIX systems.
While many people understand how to administrate Oracle and UNIX, far
fewer understand the issues and workings of the software and hardware,
thus limiting the scalability of the system. This book aims to open up this
essential information, enabling the reader to build faster, larger, and more
scalable systems than ever before.

The purpose of this book is to provide grounding in all the areas
required for large systems implementation using UNIX and Oracle8i.
Some of the information in this text is available elsewhere, scattered
throughout a large number of specialized volumes, while other informa-
tion, taken from experience in implementing such systems, is previously
undocumented.

Unlike many Oracle books, this book avoids the “one size fits all,”
cookbook approach to improving the skillset of the reader. In my opin-
ion, such books do little to improve foundation skills and serve only to
confuse readers when their circumstances deviate from those of the
author. Rather, the intent of this book is to communicate a distillation of
many years of experience in building very large Oracle database sys-
tems. The information presented here allows the reader to make
informed decisions, based on real facts, that directly apply to the actual
case at hand.

Where appropriate, this book will make recommendations to the
reader, mostly from an approach standpoint. These recommendations are
intended to guide the reader past some of the common pitfalls often
cxxxi

PREFACEcxxxii
encountered during the building of large systems. In addition to technical
information, the book also makes organizational and procedural recom-
mendations intended to help the reader avoid dead ends and other
sources of aggravation.

Although the focus of this book is on Oracle8i, the principles presented
also apply to other database software. UNIX is the premier platform for
very large Oracle systems and is therefore presented as the underlying
operating system, although many of the hardware and theoretical discus-
sions also apply to other operating systems, such as Windows NT. Large,
custom-written applications are the main target of this book, but all of the
concepts presented here also apply in varying degrees to smaller systems
and packaged applications.

Who Should Read This Book
This book is primarily aimed at the following audiences.

• System architects

• Database engineers wanting to expand their knowledge

• System administrators working on UNIX/Oracle systems

• Senior application developers

In addition, this book will be of value to the following audiences.

• Technology managers

• Computer science students

Credits
Sincere thanks need to be made at this point. I want to thank the following
people for their help, reviews, support, and sanity throughout the writing
of this book (in no special order): Jeff Needham, Jan-Simon Pendry, John
McGarva, Brian Best, Mike McNall, John Mashey, Doug Rady, Russell

PREFACE cxxxiii
Green, Daniel Semler, Kevin Closson, Bob Robinson, Juan Loaiza, Greg
Doherty, Graham Wood, and Richard Sarwal, plus the many that I am sure
to have forgotten.

Feedback
If you have any questions or comments regarding this book, please feel
free to contact me at BookFeedback@Morle.com.

James Morle, 1999

Introduction

Database systems are growing at an enormous rate. Both connection vol-
ume and data volume have grown exponentially since the large-scale
adoption of open systems and of commodity database server software
such as Oracle. These systems are now matching and exceeding the capa-
bilities previously demonstrated only by mainframe systems.

Database systems can be separated into two broad categories:

• Online transaction processing (OLTP) system

• Decision support systems (DSS) such as data warehouses, data min-
ing, reporting and so on

Both types of systems present unique challenges in implementing systems
of large scale. The challenge of large transactional systems involves the
management of many small operations occurring at once, while DSS sys-
tems need to process vast amounts of data. Consequently, transactional
systems need low latencies, and DSS systems need high throughput.

This book is focused mainly on transactional systems, with references to
DSS systems where appropriate.

In the mainframe world, scaling and robustness are often heavily
ingrained in the cultures of all involved; system programmers, DBAs,
application programmers, and the vendors themselves conform to rigor-
ous standards and methodologies that are practically set in stone. The net
result of this enforced conformance is a greater probability that scalable,
robust business systems will be produced.

In the open systems world, no such constraints are set on any of the
personnel who build the system; any method can be used as long as it
cxxxv

INTRODUCTIONcxxxvi
achieves the required result. This flexibility is the catalyst behind the pro-
liferation of open systems, allowing very rapid development and inclu-
sion of more powerful functionality within the application. Unfortunately,
this flexibility results in the following costs:

1. Unscalable applications are the default product.

2. Reliable systems are difficult to obtain.

Both of these costs bear down hard on a business. Although the business
has been able to develop the application and implement the hardware for
a fraction of the cost of a comparable mainframe system, this advantage is
overshadowed by potentially long, unscheduled downtime and by diffi-
culties in scaling the system in line with business growth.

In order to mitigate these disadvantages, it has become increasingly
important for builders of open systems solutions to change the way these
systems are built. This involves two fundamental changes in the default,
anarchic method of open systems development:

1. A return to some of the ground rules introduced by the mainframe,
particularly multitier architectures

2. A much greater level of technical knowledge within the teams

The first change involves taking the “good” aspects of the mainframe
development sandbox and adopting them in the open systems arena. Mul-
titier application architectures are prime among these aspects, moving
away from the single points of failure, poor scalability, low reusability, and
often proprietary, two-tier solutions.

The second change requires open systems teams to have a far greater
understanding of how the systems work than they ever had before. Mainframe
developers have historically had to deal with two contrasting levels of complex-
ity during development. On one hand, the segmentation of function within
mainframe systems meant that the developer did not need to be concerned
about portions of system operation. On the other hand, the development of
applications in low-level languages meant that application developers were
forced to be concerned about performance and “doing the right thing.”

In open systems, applications are typically developed using high-level
or object-based languages, which means that the separation between the
application developer and the underlying systems is far greater than when

INTRODUCTION cxxxvii
procedural, third-generation languages are used. The effect of this is that
application developers are often too far removed from the system, and the
only individuals on the team who can see the whole picture are the data-
base engineers. It is important, therefore, that the database engineer be
able to understand all the issues, and that the application developer also
be aware of the necessary considerations.

How To Read This Book
The book is divided into several parts, each of which can mostly be read
independently of the others. It is recommended, however, that the book be
read sequentially from front to back. The reason for this is that, although all
the parts overlap somewhat, the book has been written from front to back.
For this reason, some assumption of knowledge of prior chapters is made.

The order of presentation (hardware before software) may initially
appear to be exactly reversed, as the greatest impact can be made in the
software. This is true, but it is my opinion that software cannot be under-
stood or responsibly architected without prior knowledge of how it relates
to the actual execution on the hardware. Therefore, we take the journey
from the ground up.

Part I: Concepts and Architecture
Chapter 1: Scaling Concepts
What is scaling? Why do I need to be concerned with scalability? What are
the common concepts used to provide scalability? This chapter presents the
basic concepts of computer science that are required in order to understand
some of the later chapters.

Chapter 2: Hardware Architectures and I/O Subsystems
This chapter describes the many different hardware architectures on the
market today, all of which have significantly different operational profiles.

INTRODUCTIONcxxxviii
Understanding the differences among the platforms and how those differ-
ences relate to the operation of Oracle are critical during platform selection
and subsequent configuration and tuning.

The chapter goes on to discuss I/O, a core part of any database system. A
thorough understanding of the mechanics of the physical disk, and of the vari-
ous RAID options, should be considered a prerequisite to building a database.

Part II: Building Support Software
Chapter 3: Benchmark Concepts and Design
Large systems cannot be simply rolled into production. At least some ele-
ment of initial testing must be performed in order to certify both the per-
formance and the stability of the platform. This chapter shows how a
simple benchmark can be produced using simple Oracle trace files. Also
presented is the Oracle-based scripting tool, dbaman.

Chapter 4: System/Database Monitoring
This chapter explores how a large Oracle database server can be monitored
using low-intrusion techniques. Included in this chapter is an introduction
on how to interrogate the Oracle fixed tables to derive operational data,
and how to present that data using standard PC tools.

Part III: How Oracle Works
Chapter 5: Physical Oracle
This chapter concentrates on the physical attributes of Oracle, including the
initialization file, the different types of objects, the internals of those objects,
and how consistent read is implemented.

Chapter 6: Oracle8 in Operation
The other side of Oracle is the “living” side of it, the Oracle instance. This
chapter describes the various caches used by Oracle and the measures that

INTRODUCTION cxxxix
have been taken within the product to allow it to scale effectively. An intro-
duction to Oracle Parallel Server is included, along with some more details
on the V$ views.

Part IV: How UNIX Works
Chapter 7: Introduction to UNIX
A knowledge of the UNIX kernel often becomes important when one is try-
ing to determine why a database server behaves the way it does. This chap-
ter describes the UNIX kernel and the virtual memory system, and how
they relate to an Oracle database server.

Chapter 8: Oracle User’s Guide to UNIX
Oracle relies heavily on the underlying operating system. This chapter
describes how Oracle interfaces with the operating system, using the vir-
tual operating system abstraction. An introduction to a selection of the
invaluable UNIX tools is provided.

Part V: Implementing Oracle
Chapter 9: Scalable Transaction Processing
This chapter provides guidelines on how to develop applications that scale,
and how to tune the database to execute the requests most effectively.
Included in this chapter are sections on writing scalable SQL, the purpose
of a transaction processing (TP) monitor, and an approach to tuning for the
desired result.

Chapter 10: Pulling It All Together: A Case Study
The proof of the pudding is in the eating. This chapter gives an overview of
a real-life, large-scale Oracle system, along with pointers to the lessons
learned during implementation.

INTRODUCTIONcxl
Part VI: Further Considerations
Chapter 11: Building a Successful Team
This small but important chapter introduces some techniques for building
a good team to do this kind of work.

Chapter 12: Pitfalls
This chapter concentrates on software problems—bugs. It is inevitable that
large systems will be impacted in some way by bugs, and dealing with
them effectively is important in maintaining a stable system.

Chapter 13: Internet Applications and the Future
The final chapter looks at the direction of application engineering and the
future direction of Oracle.

P A R T I

Concepts and
Architecture

Chapter 1

Scaling Concepts

n order to build a large system of any kind, it is important to have a
good understanding of some basic scaling principles. By understand-

ing these basic principles, it becomes much easier to interpret the
requirements for building a large-scale Oracle-based system, and to
address performance issues in existing systems that are not scaling satis-
factorily. This chapter does not aim to cover all aspects of a system that
affect scaling, but does intend to cover the more important aspects, giv-
ing examples that highlight situations in which they are found in real
systems.

1.1 What Is Scaling?
scaling n 2: act of measuring or arranging or adjusting according to a scale.

—Webster’s Revised Unabridged Dictionary (1913)

To make this old-fashioned and generic-sounding definition a little more
explicit, here are a few examples of scaling in action.

• Increasing the processor count on the system

• Increasing the number of active users on the system

• Increasing the number of records your batch job processes in a given time

The word “increasing” appears in each listed item: that’s the scaling that
we are interested in for this book—increasing the system capability,

I

145

CHAPTER 1 SCALING CONCEPTS146
whether ”system” is defined as hardware, software, or, more typically,
both. Indeed, the most common view of scaling is that of hardware scal-
ing, even though scaling has at least as much to do with the software com-
ponents as with the hardware. Nevertheless, it serves as a useful (if
overused) example of what we mean by scaling.

If we were to double the number of processors in a system, would we
achieve twice the processing capability? The answer is probably ”no.”
Scaling, like most things, can be classified in either of two ways: good (effi-
cient) scaling and poor (inefficient) scaling.

Good Scaling. Good scaling is observed as a highly linear increase in
capability as the system grows. Using the tired old hardware example, this
means that the system would demonstrate a near-linear gain in capacity
when additional resource is applied (see Figure 1.1).

In Figure 1.1 the capacity of the system is increasing at almost the
same rate as the resource being added. This means that, as long as the
software scales equally well, the system will be able to process almost n
times the data within a given amount of time if n times the resource is
available.

C
ap

ac
ity

Resource

Actual

Linear

Figure 1.1 Good scaling

1.1 WHAT IS SCALING? 147
Poor Scaling. Poor scaling demonstrates a negative deviation from linear
when a system grows. This means that the system capacity diverges farther
away from linear when additional resource is applied (see Figure 1.2).

The poor scaling illustrated in Figure 1.2 shows that there is actually
less system capacity available when all of the resource is applied than
when the system had less than one-half of the total resource. This is an
example of what can happen when a system scales badly: performance
goes down, not up. This is true of both software and hardware scaling,
and is of particular concern when a large system is being built. Good scal-
ing is a function of both hardware and software, and unless both are opti-
mized to scale, overall system throughput will be considerably less than
expected.

Scaling can be viewed from two different perspectives: a speedup of
tasks within the system; and an increase in concurrency in the system,
sometimes referred to as scaleup. Both speedup and scaleup use the same
principles, applied in slightly different manners.

1.1.1 Speedup
If a job takes n seconds to run under normal circumstances, and it is
desired that the job should run in n/2 seconds, then a twofold speedup

C
ap

ac
ity

Resource

Actual

Linear

Figure 1.2 Poor scaling

CHAPTER 1 SCALING CONCEPTS148
is required. This speedup can be gained in either of two different
ways:

• Doubling the execution capacity of existing components

• Breaking the job into two parts, and assigning twice as much hardware
to the job1

Doubling the execution capacity of the existing components is great if it
is possible: it allows the required speedup to be achieved with no
increase in complexity and with few concerns as to the required scalabil-
ity. In fact, speedups gained in this way are not really subject to any scal-
ability concerns at all, assuming that the entire system is doubled in
execution capacity (including processor speed, cache sizes, communica-
tions latencies, clock speeds of all components, and so on). Unfortu-
nately, this is rarely an option, because speedups are frequently needed
immediately after the initial rollout period or are required to be many
times the speedup offered by faster parts. If the system has just been
installed, it’s probably already using the fastest components available,
because vendors rarely sell parts that are not at the highest specification
available for their system architecture. On the other hand, another ven-
dor may have dramatically faster hardware, and a reassessment of the
platform may need to be made; this, however, is an expensive option and
is potentially unnecessary when other techniques, such as paralleliza-
tion, are available.

The most common option is to break the job down into smaller
“bite-sized” pieces and have the system process them in parallel. This
technique, known as job partitioning, allows the system to be added to
where necessary to increase the overall system bandwidth. This has a
scalability implication for the system and makes the speedup element
dependent on the concurrency available within the system. Paralleliza-
tion of tasks is the common scalability requirement for decision sup-
port systems. One of the most common parallel activities in a decision
support system is parallel query, which is a good example of speedup.

1. Assuming that perfect linear scaling of the system is achievable.

1.1 WHAT IS SCALING? 149
Example
In a DSS system, there is a query that requires a full table scan of a very
large table (1 billion rows). This table is spread over many disks and many
controllers, and the system has many processors available for the execu-
tion of this query. Now, if this query were to be executed without any par-
titioning of the workload (see Figure 1.3), it would simply take a long time
for a single processor to read and validate every row in the table against
the predicate in the query. No number of additional processor boards
would make this query faster, and faster processors would probably limit
the speedup to two to three times, even if you were lucky and were not
bound by the serial disk access anyway.

Using Oracle Parallel Query, this job can be made many times faster,
potentially providing a speedup of an order of magnitude or greater. This
is achieved by logically breaking the large monolithic table into several
smaller logical ranges. Once this has been done, additional slave processes
can be used to scan each of the logical ranges in parallel, thus scaling the
query across several processors (see Figure 1.4).

Shadow Process

Figure 1.3 Nonparallel query

I/O Slave 1

I/O Slave 2

I/O Slave 3

I/O Slave 4

Master Shadow
Process

Res
ult

s

Figure 1.4 Parallel query

CHAPTER 1 SCALING CONCEPTS150
1.1.2 Concurrency (Scaleup)
Good scalability in this context could be defined as “achieving maximum
useful concurrency from a shared system.” This is the major area of con-
cern for transaction processing systems.

In multiuser systems, the system must share out all of its resource to
all the users of the system. It must do this in a fair-share manner, prevent
sessions from corrupting others, and not consume excessive resource or
impose artificial bottlenecks in the process. In order to achieve this desira-
ble state of concurrency, the system must scale effectively.

Achieving concurrency is one of the greatest challenges when building
a system, whether you are the hardware designer, the RDBMS vendor, or
the end user. In the building of large-scale systems, it is the concurrency
that must be considered at all times.

Strangely enough, concurrency is made possible through the use of
enforced serialization. Through serialization, we achieve the necessary syn-
chronization required to process tasks concurrently.

Synchronization needs to occur on any concurrent system and is most
commonly handled through the use of latches and locks. The specifics of
how these structures are used will be covered in more detail later in this
chapter.

Latches themselves also need serialization support, in this case from
the hardware itself. In order to take out a latch, a bus transaction must be
performed in order to write to the memory location that contains the latch.
On a multiprocessor system, many processors could be attempting to
write to the same location concurrently, and therefore the bus transactions
need to be arbitrated in order to allow them access one at a time. This will
be discussed in more detail in Chapter 2.

Digression
In fact, synchronization sometimes also needs to occur for straight per-
formance reasons between cooperating programs on the same or different
systems, and this needs to be carefully designed if maximum concurrency
is to be maintained. A good example of this is two batch jobs operating in
parallel against the same data set. Oracle will automatically prevent the
sessions from corrupting each other at the transactional level, and will

1.2 LATCHES AND LOCKS 151
take out implicit locks to enforce this. If these jobs collide on their respec-
tive data sets, they will get caught up in serious contention between each
other as a result of Oracle protecting the data from transaction level cor-
ruption. This is especially true with Oracle Parallel Server, because Oracle
needs to use locks to protect both the transaction layer and the cache layer.

If these sessions partition their data access and cooperate with each
other before Oracle enforces it, they will be able to process a good deal more
data. This results from the developer of the batch jobs having more knowl-
edge of the actual data itself, and therefore knowing how to synchronize
more intelligently. Either way, the synchronization has been performed in
order to allow the two jobs to run concurrently without corrupting data.

1.2 Latches and Locks
latch n the catch which holds a door or gate when closed, though it be not
bolted.

—Webster’s Revised Unabridged Dictionary (1913)

Latches and locks can be viewed as very similar entities, and in many soft-
ware engineering circles there is no difference between the two terms.
However, in an Oracle environment, there are apparent differences
between them. The basic differences are

• Duration. Latches are normally very transient, whereas locks are typi-
cally a longer-term prospect.

• Degree. Latches are switches, whereas locks have levels (or degrees) of
severity.

• Scope. In Oracle, latches are instance-specific, whereas locks are mostly
database-wide.

Their function remains identical—to prevent other sessions on the sys-
tem from modifying the critical resource that they are protecting. The
Webster’s definition almost describes a modern software latch accurately,
in that it captures the spirit of the transient operation. However, the door
is most certainly bolted when a latch is taken out—it’s just faster to
unbolt after use.

CHAPTER 1 SCALING CONCEPTS152
1.2.1 Why Lock?
As we started to explain in the description of concurrency, it is inherently
necessary to serialize some operations on a concurrent system in order to
protect different tasks from corrupting each other. This applies only to
access to shared resources. Let’s run through a couple of examples to help
get the real point across.

Example: Memory Protection Using Latches
Let’s take a complex memory update as an example in order to add sub-
stance to the explanation. This kind of operation is typical in large transac-
tional systems, in order to update several memory blocks atomically (i.e.,
as a single, indivisible operation). Figure 1.5 shows a region of memory
that is protected by a latch.

The diagram in Figure 1.5 shows a memory buffer that is used to batch
together many physical I/O requests before issuing a write for all of them
at some later stage. Many user sessions on the system write a few hundred
bytes of data into this buffer, and then update a structure at another loca-
tion to reflect the new address to which other sessions can write. In this
scenario, there are could be many thousands of sessions on the system that
would potentially need to write into this buffer at any one time, and it is
clear that some kind of serialization is required in order to prevent a race
condition2 from occurring (see Table 1.1).

In the example shown in Table 1.1, the buffer is corrupted through a
race occurring between the respective tasks. Not only were the 50 bytes
written by user 2 overwritten, but the 300 bytes written by user 1 were
effectively truncated due to user 2 setting the “next” pointer incorrectly as
a result of a race condition.

It can be seen that this operation must be protected from other sessions
while it is in progress. This is where latches come in. Using the same
example, Table 1.2 should make it clear why latches are required.

2. A race condition is any situation in which multiple sessions are able to corrupt each
other through a lack of synchronization between the sessions. Many system crashes that
are caused by software error are attributable to race conditions.

1.2 LATCHES AND LOCKS 153
In this situation, a latch is taken before the copy, and thus the area is
protected from other sessions until the copy and subsequent pointer
update are complete. It is obviously important to keep the period during
which the latch is held as short as possible, and also to minimize the con-
tention for the latch. This means that this necessary serialization of the
latch is of the lowest possible impact. However, as can be seen in the
example, it is not uncommon for the operating system to intervene, and to
context switch the latch holder off the processor and back onto the run
queue. This can happen for several reasons, including standard process
scheduling and receipt of an interrupt on the processor in use.

Address of
Next Available
Part of Buffer

= Free

= Used

B
uf

fe
r

S
pa

ce

B
uf

fe
r

G
ro

w
th

Points to

Figure 1.5 Multiuser memory buffer

Table 1.1 Race Condition Caused by Nonatomic Memory Updates Without Latch Protection

User 1 Action User 2 Action Value of “next” Pointer

Idle Write 50 bytes to buffer, start-
ing at location pointed to by
“next” pointer.

0

Write 300 bytes to buffer,
starting at location pointed to
by “next” pointer.

Idle <Preempted by O/S> 0

Update “next” pointer to
point to location after write.

Idle 300

Idle <Complete> Update “next” pointer to
point to location after write.

50

CHAPTER 1 SCALING CONCEPTS154
Despite user 2’s process being switched off the processor, a race condi-
tion is prevented in the situation shown in Table 1.2. This kind of protec-
tion is vital in multiprocessor systems, because there are many ways in
which race conditions can occur.

Data Protection Using Locks
As stated earlier, the term latch is normally associated with memory locks
that are held for short periods. The term lock is frequently used as a catchall

Table 1.2 Prevention of Race Conditions Using Latches

Latch Holder User 1 Action User 2 Action
Value of “next”
Pointer

None Idle Data ready to write into
buffer; request latch to
perform write.

0

User 2 Data ready to write into
buffer; request latch to
perform write.

Write 50 bytes to buffer,
starting at location
pointed to by “next”
pointer.

0

User 2 Wait for latch to become
available.

Idle <Preempted by
O/S>

0

User 2 Still waiting for latch. In processor run-queue 0

User 2 Still waiting for latch. Update “next” pointer to
point to location after
write.

50

User 1 Take out latch. Release latch. 50

User 1 Write 300 bytes to buffer,
starting at location
pointed to by “next”
pointer.

Idle <complete> 50

User 1 Update “next” pointer to
point to location after
write.

Idle <complete> 350

None Release latch. Idle <complete> 350

1.2 LATCHES AND LOCKS 155
for all types of locking, using the word as an adjective. When we are dealing
with Oracle databases, however, it is correct to use the word in terms of data
locking. These are longer-duration locks that are used to protect the integrity
of changes made to the database, such as user transactions and system
(recursive) transactions. In the case of a user transaction, the durations of
these locks are sometimes controlled by the users themselves, as follows:

No other user can update or delete the row with jref = 123456789 while this
lock is held. This example is very simplistic, and it is hard to see why you
would need this facility. The truth is, however, that some transactions are
so complex that the individual pieces of the transaction need to be pro-
tected in order to ensure that the entire transaction can be completed in a
consistent, atomic fashion.

It is also worth noting that, in the example above, we explicitly lock the
row that we need to update prior to updating it. This is not actually required
for most types of operations, because the update statement will implicitly lock
the row before the update is performed. This kind of explicit row-level lock-
ing can cause serious problems in a large-scale system and should be
reserved for situations in which an atomic transaction is absolutely required
and cannot be performed in any way other than SELECT ... FOR UPDATE. In fact, a
recommendation will be made against the widespread use of overzealous
locking in “Maintaining Concurrency” in Section 9.1.1.

An important difference between a lock and a latch within Oracle is
that a lock is typically database-wide whereas a latch is typically local to the
instance that is managing it. As it is database-wide, a lock affects all

SQL> SELECT pkey FROM SOME_TABLE WHERE jref = 123456789 FOR UPDATE OF

status;

1 row selected.

(1 Row now also locked under a TX lock)

SQL> UPDATE SOME_TABLE SET status=’INVALID WHERE jref = 123456789;

1 row updated.

SQL> commit;

(also releases TX lock)

CHAPTER 1 SCALING CONCEPTS156
instances of a Parallel Server environment, not just the one executing on
the local node. There are some exceptions to this rule, but in general it
holds true.

Another difference is in the way that sessions wait on the locks. See
Section 1.2.3 for more information on lock waits.

1.2.2 Things That Need Locking/Latching
Table 1.3 presents some real-world examples of locking and latching.
To make the concept clearer,

Table 1.3 Latching and Locking Examples

Object Latch or Lock Description

Redo log buffer Latch In order to prevent multiple users from allocating
space in the redo buffer concurrently (leading to
corruption), allocation of space in the redo buffer
can be performed only after obtaining the single
redo allocation latch.

Shared pool Latch The various caches in the shared pool grow and
shrink dynamically as required within the static
boundary of shared_pool_size. The internal boundaries
within the shared pool therefore need adjusting,
and this is performed one session at a time while
holding the SHARED POOL LATCH.

Buffer cache Latch There are many latches covering the buffer cache.
One of these latches is the CACHE BUFFER LRU CHAINS

LATCH. This latch (which now actually exists as sev-
eral child latches from release 7.3 onward) is taken
while buffers are heated and the LRU chain is
manipulated. See Section 1.3.1 for more informa-
tion on chains.

User data Lock There are a whole bunch of locks that relate to the
protection of user (or application) data. These locks
can be held longer than a latch protecting memory
because of their frequent dependence on user
actions.

Space transaction Lock This is displayed in V$LOCK as an ST lock. An ST
lock is taken out when Oracle needs to allocate or
deallocate extents for an object. It is commonly

1.2 LATCHES AND LOCKS 157
1.2.3 Waiting on Latches and Locks
If something (such as a memory structure, data, or an entire program flow)
requires protection with latches or locks, then it follows that other ses-
sions, processes, or types of execution context must have some way of
waiting on those latches or locks. These waits fall into two categories:
active and passive.

An active wait is the method most commonly used for latch allocation.
When a session cannot acquire a latch on the resource that it requires, it

Table 1.3 Continued

Object Latch or Lock Description

seen when temporary space is allocated for an on-
disk sort. It is implemented in a lock because Ora-
cle needs to perform a recursive transaction on
internal tables (sys.fet$ and sys.uet$) in order to provide
access to the space. Taking out this lock prevents
other sessions from updating the same information
concurrently, leading to corruption. It is also impor-
tant to note that because this is a lock, ALL
INSTANCES of Parallel Server will be affected.

Sort segment Latch This is a good example of the difference between a
lock and a latch within Oracle. In Oracle7 release
7.3, a performance enhancement was made called
Sort Segments. This means that once a temporary
sort segment has been allocated, it will not be deal-
located for that instance. Instead, the sort segment
is now managed by a latch local to that instance.
Other instances cannot allocate this particular seg-
ment, and therefore the ST lock does not need to be
allocated until an instance has no more sort seg-
ments available.

Process table Latch The UNIX Operating System uses latches to protect
many internal data structures. One of these is the
process table, which is maintained as a linked list.
Latches are used to protect the table from concur-
rent updates from multiple processors in a multi-
processor system.

CHAPTER 1 SCALING CONCEPTS158
goes into an active wait on that latch. In active wait, the session repeatedly
attempts to acquire the latch until it is successful—that is, waiting impa-
tiently. The reasons for this are that (a) it is unlikely that the latch will be
held for very long and (b) it is normally too expensive to set up any kind
of queue for the resource.

Sessions that cannot acquire a latch immediately will spin until they get
the latch. Spinning involves locking into a tight loop testing the latch and
trying to acquire it. Spinning uses significant CPU resource but typically
results in acquisition of the latch in a shorter time than it would take to
establish any kind of formal queue. These types of latches are also referred
to as spinlocks, owing to the nature in which they are waited on. The active
wait is frequently implemented using the host’s test-and-set functionality—a
hardware-level serialization instruction (see “Test and Set” in Section 2.1.2).

The actual algorithms used for waiting on latches/spinlocks varies
between implementations. In the Oracle kernel, for example, a process will
spin on a latch for spin_count (init.ora parameter) iterations before backing
off and sleeping. The process will then spin again before going to sleep
once more; the actual sleep time between spins increases exponentially.
The reason for the incremental backoff is to reduce the likelihood that the
system will disappear off the map as a result of all the processes locking
into infinite spin loops.

The alternative method of waiting on a serial resource is to perform a
passive wait. Typically, these waits are used on less timing-critical compo-
nents, of which a TX (row-level lock) is a good example. Such a lock is
known within Oracle as an enqueue.

Enqueue is a strange word that has an opposite sibling called dequeue.
Once the two are put side by side, their meanings become more apparent.
They are both operations on a queue: one enqueues requests (puts them
onto the queue) and the other dequeues the requests (takes them off the
queue).

Oracle uses enqueue functionality to manage locks within the data-
base. This includes the TX lock, as stated above, and the ST lock, which are
more correctly termed the TX enqueues and the ST enqueue, respectively.
In comparison with latches, none of these enqueues need to respond
quickly to multiple requests. Several milliseconds or even several seconds
would be easily fast enough for higher-level serialization such as this.

1.2 LATCHES AND LOCKS 159
When a user takes out a row lock, a TX enqueue is created for that user.
If another user subsequently attempts to update that same row, that user’s
session will block (wait on) the enqueue that the initial user created. If a
third user tries the same update, he or she will also be blocked on the same
enqueue. This is visible to the database administrator as multiple entries
in V$LOCK with the same TYPE, ID1 and ID2. The first session will have an
LMODE (lock mode) of 6, indicating an exclusive lock gained on that
enqueue resource. All the other sessions will report an LMODE of 0 (no lock
gained) and a REQUEST of 6 (exclusive lock).

At this point, all the waiters on the enqueue are using zero processor
capacity on the database server—they are blocked. This is the nature of a
passive wait. However, if the sessions are not actively trying to allocate the
lock, how do they ever get it? The answer lies in the dequeue part of the
equation, and this occurs once the first lock is cleared.

The first user will issue a commit or rollback against the updated row
data protected by the TX enqueue. Once this occurs, the second user ses-
sion is unblocked and is granted the LMODE of 6 on the enqueue. When that
user commits or rolls back, the third session will get a piece of the action,
and so on. This is the enqueue/dequeue function in operation.

Not all enqueues work in a FIFO (first in, first out) manner like the TX
enqueue. The other example given, the ST enqueue, operates in a LIFO (last
in, first out) mode, apparently as an optimization in its sharing algorithm.

1.2.4 Design Considerations to Reduce Lock Contention
When operating systems and relational database engines are designed,
special attention is given to minimizing contention for locks on shared
resources. This is of obvious importance for the scalability of these sys-
tems and merits a good deal of attention from the designers. However, we
have already established that locking is necessary within these shared sys-
tems, so what can the system designers do to alleviate this contention?

There are several things that can be done where appropriate. Sometimes
a good deal of reworking of the logic is necessary to implement some of
these techniques, but the engineering impact can be enormous, and so these
techniques are often considered as last-resort measures. We’ll go through
some of the more common methods of reducing lock contention in turn.

CHAPTER 1 SCALING CONCEPTS160
Locking Degrees
The first thing that can be affected is implementation of locks/latches with
different degrees of exclusion. This is done in order to provide as much
concurrency as possible even though it is necessary to lock things. In sim-
plistic terms, there are three different states that a lock can be in:

• NULL. No lock is acquired for this type.

• Acquired Shared Exclusive. Otherwise known as a multireader lock, this
lock allows any number of readers, but no session can acquire an
exclusive lock in order to perform a write.

• Acquired Exclusive. This lock is acquired to write to the region pro-
tected by the lock.

The use of multireader locks allows the system to process read-only work-
loads while maintaining the data integrity of the system. It is frequently the
case that a process may only need to prevent the resource from being updated
while it performs some other task, and the use of multireader locks allows
many processes to share access to the resource concurrently in read-only
mode. If a process needs to modify the resource that the lock is protecting, the
lock must be upgraded to an Exclusive mode before this is permitted. This
would then prevent any readers or writers from accessing the region.

These three degrees of locking are used throughout both the UNIX
kernel and the Oracle Server. Oracle actually defines even more locking
degrees than this, in order to provide even more control over the required
degree of locking. These locking degrees are described in detail in the Ora-
cle documentation.

A large performance benefit results from maintaining different locking
degrees, and this forms a fundamental part of the internal locking mecha-
nisms used in modern systems.

Fine-Grained Locking
A more complex technique is to provide fine-grained locking within the sys-
tem. This involves reducing the sizes of the regions covered by locks in the
system, so that many locks can be used independently in the place of a sin-
gle lock. This allows far greater concurrency within the system. Fine-
grained locking for persistent types of locks, such as transaction locks, is

1.2 LATCHES AND LOCKS 161
good for all systems (uniprocessor and multiprocessor), while fine-
grained latching is most useful on multiprocessor platforms where multi-
ple latch acquisitions can be made concurrently by different processors.

Examples of fine-grained locking include

• Row-level locking with the Oracle transaction layer. Only users that
need to access the same row as another user will contend for this data
lock. Other RDBMS systems have relied on page-level locking or, even
worse, table-level locking.

• Multiple library cache latches. In the pre-7.2 releases, a single latch
enforced serialized updates to the shared SQL cache. In releases 7.2
and above, Oracle allows multiple concurrent updates by providing
multiple latches. The latch used is determined by the hash value (see
1.4) of the SQL statement.

• Function locks within the UNIX process table. For example, a separate
lock can be used to cover the structure that contains pending signals.

Implementation of fine-grained locking often is very difficult for system
engineers and frequently requires redesign work. For this reason, it is
common for portions of systems to be left for the users to “suck and see”
as to whether the system requires fine-grained locking. Although you may
not be able to fix any of these problems personally, it is important that you
report them to the responsible party if it can be demonstrated that the lock
granularity is causing a performance problem. This is usually easier to do
within the Oracle product than within the UNIX kernel, because the latch
activity is very well reported through the V$ views.

Algorithmic Enhancements
The best way to eliminate lock contention within a system is to use algorith-
mic enhancements in the software. By changing the algorithms used within
the kernel, it is sometimes possible to eliminate the need to lock at all in cer-
tain areas. Many such algorithms have been produced within research circles,
and some have been implemented into production software to aid scalability.

For example, assume that in a shared-memory-based application,
there is a single writer and many readers of a single record in shared mem-
ory. The record is larger than the largest atomic update that is possible on

CHAPTER 1 SCALING CONCEPTS162
the platform. A bad algorithm for dealing with updates to this record
would be to lock the record and prevent the readers from accessing it
while it was being updated consistently by the writer.

A better way to code this problem is to maintain a master list of pointers
to the actual records. The reader processes will first read the master list and
then follow the pointer to the actual record. Using this method, a newly
updated record can be written to a private memory address, and the pointer
in the master list can be updated atomically to point at the new location when
the update is complete. This way, no locks have been taken out at any time,
and all reader processes can execute in a contention-free environment.

The example shows a simplistic change that removed the need for
locks in that part of an application. However, this example is about as sim-
ple as it gets: if there is more than one writer, for instance, this technique
becomes more complex. The level of effort required to eliminate locks
using different algorithms varies from the implementation of simple hash-
ing algorithms to complete redesign of the software architecture. For some
truly shared resources, algorithmic changes are impossible as a result of
logic restrictions.

1.3 Linked Lists
1.3.1 What Is a Linked List?
A linked list is simply a programming construct that allows the program-
mer to traverse a list easily without relying on the physical storage for any
specific layout. The reason that linked lists are detailed in this book is
because lists are used extensively within the Oracle RDBMS, and it is nec-
essary to understand why they affect performance.

So, what does a linked list look like? In C, a linked list is composed of
several simple data structures similar to the following:

struct linked_list {

struct linked_list *prev_item; /* List management */

char name[80]; /* Data */

int value; /* Data */

struct linked_list *next_item; /* List management */

};

1.3 LINKED LISTS 163
So, using the data structure example above, the linked list could be loaded
from a file as follows:

Once the list has been loaded, it is very simple to manipulate it; inserting
or deleting an item is almost as straightforward as adding an item to the
end. Equally, shuffling the entire list in a sort operation is very efficient,
because only pointers are changed—the data is never relocated.

#include <stdio.h>

#define maxpoints 180

struct linked_list {

struct linked_list *prev_item; /* List management */

char name[80]; /* Data */

int value; /* Data */

struct linked_list *next_item; /* List management */

};

void

main() {

struct linked_list *list_head, *last_item, *curr_item;

FILE *fp;

list_head = curr_item = (struct linked_list *)

malloc(maxpoints*sizeof(struct linked_list));

if (!(fp=fopen(“./data”,”r”))) {

perror(“fopen”);

exit(2);

}

last_item=(struct linked_list *) 0;

while(fscanf(fp,”%s %d”,curr_item->name,&curr_item->value)!=EOF) {

if (last_item!=(struct linked_list *) 0)

last_item->next_item=curr_item;

curr_item->prev_item=last_item;

last_item=curr_item;

curr_item++;

}

curr_item->next_item=(struct linked_list *) 0;

fclose(fp);

}

CHAPTER 1 SCALING CONCEPTS164
So, it should be pretty clear by now what a linked list is and why it is
found in nearly every program that manipulates data. At the end of the
day, that’s exactly what Oracle is.

1.3.2 What Are Linked Lists Used For?
Linked lists are used to manage working sets of information, with the classic
example being an LRU (least recently used) list as commonly found within
Oracle. An example of the use of LRU algorithms can be found in “LRU
Algorithms” in Section 1.5.4. They will always be updated in conjunction
with latches, because multiple sessions will use the lists concurrently, and
without latch protection even simple list manipulations can produce corrup-
tion. Using the LRU list example, it can be seen that it is straightforward to
add items to both ends of the list, if pointers to the “hot“ (most recently
used) and “cold“ (least recently used) ends are kept in fixed locations.

This is achieved by taking the following actions (based on fixed-length
chains).

“Cold” End
Inserting an entry into the cold end of the LRU list is very straightforward.
You can already assume that the entry currently on the cold end is ready to
be removed from the list, because it is already the “least recently used.”
Therefore, you simply overwrite the contents of the entry that is currently
on the cold end.

“Hot” End
Inserting an entry into the hot end is slightly more complex, but is still
straightforward using linked lists, as shown in Figure 1.6.

1. Take out the latch that protects the list. Go to the cold end of the list (ele-
ment one) and set the “next” item pointer to be NULL, indicating that
there are no entries past this point (i.e., this is the hottest end of the
LRU). Set the “previous” item pointer to point to the entry that used to
be hottest (element four). Put the new contents into element one.

2. Step along one entry to the second-coldest entry (element two).

1.3 LINKED LISTS 165
3. Update the “previous” item pointer here to be NULL, indicating that
there are no more entries (i.e., we now have a new cold end of the list).

4. Go to the item in the list that was previously hottest (element four) and
change the “next” item pointer to point to the new hot end.

5. Update the master references to reflect the address of the new cold and
hot ends, if applicable.

6. Release the latch.

Previous
Previous

Next

Previous

Next

Previous

Next
Next

Start State Element One Element Two Element Three Element Four

Previous
Previous

Previous

Next

Previous

Next
NextNext

Steps I-III Element One Element Two Element Three Element Four

Previous
Previous

Previous

Next

Next

Previous

Next
Next

Step IV Element One Element Two Element Three Element Four

Figure 1.6 Inserting an entry into the hot end of a linked list

CHAPTER 1 SCALING CONCEPTS166
Using lightweight memory manipulations like those above, lists are one of
the most efficient ways of manipulating data in memory. It can be seen,
though, why the list needs to be protected from other reads and writes
while it is being manipulated. If another session were to start to read the
LRU list while the updating process was at step 2, it would get very con-
fused indeed owing to the interim state of the pointers. This would likely
result in either data corruption or a system crash.

1.3.3 Optimizing Chain Lengths
As well as inserting entries into the linked list, the list is often scanned to find
particular entries. Using the LRU example, the LRU list may be scanned until
a block has the correct status, or indeed to heat the entry to a higher (more
recently used) point in the list. This can prove to be an expensive operation if
the lists get too long (especially because you are holding the latch during this
period to prevent other sessions from updating it under your nose), and so
linked lists should generally be kept as short as possible.

Any linked lists that are managed while a latch is being held are poten-
tial bottlenecks in the system. For this reason, it is imperative that high-
contention lists be kept as short as possible, unless of course the list is
never fully scanned. If this is not ensured, the latches will be held for a
longer duration than is desirable, and waits will build up on the latch.

db_block_buffers
The db_block_buffers parameter is absolutely typical of this management and is
subsequently prone to contention. All the buffers in the cache are split up
and managed by separate lists, each of which is governed by a latch. This
applies to both the LRU list for the blocks (from release 7.3 onward) and
the actual blocks themselves (db block hash buckets).

When the buffer cache gets very large, these lists grow with it. So while
you are gaining the extra benefit of running with a larger cache, you are
also incurring greater overhead from the management of the chains, and
you are probably suffering latch contention from the management of the
chains. This was particularly true prior to release 7.3, when there were no
multiple chains for the LRU list. This meant that the LRU list did not scale
at all well prior to release 7.3, and the only way to manage the contention

1.4 HASHING 167
for the cache buffer LRU chain latch was either to decrease the number of
blocks in your cache or to tune the database writer. This had an obvious
impact on performance if your system was relying on the enhanced cache
hit ratio available with the larger cache size.

In this case, it is wise to study the work profile of the system to deter-
mine whether the block size is too small for the application. If this were the
case, the option would be open to increase the block size of the database,
meaning that the cache can be larger than before with no overhead in con-
tention for the LRU chain latch, and no increase in management overhead.

It can be seen that keeping chain lengths to a minimum is a good idea
until all the software vendors do it automatically. Many of the chains that
are managed are not controllable by the end user and thus are not an option.
It is important, however, to keep tight control of the ones that you do have
control over, an example of which is demonstrated in “Avoiding High-Con-
tention SQL” in Section 9.1.

1.4 Hashing
Hashing is another technique for speeding up the management operations
of a system. In particular, hashing is an approach taken to achieve dra-
matic speedup of searches for data within a list (usually within a cache;
see Section 1.5). Hashing is used just about everywhere possible in high-
performance systems because of its efficiency and its simplicity.

1.4.1 What Is Hashing?
Hashing is the term given to performing some kind of algorithm on a piece of
data in order to determine an index number for those contents, rather than
performing value comparison along a potentially long list of entries. That
index number can then be used as a reference to either an absolute piece of
memory or a smaller list that can be searched further to find specific entries.

Hashing Algorithms
Hashing algorithms range from incredibly simple manipulations, such as
those found in a CPU cache, to more complex ones such as those used to

CHAPTER 1 SCALING CONCEPTS168
manage the Oracle Shared SQL cache (library cache). A simplistic algo-
rithm might be used to split numbers into buckets known as hash buckets
in order to keep some statistics up to date:

BucketID=n MOD 7

Using this algorithm, a number can be quickly assigned to the correct hash
bucket, where the hash buckets are used as shown in Table 1.4.

It may not be clear to you at this stage why you would want to group
things together into buckets in this way. The answer is that things are
easier to find once they are contained in known places. To see if the
number 68 has been stored, one would only have to calculate the bucket
number (68 MOD 7) and then compare 68 against the 14 possible entries
in that list. This is much faster than comparing it against values in 100
possible locations.

One good example of this is the Oracle buffer cache, which manages
the blocks within it using latch-managed linked lists. Rather than have a
single list that covers all the cache block entries, the blocks are divided into
thousands of buckets, in a way similar to that shown in Table 1.4. When a
block address is known, it is hashed to determine the list (bucket number)
that could contain it, and then the list is traversed. In this way, any list
manipulation can be constrained to a much shorter chain while still gain-
ing fast access to the chain though the use of hashing.

Table 1.4 Hash Buckets Based on Module 7

Bucket
Number Values

0 7 14 21 28 35 42 49 56 63 70 77 84 91 98

1 1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

2 2 9 16 23 30 37 44 51 58 65 72 79 86 93 100

3 3 10 17 24 31 38 45 52 59 66 73 80 87 94

4 4 11 18 25 32 39 46 53 60 67 74 81 88 95

5 5 12 19 26 33 40 47 54 61 68 75 82 89 96

6 6 13 20 27 34 41 48 55 62 69 76 83 90 97

1.4 HASHING 169
Hashing Example: CPU Direct Mapped Cache
This will be covered later in this chapter in more detail, but serves as a
good example here. Basically, a CPU cache is comprised of several lines. A
hashing algorithm is a perfect way to identify data lines within the cache,
because it is very efficient. In the case of a CPU cache, it needs to be a mas-
sively efficient operation, implemented in hardware, in order to keep the
latency of a cache lookup as low as possible.

Due to the way the cache lines are organized, the line can be identified
by simply hashing the memory address and obtaining the line ID (see Fig-
ure 1.7). The hash operation in this case is a simple AND operation to
extract a subset of the bits in the address in order to derive the line
number. This is a very efficient operation to perform within a CPU cache.

Hashing Example: Oracle Shared SQL
From Oracle7, the Oracle server maintains a cache of SQL that can be used
to reduce dramatically the workload required when another session sub-
mits the same piece of SQL. In order to implement this cache, Oracle
needed a way to speed up the identification of the SQL and to check if it
was already cached. It is simply much too expensive to do a text compari-
son of a submitted piece of SQL against all other SQL requests in the
cache.

Oracle adopted a hashing algorithm to speed up the search for identi-
cal statements in the library cache. This is essentially an arithmetic opera-
tion on the actual text that makes up the piece of SQL in order to derive a
single index for that statement. Don’t be misled by the term index: these

Address
01001000100101100100100101101101

AND
11111000000

EQUALS
00101 i.e. 5

Cache Lines

0

1

2

3

4

5

6

7

Figure 1.7 Hashing to obtain a cache line identifier

CHAPTER 1 SCALING CONCEPTS170
are large numbers, and it is actually very unusual for more than one state-
ment to hash to the same value.3 The hash value for each new statement is
then used as an index, in order to do a fast lookup in the library cache to
see if an identical statement has been hard parsed already. If so, a good
deal of the parsing work for this statement can be reused, reducing the
overhead of parsing the “new” statement.

The alternative methods of locating previously parsed SQL statements
are inefficient by comparison. In particular, if a text-based comparison was
needed against every piece of cached SQL, the effect would be a greater
parsing overhead than running with no cache at all.

1.5 Caching
cache nhiding place, for concealing and preserving provisions which it is
inconvenient to carry.

—Webster’s Revised Unabridged Dictionary (1913)

1.5.1 Cache Fundamentals
A cache is a smaller, higher-speed component that is used to speed up the
access to commonly used data stored in a lower-speed, higher-capacity
component. There are several different applications of caching, including

• Caching of main memory locations next to the CPU

• Caching of disk blocks in main memory

• Caching of network information on disk

The best known of these is the CPU cache, which is largely a result of the
efforts of the Intel marketing machine. However, in order to build a high-

3. There was an interesting bug in Oracle7.1.6 that was intended by Oracle to be a per-
formance improvement.This was a change in the SQL text hashing algorithm that used
only the first 64 bytes and the last 64 bytes of a piece of SQL. Unfortunately, in many
applications (especially Oracle applications, such as Oracle Financials), the select list and
the order by clause were identical, with just the table names and/or the first part of the
WHERE clause changing. This meant that many nonidentical statements would hash to
the same hash value.

1.5 CACHING 171
performance, large-scale system, caching needs to be implemented and
tuned at every opportunity.

1.5.2 Memory Hierarchies
A cache is one component in a memory hierarchy (see Figure 1.8). The
memory hierarchy ranges from the very fast access speeds of a CPU regis-
ter through cache, memory, disk, and network. It is viewed as a hierarchy
because of the relative access speeds of the various components.

The fastest access path to storage on a system is between the CPU reg-
isters, and from there on, things slow down mostly in orders of magnitude
(see Table 1.5).

Registers
CPU

Cache
Memory Disk Network

Figure 1.8 The memory hierarchy

Table 1.5 Access Times for Key System Componentsa

a. All figures derived from manufacturer specifications for typical parts in 1997.

From To
Typical
Access Time

Approx.
Price per
MB

Typical
Size Ranges

CPU register CPU register 2 ns N/A 8–4096 bytes

CPU Primary cache (on chip) 8 ns N/A 8KB

CPU Secondary cache (off chip) 30 ns $150 1–4MB

CPU System memory (off CPU
board, over system bus)

100 ns $15 1–16GB

Memory Local disk (DMA over
system bus)

3 × 107 ns $0.15 200–n0,000GB

Local disk
(via memory)

Networked host 1 × 108 ns
upward

N/A 15,000,000GBb

b. Based on 30,000,000 Internet hosts with an average of 500MB of storage on each.

CHAPTER 1 SCALING CONCEPTS172
It can be seen from the table that as the speed of components goes
down by orders of magnitude, so too does the cost of the components. It is
clearly not reasonable to expect a system to be built entirely from fast
SRAM (the RAM technology used in CPU cache memories) running at
core CPU speeds, the cost of which would be prohibitive. Therefore, the
goal of caching is to give the performance illusion of slower components
running at the same rate as the fastest component. While this is impossible
to achieve in reality, any step toward it gives a huge boost in system per-
formance by reducing the waits on lower-speed components.

Cost, however, is not the only reason for caching. Another reason to
keep data as close to the CPU as possible is to reduce the contention on, for
example, the system bus. Clearly, if all traffic needs to be passed across a
single shared resource such as a bus, limits are going to be hit before they
need to be. The system is not going to scale effectively.

1.5.3 Cache Reference Patterns
In order to make a cache as efficient as possible, some knowledge is
needed of the access patterns within the device you are caching. In this
way, assumptions can be built into the cache design in order to gain the
most from the limited amount of cache space.

There are two main patterns of access that directly relate to caching:

• Temporal locality of reference

• Spatial locality of reference

Temporal locality is a time-based reference pattern: if this data was used
once recently, it’s likely that it will be needed again soon.

Spatial locality is a location based reference pattern: if location abc was
used, then it’s likely that location def will be needed sometime soon.

Pretty much all types of caching follow one or both of these patterns.
Some devices need to employ very complex techniques in order to achieve
spatial locality, owing to limited natural association between their access
pattern and spatial locality.4

4. An example of this is when an EMC storage array “notices,” through trend analysis, that
a sequential scan is being performed. It can then perform a cached “read ahead” of the
drives in question and thus hopefully eliminate transfer stalls resulting from rotational
latency (waiting for the disk surface to come back around to the required sector).

1.5 CACHING 173
Two types of caching will be concentrated on for the remainder of this
chapter: I/O caching and CPU caching. I/O caching is very important to
understand, because it is directly tunable by the end user. The CPU cache
concepts are presented as an interesting piece of background reading to
help you further understand the operation of large scalable systems.

1.5.4 I/O Caching
Effective caching of disk I/O is perhaps the biggest single performance
improvement that can be made to a database system by the end user.
The reason for this can be clearly seen in Table 1.5—disk I/O has the
poorest response time of all within a system. In fact, it takes about
100,000 times as long to access a disk block as it takes to access a mem-
ory block.

It is obviously not practical to keep the entire database in memory
(although there are situations in which it is desirable to force large pieces
into memory), so there needs to be a way to control the use of memory to
keep the cache as efficient as possible. The most common way of keeping
the cache relevant is through the use of a least recently used (LRU) algo-
rithm, in order to benefit from temporal locality of reference.

LRU Algorithms
An LRU algorithm is a very common cache management method that
retains data based on frequency of use. The most frequently used blocks
will always remain in the cache, while the least recently used blocks will
be flushed from the cache and replaced by new entries for more active
blocks as they are required.

In order to achieve this, block access is maintained by a list (see Figure
1.9). The list has two ends: the least recently used end, also referred to as the
cold end, and the most recently used end, also referred to as the hot end.

When a block is added to the cache, or when a block that is already in
the cache is referenced, it is heated to the most recently used end of the
cache management list, or LRU chain. If this block is then unused for a
period of time it will be implicitly made colder by the act of heating other
blocks. Once the block becomes the coldest block on the list, it is eligible
for reuse when an empty block is required. The example in Section 1.3.2
demonstrates how the heating of a buffer is implemented.

CHAPTER 1 SCALING CONCEPTS174
This is the simplistic view of the operation of an LRU managed cache.
There are many differences between this model and the real-life model,
most notably the introduction of “dirty blocks” handling into the algo-
rithm, but the principle is basically the same.

LRU Managed I/O Caching
The LRU management technique works very well for I/O caching. This is
because there is nearly always a great deal of repetitive access to the same
blocks on disk (temporal locality). The most prominent example of this is
found in B-tree indexes used by Oracle. The root block of the B-tree is the
starting point for all accesses to the index, in order to determine on which
side of the index the value lies. Then the branch blocks are accessed to home
in further on the required leaf block. Oracle maintains very shallow B-trees,
making them very efficient within an LRU cache, because a single branch
block will hold references to many leaf blocks. This means that the branch
block will be used frequently and will always remain in cache and be subse-
quently available immediately out of cache for other sessions accessing it.

H
ot

te
r

Most Recently Used

Least Recently Used

Figure 1.9 Least recently used list

1.5 CACHING 175
It is not uncommon to achieve cache hit ratios from the Oracle buffer
cache that are 95 percent or greater. Table 1.6 demonstrates the effect of the
caching in the aggregate response time of the system.

It can be seen that if all the disk I/Os and memory loads are performed
in series (one at a time), the cached example takes around 25 minutes, com-
pared with the noncached example, which takes a shade under 21 days.
This example used serial access for reasons of clarity, but if parallel access
were used, the difference could be potentially far higher: solid state memory
is far more concurrent than the physical heads on a hard disk spindle.

1.5.5 CPU Cache Concepts
First, the bad news: there is little that you can do about the efficiency and
utilization of the CPU cache. This is the domain of the hardware engineer
and very much the speciality of the compiler writer. However, it is very
useful to understand how the CPU cache works, as a piece of additional
information for your global understanding of system operation. If you are
ever called on to assess platforms of completely different architectures,
knowledge of processor and associated cache operation will aid you in
understanding what actually matters.

The Bad News About MHz
The effectiveness of CPU caching has been well proven and should be con-
sidered essential in all high-performance systems from PCs right up to the
largest UNIX server. This is attributable to the very nature of the proces-
sor’s function.

If a processor is running at a clock speed of 500MHz, it is capable of
processing at least 500 million instructions per second. With techniques

Table 1.6 Effect of I/O Caching on Response Time

Block Gets Cache Hit Ratio
Blocks Gotten from Cache
(No Disk I/O) Total Time for All Block Gets

1,000,000 0 percent 0 30,000 seconds

1,000,000 95 percent 950,000 1,500.01 seconds

CHAPTER 1 SCALING CONCEPTS176
such as pipelining, the processor may be capable of processing many times
that number of instructions per second.

Pipelining is where the CPU breaks up a sequential stream of instruc-
tions into separate components, which it executes in parallel. Part of this
may be “speculative execution” of pieces of code, before the result of a
preceding conditional test is known.

The bad news: the CPU can perform at this rate only if it is able to get
the instructions and data at the same rate.

If the processor is a 64-bit unit, each word is 8 bytes wide. This means
that you need to be able to access almost 4GB of memory per second sim-
ply to supply the instructions. Even on today’s highest-capacity shared
bus, the maximum sustainable rate is approximately 2GB/s, and that is
shared among several processors. Therefore, the latest processors on the
market would spend most of their time waiting on main memory—not
performing real work—if a cache were not present to provide faster access
to memory locations in the system.

CPU Cache Basics
First of all, let’s zoom in on our memory hierarchy diagram (see
Figure 1.10).

The simplest view of a CPU cache is that of a temporary storage area
that resides between a CPU and main memory, where CPU instructions
and program data are stored in very fast memory to speed subsequent,
repeated access to the same locations. The cache provides much faster
access to repeatedly used memory locations by

• Residing physically closer to the processor than main memory and
therefore not being subject to the same degree of physical limitation
(the speed of an electron)

• Not requiring bus transactions

MemoryCPU

C
ac

he

Instructions

Data

Figure 1.10 Memory hierarchy closeup

1.5 CACHING 177
• Running with much lower latencies than main system memory

• Allowing parallel access

The basic theory behind CPU caching is the same as for any other caching: if
something is used once, it is likely to be used again in the near future. Also, with
instruction caching, if something in a particular memory location is used, it is
fairly likely that surrounding memory locations will be referenced soon. There-
fore, CPU caches are able to deliver both temporal and spatial locality.

Temporal locality within the cache speeds the execution of common
coding constructs such as

• Instructions executed within loops

• Frequently called functions

• Frequently referenced variables

Once the instruction or piece of data has been accessed the first time (and
therefore is now in cache), all subsequent references can be retrieved from
cache as long as the cache entry has not been overwritten by the contents
of other memory locations (see Figure 1.14).

Spatial locality within the cache speeds up the access to

• Sequential instructions

• Inlined function calls

This is achieved by loading the cache with several contiguous memory
locations when a miss occurs on the first one.

In order to gain the greatest impact from these two types of locality, the
mechanism for storing and retrieving data from the cache needs to be both
simple and efficient so as to make its access as fast as possible.

Lines and Tags
CPU caches are organized into a fixed number of lines, and each line con-
tains a fixed number of bytes that reflect the contents of main memory, as
shown in Figure 1.11.

The number of lines and the size of each line varies from processor to
processor. For example, the Intel Pentium processor has an 8KB primary
cache. This is split into 256 lines of 32 bytes each, totaling 8KB.

CHAPTER 1 SCALING CONCEPTS178
The way these lines map to physical memory varies from cache to cache.
However, when a reference is made to a memory location by the CPU, it first
looks in the cache to see if the address is already present. If the address is not
present, a request is made over the bus (sometimes referred to as a bus transac-
tion) to acquire that memory location and also the surrounding locations
required to fill the line. A line cannot be partially filled at any time, because
this would lead to corrupt data through lack of information in the tagging
infrastructure (used to map cache lines to physical memory location), which
will be covered a little later. Anyway, the loading of an entire line at a time is
the mechanism that gives us the ability to achieve spatial locality of reference.

As a processor cache is potentially many orders of magnitude smaller
in size than the main system memory, the design of the cache allows any
single line to be populated with the contents of a finite number of discrete
memory addresses.

As an example, we will use a CPU that has 32-bit addressing and
therefore can individually address memory addresses from 0 through
4294967295, or 4GB. Any of these regions can be in the CPU cache at any
one time. A hashing algorithm is used to take this memory address and
locate the cache line from it, as described in “Hashing Example: CPU
Direct Mapped Cache” in Section 1.4.1.

00

01

02

03

04

05

06

07

Data

Li
ne

 ID

Tag

Figure 1.11 CPU cache organization

1.5 CACHING 179
For this example, we have 128 cache lines, each of which contains 16
bytes of data. We therefore need to be able to hash uniquely a number
from the range 0 to 4294967295 into a range of 0 to 127 in order to assign
each memory location to a cache line. This is achieved by hashing bits 10
through 4 of the 32-bit address, as shown in Figure 1.12.

Due to the use of low-order bits for the cache line hashing (the lowest 4
bits, 0–3, are used within each line to identify uniquely the byte), consecu-
tive memory addresses are effectively striped across the cache, allowing
good locality hits within the cache (i.e., all local memory regions are in
cache). This is good for high cache hit ratios with consecutive calls from a
program’s text (code) segment.

In Figure 1.13, you can see what happens when a hashing algorithm is
used as described. Sequential, line-sized memory addresses get loaded
into sequential cache lines. In this way, if a piece of code is the same size as
the cache or less, then all the instructions will eventually be executed
directly out of the cache. Only when addresses beyond the size of the
cache are accessed will lines start to be replaced.

When an address is referenced within the CPU, the logic will check the
cache to see if it is resident. We have already decided that a good way to
select the line should be to use a range of low-order bits, so this means that
any one of several different memory locations could be the one currently
resident in the cache, as shown in Figure 1.14.

This reuse of cache lines means that we need some mechanism in the
cache organization of determining whether or not we have a cache hit.
This is where tags come in.

A tag is required to identify the contents of the cache, and therefore whether
or not a cache hit is achieved. As you have seen, any one cache line could repre-
sent one of several memory locations at any one time: in the example above,

31 11 4 0

Line Number
Byte

Number

7 bits = 0–127

Figure 1.12 Obtaining the line ID through hashing

CHAPTER 1 SCALING CONCEPTS180
there would be 4294967296/(16*128), or 2,097,152 different 16-byte memory
pieces that could be loaded into any location at any one time.

In order to account for this ambiguity, each cache line also stores a tag
for the line. This tag is simply the remaining bits of the memory address that
were not used to locate the line/byte number. In our example, this would be
the remaining 21 bits of the address. These 21 bits allow for 2,097,152 differ-
ent values for the tag. The tag, therefore, positively identifies for the cache
search logic whether or not the correct line is loaded at that time.

CPU Caching in an Oracle Environment
While the kind of locality optimization found in cache architectures works
very well for small C programs (including scientific applications), the

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Contiguous
Memory

Figure 1.13 Cache line sharing

00100101010001001010101100101000
11110111011010110101101100101000 = 0xF76B5B28

= 0x2544AB28

Line 50

Figure 1.14 Different addresses that share the same cache line

1.5 CACHING 181
effects are not so clear-cut for caching within an Oracle database server.
The execution of Oracle code holds the following negative attributes that
offset the effectiveness of caching:

• Very large binary (20MB is not unusual in Oracle8.0)

• “Callback” architecture

• Virtually random access patterns of shared memory

Each of these attributes goes out of its way to ensure that the cache is chal-
lenged fully to provide good locality. The large binary means that even in
a perfect world the entire code base is not going to cache resident (cache
sizes are typically just getting into the 4MB range). The callback architec-
ture means that the access pattern through the code is difficult to predict
for the compiler. Therefore, it is not unusual that the memory requested is
not in cache. Finally, the access pattern of the shared memory effectively
blows away the data cache within the CPU, because the access pattern is
totally unpredictable.

Performance architects often refer to the clock per instruction (CPI)
index for a system. This is a measurement of the average number of clock
cycles taken by the processor to process a single instruction. The lower the
CPI for a given system, the greater the performance, because the system
can execute a larger number of instructions per second. The whole reason
for a cache’s existence is to reduce the CPI for the system.

Because of the way Oracle is architected, Oracle Database Servers are
often faced with a high CPI and subsequently a relatively inefficient use of
the hardware. The way to improve on this situation is through continuous
improvement of compiler technologies.

Compiler writers use knowledge of the physical layout of the cache,
including cache line size and number of lines, in order to optimize the gen-
erated machine instructions for the specific CPU and cache architecture. In
this way, huge efficiency gains can be had just from recompiling the Oracle
software using a new release of the compiler. Of course, this needs to be
performed by the relevant Oracle porting group and is often transparent
to the end user.

Increasingly, the compiler writer will become the king of performance.
This will be especially true when the first IA-64 chip (Itanium) is released.
While details of the chip are still not in the public domain, it has been made

CHAPTER 1 SCALING CONCEPTS182
public that the chip will rely heavily on explicit direction from the code
generator as to how it should execute parallel instruction streams. This dif-
fers from the current technology, where the CPU must make pipelining
decisions without knowledge of the global code picture. Using explicit
compiler directives as to how the code should be executed optimally, more
control can be obtained over the most useful parallel execution.

1.6 Chapter Summary
This chapter has introduced several concepts, mostly concentrated on soft-
ware scaling. While it is unusual to have direct input into such fundamen-
tal aspects of the system and RDBMS software, it is important that you be
able to understand the techniques and structures used to build scalable
software.

If a system is not scaling adequately, knowledge of these principles
will allow more accurate hypotheses as to the real cause of the problem.
Often, a scaling issue in the system software can be mitigated procedurally
or by small changes in the application. In-house changes will always be
faster to implement than waiting on the software vendor, and this speed
can make the difference between good and bad response times. Where an
in-house fix is not possible, information can be passed more efficiently to
the software vendor when the problem is well understood.

1.7 Further Reading
Patterson, David, and John Hennessy. Computer Architecture: A Quantitative

Approach, Second Edition. Burlington, MA: Morgan Kaufmann, 1996.
Schimmel, Curt. UNIX Systems for Modern Architectures, Reading, MA: Addison-

Wesley, 1994.
Van der Linden, Peter. Expert C Programming: Deep C Secrets. Upper Saddle River,

NJ: Prentice Hall, 1994.

Chapter 2

Hardware
Architectures and I/O
Subsystems

his chapter will provide an overview of UNIX server hardware archi-
tectures. In the interests of greater scalability and lower price/per-

formance, the architectures available today are not as straightforward as
they were even three years ago. It is important to understand the distinc-
tions among these platforms and how to configure them for maximum
performance.

2.1 Introduction to Hardware Architectures
Gone are the days of the uniprocessor. Going are the days of the shared-
bus symmetric multiprocessor. Building more and more powerful systems
at lower and lower cost is very challenging for the hardware architect.
Moore’s Law1 has been holding very true from a processor perspective,
with virtually no impact on the retail cost of the hardware. The rest of the

1. Gordon Moore, Chairman of Intel in the 1960s, stated that the transistor density (and
therefore potential power) of a CPU would double roughly every 18 months.

T

183

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS184
system, however, has been lagging behind the processor advances. For
example, memory speeds are certainly not doubling every 18 months, and

disk speeds are lagging even farther behind. The traditional method of
connecting multiple processors and memory cards together over a shared
bus started to hit the practical limits of known physics sometime around
1996 (more on the specifics in “Bus Architecture” in Section 2.1.2).

Mismatches in performance among system components, combined
with the economic driving force toward production of ever cheaper hard-
ware, have forced hardware architecture in certain directions. In order to
walk our way through these new architectures, it makes sense to sort them
by level of complexity, and so our path goes as follows:

1. Single-processor architectures

2. Symmetric multiprocessors, including shared-bus and crossbar switch
systems

3. Clustered symmetric multiprocessors

4. Massively parallel architectures

5. Nonuniform memory architectures

6. Hybrid systems

For each of these architectures, we will look at the hardware and soft-
ware modes that comprise it and at how Oracle is implemented on such
a system.

Before we jump in, there are several concepts that you need to under-
stand in order for the descriptions of each architecture to be the most useful.

2.1.1 System Interconnects
Even within the most fundamental modern computer there is some kind
of system interconnect. What is an interconnect? It’s a communication
mechanism shared by several components, designed to allow any-point to
any-point communication among the components. By definition, the sys-
tem interconnect is very much a shared device, so it often becomes the
subject of scaling conversations.

2.1 INTRODUCTION TO HARDWARE ARCHITECTURES 185
There are essentially two different reasons for system interconnects,
and all systems have to have at least one of them:

1. Connecting components within the system

2. Connecting systems together

When we talk about interconnects connecting systems together, we do not
include LAN connections. Interconnects provide more of an intelligent
link between the systems than a LAN provides, typically at lower latency
and greater bandwidth.

The first type of interconnect, one that connects the components within
the system, is the one in which we are primarily interested in this book,
although we will address the second type when we discuss of clustered
systems (Section 2.5) and massively parallel processor (MPP) systems
(Section 2.6).

For many years, the principal method of connecting components
together within a system has been the shared system bus. A bus is the sim-
plest type of interconnect and is the one on which most high-end UNIX
kernels have been engineered to work. Therefore, many of the operations
found in modern interconnects are directly synonymous with their old
shared bus equivalents. For this reason, we will concentrate on a bus archi-
tecture for the concepts, diversifing where necessary to incorporate newer
interconnect technology.

2.1.2 Bus Architecture
A bus must support several concurrently connected devices, such as a
CPU, memory, and I/O controllers. In order to achieve this, and to allow
the devices to communicate without interfering with each other, commu-
nication across the bus is handled by means of bus transactions. A bus
transaction is very similar to a database transaction in that it is an atomic
packet of work that is initiated and completed without interruption. All
devices on the bus communicate across it in this way.2 For example, if a
CPU on the system needs to load a cache line from main memory, it will

2. Some busses allow the splitting of a bus transaction into a packet-based protocol to
achieve greater bandwidth.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS186
initiate a read across the bus. The bus logic will turn this into a bus trans-
action to perform the read and will send the request over the bus. At this
stage, it’s safe to think of the bus as being arranged as shown in Figure 2.1.

The CPU will then wait while the bus logic sends both the request to
the memory controller and the data back to the CPU from the appropriate
memory locations.

I have used the term “Magic Transport” in Figures 2.1 and 2.2 to allow
these illustrations to represent bus-based interconnects or indeed any type
of interconnect method. In the case of a bus-based interconnect, the magic
is simply a backplane within the system that has all devices connected to
it. In this way, any device is connected to all other devices.

This is where the “practical limits of physics” mentioned earlier come into play. A bus is

essentially a load of wires, one for each bit of the n-bit width of the bus, plus some extras.

These wires (or tracks on a circuit board) all run in straight lines, parallel to each other, with

periodic “breakouts” to connectors that allow devices to be connected to the bus.

If we ignore all the other electrical challenges of building such a bus, a limitation still

exists. That limitation is the speed of an electron. All electrical flow is made up of electrons

passing through a conductor, and the electrons are capable of traveling only up to a fixed

maximum speed. Within a bus, all messages (electrical signals) must arrive at all devices

within the clock frequency of the bus. Therefore, the electron must be capable of traveling the

full distance of the bus in the time window specified by the clock rate of the bus.

To highlight how limiting this is, we will go through an example that, instead of the

speed of an electron, uses the fastest known speed—the speed of light (the speeds are similar

anyway). Let’s assume that we have a “light-based computer,” which is identical to today’s

shared-bus computers but uses light instead of electrons to transport the signals. The light all

travels in a vacuum, and there is no overhead introduced anywhere, so the speed of light

within the machine is 2.99792458 × 1010 cm s–1, or around 300,000 Km per second. If the

bus is running at a rate of 200MHz (a mere fraction of today’s CPU core speeds), then the

maximum width of this bus would be 150 cm, or about 5 feet.

Bus
Logic

Bus
Logic

CPU MemoryMagic Transport

Figure 2.1 Simplistic bus view

2.1 INTRODUCTION TO HARDWARE ARCHITECTURES 187
Now that we have a simplistic view of a bus from a point-to-point per-
spective, we can complicate the issue by adding more devices to the bus.
The bus now becomes a many-to-many communication device and thus
needs some way to manage multiple requests at once, in order to prevent
the devices from corrupting each other.

This can be achieved in either of two ways. The first, simplest, cheap-
est, and least scalable way is to have a single bus master. A bus master is a
device capable of initiating reads and writes across the bus. A CPU has to
be a bus master, and so to limit ourselves to a single bus master is to limit
ourselves to a single CPU—clearly not very scalable. In order to get
around this restriction, the bus needs to support bus arbitration.

Bus arbitration allows multiple bus masters to exist on the bus but
allows only one device to perform a transaction at any one time. The arbi-
tration logic within the bus prevents concurrent transactions and shares
out the access among the bus masters in a (randomized) fair-share manner.
A good way to view the bus at this point is shown in Figure 2.2.

Clearly, we are some way from a light-based computer, and even if we had one, it doesn’t

look promising for the long-term future of a shared-bus architecture. Five feet is not very wide

for an absolute maximum size backplane, especially once you start to reduce it due to the inter-

nal signal path length within each card.

Bus
Logic

Bus
Logic

CPU

CPU Memory

CPU

Magic Transport

B
us

 A
rb

itr
at

io
n

La
ye

r

B
us

 A
rb

itr
at

io
n

La
ye

r

Figure 2.2 Multiple device bus view

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS188
Now we have a concurrent, multiple bus master configuration. All
access to the bus is now serialized, allowing atomic memory operations.
These atomic memory operations are essential for implementing any kind
of locking mechanisms in the software layer.

Test and Set
One such locking mechanism uses the test-and-set machine code instruc-
tion available on many CPUs3. This is an atomic instruction that tests a
memory location for a value and, depending on the result, changes the
value to something else. This is used as “test to see if the lock is free, and if
so, give it to me,” and is an implementation specific that allows processes
to “spin on a latch” during active waits.

2.1.3 Direct Memory Access (DMA)
In order to increase the concurrency of the system and decrease the load
on the CPUs, there is the concept of “intelligent” I/O controllers that do
not require intervention from the CPU to do their work. All that the CPU
is required to do is to set up the memory required to do the work and initi-
ate a request to the controller to execute the work.

Let’s use a SCSI (Small Computer Systems Interface) controller as an
example of this. Figure 2.3 shows a non-DMA-based write operation from
memory through the I/O controller.

3. CPUs without test and set use other atomic instructions to achieve the same result.
However, the test-and-set operation remains the best view of the concept.

CPU
Memory

I/O

Figure 2.3 Non-DMA I/O operation

2.1 INTRODUCTION TO HARDWARE ARCHITECTURES 189
All of the data needs to go through the CPU before being written to
disk. The I/O controller is just a dumb controller that waits for data sub-
missions and requests.

The DMA controller eliminates this requirement by building some
intelligence into the controller itself. The card is configured with full bus
mastering logic and maintains a memory map of the system memory.
When the CPU needs to initiate an I/O request, it simply posts the DMA
I/O controller with the location of the data and then resumes work on
other tasks, as shown in Figure 2.4. Once the I/O is complete, the control-
ler sends a hardware interrupt to the CPU in order to signal completion.

2.1.4 Cache Coherency
Cache coherency is an essential attribute in shared-memory multiproces-
sors. A system exhibits cache coherency when it is guaranteed that a read
of any memory location, from any processor, will always return the most
recent value of that location.

The big deal regarding cache coherency is that because of the way
most modern processor caches operate, and because there are multiple
processors potentially reading and writing from the same physical mem-
ory location at any one time, it is very possible to get different values from
the same memory location by different processors unless steps are taken.

We have seen that caches form an essential part of all high-perform-
ance systems, because they mitigate the differences between the memory

Figure 2.4 DMA I/O operation

I/O

Data

CPU
Memory

“Do the I/O”

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS190
speed and the core speed of the CPU. However, when there are multiple
caches in the system, each of these caches could potentially have different
values for a given memory location. To compound this, caches are typi-
cally operated in write-back mode to gain the most benefit from the cache.
In this mode, when a processor changes the value of a memory location,
the cache does not necessarily write the new value back to memory at that
time, in order to minimize the wait time on slow memory devices. The
main memory is normally updated at a later time by the operating system.
So at any one time it could be possible for main memory, and all the
caches, to have different values for the same memory location.

To demonstrate the effect of this problem, assume that we have a sys-
tem with two processors, each with a write-back-based cache, but no
measures taken to maintain cache coherency. Running on this system is a
single program that increments a counter four times, with an initial value
of zero for the counter. Assume that when the program starts, all caches
are empty. I have also taken the liberty of making the situation as bad as
possible by executing each counter increment on alternate CPUs each
time. This is done purely to demonstrate the problem in an exaggerated
way for clarity. The result is shown in Table 2.1.

Walking through the example, during the first increment, a cache miss
occurs in CPU 1, and the value (0) is loaded from main memory and incre-
mented to become the value 1. The next increment is executed on CPU 2,
where a cache miss also occurs. Due to the use of write-back caching, the
value in main memory is still 0, and so this is what is loaded into the cache
of CPU 2 and incremented to become the value 1. Already the problem is
evident: two increments of the counter have yielded a value of 1 in both

Table 2.1 Inconsistent Caches

Correct Value of
Counter

Main Memory Value of
Counter

CPU Cache 1 Value of
Counter

CPU Cache 2 Value of
Counter

1 0 1 N/A

2 0 1 1

3 0 2 1

4 0 2 2

2.1 INTRODUCTION TO HARDWARE ARCHITECTURES 191
the processor caches, and a value of zero in main memory. At this point,
the system is in an inconsistent state.

In order to prevent this from happening, the caches on the system
must be kept coherent. To achieve this, and to support write-back caching,
a fundamental rule must be put in place on the system: the value of main
memory location can be stale (old) in relation to caches, but caches cannot
contain stale data. Once this rule is in place, the memory and cache con-
sistency can be maintained with some simple rule, normally implemented
in hardware.

When a value is changed by a CPU, its cache contains the most recent
value of the given memory location. Using the rule presented above, this
means that any other caches in the system that contain an old version of
this location must either

• Be sent the new value (known as write-update) in order to conform to
the rule, or

• Have the cache line invalidated, enforcing a reload on the next use
(write-invalidate)

A system designer will adopt one of these methods for exclusive use
within the system.

Now that the caches are kept in sync, there is only the main memory
that could potentially be out of step as a result of write-back caches.

If the operating system has not yet written back a cache line to main
memory when another CPU needs the most recent value, the CPU cache
containing the most recent value intervenes and initiates a cache-to-cache
transfer of the most recent value from its cache, thus effecting the final
piece in the cache consistency resolution.

The hardware can be designed in one of two different ways in order to
be “aware” of the load and stores in the system that will require write-
updates, write-invalidates, or cache-to-cache transfers. The two methods
of achieving this are the called the snoopy bus protocol and the directory
protocol.

The snoopy bus protocol (see Figure 2.5) is a broadcast-based method.
This is the method used in virtually all bus-based symmetric multiproce-
sor (SMP) systems and represents the most straightforward technique. It
uses the fact that all bus traffic is broadcast-based: all traffic is visible to all

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS192
components. This being the case, logic is built into each component to
“snoop” on the addresses of the memory loads and updates/invalidates
occurring across the bus.

When an address is picked up on a snoop, it is compared with those
addresses in cache and appropriate action is taken. In the case of a write-back
cache picking up a load request for an address that is still dirty (unwritten to
main memory) in its cache, it initiates a cache-to-cache transfer of the most
recent value from its cache. In the case of a cache line invalidate, the corre-
sponding cache line is marked invalid in the snooper’s cache. As every mes-
sage is broadcast, the entire bus is unusable during the operation, thus
limiting the scalability of the bus as more processors are added.

The directory-based protocol (see Figure 2.6) is normally associated
with distributed memory systems. Each “node” maintains a separate
directory of which caches contain lines from the memory on that “node.”
Within this directory, a bit vector is kept for each line of main memory,
reflecting which processors in the system have that line in their cache. The

“My
Cache”

“My
Cache”

“My
Cache”

“My
Cache”

“My
Cache”

Memory request
is broadcast

Each bus device “snoops”
on the bus for

entries in its cache

Cache controller
listens on bus

Figure 2.5 “Snoopy” bus

2.2 SINGLE PROCESSOR ARCHITECTURES (UNIPROCESSORS) 193
major reason for implementing such a scheme is to remove the need for a
broadcast-based protocol, because broadcast-based protocols have been
found to be inherently unscalable.

Using the directory protocol, the directory for a node (and thus its mem-
ory) is used to determine which caches need to be made consistent (through
invalidate or update) in the event of a write. At this point the individual
caches can be made consistent, using some kind of point-to-point communi-
cation rather than a broadcast, thus allowing other parts of the interconnect
to be used concurrently. This is much more efficient than the broadcast pro-
tocol, where all traffic exists on all parts of the bus at all times; this is the rea-
son that snoopy bus protocols do not scale very effectively.

2.2 Single Processor Architectures (Uniprocessors)
A uniprocessor machine (see Figure 2.7) has the simplest architecture of all
UNIX servers. It includes a single processor plus cache, connected to some
memory and I/O controllers through some kind of shared bus. In many
implementations, there is a separate bus on the system for connection of I/O
controllers and peripheral devices. Devices on this bus communicate with the
CPU and memory bus by means of a bridge between the two busses.

2.2.1 Advantages
As there is only one CPU in the system, there are no inter-CPU cache
coherency issues to be handled by the operating system. This is not to say

Cache
Controller

Directory

“Invalidate this cache”

Cache Cache Cache

Point-to-Point Interconnect

Figure 2.6 Directory protocol

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS194
that there is only one bus master in the system—the system still needs to
be concerned about the cache coherency issues arising as a result of DMA
I/O controllers. This can be handled solely by a bus snooping device to
invalidate the CPU cache lines where appropriate when DMA writes take
place in main memory. This is much simpler to manage than having multi-
ple processors all writing to shared memory areas and invalidating each
other’s caches.

In addition, no operating system locking is required and so there is no
contention for kernel resources, because the operating system can guaran-
tee that no other processors are executing kernel code. For example, only
the single processor in the system could be writing to the process table at
the same time.

However, it is still possible within a uniprocessor architecture for a
kernel data structure to be corrupted through the processing of interrupts.
When this happens, it is the same CPU that is corrupting the data struc-
ture, only operating in a different context. For example, if the CPU is per-
forming a complex memory update in kernel mode, and a hardware

Cache

CPU

Memory

Bus Converter I/O Controller
I/O Bus

SCSI Bus

Figure 2.7 Uniprocessor architecture

Examples: Standard PC architectures, most computers more than ten years old

2.2 SINGLE PROCESSOR ARCHITECTURES (UNIPROCESSORS) 195
interrupt is received (from an ethernet card, for example), the CPU must
stop processing and switch to interrupt handler code and process it.
Within this interrupt handler could be a memory update to the same
region that is partially completed, and therefore data corruption could be
produced.

This eventuality is prevented through the use of interrrupt priority lev-
els, which represent the only type of short-term exclusion required on a
uniprocessor system. This works by setting the current priority level of the
processor to the highest level available on the system, effectively tempo-
rarily disabling interrupts. Once the critical update is complete, the inter-
rupts can be reenabled by resetting the interrupt priority level to the prior
value. This kind of temporary blocking of interrupts is adequate for kernel
data protection in a uniprocessor system.

In reality, many vendors run the same version of the operating system
on both uniprocessors and multiprocessors, therefore slightly invalidating
this advantage. This also applies only to kernel mode data structures. Ora-
cle must still provide its own user mode locking, because any process
could be preempted from the processor before Oracle memory updates are
complete.

In addition to the locking that is required for safe concurrent operation
in a uniprocessor system, there is locking that is highly desirable for
increased concurrency. Communicating with peripheral devices, for exam-
ple, takes a comparatively long time. It is clearly not an option simply to
ignore interrupts and be nonpreemptable for what could be several milli-
seconds, and so another method is required to allow the processor to be
safely used by another process while the response from the peripheral
device is outstanding. This is achieved through the use of long-term locks,
which protect the data structures from corruption by subsequent proc-
esses but allow the kernel to be safely preempted by another process. This
allows the overall throughput of the system to be unaffected by access to
slower components.

So, in summary, the uniprocessor potentially requires only two types
of locks: the interrupt-disabled, short-term exclusion method and the
long-term, preemptable method. Both of these methods are considerably
simpler to implement than the locking required in a scalable multiproces-
sor environment.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS196
2.2.2 Oracle on Uniprocessors
Oracle is fundamentally not suited to a uniprocessor architecture. By its very
nature as a multiple-process software architecture (DBWR, PMON, shadow
processes, etc.), serious compromises in efficiency are made when these mul-
tiple processes are run in a uniprocessor environment. This is attributable to
the required context switching (see Section 2.2.3) among all the processes in
the Oracle RDBMS, even if the work is being submitted by a single process.
There have been many different twists in the Oracle architecture that could
optimize running on a uniprocessor system, most notably the single-task
connection architecture designed to reduce the number of processes for the
user connection, and the “single-process Oracle” architecture that combines
all the functions into a single process (actually targeted for the MS-DOS plat-
form). However, single-processor UNIX systems simply do not make very
good database systems, regardless of what you do to them.

Finally, at the end of the day, a uniprocessor system can perform only
one task at a time, however good it is at pretending otherwise. Therefore,
only one person can parse an SQL statement, read a block from buffer, exe-
cute a PL/SQL package, and so on, at any one time. This inherent lack of
concurrency in the uniprocessor makes it less than ideal in a multiuser
environment.

2.2.3 Other Disadvantages
Nobody in their right mind would suggest building a large-scale Oracle
database server on a uniprocessor server. There are numerous reasons
why the day of the uniprocessor in the data center is very much over.

With only one processing engine in the system, high-context switching
ties up a larger percentage of available processor time in wait state when
compared with an equal workload on a multiprocessor system. For exam-
ple, if ten processes are executing on a uniprocessor system, each of the ten
processes must be switched onto the processor, allowed to execute for the
quantum period, and then switched off the process once more. On a five-
way multiprocessor system, the same ten processes would generate
exactly one-fifth of the context switches as the uniprocessor, because there
are only two processes competing for any one processor. Each of the con-
text switches takes a finite amount of time, during which the processor

2.2 SINGLE PROCESSOR ARCHITECTURES (UNIPROCESSORS) 197
cannot be executing any useful work. The time will be spent preserving
and restoring the CPU registers, the stack pointer, the program counter,
and the virtual memory mappings.

The increased context switching creates another problem. As all processes
run on the same processor, there is therefore only one cache by implication.
This means that there are no cache affinity4 choices available to the operating
system. Therefore, all processes are competing directly for the same cache
lines, and, for the same number of executing processes, the cache warmth will
always be less than that achievable on a multiprocessor system.

With only one processor in the system, it is obviously not scalable
beyond the speed of a single CPU. Although the single processor could be
upgraded, the system remains only as scalable as the single processor
within it. Even with Moore’s Law being achieved, this means that the sys-
tem could only double in performance every 18 months, unlike a multi-
processor system, which may have the option of doubling its capacity
every week (for a few weeks, at least).

Finally, the thing that absolutely kills the uniprocessor in the data-
center is the fact that a single CPU failure impacts the entire business by
the machine being unavailable until hardware is physically replaced. That
is, if a processor board expires, the system cannot be restarted until a hard-
ware engineer has been called, travels to the site, and installs the board.
This takes around two hours even under the most comprehensive service
contract. It is rare for a business to find this acceptable—especially because
the failures always seem to happen during the peak period.

2.2.4 Summary
It can be seen that despite the potential advantages gained through
reduced locking administration (which are very slight in comparison with
modern lightweight, multithreaded SMP kernels), the disadvantages are
severe. This makes a uniprocessor fundamentally unsuitable for high-end
enterprise computing. However, there will always be a place for these
machines in the low end of the market, in addition to their use as develop-
ment platforms.

4. Cache affinity is discussed in Section 2.3.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS198
2.3 Symmetric Multiprocessors (SMPs)
A symmetric multiprocessor extends the capability of the uniprocessor by
increasing the capacity of the system bus and allowing the addition of
multiple processors and memory subsystems. All of the memory in the
system is directly accessible by all processors as local memory, a configu-
ration known as a tightly coupled configuration.

The most common SMP architecture is that shown in Figure 2.8—the
shared global bus architecture, where all components exist on the same,
shared bus. While currently the most common, this architecture is increas-
ingly being replaced by either a crossbar-switch-type bus (discussed in
Section 2.4) or the NUMA architecture (discussed in Section 2.7). However,
we will start off with the shared-bus model, because it represents the most
simplistic view.

2.3.1 SMP Advantages
The SMP architecture allows additional scalability to be gained through
the addition of processor cards to the system. Each of the processors
added can be used by the kernel for the processing of presented work. In

Examples: Sequent Symmetry, HP T-class, Siemens E600, Sun E6500, SGI Challenge

System Bus

I/O Bus
SCSI Bus

MemoryMemory

Cache

CPU

Cache

CPU

Cache

CPU

Bus Converter I/O Controller

Figure 2.8 Shared global bus SMP architecture

2.3 SYMMETRIC MULTIPROCESSORS (SMPS) 199
this way, the effective bandwidth of the system is increased each time a
processor is added.

The ability to add additional processing capacity to a system at will
allows significant flexibility in operating an SMP system. It also allows far
greater performance gains to be made than by purely upgrading the proc-
essor in the system to a faster one.

One thing needs to be noted here. I have just stated that SMP allows
“performance gains to be made.” It is important to clarify this point before
we get any further into the book. Performance gains will not be gained sim-
ply by adding more processors to the system. Rather, the processing band-
width of the system is increased, allowing performance gains to be made.

For example, if a system with a single processor can run a given task in
one hour, this task would take exactly the same time to complete on a ten-way
SMP system with the same processors. The reason for this is that the task is
serialized on one processor and the addition of extra processors will not make
the serial stream of instructions complete any faster. In fact, it is likely to make
it slightly worse, depending on the scalability of the SMP platform.

However, if the same task is split into ten pieces that can be run con-
currently, the ten-way SMP system could provide close to ten times the
“speed” of the single-processor system, if the system scaled efficiently.
Likewise, if the single-processor system were running 1,000 processes at
any one time, the addition of nine more processors would add significant
computational bandwidth to the system and individual processes would
wait less time before being scheduled to run. In fact, the run queue for the
system would be only 10 percent of the depth of the uniprocessor system,
and all of the processes would appear to “run faster,” although they are
simply being allowed to run more often.

The final advantage of an SMP architecture (whether it has a single
shared bus or otherwise) is that the programming model does not change
from the user (non-UNIX/Oracle kernel programmer) perspective. The
system is described as having a single system image or a single instance of the
operating system. This is a very important point, in that it allowed the SMP
architecture to be introduced in a virtually transparent way, because all the
existing user code ran without change. It also means that the programming
model remains very simplistic and allows easy programming on a multi-
processor system. This contrasts with the massively parallel processor

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS200
(MPP) model (see Section 2.6), where the programmer needs to be person-
ally aware of the hardware configuration and is required to assign process-
ing tasks to the processors individually.

2.3.2 Kernel Challenges
In order to make an SMP system scale effectively, the system designer
faces several challenges. Ultimately, a large number of these challenges
need to be met by the operating system engineer.

The presence of multiple processors in the system automatically gives
us multiple bus masters, as discussed at the beginning of this chapter. It
also gives us multiple caches that need to be maintained, as discussed in
Section 2.1.4. Finally, it opens up a whole bunch of load balancing and
affinity options to the process scheduler within the UNIX kernel.

We have already discussed the first two of these issues (multiple bus
masters and caches), but what about the last ones (load balancing and affin-
ity)? Really, these two things are fairly closely related. When a process
becomes runnable on the system, the kernel must associate the process with
a processor and enable it to run. With a uniprocessor system, there is only
one choice of where this should go, because there is only one processor. On
an SMP system, however, the kernel needs to make a choice as to which
processor (or engine) is optimum for executing that particular process.

The most important thing that the kernel must do is to ensure that the
work on the system is well distributed across the engines. For example, if
there is enough work to keep all of the processors busy, then all of the
processors, rather than just a subset of them, should be kept busy. This is
the load-balancing part of the problem.

Next, the kernel must decide whether it is worth attempting to get the
process assigned to any particular processor. This part of the problem may
seem a little strange at first, but there is good reason to assign a process back
to the last processor on which it ran, provided that there is some benefit to
be gained from the residual cache warmth from the last time the process ran.
The kernel can make educated guesses as to whether this is the case, based
on the number of processes that have executed on that CPU since this one
last ran. This kind of processor preference is known as cache affinity, because
the process has an affinity for one particular cache on the system.

2.3 SYMMETRIC MULTIPROCESSORS (SMPS) 201
Modern UNIX kernels are very good at managing the administration
burden of multiple processors. The ability of the kernel to handle the addi-
tional administration directly affects the scalability of the system, and
some vendors are better than others at achieving this.

2.3.3 Oracle on SMP Architectures
The Oracle architecture is probably most suited to an SMP-like hardware
architecture. This is no accident, because SMP has made Oracle a data-
center reality for large-scale systems. The multiprocess architecture fits
perfectly into a system with multiple processors to run these processes on.

The fast, uniform access to main memory found in SMP architectures
allows Oracle to use bus primitives for implementing very fast latch oper-
ations (i.e., test and set). This is vital for operation of very large single-
instance implementations of Oracle, because all operations share common
latches. While multi-instance implementations of Oracle (using Oracle
Parallel Server) are not subject to the same intense contention for the same
latches, they are subject to contention on significantly slower methods of
synchronization than those used in a single-instance configuration.

However, for reasons that are separate from any bandwidth issues associ-
ated with the bus, SMP still has inherent limitations for scaling Oracle infi-
nitely. For the same reason that SMP architectures are good Oracle platforms,
they also have a very definite upper boundary: the speed of latch operations.

For a latch operation to occur, a CPU must use test and set or a similar
instruction to attempt to gain control over the latch (a value in shared
memory). Only when the control is gained can the processor perform the
real work that it is required to do. If the memory location is in the cache of
other CPUs, then the processor and/or operating system must ensure that
the caches are kept coherent on those other processors.

If a large number of user sessions require a common latch, it becomes
more and more likely that all processing engines in the system will be exe-
cuting test and set against the memory location. Every time the latch value
changes, all of these operations need to be serialized by the bus arbiter,
and so there is a finite number of latch operations possible on any SMP
system. Therein lies the inherent limitation. At the end of the day, it really
doesn’t matter if the bus has another 10GB/s of bandwidth left unused if

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS202
the system spends all of its time serializing down the bus on required latch
operations.

All this being said, being bound by the speed of a latch is not as big a
problem as it used to be, because Oracle has spent considerable time
breaking nearly all of the single latches out into multiple latches, thus
reducing the actual contention (it’s the contention that hurts most). As
more and more vendors produce nonuniform memory access (NUMA)
architectures (see Section 2.7), Oracle is likely to start making more and
more private latch allocations, in addition to implementing algorithmic
alternatives to taking out the lock in the first place.

2.3.4 Shared-Bus Limitations
Due to all the system traffic going across a single shared bus, the system is
limited by the capacity of the bus, in addition to the rate of arbitration and
the capabilities of any bus snooping logic. As discussed earlier, the bus
itself is limited by physics, and the upper limit on the number of processors
that can be usefully attached is something of a religious war in the SMP
industry. Many SMP designers believe that building an SMP of more than
eight processors is a waste of time. Others can demonstrate reasonable scal-
ability of SMPs of 16 to 20 processors. The real answer is very dependent on
the way the bus is designed, the speed of the individual processors, the
effectiveness of the cache, and so on, and there is no simple answer.

The one thing that is certain, however, is that the upper bounds for
simplistic SMP scaling using a shared bus are pretty much at an end as of
today. This is affirmed by the hardware vendors, who are all converting to
some alternative type of SMP-like technology, using either NUMA, which
we cover Section 2.7, or some kind of intelligent, point-to-point intercon-
nect fabric to replace the global shared bus.

2.3.5 Summary
The shared-bus SMP architecture is the architecture that really changed
the viability of UNIX-based Oracle database servers to deliver world-class,
high-performance solutions. Although there are a decreasing number of
hardware manufacturers still producing vanilla SMP architectures of this
design, virtually all of the current products present that same, or very sim-
ilar, programming model.

2.4 POINT-TO-POINT SMP 203
2.4 Point-to-Point SMP
One of the approaches taken to extend the useful life of a pure SMP archi-
tecture is to provide greater bandwidth and more interconnect concur-
rency through the use of some kind of point-to-point interconnect between
components (see Figure 2.9).

The actual architecture of the interconnect fabric varies slightly among
systems, but the common goal of the systems is to allow point-to-point

Examples: Sun E10000 (a.k.a Starfire), HP V2500
C

ache

C
P

U

B
us

C
onverter

I/OC
ontroller

C
oherency

Interface

Cache

CPU

BusConverter

I/OController

Coherency

Interface

Cache

CPU

Bus
Converter

I/O
Controller

Coherency
Interface

C
ache C

P
U B
us

C
onverter

I/O
C

ontroller

C
oherency

Interface

Cac
he

CPU

Bus Con
ve

rte
r

I/O
Con

tro
lle

r

Coh
er

en
cy

In
te

rfa
ce

C
ac

heC
P

U

B
us

C
on

ve
rte

r

I/O C
on

tro
lle

r

C
oh

er
en

cy
In

te
rfa

ce

C
ac

he

C
P

U

B
us C
on

ve
rte

r

I/O C
on

tro
lle

r

C
oh

er
en

cy

In
te

rfa
ce

Cac
he

CPU

Bus
Con

ve
rte

rI/O
Con

tro
lle

r

Coh
er

en
cy

In
te

rfa
ce

Cache

CPU

Bus

Converter

I/O
Controller

Coherency

Interface

Cache

CPU

Bus

Converter

I/O
Controller

Coherency

Interface

Cache

CPU

Bus
Converter I/O

Controller

Coherency

Interface

Cache

CPU

Bus
Converter

I/O
Controller

Coherency
Interface

Cache

CPU

Coherency
Interface

Memory
Controller

C
ac

he

C
P

U

C
oh

er
en

cy
In

te
rf

ac
e

M
em

or
y

C
on

tr
ol

le
r

Cache

CPU

Coherency
Interface

Memory
Controller

C
ache

C
P

U

C
oherency

Interface

M
em

ory
C

ontroller

Figure 2.9 Crossbar switch interconnect SMP architecture

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS204
communication among all of the processors and memory in the system.
This allows for full connection bandwidth between any two points at any
time, in addition to increasing the concurrency of the “bus” as a result of
multiple connects being active at any one time (remember that the shared
global bus allows only one at a time).

The typical sustainable bandwidth for such systems is in the 16GB/s
range, with each connection capable of around 2GB/s.

Figure 2.9 shows a schematic view of such a system, with all of the compo-
nents connected to one another. To my knowledge, there isn’t actually a real
system out there that looks precisely like the one in this example, but I took
interesting features from all of them and made a more useful example.

The first thing to note is that my system is constructed from 16 system
boards, all interconnected to one another. The actual method of intercon-
nection demonstrated here is direct point-to-point connection, which was
chosen for reasons of path demonstration rather than to show any particu-
lar technology. Most likely, the components would be interconnected by
some kind of crossbar or other switch fabric (see Figure 2.10).

On each of these boards resides a single processor, a processor cache,
cache coherency logic, and either a portion of system memory or a bus

1 2 3 4 5 6 7 8

9

10

11

12

13

14

15

16

Connection

Card ID

C
ar

d
ID

Figure 2.10 Crossbar switch

2.4 POINT-TO-POINT SMP 205
converter and I/O controllers. The trade-off between the memory control-
ler and the I/O controllers was done on purpose to make the hypothetical
system have the same kind of trade-offs as those of a real system.

For the sake of clarity in the illustration, none of the I/O controllers
has been connected to any disk. Just assume that half of these controllers
are connected to different disks in the disk cabinet and that the other half
are providing alternate I/O paths to the same disks for the sake of redun-
dancy. None of the I/O controllers is “private” to the board that it resides
on: all I/O controllers are shared among all processors, as is the memory.

2.4.1 Cache Coherency
The important omission from the illustration is that of some kind of cache
coherency mechanism. With point-to-point communication within the sys-
tem, the standard SMP bus snooping method no longer works, because
there is no shared bus. There are two main approaches to providing the
solution to this requirement: a broadcast-based address-only bus with a
snoopy bus protocol, and a directory-based coherency protocol designed
for point-to-point communication.

By building a global address-only bus, systems such as the Sun E10000
benefit from the simplicity of the snoopy bus protocol. Greater scalability
is achieved when compared with a full shared (address-plus-data) bus,
because the system does not need to know the details of the activity (the
data itself), just the locations. This allows the most appropriate compo-
nent—be it a memory controller or the cache of another CPU—to service
requests for memory, and allows cache lines to be invalidated accordingly
when memory locations are changed by another CPU. It is also possible
for a system to have multiple address busses in addition to multiple data
connections, because an address bus is very readily partitioned by address
ranges into any number of subaddress busses.

All access to other components, whether or not they are resident on the
same system board, follows the same logic path. This ensures that all the
access times to any particular component from anywhere else in the system
are the same (uniform). This kind of fair sharing of access is critical in the
design of these systems, because software changes need to be made as soon as
the memory access becomes nonuniform. It is easy to see how a CPU with
faster access to a certain piece of memory could “starve” the other CPUs on

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS206
the system from accessing that component through unfair speed of access—a
bit like having a football player on the field who can run ten times faster than
all of the other players. This subject will be covered in more detail in Section
2.7, where it will become necessary to worry about such things.

As far as the operating system and Oracle are concerned, a crossbar-
type system is a shared-bus system. The changes in operation all occur in
the hardware itself and are therefore transparent.5 Therefore, the introduc-
tion of such a system does not impose as great a risk to stability and per-
formance as does a more radical one such as MPP or NUMA.

The increase in bandwidth of the “bus” allows for immediate performance
improvements in non-latch-intensive workloads. The increase in concurrency,
and the ability to have multiple address busses and therefore arbitration band-
width, allows for greater performance in latch-intensive workloads.

2.4.2 Summary
This type of SMP system has bought the SMP architecture some time. The
introduction of multiple interconnects has significantly increased the per-
formance capability of the SMP software model, and this model probably
has some way to go before it is exhausted.

However, scaling of SMP beyond the capabilities of crossbar SMP is a
difficult task. For example, if we already have point-to-point data connec-
tions that are running as fast as physics will allow, how do we increase the
throughput of the system? At some stage, the open system world needs to
break out of the SMP mold once and for all, but until the software support
is there, this cannot happen.

2.5 Clustered SMP
Clustered SMP configurations extend the capabilities of SMP further by
clustering multiple SMP nodes together, as shown in Figure 2.11.

5. Although this statement is true in theory, it is likely that vendors choose to allow some
visibility of the hardware changes to the O/S to allow for further software optimization.

2.5 CLUSTERED SMP 207
A cluster is also known as a loosely coupled configuration, in that the sys-
tems that are clustered have no direct access to each other’s memory or CPUs.
All the systems run a discrete copy of the operating system and maintain a
memory map containing only local memory addresses. The systems are cou-
pled by a low-latency interconnect between all the systems and share only
message information, which is why the coupling is termed “loose.”

With this coupling, the systems can perform intersystem coordination
but not much else because of the limited amount of information that they
share. However, when connections are made from each system to a shared
disk array, the usefulness of the cluster becomes far greater. Now the sys-
tems can share common data and coordinate the sharing through the use
of messages passed over the interconnect.

2.5.1 Clustering Types
In the UNIX world, a cluster is currently useful for one or both of the following:

• Provision of high availability

• Oracle Parallel Server (OPS)

A high availability cluster is one in which the cluster interconnect is used
solely as a “heartbeat” monitor between the systems. When the heartbeat

Low-Latency
Message Interconnect

SMP
System 2

Shared
Disk

SMP
System 1

Figure 2.11 Clustered SMP systems

Examples: Sequent ptx/Clusters, Digital Trucluster, HP MC/ServiceGuard, MC/Lock-manager

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS208
from one of the systems ceases as a result of system failure, another
system takes appropriate action to support the workload of the deceased
system. This could include mounting of the dead system’s file systems
(thus the need for a shared disk), a change of IP address to make the sys-
tem look like its peer, and the start-up of software subsystems.

There is no concurrent sharing of data in a high-availability solution,
only sharing of mortality information.

The Oracle Parallel Server (OPS) cluster is more complex. In this type of
cluster, full access is granted to the shared disk from all systems via the
database. Note that it is still only the database that is shared, not file sys-
tems or any other UNIX resources. Any system in the cluster can bring up
an Oracle instance and use it as required.

Clearly, some kind of synchronization is required to prevent all the
Oracle instances from writing all over the same pieces of disk and to main-
tain the same consistent view of the data. This synchronization is provided
by the Distributed Lock Manager, or DLM.

The DLM is a piece of software that was, for Oracle7, written by the
hardware vendor6 to provide the interface between Oracle and the hard-
ware communications. For Oracle8, the DLM is incorporated into the Ora-
cle product itself, and the vendor-specific lock manager has been retired.

The specifics of the DLM and how it integrates into Oracle will be covered
in Chapter 6, but in order to get the basics right here, we can assume that
whenever Oracle needs to read a block from disk, it checks in with the DLM.
The DLM will send a request to any other Oracle instances that have the block
and will ensure that no outstanding writes are pending by flushing the block
from cache to disk (this is known as a ping). The requesting system will then
be notified that the block is safe to read from disk, and normal operations will
continue. This is a dramatic simplification of a complex issue, but should suf-
fice to demonstrate the basic operation of an OPS cluster.

The DLM lock management is not transparent to the application, what-
ever people may try to tell you. Actually, it’s fair to say that enough people

6. Most vendors wrote their own DLMs for Oracle7, but some adopted a DLM written by
Oracle, known internally as the UNIX DLM, instead. Notable among these were HP and
IBM.

2.5 CLUSTERED SMP 209
have been severely burned by that claim that it has become a rare and
uninformed statement.

A good deal of work is required to alter the design of the application to
operate in this type of configuration. Specifically, anything that could
cause communication with other nodes in the cluster by means of the
DLM should be minimized wherever possible within the application.
Examples of this are

• “Hot block” data access between the nodes, causing excessive pinging

• On-disk sorting

Specifically, a successful SMP cluster implementation will demonstrate good
partitioning within the application. This could mean different areas of the
application getting processed on different nodes or, even better, “private” data
access per node through the use of a transaction processing (TP) monitor.

2.5.2 Summary
The implementation of a clustered system is a special requirement. This is
not to say that you shouldn’t do it—if you are building a very large scala-
ble system, a clustered system of one of the types described above
becomes a necessity. It’s important, however, that you choose the most
suitable method of clustering for your needs.

When deciding which type of clustering to use, you should keep your
choice as simple as possible. Unless it is absolutely necessary, an OPS clus-
ter should not be considered. The difference between the two methods of
clustering is acute: high-availability clustering is reasonably simple
whereas OPS clustering is very complex. This should be prime in your
mind when making the decision.

One particularly bad reason for using OPS is for scalability, when the
other option is to buy a larger machine. My advice on this is simple:
although buying a second, smaller machine may be the most attractive
proposition from a cost perspective, just remember that cost comes in
many different forms. For example, don’t forget to factor in extensive
application modification (perhaps a total redesign in extreme cases), a
large team of very experienced DBAs, and potentially more unplanned
downtime owing to complex, multinode problems.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS210
That having been said, the very best reason for going the OPS route is
when you need scalability—and I really do mean need. When there is no
system big enough to house the entire database processing requirement,
OPS is the only way to go. Just remember that it will be an expensive ride.
Do your homework, and never, ever, underestimate the undertaking.

2.6 Massively Parallel Processors (MPPs)
2.6.1 Definition
A massively parallel processor (MPP) is known as a shared-nothing config-
uration (see Figure 2.12).

Despite the grand title, there is nothing very complex about the architecture
of an MPP system. Traditionally, the building block of an MPP system has
been a uniprocessor node, comprising a single CPU, some memory (16 to
1024MB), a proprietary interconnect, and a finite number of private disks.

Examples: Siemens RM1000, nCube, IBM SP/2

CPU

Memory

Figure 2.12 Massively parallel processors

2.6 MASSIVELY PARALLEL PROCESSORS (MPPS) 211
Note that all of the disk is private; this is the reason that MPP systems
are called “shared-nothing” configurations. Not only does each node run
its own instance of the OS, but it does not even physically share any of its
disk with other nodes. Think of an MPP system as a bunch of uniproces-
sors in a network, and you are pretty close to the truth of things.

The sole distinguishing feature of an MPP system (and the only one that
makes it more than just “a bunch of uniprocessors in a network”) is the pro-
prietary interconnect between the nodes and the software layers that use it.

Each node runs a private copy of the OS, and thus MPP systems are
comparatively simple to produce, because there are no cache coherency
issues to deal with. Each processor has its own memory, its own disk con-
trollers, and its own bus.

Typically, MPP is considered when high system bandwidth and good
scalability up to potentially hundreds of nodes are required. The reason
that MPP is well suited to such applications is that the nodes do not inter-
fere with each other’s resource and thus can scale very effectively, depend-
ing on the type of workload.

Workload is the key: MPP is suited to workloads that can be parti-
tioned among the nodes in a dedicated and static fashion, with only mes-
sages (as opposed to data) traveling across the interconnect among the
nodes. In this way, almost 100 percent scalability is possible because there
is no data sharing among nodes. Examples of workloads that have been
scaled effectively on MPP systems include

• Digital video streams for video on demand

• Complex mathematical problems

• Some decision support/data warehouse applications

Only some decision support workloads scale effectively, because they are
often prone to data skew, thus breaking the static partitioning rule. For
example, if a parallel query is to scale effectively, it is important that all the
processors in the system are processing the query. In a shared-nothing
environment, this would mean that the pieces of database that are to be
scanned should be evenly distributed across all the nodes in the MPP sys-
tem. As soon as the physical distribution of the data changes, the system is
suffering from data skew.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS212
As the data is skewed in this way, the query can be serviced only by a
subset of the nodes in the system, because in a 100 percent shared-nothing
environment a node can process only data that it is physically storing.

As an example, let’s assume that there is a table of historical informa-
tion that is populated by daily feeds and purged by date range, with the
oldest first. When it was first loaded up, there was an even spread of last
name values in the table, and so it was decided that the data would be
loaded onto the system in “last name” partitions. Each range of names
would be stored locally on the respective nodes, as shown in Figure 2.13.

When the first queries are run (full table scans, in parallel), all nodes
are busy. However, as time goes on, old data is deleted and new data is
added. After a few weeks, the data distribution looks like that shown in
Table 2.2.

If the same query were to be run against the new data distribution,
node 4 would finish 40 times faster than node 2 and then would sit idle
while the other nodes continued processing.

In fact, this particular problem is easy to fix, because the partitioning
criterion (last name) was clearly incorrect even from a logical standpoint.
However, unlike this very simplistic example, a real data warehouse has
many hundreds of tables, or many tables of many billion rows each. This is

A–G H–P Q–S T–Z

Figure 2.13 Last name partitioning

Table 2.2 MPP Data Skew

Host Node Partition Row Count

Node 1 1 million

Node 2 2 million

Node 3 500,000

Node 4 50,000

2.6 MASSIVELY PARALLEL PROCESSORS (MPPS) 213
a very serious problem—a problem that is difficult to resolve without sig-
nificant periodic downtime.

Examples of workloads that definitely do not scale effectively across
MPP systems (no matter what anybody tries to tell you) are

• Transaction processing

• Transaction processing

• Transaction processing

Hopefully this is clear. Transactional workloads do not scale well on an MPP
architecture, because it is very unusual to be able to partition the workload
beyond a handful of nodes. For the same reason that it is difficult to write scal-
able applications for clustered SMP systems running Oracle Parallel Server,
MPP systems are even more complex. When there are tens or hundreds of
nodes out there, it is virtually impossible to make a logical partition in the
application that corresponds to the physical partitioning of the system.

2.6.2 Oracle on MPP Systems
You might have been wondering how, on a system that consists of physi-
cally private disk, Oracle can be run as a single database. This is a valid
question, because one of the clear assumptions that the Oracle architecture
makes is that it resides on a system with the entire database accessible
through standard I/O system calls. Oracle is often termed a shared-disk
database for this reason.

The answer is that Oracle can’t be run as a single database. Or rather it
can, but not without help from the operating system. Without this special
help, Oracle would not be able to open many instances across all the nodes,
because each node would be able to see only a tiny portion of the database.
Most nodes would not even be able to open the SYSTEM tablespace.

The special support that the operating system provides is a Virtual
Disk Layer within the kernel. This layer of software traps all I/O destined
for remote disk and performs the I/O using remote calls to the node that is
physically connected to the required disk. The data is then passed over the
interconnect and returned to Oracle as if it had just been read from a local
disk. At this point, the system looks like a very large cluster, with shared
disk on all nodes.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS214
You might be thinking that this is a terrible, nonscalable thing to do,
and you would be correct. Passing data over the interconnect breaks the
fundamental rule of MPP scaling: pass only messages over the interconnect.
In this way, the scenario described above, with the data skew, changes
form a little on an Oracle database hosted on an MPP system. Instead of
nodes becoming idle in the event of a data skew, Oracle does a fairly good
job of keeping them all busy by reassigning the query slaves when they
become idle. However, when this is done, it is likely that the “local disk
affinity” aspect is then destroyed. The local affinity aspect is where Oracle
attempts to execute the query slaves on the nodes with the most preferen-
tial disk transfer rates: the local nodes. When Oracle can no longer main-
tain this affinity because the local nodes are still busy, the data needs to be
read over the interconnect. So, the system is kept busy, but the system is
potentially more limited than an SMP system, because the interconnect
does not have as much bandwidth as an SMP interconnect.

The final requirement for running Oracle on an MPP system is a DLM.
The DLM provides exactly the same services as on a clustered SMP sys-
tem, because the system is effectively a large cluster. However, the cluster
software needs to be more robust than ever, because the number of nodes
to manage (32 to 1,024) is dramatically larger than a clustered SMP system
(typically a maximum of eight).

2.6.3 Summary
The use of MPP architecture has always been a niche piece of even the
high-end marketplace. Although many customers have been sold down
the river by their salespersons, the word is now getting out that MPP is
definitely not the way to go if

• You need fewer than 32 processors of total computing capacity

• You do not have sufficient resource to manage an n-node system,
where a separate instance of the operating system and a separate
instance of Oracle need to be maintained on each node

• You have a transactional system

With the large leaps in SMP bandwidth and, potentially more significantly,
with the introduction of NUMA, the MPP is forced even more into a cor-

2.7 CACHE COHERENT NONUNIFORM MEMORY ACCESS (CCNUMA) 215
ner. It is my opinion that MPP had a single shot at the DSS goal, as the bus-
based SMPs ran out of steam, but failed to make a big impression owing to
the management overhead of implementing such a system.

2.7 Cache Coherent Nonuniform Memory Access
(ccNUMA)

2.7.1 Definition
ccNUMA (NUMA from now on) could be described as a cross between an
SMP and an MPP system, in that it looks like an SMP to the user and to the
nonkernel programmer, and yet is constructed of building blocks like an
MPP system. In Figure 2.14, the building block comprises four processors,
similar to the Sequent NUMA-Q 2000 system.

Examples: Sequent NUMA-Q 2000, Silicon Graphics Origin, Data General ccNUMA

Remote
Memory

Controller

4-Processor (Quad) Building Block

PCI
Fibre

Channel
Controller

Cache

CPU

Cache

CPU
Memory

Cache

CPU

Cache

CPU PCI Bus
Converter

Figure 2.14 Nonuniform memory access building block: Sequent NUMA

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS216
These building blocks are not nodes—at least not by my definition. My
definition of a node is an atomic entity that executes an operating system,
and this does not apply to the building blocks of a NUMA system. Different
manufacturers use different names for their building blocks (see Table 2.3).

For ease of explanation, I will adopt the Sequent NUMA-Q 2000 sys-
tem as the primary example for the description, with a breakout later on to
describe the key differences between the Sequent approach and the SGI
(formerly Silicon Graphics, Inc.) approach found on the Origin platform.

2.7.2 Sequent NUMA-Q 2000
Sequent uses a four-processor Intel Pentium II Xeon board, similar to that
shown in Figure 2.14, as the building block for its NUMA-Q system. This
component is known as a “quad,” and for simplicity’s sake I will use this
term for the rest of the description.

With a single quad in the system, the remote memory controller in the
quad would not be needed for system operation. The system would look and
behave (in this case) exactly like a four-processor shared-bus SMP machine.

The difference becomes apparent when multiple quads are linked
together through the remote memory controller, as shown in Figure 2.15.

When a multiple-quad system such as this is booted, the presence of the
additional quads is detected and the memory from all of the quads is added
to the global memory address map. The addition of remote memory to the
system introduces a new level to the memory hierarchy (see Figure 2.16).

For the time being, don’t worry about the “remote memory cache” that
has been introduced as a peer to the local memory. This is a Sequent-
specific implementation detail, which will be discussed in more detail
when we get into how NUMA delivers cache coherency.

Table 2.3 NUMA Building Block Names by Manufacturer

Vendor NUMA Building Block

Sequent Quad (four processors)

Silicon Graphics Node card (two processors)

Data General SHV (Standard High Volume) (four processors)

2.7 CACHE COHERENT NONUNIFORM MEMORY ACCESS (CCNUMA) 217
The NUMA-Q handles the references to remote memory locations
with the remote memory controller hardware (known as IQ-link), making
the circled levels of the hierarchy appear from the software perspective to
be one, local memory level. With the hardware hiding the implementation
of the remote portion, the system looks a lot like an SMP, even from the
operating system perspective.

However, this is only the start of the design of a NUMA system,
because without significant software work the system above would per-
form poorly under high load. Although the IQ-link logic can successfully

Fibre Channel

Memory Interconnect

Figure 2.15 Nonuniform memory access system

Local
Memory

Remote
Memory Cache

Remote
Memory

Disk
CPU

Cache
Registers Network

Figure 2.16 Sequent NUMA-Q memory hierarchy

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS218
hide the fact that there is remote memory, the operating system still needs
to be very intimately aware of this fact. The reason for this is that a load or
store (read or write) from/to a remote memory address take longer than a
local one,7 and so it is vital that the operating system take careful action to
minimize the remote references within the system.

This difference in latency between local memory and remote memory
is the reason for the “nonuniform” part of the NUMA name. It is also the
reason that the architecture of these systems is absolutely fascinating, and
subsequently why Stanford and MIT have ongoing NUMA projects. It is
also the reason why this section is longer than the others in this chapter.
Let’s get back to the operating system.

The first big gain to be made within the operating system is to ensure
that processes have their resident set all located on the same quad and that
this same quad is used when scheduling the process for execution. These
two simple changes guarantee that all of the code and data associated with
the process are local, and therefore fast. The one exception to this occurs
when the process is using shared memory segments, because there is no
direct correlation between the location of a shared memory segment and
the location of the processes that execute against it. This is a major issue in
an Oracle environment and will be covered in Section 2.7.4.

With the user processes executing mostly within local memory, the
number of remote references is substantially decreased. Assuming for a
moment that Oracle is not installed on the machine, the remainder of the
remote memory references occur when executing in kernel mode.

In kernel mode, processors on all quads must access common memory
structures that comprise the kernel address space. Examples of kernel
structures that are shared in a standard SMP kernel include

• Process table

• Run queue

• Streams buffers

• File system buffer cache

7. First-generation systems had a remote:local latency of around 10:1 (ten times slower for
remote access), current systems are around half that (i.e., five times slower), and future sys-
tems are likely to be in the 2:1 range.

2.7 CACHE COHERENT NONUNIFORM MEMORY ACCESS (CCNUMA) 219
Potentially more important than the structures themselves are the locks
that protect the structures. If read locks are prevalent in the kernel, a good
deal of remote memory activity can be felt just by reading some of these
structures.

In Chapter 1, we covered some of the issues associated with locks and
how they affect scaling. In a NUMA environment, even fine-grained lock-
ing can cause problems if the locks in use are not based on the local quad.
Therefore, to minimize remote memory references in kernel mode, the OS
engineer must implement

• Distributed kernel memory structures

• Quad local kernel locks

In the same way that SMP kernels have taken many years to mature into
fine-grained, scalable kernels, it likely to be several generations before the
NUMA kernel engineer has located and changed all the significant areas
of the kernel that decrease the scalability of NUMA.

In addition to the kernel-induced remote references, DMA-based
I/O that occurs on nonlocal I/O controllers also increases the number
of remote references, because the data must be passed over the inter-
connect between the quads. For example, if the SCSI bus with the swap
disk on it were hosted by quad-0, the kernel would need to copy pages
of memory over the interconnect every time it needed to page out
memory on any quad other than quad-0.

For this reason, Sequent adopted fibre channel I/O for the
NUMA-Q rollout. With fibre channel, all I/O can then be made quad-
local by adding a fibre channel card to each quad. The fibre
channel on each card can be configured to “see” all the drives in the
disk array, and therefore each quad can perform I/O locally. Again,
this is a kernel value add, because the kernel must instruct the card as
to which quad to perform the I/O, and is one that is unique to the
NUMA architecture.

With the potential for many remote memory references to be always
present on a NUMA system, the system needs to provide optimizations
to lower the impact of this condition. In the Sequent implementation,
the impact is mitigated by the use of the remote cache component
within the IQ-link (see Figure 2.17).

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS220
When an address is requested by a processor as a result of a cache
miss, the request goes across the bus to the local memory controllers and
to the IQ-link card concurrently. If the address is a remote address, the
remote cache component acts a little like a CPU cache—it searches its
cache for the memory region and, if a hit is found, returns it to the CPU’s
L2 cache. If no hit is found, a request is issued to the remote cache compo-
nent of the quad that has the most recent copy of the cache line. When the
remote memory is received, it is sent on to the CPU’s L2 cache, and a copy
is kept in the cache for future reference.

In order to optimize the cache coherency requirement among all the
caches in the system, the designers of the NUMA-Q system decided to
adopt both main types of coherency protocol: snoopy bus and directory.
The snoopy bus protocol is used within a quad component, where its
broadcast-based approach is very effective because there are a small
number of processors within a quad. This snoopy bus protocol ensures
cache coherency within each quad, with the IQ-link simply acting as
another device on the bus.

To ensure coherency between the quads, a directory-based protocol is
used, because the interconnect between the quads is essentially a point-to-
point connection, implemented as a unidirectional ring. For example, for
quad 1 to communicate with quad 4, the communication will “hop” through
quads 2 and 3. Although the traffic is going through quads that are not
involved in the communication, the data is simply passed through without
incurring any significant latency, because the IQ-link card does not need to be

IQ-Link

SCI-based
Interconnect
Controller

Remote
Cache

Pentium II
Bus Interface

Out

In

CPU Bus

Figure 2.17 Sequent IQ-link

2.7 CACHE COHERENT NONUNIFORM MEMORY ACCESS (CCNUMA) 221
concerned with the content if it is not the intended recipient, and therefore the
overhead is kept to a minimum. If the cache coherency protocol used over the
interconnect were a broadcast-based protocol, all IQ-link cards would need to
look at the content, and therefore a more significant delay would be incurred
in forwarding the traffic to the next quad in the ring. This delay would be in
addition to any decrease in capacity resulting from the IQ-link controller logic.
The directory-based coherency protocol is therefore the most suitable in order
to minimize the traffic across the shared interconnect.

The IQ-link card provides the critical link between these two protocols
and allows the most suitable protocol to operate in the appropriate area of
the system.

2.7.3 SGI Origin 2000
The SGI Origin 2000 more closely resembles the Stanford DASH ccNUMA
developed at Stanford University, in that there is no remote cache compo-
nent within the system. Instead, the designers of the Origin 2000 decided to
go for a full directory-based system, with the directory maintaining the
states of all blocks (cache lines) of memory in the system. In order to gain
greater scalability from a directory-based protocol, the designers also chose
to distribute the directory evenly across all the node cards in the system.

The key components of the Origin 2000 include the HUB ASIC and the
router to the CrayLink interconnect fabric (see Figure 2.18).

The HUB ASIC is a crossbar switch that handles high-bandwidth
point-to-point communications within the node card. The router chip pro-
vides a similar function for traffic between cards, but provides multiple
paths between any two points.

The directory memory on each node card maintains the status for the
local memory only. This is done so that no single part of the interconnect is
bearing the burden of directory interrogation.

The Origin 2000 also differs from the Sequent NUMA-Q 2000 in that it
offers dynamic memory page relocation based on use. When a page is refer-
enced, a counter is incremented on the basis of where the request came
from. If the page is found to be referenced from one particular remote node
card at greater frequency than from the local card, the page is relocated to
the remote node card.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS222
This relocation occurs at the operating system level in that the page of
memory is simply copied to a free page on the remote card and the virtual
address map of the mapping process is altered accordingly. That is, the
contents of the page are relocated, not the physical address itself.

2.7.4 Oracle on NUMA Systems
During this explanation, the Sequent architecture will be used for exam-
ples. Oracle is currently architected to run most efficiently on an SMP
architecture. Evidence of this includes the following:

• All disk must be accessible by any process at any time, through stand-
ard UNIX system calls.

• Shared memory is central to operation.

• All latches are implemented using atomic test-and-set (or similar)
operations on shared memory addresses.

Cache

CPU

Cache

CPU

HUB ASIC

Main
Memory

Directory
Memory

780 MB/s

78
0

M
B

/s

780 MB/s

780 MB/s

I/O
 In

te
rf

ac
e

Router

780 MB/s

CrayLink

Figure 2.18 SGI Origin 2000 schematic

2.7 CACHE COHERENT NONUNIFORM MEMORY ACCESS (CCNUMA) 223
We have already seen that the Oracle architecture can be fairly well
adapted to run on MPP, and even better on clustered SMP. However,
because of the items listed above, Oracle runs best on an SMP architecture.

We know that NUMA is a lot like SMP from a user perspective but not
from an operating system standpoint, so into which of these categories
does Oracle fit?

Oracle is pretty close to being an operating system. If one views the
Oracle System Global Area (SGA) as the kernel memory region and the
shadow processes as “user processes executing in kernel mode,” then Ora-
cle looks a good deal like an operating system.

It’s no coincidence, therefore, that Oracle faces the same kind of scal-
ing challenges that the UNIX kernel faced, except that with Oracle the
challenges are heavily compounded by the use of a shared memory
buffer cache and by the very nature of database software. The following
aspects of Oracle operation cause varying degrees of difficulty on a
NUMA system:

• Shared buffer cache

• Shared redo log buffer

• Global (nonquad local) latches

The implication of the shared buffer cache is not much different from that
in an SMP system. The very existence of a shared-memory cache means
that a significant number of cache misses and cache invalidations are inev-
itable. The two big differences with a NUMA system are as follows.

1. It is more expensive to miss if you need to do a remote reference to get
the buffer.

2. It is important to increase the statistical chance of the buffer being in
local memory, not remote memory or even the local remote cache com-
ponent, when you miss in the L2 cache.

Because of reason 1, reason 2 becomes important—not so much because of
access speed as because of cache line turnover. If the SGA were to be cre-
ated on a single quad of an evenly loaded eight-quad system, there would
be seven remote accesses of the SGA for every eight attempts. This means
that the remote cache components of the other seven quads would be
replacing lines very rapidly to keep the cache updated with the artificially
increased remote reference loading. It also means that the quad that owns

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS224
the SGA is spending a good deal of its resource processing memory
requests on behalf of the other quads.

Sequent’s approach to this problem was to equally distribute the
buffer cache portion of the SGA across all the quads in the system. This
ensures, by virtue of the random access patterns of an Oracle buffer cache,
that all remote cache components are equally loaded and that every quad
has a one in eight chance of getting a local hit.

The redo log buffer is a different animal. All user sessions writing to
the database need to write to the redo buffer. Therefore, there is no optimal
location for this buffer as far as making it fair for all users. It is already
equally unfair to all users, except the ones executing on the quad where it
is located. Striping of the redo buffer over the quads is not an option, how-
ever, because in this case it is definitely preferable to give priority access of
the redo buffer to one process on the system, the LGWR process.

If the redo buffer fills because the LGWR process is unable to keep up
(because of long access times to the buffer), the database will prevent any
more writes until LGWR flushes some space. Therefore, in a NUMA envi-
ronment, it is important that the LGWR process be given a larger slice of
the pie. Sequent supports this through the use of (a) an initialization
parameter that builds the buffer on a quad of choice and (b) run queues
that bind the log writer to the same quad.

Global, shared latches are potentially a larger problem factor than any-
thing else in a NUMA environment. This is where the biggest impact of
nonuniform memory access times is felt.

Oracle relies on latches to protect nearly every memory structure in the
SGA. These latches are physically implemented using padded data struc-
tures8 throughout both the fixed and variable portions of the SGA. The
usage profile of these latches is as follows.

1. Get the latch.

2. Do some manipulation within shared memory.

3. Release the latch.

8. The structure is padded with unused memory allocations to ensure only one latch per
cache line. On systems with very long cache lines, such as Alpha-based systems, this
“wastes” a larger proportion of the usable cache size than systems with smaller line sizes.

2.7 CACHE COHERENT NONUNIFORM MEMORY ACCESS (CCNUMA) 225
We know from Chapter 1 that when a latch is allocated, this equates to a
memory update. We also know that when memory is updated, all the
caches in the system must be made coherent, either by invalidating the
lines in the caches of other processors, or by updating the caches of other
processors. Combining this information with the knowledge that there is a
high probability of both the latch and the protected memory structure
being in remote memory, the potential for problems can be seen.

The first problem in this environment is that latch acquisition is no
longer fair. Imagine the situation where two processes are spinning, trying
to acquire the same latch. Each of these processes is on a different quad,
but one of them happens to be on the same quad as the current latch
holder. The process that is sharing the quad with the latch holder will
always “see” the release of the latch faster than the remote process, due to
its locality to the (now dirty after the release) cache line. Therefore, the
local process will be able to acquire the latch while the remote request is
still in transit.

In a latch-intensive Oracle environment, which is essentially any very-
large-scale system, this can lead to false sleeps on the latch as a result of
the remote quads failing to acquire the latch within their specified spin
periods, causing starvation on the latch. A system with a high proportion
of sleeps on a latch will demonstrate poor response time.

This particular issue of latch unfairness is one that can be addressed
through special software algorithms. Sequent currently utilizes patent-
pending locking algorithms within their operating system and is work-
ing with software partners such as Oracle to get such support into their
products.

There is still a further challenge with latch allocation in a NUMA envi-
ronment. Latch throughput for a given latch could be measured as the
number of (time to acquire latch plus time spent holding plus time to
release latch) quantums per second. Therefore, if the acquire, hold, and
release times are all artificially high as a result of all the memory refer-
ences being remote, the maximum number of latch operations per second
is proportionally lower than if all the references were on local memory.

This all assumes that the request has missed in all caches, but this
becomes a reasonably likely event when latch contention is evident on the

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS226
system and the cache lines are frequently invalidated by the latch chang-
ing hands.

In fact, the more quads you add, the more likely it becomes that the
next latch requester will be a processor on a remote quad. If the next
requester is on the same quad, the cache line either will be refreshed by
local cache-to-cache transfer or, if requested by the same CPU, will still be
valid. If it is on a remote quad, the cache line will be invalid on the quad at
that time, removing the beneficial effect of the remote cache, because the
line needs to be refreshed from a remote location.

When this occurs on the system, the symptom is likely to be a very
high latch sleep count, with the CPUs potentially not busy. Adding addi-
tional quads in this situation not only will fail to improve the system per-
formance, but could make it worse.

2.7.5 Summary
The types of latch problems described above mean that despite all the
efforts of the system designer, NUMA is still not the incredibly scalable
system that it has the potential to be. Although many things have been
done to alleviate other types of remote memory reference, this problem
eludes all of these optimizations. At the end of the day, shared global
latches are absolutely dependent on the latency to memory.

For workloads that do not rely on very frequent updates of shared
memory, NUMA already promises to be vastly scalable. This is the key
point—the Oracle architecture, as it exists today, is retarding the scaling
potential of NUMA systems. Until Oracle provides complete base code
support for NUMA, this will continue to be the case. As of Oracle release
8.1, Oracle has started to cater for NUMA in the kernel, and these changes
are covered in Chapter 8.

Nevertheless, NUMA systems are competing well with other high-end
architectures. By increasing the power of each quad, for example, the
number of quads can be reduced for a given load, and the statistical likeli-
hood of memory references being remote is reduced accordingly. Like-
wise, the latency of remote memory accesses is decreasing as the
architectures develop—Sequent has already halved its remote memory
latency. This in itself directly raises the system’s “Oracle ceiling.”

2.8 STORAGE SYSTEMS 227
For many, the time for NUMA is already here. Depending on the work
profile of the system, NUMA can already beat many of the latest SMP
architectures. As time goes on, and Oracle’s architecture lends itself more
to this architecture, the upper bounds of system performance stand to be
dramatically increased.

2.8 Storage Systems
It is a surprising fact, but the truth is that in many large-scale database sys-
tems insufficient attention is paid to the I/O subsystem. Plenty of time is
spent tuning processor and memory utilization, whereas the impact of
potentially badly configured disk is ignored.

For example, a database administrator may closely monitor the wait
states from within Oracle and determine that any users waiting for physi-
cal reads are doing OK because one has to go to disk sometimes, anyway.
This is true, but it should not be assumed that the waits for disk activity
are short ones.

To highlight the effect of a relatively slow device such as a disk in a
query, let’s look at an example. Assume that the example system already
has an optimally tuned cache and that no further disk accesses can be pre-
vented from further tuning of the cache. For a given query it is found that a
cache hit ratio close to 100 percent is achieved, with only 500 reads neces-
sary from physical disk. The total time spent retrieving buffers from mem-
ory is 2 seconds, and so doubling the speed of the system memory and
processor will improve the response time by 1 second. In contrast, the 500
reads required from the disk are performed from a single disk, one at a
time, adding approximately 8 seconds to the response time of the query. So,
even the small amount of I/O still required by the query has an overpower-
ing effect on the response time, accounting for a full 80 percent of the total
time. Doubling the speed of the memory and CPU was clearly not the way
to improve this system, because it improved the response time of the query
by only 10 percent. A further doubling of speed in these components
would yield an additional improvement of only 5 percent. A change in the
system that would be more effective in improving the response time of the

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS228
query would be to find a way to double the speed of the physical I/O, thus
reducing the query response time by 40 percent. This is something that is
easiest to do during the storage design phase, in order to obtain the greatest
impact in performance with the least system interruption.

With most databases being many times the size of all the caches com-
bined, it is clear that significant physical disk access is likely, even if every-
thing is optimally tuned. With this certain knowledge, it is of obvious
importance that the disk configuration in a database system be designed,
built, and maintained as carefully as any other component in the system.

In addition, the disk on the system is the sole form of persistent stor-
age for the data and is therefore the single most critical component.
Although a system can typically be rebooted immediately after a proces-
sor or memory failure without further problem,9 a terminal failure in the
disk subsystem needs to be repaired before the system can safely be used
once again by the business, even though the UNIX system is likely to keep
running. If there is no form of redundancy built into the I/O subsystem,
this repair is likely to include the dreaded restore from tape.

2.8.1 I/O Busses
We have already touched on the concept of an I/O bus. Owing to the
number of connections available on the CPU and memory interconnect, it
is not practical to “waste” these specialized connections with potentially
tens or hundreds of I/O controllers. While the traffic from the I/O control-
lers ultimately travels across the system bus, it does not make financial or
architectural sense to attach these devices to it directly.

To implement I/O connectivity, most systems have the concept of an I/O
or peripheral bus, which is designed to connect several I/O controllers, Ether-
net cards, and the like to a single slot on the system bus by means of a bus
adaptor. Examples of I/O buses include PCI, S-Bus, VME, and Microchannel.

I/O busses are typically designed for a different goal than that of a
processor-memory bus. For an I/O bus, it is more important to be able to
have an accessible bus, to ensure that components can be replaced with

9. Assuming that the failed component is deconfigured from the system after the initial
crash.

2.8 STORAGE SYSTEMS 229
minimal interruption of system operation. For this reason, the I/O bus is
typically longer, narrower (fewer bits), and subsequently slower than the
processor-memory bus.

It is also typical for a system to support multiple I/O busses, in order
to allow for connection of many disk controllers, network cards, and so on.
Although this has been quite necessary in the past owing to the capacity
limitations of SCSI busses, it is getting less important as fibre channel
becomes the common form of I/O adapter for high-end systems.

2.8.2 Controllers
Several controllers are available for the connection of disk arrays to a
UNIX system. The one used most commonly is some form of SCSI, with an
increasing trend toward fibre channel.

SCSI Controllers
SCSI (pronounced “scuzzy”) stands for Small Computer Systems Inter-
face. SCSI has long been the I/O controller of choice for UNIX systems,
due to its comparatively low cost and high performance in a highly con-
current, I/O-intensive environment.

The first implementation of SCSI, now known as SCSI-1, is an 8-bit-
wide bus operating at a theoretical maximum bandwidth of 5MB/s. The
bus protocol allows a maximum of eight targets (0 to 7) to be connected to
the bus, one of which is always the host adapter/controller itself. The
inclusion of the host adapter as a target is because the SCSI protocol is, at
least in design, a peer-to-peer protocol, with the host simply existing as a
unit on the bus. For all practical purposes, however, the host adapter acts
very much as the master, with the other devices acting as slaves.

A target typically is the same thing as a physical device, such as a disk.
More accurately, a target is an entity that can be physically selected by the
bus protocol. In the case of directly attached devices such as disk drives
and tape devices, this means that a maximum of seven disks or tapes can
be attached to each SCSI bus.

In the case of RAID-based disk arrays, the RAID controller within the
disk array could be the target, with multiple logical unit numbers (LUNs)

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS230
assigned within the array equating to physical disks. The access to the
disks within the array is handled by the RAID controller hardware itself.

The limitation of eight targets on the bus comes from the target selec-
tion method used in the bus protocol. The target is selected by electrically
selecting the physical line (1 to 8) to which the device has been configured
on the bus and is therefore limited to the physical width of the bus—in this
case, 8 bits. When bus conflicts arise that need to be arbitrated, the highest
target number is chosen over the lower ones. For this reason, the highest
target ID (ID7) is chosen for the host adapter.

SCSI-2, also known as Fast SCSI, increased the frequency of the bus
from 5MHz to 10MHz, increasing the throughput to 10MB/s in synchro-
nous mode. In addition, SCSI-2 introduced the concept of command queuing,
which gives SCSI-2 devices the ability to process certain SCSI commands in
a sequence different from that in which they were received. This allows the
drive to optimize certain operations and minimize excessive head move-
ment where possible. The most important of these optimizations is the abil-
ity for a device to accept a second write instruction before the prior write
instruction is complete. This allows the communication latency of the write
instructions to be overlapped/hidden in the actual write phase of another
write. With a SCSI-1 protocol, the second write could not be dispatched
until the first one had been signaled complete.

SCSI-2 also comes in a Wide SCSI-2 format, more commonly known as
Fast/Wide SCSI. This has been the most commonly available SCSI format
for high-end systems for several years. The Wide version of SCSI-2
increases the bus width to 16 bits and allows the concentration of up to 15
devices. The doubling of the data path allows the maximum bandwidth of
the bus to go up to 20MB/s.

Even with SCSI-2, systems were rapidly becoming full of SCSI control-
lers to allow for the required throughput from the disk subsystem. The lat-
est version of SCSI is Ultra SCSI, or SCSI-3. Ultra SCSI provides another
doubling in the bus clock speed, taking the frequency up to 20MHz and
the capacity of a Wide Ultra SCSI bus up to 40MB/s. The SCSI-3 standard
also provides an extension in command set, allowing the host to negotiate
optimal behavior from the drive.

At the time of this writing, another standard of SCSI is reaching the
marketplace—the confusingly named Ultra2 SCSI. This doubles the data

2.8 STORAGE SYSTEMS 231
rate once again to a maximum of 80MB/s in synchronous mode. Ultra2
SCSI needs to be implemented over differential SCSI cabling, as opposed to
single-ended SCSI cabling. The differential interface has been used for some
time in high-end UNIX systems, because it allows longer cables owing to
the use of twisted pairs, which eliminates a proportion of electrical noise
picked up by the cable.

One of SCSI’s most limiting factors for building large systems is the
maximum cable length on a SCSI bus. Even using a differential interface to
get the maximum distance, the limit for a SCSI-2 implementation is 25
meters. This seems like quite a lot to begin with, but this distance includes
all the cables between the drives, the cable between the system and the
drives, and a good deal of the circuitry inside the drives themselves. Once all
this is factored in, it very quickly becomes a major engineering feat to con-
nect a large amount of disk to a system. This is further complicated when
the SCSI bus includes more than one host system, as is the case in a shared
disk cluster configuration. In this case, it is common for the clustered sys-
tems to be physically clustered around the shared disk cabinets, because the
physical proximity reduces the cable lengths required for the connections.

SCSI Throughput
The real-world throughput of a SCSI bus never actually gets to the theoret-
ical bandwidth of the bus. This is attributable to the overhead incurred
from the SCSI protocol. The actual throughput that can be observed varies
depending on the access patterns.

For a sequential disk access pattern, the bus can be quickly saturated
using a small number of drives, because the drives spend most of the time
transferring data rather than waiting for seeks and rotational delays. The
actual number of drives that will saturate the bus depends on the size of
the I/O units requested. In the case of 2KB reads, the overhead of the bus
protocol dominates the bus and the effective bandwidth of the bus drops
by as much as 60 percent. For larger reads of 32KB, 64KB, or greater, the
SCSI overhead is far less, and a bandwidth closer to the theoretical value
will be achieved.

For random access patterns, the bus becomes less of a problem because
the drives spend a large proportion of the time waiting for seeks and rota-

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS232
tional delays before sending data. Even with a modern drive performing
100 reads/s, it would take around 40 drives on a single SCSI bus to satu-
rate the bus with 2KB reads.

In real life, however, it is unusual for a database system to be either
sequential or random. Rather, databases tend to use a combination of the
two, particularly in transaction-processing environments. The user trans-
actions are typically all small, random units of transfer, whereas the batch
cycle has a completely different profile, using large, sequential I/O trans-
fers to process large amounts of data. For this reason, it is very unusual to
find a SCSI bus with 40 or more drives attached to it, because the system
must be built to process both types of workloads effectively. Oracle helps
out with multiblock reads for full table scans, which batch together several
smaller reads into one large request. Typically, this larger unit of I/O is
returned by the drive in a comparable time as a single block of its constitu-
ent parts, owing to the amount of latency incurred regardless of the I/O
size requested. Once Oracle is performing multiblock reads, a bus with too
many drives on it will quickly become saturated, and queues will build up
and all users of disk on that channel will be adversely affected. For this
reason, it is rarely a good idea to economize on the number of channels at
the cost of the batch process.

Fibre Channel
Fibre channel is a fiber optic link between the host and the disk subsystem.
With a theoretical maximum bandwidth of 100MB/s, fibre channel has a
large bandwidth advantage over any of the SCSI standards. In addition,
the physical attributes of fibre channel make it attractive in the data center:

• Optical transmission ensuring freedom from electrical interference

• Maximum cable length increased to 500 meters

• Thin, flexible cable

These advantages allow far greater flexibility than ever before, including
campus-style (in another building) disaster recovery strategies without
specialized disk hardware, flexibility over physical disk cabinet place-
ment, and a good deal less cable to keep tidy under the raised floor.

2.8 STORAGE SYSTEMS 233
There are two main ways of implementing fibre channel I/O subsys-
tems: point-to-point and arbitrated loop. In a point-to-point configuration,
a direct connection is made between the host and each individual disk
device. This allows for the full bandwidth of the fibre channel connection
to be available between the two points, but in reality no single device will
be able to realize the full fibre chanel bandwidth, and it is not practical to
connect each device in this way.

In an arbitrated loop configuration or Fibre Channel-Arbitrated Loop (FC-
AL), disks and hosts are connected together in a full duplex ring, similar to
fiber distributed data interface (FDDI). This configuration (see Figure 2.19)
allows fully shared access among all “loop nodes,” including hosts, disks, and
other peripherals.

Although this topology provides a very flexible and simple way of
stringing the system together, there are several drawbacks to this approach.
First of all, the full bandwidth of the fibre channel has to be shared among all
“nodes” in the loop. While 100MB/s is a good starting budget, this is very
quickly consumed in a large-scale system. Second, fault diagnosis becomes
significantly more difficult, because failures of devices and/or fiber intercon-
nects are more difficult to locate and could affect the entire system.

A preferable alternative to both of these methods is to create a fibre
channel fabric using fibre channel switches and/or hubs (see Figure 2.20).

When this kind of topology is used, all devices within the fabric are
visible to others, and the bandwidth is scalable as required by the addition
of more fiber connections into the fabric from the host. When a failure
occurs in the fabric, the fault can be quickly isolated to the relevant part of

Disk

Disk

Disk

Host Host

Figure 2.19 Fibre channel arbitrated loop

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS234
the fabric and resolved accordingly. Using multiple switches and alternate
paths, a fully redundant I/O system can be built, without the electrical
headaches that have long been associated with SCSI.

The switched fibre channel topology is rapidly becoming the preferred
method for large systems, despite the higher cost resulting from the use of
expensive fibre channel switches. At the time of this writing, native fibre
channel disk drives are only just becoming available. As a temporary
measure, vendors have been using existing SCSI disks within the fibre
channel fabric through the use of fibre channel-to-SCSI bridges.

2.8.3 Disk Drives
At the end of the controller chain lies the individual disk drive. Because
the disk drive is the fundamental building block of the system, it’s impor-
tant to have a good understanding of disk drive mechanics in order to
build the system most effectively. The disk drive is ultimately the slowest
component in the system, and so any gain in disk drive performance will
have a significant effect on the performance of the overall system.

A disk drive (see Figure 2.21) is composed of several disk platters
stacked one on top of another with enough of a gap between them to fit in
a read/write head.

The data is stored on the platter in a series of concentric rings called
tracks. Each of the tracks is composed of several sectors. In modern SCSI
disks, each of these sectors has a capacity of 512 bytes and represents the
smallest unit of data transfer that the disk will process. A group of tracks,

Disk Disk Disk

Host Host

FC Switch FC Switch

Figure 2.20 Switched fibre channel fabric

2.8 STORAGE SYSTEMS 235
all with the same offset but on a different platter, is known as a cylinder
because of the shape formed by the stacked tracks.

The platters themselves rotate at a constant speed of 5,400 rpm to
10,000 rpm, while the heads move laterally across the platters in response
to commands from the I/O controller.

To access a particular block on disk, the disk head needs to be moved
to the track that contains the requested data. This operation is called a seek.
After the seek is complete, the head waits for the requested block of data
to pass underneath it. This wait period is called rotational delay or rotational
latency. Once the data to be read is in position, the head initiates the read,
and the data is sent back across the I/O bus to the requesting host. If this
were a write operation, the new data would be written to disk instead of
being read.

The two aspects described above, seek and rotational delay, constitute
the vast majority of most I/O operations and should be the focus of atten-
tion in the design of any I/O system.

Seek Times
Several aspects affect how long you spend seeking with your disk drives.
The first of these aspects is the usage profile of the disk. At one extreme, if
the disk usage pattern is sequential—that is, accessing each block in
sequence—then seeking will not be a problem, because the only seeking
performed will consist of moving the disk head onto the next track once
the current one is fully read. This type of track-to-track seek is typically an
order of magnitude lower in latency than a quoted “average seek” time.

The opposite extreme is a random access pattern. Welcome to transac-
tion processing systems. The Oracle buffer cache has already “stolen” any
sequentiality out of your disk access (to your benefit, I might add), and the

Figure 2.21 Disk drive organization

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS236
disks are left to supply single rows using rowids gleaned from index
lookups. The one thing you can be sure of here is that the block needed
will not be on the same track that the head is currently on. Therefore, a cer-
tain amount of seeking is guaranteed.

The key here is to control the amount of seeking that is performed. The
obvious thing to consider, therefore, is keeping the data on the disk grouped
as closely as possible, thus keeping the seek distances minimized. There is one
aspect of disk drive mechanics that is essential knowledge when planning
your disk placement strategy. Modern disk drives read and write constant bit
densities across the entire platter, using a recording format called zone bit
recording. For any given square centimeter on the disk, the same number of
bits can be stored, regardless of location on the disk. What this means is that
tracks near the outer edge of a disk are capable of storing more data than
tracks near the inner edge, because more of the 512-byte sectors can be fitted
onto each track (see Figure 2.22). The implication of this is that more data can
be stored within a given number of tracks near the outer edge than can be
stored near the center of the disk. It is therefore statistically more likely that if
you place your high-activity data at the edges of the disks, fewer and smaller
seeks will occur than if you store it near the center of the disk.

High-Capacity Track

Sector

Low-Capacity Track

Figure 2.22 Zone bit recording format

2.8 STORAGE SYSTEMS 237
In addition to the improved seek times near the outer edge of the disk,
the increased density also allows far greater data transfer rates, potentially
50 percent greater or more.

Rotational Delay
Rotational delay is affected by one thing alone—the rotational speed of the
drive. If you take a look at a data sheet for a disk drive, the “average
latency” statistic is the one describing rotational delay. If this isn’t quoted,
don’t worry: divide 60 seconds by the rotational speed of the drive (in rev-
olutions per minute) and then halve the result. This is the same number—
that is, assuming that there is an average of one-half turn of the disk plat-
ter on each read. Clearly, the faster the drive spins, the quicker the
required sector will arrive under the head.

2.8.4 Disk Drive Sizing
We have seen several disk metrics. As a demonstration of how these disk
metrics are employed, let’s use a sizing example in which we choose
between two drives with the specifications listed in Table 2.4. For this
example, we will be using unprotected, plain disk.

The proposed system is believed to exhibit a peak load of 12,500 reads
per second on the I/O system, evenly distributed across the 400GB data-
base. A decision needs to be made as to which disk drives to use.

Table 2.4 Disk Drive Performance Evaluation

Drive 1 Drive 2

Average time to seek 5 ms 3 ms

Spindle speed 5,400 rpm 10,000 rpm

Rotational delay 5.6 ms 3 ms

Time to read 4K data from track 6 ms 3 ms

Storage capacity 4GB 18GB

Price $2,000 $3,500

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS238
Conventional wisdom from the uninformed would dictate a purchase of
22 of the 18GB drives, because this would be the cheapest way to get the
required capacity. Herein lies the problem: many people still use the stor-
age capacity of a drive to determine how many drives are required. This
would be absolutely the worst choice that could be made.

Assuming now that we are buying according to the number of I/Os per
second that the drives are needed to perform, which do we choose? First, we
need to know how many reads per second each drive is capable of. To deter-
mine this, we calculate how long each read request will take, as follows:

Once we have this time, we can calculate how many reads can be per-
formed per second:

The results of these calculations are shown in Table 2.5.
It can be seen that, although the instinct may be to go with the smaller

drive to obtain more spindles, the newer drive is not only faster but also
requires fewer controllers and offers a total cost reduction of $64,500. The
part of this that most bean counters find hard to swallow is that about
1.5TB of storage space will not be used if drive 2 is chosen. The solution is
simple, of course—don’t tell them.

Disk Read Time Seek Time Rotational Delay Transfer Time+ +=

Reads per Second 1
Disk Read Time
--=

Table 2.5 Disk Drive Evaluation Summary

Drive 1 Drive 2

Average read time 16.6 ms 9 ms

Average reads per second 60 111

Drives required 208 113

SCSI controllers required (at $4,000 each) 26 15

Total cost $520,000 $455,500

Used capacity per drive 1.9GB 3.5GB

Unused capacity (total) 436.8GB 1,638.5GB

2.8 STORAGE SYSTEMS 239
The additional benefit of choosing drive 2 in this situation is that only
19 percent of the drive is needed, as opposed to 48 percent of the 4GB
drive. This means that significant performance gains can be achieved by
using only the outer 19 percent of the drive.

2.8.5 Redundancy
The provision of full redundancy in the storage system rapidly became a
hot topic when people started to implement systems with several hundred
disk drives. For example, if a system has 500 disk drives in its storage sub-
system, each rated at 1,000,000 hours mean time between failures (MTBF),
the effective MTBF of all the disks in the system becomes 2,000 hours, or
83 days. It is clearly not acceptable to have the database exposed to a crash
every 83 days on average.

The term redundancy is used to describe the use of spare, redundant
parts that allow the system to keep running in the event of a component
failure. For every fan, cable, power supply, and so on in the system, there
needs to be redundant capacity from another part to allow the system to
run unaffected by the failure of the primary. Examples of this include fans
that can speed up to compensate for other failed fans, twin power supplies
that are each capable of supplying all required power, and twin power
cables each rated at full current capacity and connected to its own power
source.

In the I/O world, redundancy is an art form. Almost every compo-
nent in a modern disk system can sustain at least one failure. This
includes the host I/O controllers (and therefore the cables attached to
them), the power supplies of the disk cabinet, and the disks themselves.
One of the most common ways of providing disk-level redundancy is the
use of RAID.

2.8.6 RAID Levels
In 1987, Patterson, Gibson, and Katz of the University of California, Berke-
ley published a paper entitled “A Case for Redundant Arrays of Inexpen-
sive Disks (RAID).” This paper was written to demonstrate the case for
using cheaper, commodity disk drives as an alternative to the very expen-
sive disk drives found in large mainframe and minicomputer systems.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS240
The authors proposed that, by combining several these cheaper
devices, the performance and reliability of the combination can match or
exceed those of the more expensive devices. At the time the paper was
written, the commodity disk drive was a 100MB disk drive costing $1,100,
compared with an IBM 3380 disk drive with 7.5GB capacity and a price of
more than $100,000.

The real driving force behind the research that went into this paper
was that while CPU and memory speeds were increasing dramatically
year after year, the speeds of disk systems were not advancing at anything
approaching the same rate. As already described earlier in this chapter,
any increase in processing speed will ultimately be restricted if the opera-
tion has to include a slower device.

The idea behind the research was to configure a large number of compar-
atively inexpensive SCSI disks to look like one very fast, high-capacity disk,
rather like the IBM disk. Once many disks are combined in this way, however,
the aggregate MTBF for the disk system is substantially reduced. The example
in the paper shows the drop in mean time to failure (MTTF) to 2 weeks for the
combined array of 100MB disks. Clearly this is not acceptable, and so the
paper goes on to describe different techniques (now known as RAID levels)
for increasing the reliability while still retaining the performance.

These RAID levels are identified by number, 0 through 5, and have
varying degrees of success in balancing price, performance, and reliability.
RAID levels 2, 3, and 4 are not commonly implemented, although some
RAID disk arrays use a RAID-3 variant to obtain the results they require.
For the sake of simplicity, I will concentrate on RAID levels 0, 1, and 5,
because these are the most commonly used levels.

RAID-0
RAID-0 is not formally defined in the Patterson et al. paper. However, it is
named as such because it conforms to the spirit of the paper—using multi-
ple disks to achieve higher aggregate performance. In a RAID-0 configura-
tion, multiple disks are configured together as a set, or a “bank,” and data
from any one datafile is spread, or striped, across all the disks in the bank.
For the sake of example, we will use 64KB stripes over a six-disk stripe
bank, as shown in Figure 2.23.

2.8 STORAGE SYSTEMS 241
This type of organization has made RAID-0 more commonly known as
striping, because of the way the data exists in stripes across the physical
disks. Using striping, a single data partition is physically spread across all
the disks in the stripe bank, effectively giving that partition the aggregate
performance of all the component disks combined.

The unit of granularity for spreading the data across the drives is
called the stripe size or chunk size. Typical settings for the stripe size are
32K, 64K, and 128K.

If one were to perform a 384KB read from the file in Figure 2.23, starting
at zero offset (i.e., at the beginning of the file), this would be translated as six
physical reads from the respective disks. Disk 1 supplies bytes 0 to 65,535,
disk 2 supplies 65,536 to 131,071, disk 3 supplies 131,072 to 196,607, and so
on. The impact of this differs (yet again) depending on the access pattern.

If the disk access is sequential, it is bound by the transfer time of the
actual data. That is, most of the time spent servicing the request is spent
transferring data rather than waiting for a physical data rendezvous. In a
striped configuration, all the disks that compose the stripe can transfer
data concurrently, making the transfer rate the aggregate rate of all the
drives. For example, if a file on one disk can be sequentially scanned at
3MB/s, then the same file striped across six disks can be sequentially
scanned at a rate of 18MB/s. The achievable bandwidth is still subject to
other constraints, such as SCSI bandwidth limitations, but, with careful
planning, significant gains in throughput can be made using striped disk.

With a random access pattern (a.k.a. transaction processing), the gains
are less quantitative, but significant nonetheless. However, if a single user
were to make random read requests against a striped file, virtually no dif-
ference in performance would be observed. This is because the gains that
are made in a random access environment have much more to do with
concurrency than with bandwidth.

= 64KB Block

Block 0
Block 6

Block 1
Block 7

Block 2
Block 8

Block 3
Block 9

Block 4
Block 10

Block 5
Block 11

Figure 2.23 RAID-0 physical organization

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS242
The first benefit that striping provides in a random access environment
is load balancing. In a database environment, some files are always busier
than others, and so the I/O load on the system needs to be balanced.
Unfortunately, this is never as easy as it would first appear, owing to the
way database files are accessed. It is very typical for a file to be busy in just
a small portion (maybe 1MB) of its total volume. This is true even if the file
contains only one database object. In a nonstriped environment, this will
cause a hot spot on the disk and result in poor response times.

Using a striped disk array, the exposure to hot spots is significantly
reduced, because each file is very thinly spread across all the disks in the
stripe bank. The effect of this spreading of files is random load balancing,
which is very effective in practice.

The second advantage of striping in a random access environment is that
the overall concurrency of each of the files is increased. If a file were to exist on a
single disk, only one read or write could be executed against that file at any one
time. The reason for this is physical, becasue the disk drive has only one set of
read/write heads. In a RAID-0 configuration, many reads and writes can be
active at any one time, up to the number of disks in the stripe set.

The effects of striping in both sequential and random access environ-
ments make it very attractive from a performance standpoint. There are
very few situations in which striping does not offer a significant perform-
ance benefit. The downside of striping, however, is that a striped configu-
ration has no built-in redundancy (thus the name RAID-0) and is highly
exposed to failure.

If a single disk in the stripe set fails, the whole stripe set is effectively
disabled. What this means is that in our set of six disks, the MTBF for each
disk is now divided by 6, and the amount of data that is not available is 6
times that of a single disk. For this reason, RAID-0 is not often found in
plain vanilla RAID-0 form, but is combined with RAID-1 to provide the
necessary protection against failure.

RAID-1
RAID-1 (see Figure 2.24) is more commonly known as mirroring. This was
not a new concept in the paper by Patterson et al., but rather a traditional
approach to data protection. Mirroring involves taking all writes issued to

2.8 STORAGE SYSTEMS 243
a given disk and duplicating the write to another disk. In this way, if there
is a failure of the first disk, the second disk, or mirror, can take over with-
out any data loss.

RAID-1 can be implemented using volume management software on
the host computer or using a dedicated intelligent disk array. The details
of the implementation vary slightly depending on the method used, and
thus need to be described separately.

A full host-based RAID-1 implementation uses dedicated controllers,
cables, and disk drives in order to implement the mirror. This provides two pos-
itive benefits to the configuration. First, it protects the mirrored disk from failure
of any of the primary components. If a controller, cable, or physical disk fails in
the primary disk array, the mirrored disk remains isolated on its own control-
lers. This type of configuration is a full RAID-1 configuration—all components
in the I/O infrastructure are protected by the presence of a redundant peer. The
host ensures that both sides of the mirror are consistent by issuing all writes to
both disks that comprise the mirror.10 This does not mean that all writes take

10. It is typical for a mirror to be made up of two “sides”—a primary and a mirror. Most
mirroring implementations also support maintenance of three or more sides. This is gener-
ally used to implement fast backup solutions, where the third mirror is detached and
backed up offline from the online database.

System
Tablespace

System
Tablespace

Host

Figure 2.24 Host-based RAID-1 implementation

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS244
twice as long, because the writes are issued in parallel from the host, as shown
in Figure 2.25.

When the write is ready to be issued, it is set up and sent to the first disk.
Without waiting for that write to complete (as would be the case in a sequen-
tial write), the write to the second disk is initiated. Therefore, the “write pen-
alty” for mirrored disk is significantly less than the expected 100 percent.

When a host needs to read a mirrored disk, it takes advantage of the
fact that there are two disks. Depending on the implementation, the host
will elect either to round-robin all read requests to alternate disks in the
mirrored set or to send the request to the drive that has its head closest to
the required track.

Either way, a significant benefit is gained by using the disks on an
independent basis for reads. If the reads are sent round-robin, a 100 per-
cent gain in read capacity is possible.11 If they are optimized to minimize
head movement, the gain could potentially be greater than 100 percent.

Failure of any component on one side of the mirror will cause the sys-
tem to start using the other side of the mirror exclusively for all read and
write requests. During this period, the read capability of the system is sub-
stantially reduced, because only one disk is available for reading.

11. This 100 percent gain assumes that no writes are occurring at the same time.

Write
Setup

Write ExecuteSingle Disk Write

Write
Setup

Write Execute
Write
Setup

Write ExecuteSequential Write

Write Execute
Write
Setup

Write Execute
Write
Setup

Mirrored Write

Write
Penalty

Time

Disk One

Disk Two

Figure 2.25 RAID-1 write penalty

2.8 STORAGE SYSTEMS 245
Once a failed side of the mirror is restored, by replacing or repairing
the failed component, the contents of the new or repaired disk are consid-
ered stale in comparison with the active side. The writes that have
occurred while one side of the mirror was unavailable have to be applied
to the newly restored side in order to bring the mirror back online.

Typically in host-based solutions, bringing a disk back online will
involve physically copying of the surviving mirrored disk onto the
replaced peer. This is necessary because the system has no record of what
has changed since the disk failed and so must take a brute-force approach.

This process is called resilvering, to further the mirror analogy, and can
take a considerable amount of time when the system is still servicing its
normal workload. This can also present response time problems, because
the active side of the mirror is servicing all user requests and supplying the
data for the full copy. Often, there are options available as to how quickly
the resilvering is performed. This is a fine balance, because it is undesirable
to be unprotected for any extended period (as you are when the other side
of the mirror is stale), but it is also undesirable to resilver too aggressively,
because the system will suffer poor response times as a result.

There is another situation that can cause resilvering in a host-based
solution. When the host system crashes, there is no guarantee that writes
were performed to both disks that constitute the mirror. Therefore, the sys-
tem cannot rely on the integrity of the data between the two sides of the
mirror and must take action to ensure that the data between the two sides
is clean. The approach taken to achieve this is simply to designate one side
of the mirror as clean and the other side as stale. This forces a resilvering,
and the mirrored disk can once again be guaranteed to be consistent with
itself. This can be a catastrophic occurrence in a production system,
because it is likely that most disks in the system will require resilvering,
and you must pay this penalty after getting your system restarted after the
crash.

Some of the problems associated with host-based mirroring are
resolved when the mirroring is performed within an intelligent disk array
(see Figure 2.26).

In this configuration, a slightly different approach needs to be taken
from the host’s perspective. All of the mirroring is taken care of inside the
disk array, with the host aware of only a single target to read from and

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS246
write to. As two connections are no longer necessary between the host and
the disk, the failure of the single connection means that both the mirrored
disks are unavailable.

To get around this problem, the concept of an alternate path is intro-
duced. During normal operation, both of these channels are used to read
from and write to the disk. On failure of one of these channels, the other
channel takes on the entire workload until the failed channel is restored. In
this way, the connections to the disk are once again fully protected, and
the full bandwidth of two channels is available once more.

Within the disk array, the read and write operations are converted into
discrete requests to the relevant disks, without the host being aware that
there is more than one disk. The write activity is still subject to the over-
lapped write penalty as the host-based mirroring, unless caching is used
within the disk array.

There are essentially two benefits of performing the mirroring within
the disk array itself. First, there is no processing overhead incurred by the
host to manage the mirrored I/O. Although this is not a very high over-
head, in a very-large-scale system it is important to maximize the available
processing capacity wherever possible.

Host

P
rim

ar
y

P
at

h

A
lte

rn
at

e
P

at
h

Intelligent Disk Controller

System
Tablespace

System
Tablespace

Disk Array

Figure 2.26 RAID-1 hardware implementation

2.8 STORAGE SYSTEMS 247
Second, the mirror is not exposed to problems resulting from crashing
of the host. If the host crashes, the mirror does not become stale, because
the state information is not stored on the host and therefore is unaffected
by any host operations, including crashes. This single attribute makes
disk-array-based (commonly called hardware-based) mirroring very
attractive for building a highly available system.

Other advantages of using a hardware-based mirroring policy come
into play when the disk array includes a quantity of cache memory. These
advantages will be discussed in Section 2.8.8.

The downside of disk mirroring is that the cost of the entire disk infra-
structure is exactly 100 percent greater, with no gain in storage capacity.
This having been said, in a large-scale database environment, the storage
capacity is often a concern secondary to the service capacity of the disk
system. Mirroring does provide a significant uplift in the read capability of
the system and so provides performance improvements in addition to
absolute protection of the data.

RAID-0+1
RAID-0+1 is another RAID level that was not described by Patterson et al.
Based on the “made up” RAID-0, RAID-0+1 is exactly what its name
implies: striped and mirrored disks.

Figure 2.27 shows a RAID-0 implementation comprising a set of six
striped disks mirrored over discrete SCSI channels to an identically config-
ured mirror of the stripe set. This is the most common configuration used
in high-end transaction processing environments, because it presents
excellent performance and reliability.

The RAID-0/RAID-1 combination has started to be called RAID-10.
This has nothing to do with RAID levels, of course, but with the marketing
departments of RAID hardware vendors. Still, it’s easier to say than “0+1,”
so we’ll adopt its use in this book.

RAID-10 can be implemented using various combinations of hard-
ware-based RAID and host system software. For the purposes of this
book, we will concentrate on the two most common implementations,
because they also demonstrate an important operational difference
between them.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS248
The most common environment for the first of these implementations
is a 100 percent software solution, with the striping and mirroring both
handled by software on the host. In this configuration, the stripe set is first
created and then mirrored. In this configuration, it is the entire stripe that
is mirrored, and any disk failure in the stripe set will take that entire side
of the mirror offline. For example, if any disk in stripe set A in Figure 2.28
fails, the entire A side of the mirror will become unavailable.

If a failure were then to occur anywhere in the remaining side of the
mirror (side B), the entirety of side B would also be taken offline. At this
stage, all of the data (A and B) is unavailable and logically corrupt.

Host

S
C

S
I C

ha
nn

el
(s

)

S
C

S
I C

ha
nn

el
(s

)

RAID-0

System Tablespace

RAID-0

System Tablespace

RAID-1

Figure 2.27 RAID-0+1 implementation

1A 2A 3A 4A 5A 6A

Disk-centric RAID-10Stripe-centric RAID-10

1B 2B 3B 4B 5B 6B

A

B

= 'Mirrored to'

Figure 2.28 Stripe-centric versus disk-centric RAID-10

2.8 STORAGE SYSTEMS 249
The other common implementation of RAID-10 involves a combina-
tion of hardware-based RAID and host software. The RAID-1 component
is handled by the hardware, and the RAID-0 striping is taken care of in
software on the host. The important difference between this configuration
and the 100 percent software solution is that in this configuration it is the
disks themselves that are mirrored, not the stripe. What this means is that
data loss can occur only if the corresponding disk on the other side of the
mirror goes bad, not just any disk. For example, in Figure 2.28, if disk 1A
fails, it would take a failure in disk 1B for data loss to occur. No disk other
than 1B would make any data unavailable.

Obviously, this issue comes into play only in a double failure situation
and is therefore not very statistically likely to cause a problem. However, in
the stripe-centric configuration, there is an n-fold greater likelihood of data
loss if a double failure occurs, where n is the number of disks in the stripe.

2.8.7 RAID-5
The goal of the RAID-5 design was to provide a reliable, high-performance
array of disks with the minimum amount of redundant hardware. RAID-5
is based on the use of parity protection across several drives in order to pro-
vide protection against disk failure. The RAID-5 configuration (see Figure
2.29) is essentially a striped configuration with an additional disk added to
cater to the additional storage needed for the parity information.

With the data striped across the drives in this way, the read perform-
ance of RAID-5 is comparable to that of RAID-0. A five-disk RAID-5 con-
figuration will perform practically the same as a four-disk RAID-0
configuration, because no performance is gained from the parity disk.

= 64KB Block

Block 0
Block 4
Block 8

Block 1
Block 5
Block 9

Block 2
Block 6
Parity

Block 3
Parity

Block 10

Parity
Block 7

Block 11

Figure 2.29 RAID-5 organization

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS250
Parity protection uses the storage of a mathematically derived “check
value” for each stripe of actual data. This block of calculated parity infor-
mation is then stored on one of the disks in the array. The actual disk cho-
sen to store the data is changed on a round-robin basis, so that one disk
does not become the bottleneck in a write scenario (see below).

In Figure 2.29, blocks 0, 1, 2, and 3 are used to generate the parity infor-
mation stored on disk 5. RAID-5 uses an exclusive-OR method of parity
generation, which allows any value to be recalculated from the remaining
parts. The exclusive-OR operation (XOR or ⊕) is a Boolean operator that
returns 1 when one and only one of the bits compared is a 1. What this
means in real terms is that the following formulas are possible:

and

You can try this reversible operation on any scientific calculator to make
sure that you are happy that this “just works.” With this ability to recalcu-
late any missing values, RAID-5 can sustain the loss of any single disk in
the stripe with no loss of data. However, when this occurs, RAID-5 runs in
a “degraded mode.” This degradation is significantly worse than, for
example, losing one side of the mirror in a RAID-1 configuration.

When a read is issued to a degraded RAID-5 array, the array must
rebuild the missing data from the failed disk. To do this, it must read the
corresponding blocks of data from every other disk in the array. In our exam-
ple, if the middle disk were to fail, and a read of block 2 were issued, disks
1, 2, 4, and 5 would all need to be read in order to recalculate the missing
data from the remaining data plus parity information.

When the disk is replaced, the disk must be rebuilt by using all of the
other member drives to recompute the missing data. This can be an
extremely lengthy process on a busy system.

RAID-5 writes, on the other hand, are almost legendary for their poor
performance. The “RAID-5 write penalty” is well known in most storage
circles. When a write occurs on a RAID-5 volume, the block that it replaces
must first be read, in addition to the parity block for that stripe. The new
parity can then be calculated from this as:

Parity Block1 Block2 Block3 Block4⊕ ⊕ ⊕=

Block3 Block1 Block2 Parity Block4⊕ ⊕ ⊕=

2.8 STORAGE SYSTEMS 251
The new data and the new parity information must now be written as an
atomic operation, because any partial writes will corrupt the data. There-
fore, a single write within a single block on a single disk equates to a mini-
mum of two reads and two writes, to keep the array up to date.

The necessary writes of the parity information are the reason that the
parity information is spread across all the disks in the array. If all the
parity information were stored on a single disk, that disk would ever be
capable of executing one read or write concurrently. This implies that
only one concurrent write could occur in the entire array of disks,
because all writes involve a write to that one parity disk. By spreading
the parity over all the disks, depending on the block accessed, the theo-
retical number of concurrent writes at any one time is the number of
disks divided by 2.

It is most common for RAID-5 to be implemented in hardware for
several performance-related reasons, the most significant of which is the
sheer number of I/O requests that need to be performed in order to
operate in RAID-5 mode. For example, one write takes at least four I/Os,
assuming that the I/O does not span more than one drive. If the RAID
were implemented in software, all of these I/Os would need to be set up
by the operating system and sent across the bus. In comparison with the
I/O overhead, the task of processing the XOR operations is insignificant.

The final reason that RAID-5 lends itself to hardware implementation
is that it benefits greatly from caching the I/O requests, especially for the
write requests. For anything that is sensitive to slow response time from
the disk (such as redo logs), the use of a write cache is essential.

RAID-5 works well for applications that are mostly read-only, espe-
cially very large data warehouses in which the data must be protected
with a minimum of redundancy. In large-scale transaction processing
environments, a pure RAID-5 solution does not typically provide the per-
formance that is required. If RAID-5 is the only possibility within the
budget, a hybrid solution is recommended that stores redo logs, rollback
segments, and temporary tablespaces on RAID-1, and the rest on RAID-5.
This addresses the most significant problems of RAID-5 in an OLTP envi-
ronment by keeping the heavy write activity away from RAID-5.

newparity olddata newdata⊕() oldparity⊕=

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS252
2.8.8 Cached Disk Arrays: EMC Symmetrix
A cached disk array, such as a member of the EMC Symmetrix family, pro-
vides several interesting variations on the standard disk technologies pre-
sented in this chapter. Although these units can be more expensive than
other solutions, the increases in flexibility and performance can often jus-
tify the additional cost. The EMC units, in particular, extend beyond the
capabilities of raw disk devices and justify this dedicated coverage.

The architecture of the EMC units (see Figure 2.30) is very similar to
that of a multiuser computer, only this is a computer that communicates
with SCSI commands rather than with keystrokes on a terminal. The
“users” of the computer are the database server hosts.

The EMC Symmetrix disk system looks a little different from conven-
tional disk arrays. The fundamental difference is that the cables from the
host are never physically connected to the actual disk storage. All commu-

Dual Internal Busses (500MB/s)

External
I/O Controllers

External
I/O Controllers

External
I/O Controllers

External
I/O Controllers

Cache Layer

Internal
SCSI Controllers

Internal
SCSI Controllers

Internal
SCSI Controllers

Internal
SCSI Controllers

Figure 2.30 EMC symmetrix architecture

2.8 STORAGE SYSTEMS 253
nication between the host and the storage goes through the cache. This
decoupling of the physical connection allows several enhancements of the
functionality of the disk array and provides a large cache to improve the
performance of the system.

When a read request comes in, the operating system in the Symmetrix
checks to see if the requested data is already in memory. If so, the request
is immediately serviced without being subject to seek or rotational delays.
If not, a read miss occurs on the cache and a physical I/O is issued to the
disk. When the data is returned from the disk, it is loaded into the cache
and returned to the host. The software in the system keeps track of these
accesses and attempts to determine patterns in the access. For example, in
a RAID-1 configuration, the system will try to determine whether it is
optimal to read always from one side of the mirror, always round-robin, or
a combination of the two based on minimization of head movement.
Another pattern that is acted on is that of a sequential read. If a sequential
read pattern is determined, the system will go ahead and prefetch several
tracks, up to a finite maximum, in order to try to predict the next request.

When a write is issued from the host, the data is written to memory
and immediately acknowledged back to the host. The external controllers
do not have any concept of the physical storage and are concerned only
with reading and writing the cache. The cache buffers that are now dirty
are scanned periodically by the internal SCSI controllers, and any dirty
blocks are flushed to disk, depending on the activity of the system. If the
system is too busy, the writes may be deferred until later.

The EMC system guarantees that the write will eventually make it
onto disk, because it has a built-in battery power supply that provides suf-
ficient power to run for a few minutes and fully flush all dirty cache buff-
ers to disk prior to power down. Any reads that occur before the data is
written to disk will read the correct data from the cache, and so the data
returned will always be valid.

The benefit of the cache will vary from application to application.
However, two things are certain:

1. Writes will be significantly faster.

2. The Oracle buffer cache will already have taken care of a good deal of
the locality gains in the data access. Don’t expect cache hits ratios in
the 90 percent range.

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS254
In a transaction processing environment, the ability to write out the
redo log entries faster will directly benefit the response time of the system.

The EMC Symmetrix supports two levels of RAID: RAID-1 and RAID-
S. RAID-1 we have already discussed, but RAID-S is a new concept. Essen-
tially, RAID-S is an optimized implementation of RAID-3, which in turn is
virtually identical to RAID-5 but with a dedicated parity disk. The
enhancements provided by EMC include

• Faster writes than RAID-5

• Automatic reconfiguration into plain disk on disk failure

The writes have been enhanced by performing the XOR operations at the
disk drive level. This eliminates one of the I/O operations, leaving a total
of three operations per write. Although this improves the write perform-
ance, it is still substantially slower than a RAID-1 configuration. The big
improvement in write performance on the EMC unit is the use of the cache
to buffer the writes. If the write activity comes only in spikes, the cache
will successfully hide the high latency of the actual write.

When a disk in a RAID-S rank fails, the EMC provides the missing
data through XOR computation, in the same way as RAID-5. However,
when the new value is calculated, it is stored on the parity drive to elimi-
nate any future calculations for that data. Eventually, the entire rank gets
converted back to plain (non-RAID) disk in this way.

Another big benefit of the decoupled storage in the EMC is its ability to
present hypervolumes to the host. A hypervolume is a logical extension of the
physical disks, in that one disk can be represented at the external interface as
several physical disks, all with different physical identifiers on the bus. Like-
wise, the disks are not physically connected, and so the identifiers for the stor-
age are configured in software, allowing strong naming conventions.

This flexibility in how the storage is presented to the server can also
present problems if not carefully managed. For example, when you care-
fully split up your most active database files onto two different disks, make
sure that the two disks are not in fact the same disk once you get inside the
EMC box. Also, despite any assumed gains from the cache layer, it is impor-
tant always to lay out your database carefully across the physical disks,
ignoring the presence of the cache. Treat any caching benefits as a bonus, not
something that you can rely on to bail you out of a poor disk layout.

2.8 STORAGE SYSTEMS 255
Finally, the Symmetrix units provide some useful value in the form of
extensions of the usual services provided by disk arrays. The first of these
is Symmetrix Remote Data Facility (SRDF), which provides additional lev-
els of mirroring between cabinets. This facility allows an additional mirror
to be set up in a disk array that is remote from the primary, either by
ESCON channel within campus or by a WAN link to a very remote unit.
There are three different methods for operating the SRDF facility: synchro-
nous, semisynchronous, and adaptive copy.

In synchronous mode, every write must be guaranteed to be written to
the caches on both systems before the host receives an acknowledgment.
This is the “safest” mode of operation but also the one that could impose
the largest latency on the host.

In semisynchronous mode, the write is acknowledged by the host as
soon as the local cache has received it. The remote cache is updated asyn-
chronously to the actual write request, and so the performance is the same
as that of a non-SRDF-based system. No further writes will be accepted for
that particular piece of disk until the remote cache is consistent. The key to
this working effectively is the introduction of a track table.

The EMC unit maintains a track table for every track of every disk in the
system. This is simply a list in the cache of every track in the system, with a
status against it. This status is used to determine whether the version of the
track is the same on mirrored peers, whether local or remote. In the case of the
semisynchronous writes, the track table stores the status of the track in com-
parison with the remote track and determines whether the write is complete.

The adaptive copy mode of SRDF is designed for one-time updates
from the local volumes to the remote volumes. This mode compares the
track tables on both systems to determine which tracks need to be copied
to the remote system to bring it up to date. In this way, the amount of data
to be copied is kept to a minimum.

An extension of the adaptive copy mode of SRDF is the Business Con-
tinuance Volume (BCV), created by the Timefinder product. This is essen-
tially SRDF within the local cabinet and is designed to allow fast backups
of the data to be taken.

In an Oracle environment, the database is put into hot backup mode,
and a Timefinder copy is made from the primary database volumes to the
BCV copy volumes. These are unmirrored volumes that are updated in a

CHAPTER 2 HARDWARE ARCHITECTURES AND I/O SUBSYSTEMS256
way similar to the adaptive copy mode of SRDF—via the track table.
Using the track table, the copy can be substantially faster than if the entire
data set were copied, because it is typical for only a portion of the datafiles
to be written to during the business day.

Once the BCV has been synchronized with the primary volumes, the
updates are halted once again (known as splitting the BCV), and the data-
base is taken out of backup mode. During the split, it is likely that there will
be some impact on the Oracle database. The reason for this is a small imple-
mentation difference between the SRDF function and the BCV function.

When SRDF copies a track from one cabinet, the net effect is that there is
a clone of the track buffer on the remote cabinet. With this clone present, the
SRDF volume can be split from the master volume without flushing any-
thing out to physical disk. Unfortunately, BCV does not have clone buffers,
because clone buffers are not applicable for copies within the cabinet. The
effect of this is that all dirty buffers must be flushed to physical disk before
the BCV volume can be dissociated from the shared, single-track buffer.

Once the split has occurred, the BCV volumes can be archived to tape
without any impact on the database operation, provided the shared busses
within the cabinet are not saturated. This backup can also be performed
from another machine that imports the BCV volumes after the split is com-
plete.

2.9 Chapter Summary
The purpose of this chapter has been to give an overview of the concepts
used in modern hardware architectures. While some of this information
may remain as background knowledge, it is important to have a good
understanding of the concepts and architectures used in order to make
educated decisions about purchasing and configuring the right hardware
for the job at hand.

Above all, when selecting and configuring hardware for a large sys-
tem, keep it simple. If you invest the time to lay things out in a logical and
consistent manner, it will pay dividends over and over again during the
operation of the system.

2.10 FURTHER READING 257
2.10 Further Reading
Lenoski, D. and W-D. Weber. 1995. Scalable Shared-Memory Multiprocessing. Burl-

ington, MA: Morgan Kaufmann.
Patterson, D. and J. Hennessy. 1996. Computer Architecture: A Quantitative

Approach, Second Edition. Burlington, MA: Morgan Kaufmann.
Schimmel, C. 1994. UNIX Systems for Modern Architectures. Reading, MA: Addi-

son-Wesley.
Wong, B. 1997. Configuration and Capacity Planning for Solaris Servers. Upper Saddle

River, NJ: Prentice Hall.

P A R T I I

Building
Support Software

Chapter 3

Benchmark
Concepts and Design

his chapter covers some of the more critical reasons for benchmarking
and highlights why this type of testing is so important. Some ideas

are then presented as to how you can go about developing a benchmark
suite for your own application, including the provision of some useful
software tools for speeding up the process.

3.1 Why Develop a Benchmark?
First of all, we should get some definitions straight. This section discusses
benchmarks, but this term is used in a very generic way. There are many
reasons for running benchmarks, such as:

• Proof of concept

• Capacity planning

• Upgrade testing

• Platform selection/platform changes

Only the last item in this list, and the performance part of capacity plan-
ning, could be classed as true benchmarks, because the others do not com-
pare system performance. In order to keep things clear, the term benchmark

T

261

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN262
will be used when referring to the testing, whereas simulator and simula-
tion will be used when referring to the actual test software.

The importance of running benchmarks cannot be overstated. Run-
ning Oracle on a UNIX server offers many advantages over mainframe
systems, and it is frequently a cost-centric argument that is used to sell the
systems. However, the real benefit of this combination comes in the form
of rapid evolution. Major releases emerge at intervals of 6 months to 12
months, and the processor and interconnect architectures leapfrog each
other every 6 months. With the Oracle tools protecting the application
developer from most of the porting effort associated with changing plat-
forms, the price/performance ratio can be progressively lowered during a
system’s life span. Of course, this actually happens very rarely, because
new functionality is always “needed” just as extra headroom is obtained.
Either way, the rapid development of software and hardware provides
tangible business advantages.

Unfortunately, the rapid change element does not come without occa-
sional problems. Owing to the flexibility of the programming model and
the rapid rate of change in the hardware and software, any single system
can be exposed to literally millions of different states. Combined with the
financial pressures that the vendors are under to get new releases to mar-
ket, it is not unusual for unexpected problems to slip through their testing
programs.

In smaller systems, most software and hardware changes can occur
transparently because the demands that the application makes on the sys-
tem are minimal. Large-scale systems that push the hardware and soft-
ware in unique and extreme dimensions cannot rely on this kind of plug-
and-play approach. In fact, in order to implement any significant changes
at all, the target system should be tested as extensively as possible with the
real application. This is the only way to eliminate major problems before
they occur in a production environment.

3.1.1 Capacity Planning
Capacity planning is a very ambiguous term and yet actually suits this
category quite well. Capacity testing should be considered in the follow-
ing situations:

3.1 WHY DEVELOP A BENCHMARK? 263
• Initial platform sizing

• Increased user count or increased transaction rate

• Proposed application/data changes

Initial Platform Sizing
The initial sizing of a platform is potentially the most complex, because lit-
tle information is available to aid the process. Frequently, such sizing is
made far more difficult by the fact that the application development has
not even been started at the time the systems need to be purchased, and so
no information about the operation of the future system is available.
Unfortunately, there is no easy solution to this problem, although some
pointers on building a reasonably accurate simulation in these circum-
stances can be found in Section 3.5.

If the application has already been developed, things are considerably
more straightforward. If the application is a well-known package such as Ora-
cle Financials, then it becomes easier still, because most hardware vendors
have specialized expertise in these products and extensive experience regard-
ing how they run on their particular platform. The only word of caution here
is that most of these packages—particularly financial packages—have to be
tailored to the particular business or accounting structure of the company,
which can significantly change the operational profile of the application.

Whether the application is brand new or an off-the-shelf package, some
kind of testing should be performed as a sanity check for the paper-based sizing
exercise. In the case of a new application, extra caution needs to be exercised. It
is not unusual for an application “proof of concept” to establish a system sizing
that differs by an order of magnitude from the actual requirement.

Increased User Count or Increased Transaction Rate
A change in the size of the user community or an increase in transaction
rate is relatively simple compared with the initial sizing exercise. The
application profile is well known by this stage, and the footprint of each
transaction can be recorded quantitatively—which is a major advantage.
However, it should be clear by now that doubling the capacity of the sys-
tem, for example, does not necessarily allow a doubling of user count.

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN264
Increasing the number of users and increasing the transaction rate are
both common in an expanding business. Acquisitions can increase user pop-
ulation, and simple increases in business volume resulting from company
growth can produce a steady increase in transaction volume. While the
former is rarely a surprise, an increase in transaction volume is frequently
overlooked and needs to be planned for in advance whenever possible.

The goal of this type of testing is to verify that, for a given release of
the application code and a resized system configuration, the new user base
or transaction volume will be able to operate within the contracted
response times. As long as the right types of metrics are available from
both current production and the simulator, this should be a relatively sim-
ple exercise. There are basically two metrics that need to be followed:

• Throughput, a.k.a. transactions per second. Throughput will be altered in
either of these situations. The throughput of the system would be
expected to go up with the addition of more users. The estimated
increase in transaction rate should be ascertained from business data
prior to testing, in order to test the system at the correct load.

• Response time, or user-perceived response time. The response times of the
system should not exceed the contracted times.

Knowledge of how the existing system runs is essential for this type of
testing. In addition, baseline testing should be run with the simulator.
During these tests, the benchmark system should be loaded at the same
level as the current production system. In this way, the loading imposed
by the simulation software can be compared directly against the produc-
tion system at an identical transaction load. This is an important test to
perform, because benchmark workloads are almost always too clinical in
profile when compared with the natural randomness encountered in pro-
duction. Using the baseline test results, more accurate estimations can be
determined for production system utilization.

Proposed Application/Data Changes
Can we run yield analysis concurrently with online users during the day?
Can we add application-level auditing? If we add three times more prod-
ucts to the portfolio, does this impact the response time of a transaction?
These are the types of questions that are frequently asked during the life

3.1 WHY DEVELOP A BENCHMARK? 265
cycle of an application. They are fairly significant questions with no easy
theoretical answers, and there are severe penalties if they are answered
incorrectly.

These questions are most accurately answered using the application
simulator, particularly if remote terminal emulation is employed (see Sec-
tion 3.6). Once again, it is important to establish a set of baseline results that
show how the simulation software ran prior to the change. The benchmark
tool can then be executed in the new configuration, and the results of the
simulation can be directly compared with those of the baseline test.

Some application changes, such as the integration of a transaction
monitor, are too major for this kind of testing. Changes of such propor-
tions should be considered as new developments, because they change the
entire profile of the system.

3.1.2 Upgrades
The types of upgrades discussed here are operating system, Oracle, and
hardware upgrades. While maintenance releases, such as an upgrade from
Oracle 7.3.3.3 to Oracle 7.3.3.4, typically address only known problems,
any release that contains feature code should be viewed suspiciously. With
the Oracle RDBMS, any change in the first two fields of the version
number denotes the implementation of feature code. Occasionally,
“minor” feature code is implemented in maintenance releases. This hap-
pens most often shortly after a large implementation of new features,
because the developers have missed the freeze date for checking in their
new feature code.

With the operating system, the risk associated with each release varies
from vendor to vendor. Careful attention should be paid to release notes
prior to planning an upgrade. The same is true of Oracle releases, to
ensure that the right steps have been taken to minimize the risk of
upgrade. With hardware, certain upgrades can be performed without test-
ing. Typically, processor and memory upgrades can be implemented with
minimal risk. The things to watch are new I/O subsystems, firmware
upgrades, and completely new architectures.

The bottom line of all this is that when you are building or maintaining
a large-scale database system, you need to be scared of bugs, because they
will be evident in any nonmaintenance upgrade. Don’t kid yourself: if you

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN266
think the new release will go without problems, you are being way too
optimistic.

It’s a good idea to approach upgrades as follows:

• Don’t upgrade until you have to, unless the new release contains fixes
of critical outstanding problems that cannot be backported.

• Upgrade one thing at a time. Maximize change control, and increase
the chance of keeping at least some of your upgrades in place, should
problems occur.

• Bundle testing together. Minimize the time you spend testing releases,
and bundle the testing of several products (such as Oracle and O/S)
together. As long as you test all the combinations that you will pass
through in the upgrade cycle, you should find this a low-risk optimi-
zation of your time.

The important point here is to test the new releases. Neither Oracle nor
the operating system vendor will have tested the very particular set of dimen-
sions that your application will test. Therefore, your system is fairly likely to
hold the key to exposing unforeseen race conditions, system states, and so on,
and it is your responsibility to find such problems before they hurt you in pro-
duction. With major Oracle upgrades, such as from Oracle7 to Oracle8, there
is little opportunity to reverse the process in the event of a major problem
after the upgrade, because data changes occur in the database structure that
cannot be undone. This makes the testing process more important than ever.

3.1.3 Platform Changes
Testing a new platform is a common use of a benchmark. This is a really
great way to ascertain the real potential of a new machine on which you
intend to run your system. Although you can study the SPEC numbers for
the platform, factor in the latency and bandwidth of the system intercon-
nect, and maybe even take into account the CPI (clocks per instruction)
count of the processor, you will probably still achieve, at best, only a ball-
park estimate of a new system’s potential. Running a quantitative bench-
mark of the system with the actual application is the only way to ascertain
the effectiveness of a new platform. There are too many other variables,
not least of which is the scalability of the O/S, that can drastically affect
the real capability of the system.

3.2 WHAT ARE WE SIMULATING? 267
Normally when testing new platforms for a system, you are primarily
interested in testing the database server. This, after all, is the component of
the system that has to provide the most scalability and is also the most
variable in terms of pure workload. Testing of support systems, applica-
tion servers, and so on is not essential in a platform change benchmark,
although it could be argued that such testing is still worthwhile even if
only to verify the entire system in operation on the new platform.

3.2 What Are We Simulating?
3.2.1 Defining Application Areas
It is important to have a good understanding of your application when
developing a simulator for it. The first part of such an understanding is
being able to identify the different types of users accessing the system,
how they are using the application, and how many of them are doing so.
This is important in order to be able to understand what is going on in the
simulation runs and to be able to comment on why things are occurring
that may not have been expected.

3.2.2 Defining the Application Split
Once you have a good understanding of the overall application areas, you
need to start defining functional areas of the application. In practice, the
split is never black and white—the application will, by nature, share data
among application areas. That is the whole reason that it accesses a com-
mon database in the first place.

However, there will be clear boundaries between the functions defined
in the applications, and probably among the day-to-day duties of the users
on the system as well. For example, if a hotel had a single system to cater
to all of its needs, it would include the following functional areas that can
be classified as distinct areas:

• Reservations

• Front desk (guest check-in and check-out operations)

• Billing

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN268
• Stock control

• Finance

• Housekeeping

• Maintenance

Although there is a strong link among all of these areas, they can be indi-
vidually classified as different functional areas.

Once the split has been defined, work can begin on each area. Specifi-
cally, the process should look a little like the diagram in Figure 3.1.

3.2.3 Careful with Those Assumptions, Eugene
The “Significant Workload?” decision is a difficult one. It is very easy to make
a simulated molehill out of a resource mountain, and this could compromise
the entire result set of the benchmark. It’s important to remember that one
query can destroy a system, so although only a handful of users may be per-
forming this type of transaction, make sure that the function they perform is
definitely insignificant before discounting them from the simulation.

In addition, when an application has functional areas that overlap, it is
sometimes necessary to build some types of transactions simply to feed
other transactions with dependent data. In this case, either the transaction
needs to be implemented or the data needs to be prebuilt into the database
(see Section 3.6).

Once all the significant application components have been defined,
scenarios need to be described for each transaction type. For some transac-
tions, there will be only one way of completing the transaction, and so this
will equate to a single scenario for that transaction type. More typically,
there will be potentially hundreds of scenarios that could be defined.

In our hotel example, a hotel guest could have a reservation, have no
reservation, have any number of frequent flyer cards, and/or select one of
many different types of rooms. In such situations, it is not practical to
build scenarios for all possible combinations, owing in no small part to the
difficulty of providing the data required to execute them. A realistic sam-
ple of the scenarios should be adopted in this situation.

The final pieces to be created are the actual simulation and the data
required to run it. These pieces will be covered in the next section.

3.2 WHAT ARE WE SIMULATING? 269
Significant
Workload?

Document this and
discount

component from
benchmark

Yes

No

Define transaction
scenarios and

volumes

Define database
calls No

Define data sets
and randomization

requirements

Accurate user
simulation?

No

Yes

Produce “script” fileYesUsing RTE
software?

Choose
Application
Component

Figure 3.1 Transaction scenario development process

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN270
3.3 Selecting a Development Approach
It is important to choose the most suitable development approach for your
application and your environment. There are two approaches for building
benchmark software:

1. Remote Terminal Emulation (RTE) software

2. Completely custom development

Each of these approaches has its merits, not only in terms of cost but also
in terms of useability in different scenarios.

3.3.1 Using Remote Terminal Emulation Software
RTE software is a specialized piece of commercial software such as Per-
formix or preVue from Rational Software. Good results can also be
obtained using Expect, a public domain utility1 that provides many of the
same features but uses an interpreter instead of compiled code.

There are several different approaches that can be taken to simulate
the load on the database server:

• Dumb terminal emulation

• Client/server network protocol

• HTTP (Hypertext Transfer Protocol) Web simulation

The common attribute of these approaches is that they all simulate real
users accessing the system. The correct tool to use depends on your appli-
cation architecture. Dumb terminal emulation works very well for simu-
lating the use of a character-based application, regardless of how it was
written or what happens at the back end of the application. The cli-
ent/server emulation traps the network communication between the cli-
ent and the server, and subsequently simulates the load in this way,
including three-tier architectures. The HTTP emulation simulates hits on a
Web server, which in turn accesses the database.

1. Expect can be downloaded for free from http://expect.nist.gov.

3.3 SELECTING A DEVELOPMENT APPROACH 271
This type of software has the following advantages over writing your
own simulation of the application:

• Rapid development of simulation scripts owing to supplied tools

• Ability to simulate application servers as well as database server

• Very accurate simulation of load on database server

• Less susceptibility to application code changes when compared to cus-
tom simulators

The only disadvantage of RTE software, in fact, is that it costs money.
One thing to bear in mind when looking at RTE software is that it

presents the same problem of data generation that you would face in a
custom simulation suite. None of the available products has the capability
of knowing how your application needs to be driven. Ask your vendor
about what kind of infrastructure they provide for the type of data genera-
tion you will need to be doing.

3.3.2 Custom Simulation Development
The home-grown approach to simulators involves building the code from
scratch, using the Oracle Call Interface (OCI) to gain the most control
available over what is executed on the database server. This approach has
the following advantages over the RTE approach:

• Zero capital cost

• Does not need a completed application to run

This approach also has several disadvantages:

• Much longer development time

• Needs redeveloping every time the application changes

• Does not test application servers

• Not as accurate as RTE simulations

Despite the certain disadvantages of developing the simulation from
scratch, there are occasions where it still makes more sense. If the application
does not yet exist, for example, it is the only choice. Also, if the simulation does
not have many scenarios or much complexity, it may be more cost-effective to

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN272
develop it without the aid of RTE software. For these reasons, this type of
development cannot be discounted and will be covered in this chapter.

3.4 Building a Simulator Using RTE Software
An important part of the value of using RTE software is the availability of
a variety of tools to assist in the process. These tools include

• Transaction capture tools

• Generalized programming interface

• Execution harness

• Statistical analysis tools

• Debugging tools

These tools provide a fast path to a simplistic simulation of your applica-
tion. In a matter of minutes, a simple simulation of your application can be
running and the results analyzed.

The single most important attribute of RTE software, however, is that it
simulates the real user, utilizing the same kind of input as the actual produc-
tion workload. Sometimes the importance of this attribute is not apparent.

Using, for example, Pro*C, which has long been the favorite for bench-
mark applications, the database server is (mostly) communicated with at a
SQL level. This allows SQL to be submitted and answers to be retrieved.
Although this simplistic approach seems good in theory, in practice more con-
trol is required. SQL*Forms, for example, communicates with the database at
the UPI layer a lower lever, Oracle-proprietor communication protocol. This
allows more control over the opening and closing of cursors, the steps of exe-
cution, and subsequently the way that memory is allocated on the server.

The consequence of this is that a Pro*C emulation of the application will
not produce the same work profile of the server as the real application, even
if the statements are issued in the same order and with the same bind varia-
ble assignments. RTE software provides true emulation of the application’s
usage of the database server, complete with all its horors and triumphs.

Although RTE software provides an accurate way of simulating the
application, it provides no benefit from a data perspective. It is most com-

3.5 BUILDING A CUSTOM BENCHMARK SUITE 273
mon for an application to be expecting certain data from the user. This
may be as simple as a name, a reference number, or a date, but input is
expected nonetheless. During normal use of the application this does not
present a problem, because the user of the system is presented with this
data from some source such as a customer in the store or paperwork on
the desktop. In a simulated environment, this data is not available through
these means, and so it needs to be generated in some way. This is the prob-
lem that is common to both methods of simulation.

3.5 Building a Custom Benchmark Suite
There are two common starting points in building an application simula-
tor from scratch: situations in which the application (a) has been devel-
oped and (b) has not been developed.

3.5.1 Programming Environment
A variety of programming tools are available for use in developing a cus-
tom benchmark suite. While these tools have various merits of their own,
it is recommended that the Oracle Call Interface (OCI) be used for this
type of development. OCI is recommended for any programming exercise
in which simple but absolute control is needed over actions requested of
the RDBMS, because it is the closest thing to the explicit server instruction
set in the UPI interface. OCI has a widespread reputation for being “hard,”
but this is really not the case. There are two things that make using OCI
“hard” in comparison with standard C programming:

1. You need to know the steps involved in SQL processing from the
server perspective.

2. You need massive parameter lists for each function that are mostly
unused in C.

The truth is, you need to know the steps of SQL processing anyway in order
to support a large system, and the parameters list problem can be easily
fixed using macro wrappers for each OCI call used to eliminate redundant
parameters. Once these obstacles are out of the way, OCI is in many ways
more straightforward than Pro*C, because no precompilation is necessary.

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN274
3.5.2 When the Application Has Not Been Written
In order to reduce the degree of error in building initial simulations before
the application has been developed, it is important to learn from some
painfully gained experience. Most of this falls squarely in the “common
sense” category, but it is surprising how much of it is frequently missed.
When the application has not been written, the use of RTE software is
clearly out of the question, and so a call-centric approach needs to be taken
instead of an application-centric one.

First of all, it is important to get as close to the final transaction profile
as possible, and when the application is not written this can be difficult.
However, certain pieces of the application environment must be at least
partially complete before it is worth conducting a preliminary benchmark.
The specific things to look for are as follows:

• Final data model. Unless the data model is virtually complete, the simu-
lation will not be accurate. It does not need to be polished, but the basic
structure of the model should be final. A classic stumbling block in this
area would be where the data model becomes more normalized than
the simulation, thus adding a good deal of complexity to several of the
queries in the application. This could result in an undersized system.

• Query profile. How many queries are executed within each transaction,
and what do they look like (primary key single-row fetches, index-
driven range scans, etc.)? Don’t neglect “list-of-values” processing
either, which can very quickly become a major part of the system.

• Insert/update/delete profile. Which tables do we insert/update/delete, and
how many rows are processed each time? Where do these activities
occur in relation to the query workload and the commits/rollbacks?

• Stored procedures. To what extent is application logic handled with
database stored procedures? This is really hard to simulate adequately,
because it is likely that you will be several months (or years) of devel-
opment time away from knowing the answer to this question. It is a
bad thing to have significant processing within stored procedures, in
my opinion, because the primary goal of a stored procedure should be
to reduce network round trips between the client and the server by
bundling multiple SQL interactions into a single SQL*Net call. In fact,
as your application is not written yet, you still have a chance to try to
make sure that stored procedures are used for the right reasons.

3.5 BUILDING A CUSTOM BENCHMARK SUITE 275
3.5.3 If the Application Exists: Trap and Emulate All SQL Calls
When the application is in some kind of executable state, it is possible to
capture all the calls to the database and replay them in a simulated envi-
ronment during the benchmark. This is more straightforward in a two-tier
environment, where there is a one-to-one relationship between the
requests made through the application and the process executing the SQL
against the database. In a three-tier environment, there is more complexity,
but the same principles apply.

The starting point is to find a person who really knows the application
and how it is used in reality. The perfect person to do this is a real-life user
of the application, who can show you ways of operating the application
that you, the developer, or the instructor could never imagine. This is as
close to reality as you can get. If this is not an option that is available to you,
then an expert developer is your only option, although the simulation will
then take a more clinical, how-it-should-work type of model: try to make
sure that you find some way to inject the “wild-card” factor into it.

For each application area that is defined, define the types of transac-
tions that can be performed within it, and run through each of these
screens while tracing the calls made by the session, as detailed in the next
subsection. It’s important to include the following actions when building
the list of tasks performed by the system:

• Logging on

• Logging off

• Menu navigation

When running through each of the screens, it is very beneficial to use rec-
ognizable values for the fields that will need to be generated by the simu-
lation, rather than using the explicit values used in the walkthrough.
Values such as ‘RND3HERE’,’GEN2HERE’ and ‘12345’,’99999’ generally work well
and can dramatically speed up later steps.

Tracing Sessions by Setting Events
Most people know of the “alter session set sql_trace=true” technique for tracing the
calls made from an application. This is a useful technique, but not as use-
ful as it could be, because it does not contain the bind variable information
for each cursor.

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN276
In addition to this well-documented approach is an undocumented
method of tracing the activity of a session, a considerably more useful one
for this type of activity. While useful for determining database access for
use in a simulator, this method of tracing also represents one of the most
powerful tools available for diagnosis of performance problems as they
happen. For this reason, a full user’s guide is required for this function,
and so we will invest some book space accordingly.

The method for activating the improved tracing is the use of a data-
base event. An event is a signal to a database session that alters its behavior
according to the definition of the event. The definition of the event is
determined within the kernel code of the Oracle RDBMS and is not docu-
mented beyond brief descriptions in the message file. The message file is
the same file that Oracle uses to look up NLS-specific error messages, such
as “max # extents (50) reached in table SCHEMA.TABLE” and, in the case of English lan-
guage systems, this file is ?/rdbms/mesg/oraus.msg. Embedded in this file are the
numbers and descriptions of the events that are defined within that partic-
ular Oracle release.

A word of caution, however: many (most) of these events are not for pub-
lic consumption. For example, event 10066 simulates a file verification error:

These types of events are used internally to Oracle for the simulation of
problems. For this reason, it is wise to stick to events that are known to be
safe.

The event that we are interested in is 10046:

This event is set with the following syntax:

The level, or degree, of the tracing is set using numbers 1 through 15 in
place of the x. The level number corresponds to the setting of particular
bits within the range 1 through 12 (Table 3.1).

10066, 00000, "simulate failure to verify file"
// *Cause:
// *Action: level is file number to fail verification

10046, 00000, "enable SQL statement timing"
// *Cause:
// *Action:

10046 trace name context forever, level <x>

3.5 BUILDING A CUSTOM BENCHMARK SUITE 277
For this event, only bits 3 and 4 are used. With the event enabled for
any level, the output includes the same attributes as sql_trace=true. When bits
3 and 4 are set, additional information is returned that is extremely useful.
Try using level 4 for just bind variables, level 8 for just wait states, and
level 12 for all of the above.

The event can be set at either the instance level or the session level, and
the event can be set by any one of three distinct methods:

1. alter session set events "10046 trace name context forever, level x"
(personal user session level)

2. event="10046 trace name context forever, level x" in the init.ora
(instance level)

3. On a process-by-process basis using svrmgrl oradebug
(other user session level)

Method (1) is the most straightforward method of setting the event on the
correct session, but it is useful only if this call can be made by the applica-
tion session as and when required. It involves the connected session issu-
ing a SQL call, as detailed above, to set the event on itself.

Method (2) is useful when performing tracing en masse, because it oper-
ates at the instance level, forcing all sessions to set this event at start-up. This
is the most appropriate method to use when performing application cap-
ture, because it eliminates the manual activation steps. It requires the event
to be set in the init.ora so that all sessions are affected by the change.

Method (3) is used to set the event on any process from another ses-
sion. This method is most useful for reactive problem diagnosis,
because it can be set on any user session that is connected to the data-
base and shows a consistent view of the user state, including calls and
wait states. A further digression may be useful at this stage to cover the

Table 3.1 10046 Trace Detail Switches

Bit Offset Detail Level

Any Same as sql_trace=true

3 Values of bind variables reported

4 Wait states reported

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN278
use of the “svrmgrl oradebug” functionality that is available in releases 7.3
and above.

ORADEBUG. The svrmgrl product that is shipped with the Oracle
RDBMS contains a set of functions that were previously available
only through a tool called oradbx. Oradbx was a binary that was shipped
with prior releases of Oracle and needed to be explicitly built using
the supplied makefile. This binary was not created as part of any
standard installation . For this reason, oradbx was not widely known in
the Oracle community.

Now that the functionality is provided as part of svrmgrl, it is available
on every Oracle system without any manual intervention. The commands
are accessed using the oradebug prefix, as demonstrated below, to gain help
on the facility:

Once again, this is a facility that should be used with extreme caution:
the database can be corrupted beyond all repair if some of these com-

SVRMGRL> oradebug help
HELP [command] Describe one or all commands
SETMYPID Debug current process
SETOSPID <ospid> Set OS pid of process to debug
SETORAPID <orapid> ['force'] Set Oracle pid of process to debug
DUMP <dump_name> <level> Invoke named dump
DUMPSGA [bytes] Dump fixed SGA
DUMPLIST Print a list of available dumps
EVENT <text> Set trace event in process
SESSION_EVENT <text> Set trace event in session
DUMPVAR <p|s|uga> <name> [level] Print/dump a fixed PGA/SGA/UGA variable
SETVAR <p|s|uga> <name> <value> Modify a fixed PGA/SGA/UGA variable
PEEK <addr> <len> [level] Print/Dump memory
POKE <addr> <len> <value> Modify memory
WAKEUP <orapid> Wake up Oracle process
SUSPEND Suspend execution
RESUME Resume execution
FLUSH Flush pending writes to tracefile
TRACEFILE_NAME Get name of tracefile
LKDEBUG Invoke lock manager debugger
CORE Dump core without crashing process
IPC Dump ipc information
UNLIMIT Unlimit the size of the tracefile
PROCSTAT Dump process statistics
CALL <func> [arg1] ... [argn] Invoke function with arguments

3.5 BUILDING A CUSTOM BENCHMARK SUITE 279
mands—most notably POKE, SETVAR, and CALL—are used. In addition,
requesting one of the background processes to perform an extensive dump
will effectively suspend the real function of that process for that period,
possibly hanging the database.

The commands in which we are most interested at this stage are
• SETOSPID xxxx

• UNLIMIT

• EVENT “xxxx”

SETOSPID should be the first command issued, as it identifies the Oracle
process (UNIX process) on which the tool should operate. This informa-
tion is available from V$PROCESS, joined to V$SESSION on the PADDR column.
Next, the UNLIMIT TRACE directive should be used to remove the limits set
within the init.ora for restricting the size of a tracefile. This makes sense,
because you will manually turn off the trace when you have all the
required information. Finally, the event can be set, as detailed above. From
this point forward, a tracefile will be created in user_dump_dest, of the form
ora_PID.trc. To be sure of locating the correct file, the TRACEFILE_NAME directive
can be used om oradebug.

Whichever method is most appropriate for tracing, it can be turned off
again on the session level by using the following command:

Using this event provides the following advantages over the sql_trace=true

method:

• It can be set for a running session without the user being aware of it,
using the svrmgrl oradebug facility.

• It shows wait states that the execution of each statement goes through.

• It details binding information for each cursor.

The bind information can be used in generating the simulation code, and
the ward states can be used in the tuning of application SQL.

10046 trace name context off

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN280
Here’s a sample piece of output from a 10046-generated tracefile, using
level 12 to get all available information:

In this tracefile extract, there are examples of all of the attributes found in
this type of trace. For this trace, timed_statistics was set true before the trace was
initiated. Starting at the top of the trace, the “PARSING IN CURSOR” section
shows the parsing of a new cursor and the assignment of the “#1” cursor
number to it. The tokens listed in Table 3.2 describe information about the
cursor and its context.

=====================
PARSING IN CURSOR #1 len=50 dep=0 uid=20 oct=3 lid=20 tim=3802520068 hv=650761597 ad='c12dc1f0'
select count(*) from some_table where some_col=:b1
END OF STMT
PARSE #1:c=8,e=10,p=2,cr=29,cu=1,mis=1,r=0,dep=0,og=0,tim=3802520068
BINDS #1:
 bind 0: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=03
 bfp=400e7700 bln=22 avl=02 flg=05
 value=1
EXEC #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=3802520068
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1650815232 p2=1 p3=0
WAIT #1: nam='db file scattered read' ela= 1 p1=1 p2=4752 p3=5
WAIT #1: nam='db file scattered read' ela= 0 p1=1 p2=4882 p3=2
FETCH #1:c=1,e=1,p=7,cr=7,cu=3,mis=0,r=1,dep=0,og=4,tim=3802520069
WAIT #1: nam='SQL*Net message from client' ela= 0 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=0,tim=3802520069
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 0 p1=1650815232 p2=1 p3=0
STAT #0 id=1 cnt=0 pid=0 pos=0 obj=0 op='SORT AGGREGATE '
STAT #0 id=2 cnt=414 pid=1 pos=1 obj=0 op='FILTER '
STAT #0 id=3 cnt=414 pid=2 pos=1 obj=1876 op='TABLE ACCESS FULL SOME_TABLE'
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1650815232 p2=1 p3=0
WAIT #1: nam='SQL*Net message from client' ela= 0 p1=1650815232 p2=1 p3=0

Table 3.2 “PARSING IN” Section

Token Description

len Length of statement in bytes

dep Depth of execution context. Anything greater than zero indicates recursive SQL
executing implicitly.

uid User ID context in which cursor is executing

3.5 BUILDING A CUSTOM BENCHMARK SUITE 281
This section is immediately followed by the actual statement itself,
which is terminated by the “END OF STMT” declaration. Immediately below
this are the statistics for the PARSE call itself. This is the format taken for
all subsequent tokens: <ACTION> <CURSOR#>: <data>. In this case, the
PARSE directive reports back with the standard information used by tkprof

as shown in Table 3.3.

Table 3.2 continued

Token Description

oct Command type (see V$SESSION documentation in server reference guide)

lid Unknown (usually the same as UID)

tim When timed statistics set true, shows relative timestamp in hundredths of a second

hv Hash value of the statement

ad Address of the statement in the SQL cache

Table 3.3 General Operation Statistics

Token Description

c CPU seconds used by this call

e Elapsed time (in seconds)

p Physical I/Os

cr Blocks accessed through consistent read mechanism (“consistent gets” in
V$SESSSTAT)

cu Blocks not accessed through the consistent read mechanism (“db block gets” in
V$SESSSTAT)

mis Misses in library cache during parse

r Row count

dep Recursive depth

og Optimizer goal (1=all_rows, 2=first_rows, 3=rule, 4=choose)

tim Relative timestamp

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN282
The tkprof output for this statement would look like this:

By reading through the output in the raw tracefile, it can be seen how
these standard statistics are used by tkprof. The count column equates to a
count of the number of calls made during the lifetime of this statement. In
this example, two fetch calls were made, but only one each of parse and
execute. The remaining columns are totaled from all calls of that type.

The next component of the raw tracefile is the BINDS section, acti-
vated by setting bit 3 when specifying the trace level. In this section, full
details of the bind variables used for this execution of the statement are
provided. The initial BINDS #<cursor> token is immediately followed by
an indented flow of all bind variables specified. The binds are always
shown starting with “bind 0,” regardless of the naming of the bind varia-
bles in the statement. The order in which the binds are listed is the order in
which they appear in the SQL statement: top to bottom.

Within the BINDS section, several details are given for each bind varia-
ble, although in practice it is the dty and value fields with which we are
mostly concerned. The dty field shows the datatype of the bind variable,
where 1=VARCHAR2, 2=NUMBER, etc.: see the OCI Programmer’s Guide for
details. The value field shows the actual value bound to that variable. If the
value field is absent, this means that no value was bound (null value) or that
the variable is an output variable.

**

select count(*)
from
 some_table where some_col=:b1

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.08 0.10 2 29 1 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.01 0.01 7 7 3 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.09 0.11 9 36 4 1

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 20

3.5 BUILDING A CUSTOM BENCHMARK SUITE 283
The next section in the raw tracefile is the EXEC call. It is in this execu-
tion step of a SQL statement that Oracle will build the result set for a cur-
sor in the case of a query, or actually execute the INSERT, UPDATE, or
PL/SQL that the cursor contains. The fields available here are the same as
those described during the PARSE phase.

During the execution of this statement, the session passed through
several wait states before the result set was built. These wait states can be
serially detailed in the tracefile by initiating the trace with bit 4 set in the
level (level 8 or 12). This is one of the most useful features of this type of
trace, and the detail of the WAIT lines will be used later in the book.
Within the WAIT line, there are some new tokens, as shown in Table 3.4.

This information is the same as that found in V$SESSION_WAIT, with the
three parameter fields having different meanings depending on the actual
wait state. The labels for the p1, p2, and p3 fields can be derived by querying
SYS.X$KSLED, giving the name of the wait as the value for KSLEDNAM.

The next entry in the raw tracefile is the FETCH call. In this case, the call
is made twice, with the second call returning no data (r=0). This is fairly
common, because applications often retrieve data from a cursor until the
cursor returns “no more data.”

The final area of interest in the tracefile is the STAT section. There is one
of these for each SQL cursor in the tracefile, and it details the actual access
plan used for the statement, including the number of rows inspected in
order to satisfy the request. One interesting thing to point out here is that it
looks as if the version of Oracle that I used to create this tracefile has a bug,
in that the STAT section is referring to cursor #0, which does not exist. The

Table 3.4 WAIT Section Detail

Token Description

nam Name of wait state

ela Time waited

p1 Parameter 1

p2 Parameter 2

p3 Parameter 3

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN284
STAT section should be referring to cursor #1, as the “TABLE ACCESS FULL

SOME_TABLE” operation shows.

The Oracle Call Interface (OCI) Fast Track
The impenetrable OCI Programmer’s Guide makes OCI look like a time-
intensive, difficult-to-understand environment. However, this really isn’t
the case, and it makes good sense, particularly when trying to build an
application simulator, to develop some knowledge of OCI. The steps
involved in OCI programming relate directly to the required calls from a
client to the server in order to service SQL requests, and it is useful to be
familiar with them.

The good news is that there is nothing at all difficult about OCI. In fact,
if we ignore the fancy things such as object support, then a reasonable
familiarity should only take a few pages. One of the most useful aids to
learning OCI is an OCI flowchart, showing the required steps for a given
statement (see Figure 3.2).

One thing to note from the flow diagram, and indeed from all the code
examples in the book, is that the release 7.x OCI concepts are used. The
reason for this is that OCI changed substantially in Oracle8, not least to
provide object support. The effect of the changes is that the native OCI
supplied with Oracle8 is nearly 100 percent different from the release 7.x
OCI and adds some complexity to previously simplistic programs. The 7.x
concepts lend themselves better to simplistic explanation, and all the con-
cepts and functions are still available in the 8.x libraries for backward com-
patibility. Finally, retaining the old call API allows the code to be used
against Oracle7 instances.

Starting at the top of the flowchart and working down, the first item is
initialization of the environment. All that this means is that a structure of
type Lda_Def (Login Data Area) and a corresponding HDA (Host Data
Area) need to be allocated. The Lda_Def definition is found in a header file
supplied by Oracle and is stored in $ORACLE_HOME/rdbms/demo; the HDA is sim-
ply an array of 256 bytes. Next, a connection needs to be made to the Ora-
cle database, using olog(). This connects the client session to the database
and populates the Lda_Def and HDA structures with context information
for the connection.

3.5 BUILDING A CUSTOM BENCHMARK SUITE 285
Initialize Required
Data Structures

Connect to Oracle

Open Cursor

Parse Statement

Bind Variables to
Addresses

Describe SELECT
List

Execute the
Statement

Define Target
Addresses for

Results

Fetch Data

More Data

SELECT

SELECT

Non-SELECT

Close Cursor

Non-SELECT

All Statements SELECT only Release 7.x
Method

No More Data

olog()

oopen()

oparse()

obndrn()

odescr()

oexec()

odefin()

ofen()

oclose()

Lda_Def,
HDA

Figure 3.2 OCI call flow

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN286
The oopen() call is used to initialize a cursor for the SQL statement and
requires a structure of type Cda_Def to be supplied in order to maintain
the cursor context. At this stage, no calls have been supplied with any SQL
statements to process. The only function that takes the actual SQL request
as one of its arguments is that of oparse(). This parses the request on the
server, ensuring that the statement is syntactically correct, that the submit-
ting user has permission to execute that request, and that all required data
dictionary work is complete. This stage also enters the request into the
shared pool for later reuse by this or other users. The actual server-side
parse activity can be deferred until the describe stage, with the oparse() call
returning immediately without any server interaction.

If the statement has bind variables, a local address must be assigned to
each bind variable so that the OCI library knows where to look for values
when executing the statement. After this, if the request is a query, the
SELECT list must be expanded into full detail by issuing the odesc() call.
This function should be called repeatedly until all items in the SELECT list
have been described. The information returned from this call is the name
of the column and the details of datatype, size, and so on, which should be
used to allocate sufficient memory for the returned data.

At this stage, it is possible to execute the cursor, although it is more
logical to call the odefin() function at this point. The odefin() call is used to
inform the OCI library of the addresses in memory that have been allo-
cated for the return of the data, as defined in the describe stage.

Once the storage locations have been defined, the cursor can be exe-
cuted using oexec(). If the cursor is anything other than a query, this is the
final step of the execution. If the cursor is a query, the execute stage will
execute the query and build the result set but will not return any data until
the next step.

The final step for a query-based cursor is to fetch the data back to the
client using ofen(). The ofen() call allows array fetches to be performed, and
should always be used in preference to single-row fetches where more
than one row is to be returned. The fetch routine should be called repeat-
edly until no more data is needed.

At this point, regardless of the type of cursor (SELECT, INSERT,
UPDATE, or DELETE), the cursor can either be closed, freeing up the cur-
sor on the server, or be reexecuted using the same or different bind varia-

3.5 BUILDING A CUSTOM BENCHMARK SUITE 287
bles. The statement does not need to be rebound to achieve this: the
contents of the addresses already bound to the variables can simply be
updated with the new values.

That’s it. In a nutshell, that is all there is to OCI from the release 7.x per-
spective. There is a good deal more complexity available in OCI, but the infor-
mation above covers 90 percent of all the occasions for which you would use
it. The important thing is to resist being intimidated by the number of param-
eters required for each function call in the OCI library. At the end of the day,
most of these require a 0, –1, or null pointer, because they are there for com-
patibility with the COBOL version of OCI. The best way to simplify your life
if you expect to be doing a lot of OCI coding is to make a set of macros around
the calls most used in order to fill out the redundant fields automatically.

3.5.4 Using Tracefiles to Generate a Simulation:
An Introduction to dbaman

Once you have a passing familiarity with OCI, the contents of a SQL trace-
file start to look very familiar. In fact, the tracefile is an accurate journal of
the work performed by the server and can be mapped directly to a corre-
sponding set of OCI calls. This allows a tracefile to be used as the source of
a kind of playback utility, one that reads the tracefile and reapplies the
same requests to the server in the same order and with the same parame-
ters. One way to do this is to adopt a two-stage process involving some
custom software and an awk script (see Figure 3.3).

This is the approach that will be presented over the next few pages,
starting with the dbaman component of the process.

Pre-Process
Trace File

Execute Script

Database
Tracefile Script File

tclconv.awk dbaman

Figure 3.3 dbaman processing hierarchy

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN288
Introducing dbaman

dbaman is a utility that has many uses. It was originally written to enable
OCI programs to be written as interpreted scripts, the idea being that it
could then be used as a general-purpose development language for
administration of the database, hence the name dbaman[ager]. However,
it soon became clear that this tool could be used for a series of other, more
specific tasks with only slight modification. The one we are primarily
interested in here is tracefile replay utility.

dbaman is an extension of Tcl (Tool command language). Tcl, pronounced
“tickle,” was written by John Ousterhout at the University of California at
Berkeley. It was designed to be an extensible scripting language—that is, a
language that can be extended in functionality by the user. It is the result
of Ousterhout becoming tired of developing new languages every time a
new specific command set requirement came up. He therefore developed
Tcl as a core scripting language that he could customize each time a new
requirement appeared. This reduces the coding effort and eliminates the
need to learn a new language each time.

Tcl is freely available over the Internet. The primary location for
obtaining Tcl is http://www.scriptics.com, which is the commercial com-
pany set up by John Ousterhout to bring Tcl into the corporate main-
stream. It offers full development environments for Tcl and professional
support, although Tcl itself remains a public domain product. For simplic-
ity, version 8.0 of Tcl is included on the accompanying CD.

When the Tcl software is built, the result is a library, libtcl.a. If a main() rou-
tine is linked in with the library, the result is the Tcl shell (tclsh). This is the
Tcl equivalent of the Korn shell, on which Tcl programs (scripts) are exe-
cuted. The scripting language provided by Tcl is easy to learn, flexible, and
fast, making it suitable for many development tasks.

The Tcl library provides functionality that enables additional commands
to be easily added to the language. It is this functionality that makes Tcl the
powerful tool that it is, and is the reason that it was adopted for dbaman.

With all the extensions linked in, the result is a single Tcl shell lan-
guage environment with additional capabilities, such as the ability to
maintain an Oracle connection and submit requests to the database server
from the shell, as can be seen in the following list of available routines
within dbaman:

3.5 BUILDING A CUSTOM BENCHMARK SUITE 289
The example above shows all the functions that the dbaman extension
externalizes to the Tcl interpreter. Used together, these additional com-
mands allow the full playback of tracefiles against the database server.
Table Table 3.5 details each of the commands and their usages.

$ dbaman
% ?
ambiguous command name "?": after append array auto_execok auto_load auto_mkindex auto_qualify
auto_reset binary break case catch cd clock close concat continue eof error eval exec exit expr fblocked
fconfigure fcopy file fileevent flush for foreach format gets glob global history if incr info interp join
lappend lindex linsert list llength load lrange lreplace lsearch lsort namespace oci_bind_begin
oci_bind_end oci_bind_name oci_bind_pos oci_cancel oci_close oci_exec oci_fetch oci_list oci_logon
oci_open oci_parse oci_vars open package pid pkg_mkIndex proc puts pwd read regexp regsub rename
return scan seek set socket source split string subst switch tclLog tclMacPkgSearch tclPkgSetup
tclPkgUnknown tell time trace unknown unset update uplevel upvar variable vwait while
%

Table 3.5 Tcl Extensions provided by dbaman

Tcl Call Usage Comments

oci_logon oci_logon <username>
[password]

Initializes structures and connects to
Oracle

oci_open oci_open ?-assign ##? Open a cursor and return the cursor
handle. A specific cursor number
can be specified with the -assign
switch; otherwise, the lowest avail-
able handle is assigned.

oci_parse oci_parse <cursor#>
<SQL text>

Send the supplied string to the
server for parsing.

oci_bind_begin oci_bind_begin <cursor#> Initializes the structures used in
bind process

oci_bind_pos oci_bind_pos
<cursor#> ?-date?
<var offset>
<value|?-null?>

This routine is used to bind vari-
ables to their respective tags by
position. Special consideration is
given to date datatypes. Within SQL
tracefiles, the date is always given
in a specific form:

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN290
The only real complexity in this process is in the binds section. First, in
order to build usable data structures containing the bind information for a
given cursor, the dbaman code needs to make a half-hearted attempt at parsing
the SQL text to determine which bind variables need to be bound or not

Table 3.5 continued

Tcl Call Usage Comments

“8/1/1998 0:0:0” = 1st August
1998, 00:00

The native_date() routine is then
called to turn this information into
internal Oracle binary date format.
All other bindings are assigned the
VARCHAR2 datatype.

If “-null” is used in place of the
value, a null is explicitly bound to
that variable.

oci_bind_name1 Set Tcl variable namesake,
then call oci_bind_name
<cursor#>.

Used for scripting, this method of
binding allows variables to be asso-
ciated with native Tcl variables.

oci_exec oci_exec <cursor#> Executes the statement. If this cur-
sor is not to return data (i.e.,
INSERT), this is the last call
required for the cursor.

oci_fetch oci_fetch
<cursor#> <array size>

Retrieves specified number of rows
from cursor, putting results into
local Tcl array variables

oci_close oci_close <cursor#> Closes cursor and frees associated
memory

oci_cancel oci_cancel <cursor#> Cancels the execution of a query
when sufficient rows have been
returned.

oci_list oci_list For interactive use—shows cursor
and associated SQL text for all
cursors.

oci_vars oci_vars <cursor#> Dumps SQL statements and all cur-
rent bind information.

3.5 BUILDING A CUSTOM BENCHMARK SUITE 291
bound. Second, although the VARCHAR2 datatype can be used for just about
everything, the DATE datatype is the exception to that rule (as ever). Dates
must be bound by position using the oci_bind_pos -date operation. This directive
instructs dbaman to convert the date string into a native Oracle format.

Preprocessing and Executing the Tracefile
Once the dbaman executable is built, some method of generating scripts from
the raw tracefile is needed. This is done using an awk script to convert the
trace information into the corresponding dbaman/OCI commands. This is
imaginatively named tclconv.awk.

This conversion script parses the tracefile and produces code that can
be directly executed by dbaman:

This example shows the output produced from the first 89 lines of a SQL
tracefile. The trace was taken from a SQL*Forms 4.5 program that queries

oci_logon scott/tiger
oci_open -assign 256
oci_parse 256 { alter session set events ‘10046 trace name context forever, level 4’}
oci_exec 256
oci_close 256
oci_open -assign 1
oci_parse 1 { alter session set nls_language= ‘AMERICAN’ nls_territory= ‘AMERICA’ nls_currency= ‘$’ nls_iso_currency=
‘AMERICA’ nls_numeric_characters= ‘.,’ nls_date_format= ‘DD-MON-YY’ nls_date_language= ‘AMERICAN’ nls_sort= ‘BINARY’
nls_calendar= ‘GREGORIAN’ }
alter session set nls_language= ‘AMERICAN’ nls_territory= ‘AMERICA’ n ...
oci_exec 1
oci_open -assign 2
oci_parse 2 { SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,
ROWID FROM EMP WHERE (ENAME LIKE :1) }
oci_bind_begin 2
oci_bind_pos 2 0 “D%”
oci_bind_end 2
SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,ROWID FROM EMP WH ...
oci_exec 2
oci_fetch 2 1
oci_cancel 2
oci_bind_begin 2
oci_bind_pos 2 0 “SMI%”
oci_bind_end 2
SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,ROWID FROM EMP WH ...
oci_exec 2
oci_fetch 2 1

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN292
the EMP and BONUS tables, and is intended to serve as a simplified exam-
ple of the simulation process. In this section, we connect, set our NLS pref-
erences (generated automatically by SQL*Forms), and then run a query
against EMP. A fetch of a single row is attempted, which returns no data.
The cursor is then canceled, rebound, and then executed once again, this
time returning data. Running this script with dbaman, we can go on to inter-
rogate the status afterwards:

It can be seen that two cursors are open at the end of the script: the NLS
cursor, and the EMP cursor. Because it was an ALTER SESSION call, the NLS
cursor (cursor 1) was taken only to the EXEC stage. Therefore, it has only a
$results(1,status) variable indicating its status; no data is returned from this cur-
sor. The cursor is not closed in the script, and so the full state of the cursor
is preserved within dbaman.

The EMP cursor (cursor 2) has produced many more variables in the
$results array. The status of the cursor execution shows that it returned suc-
cessfully from the FETCH. The oci_fetch call is the only call that will set the sta-

$ dbaman
 percent source part1.tcl
% puts $oci_error

% array names results
1,status 2,0 2,status 2,rpc 2,header
% puts $results(1,status)
OK
% puts $results(2,status)
OK
% oci_list
Cursor #1 - Text : alter session set nls_language= 'AMERICAN' nls_territory= 'AMERICA' nls_currency= '$'
nls_iso_currency= 'AMERICA' nls_numeric_characters= '.,' nls_date_format= 'DD-MON-YY'
nls_date_language= 'AMERICAN' nls_sort= 'BINARY' nls_calendar= 'GREGORIAN'
Cursor #2 - Text : SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,
ROWID FROM EMP WHERE (ENAME LIKE :1)

% puts $results(2,header)
EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO ROWID
% puts $results(2,0)
7369 SMITH CLERK 7902 17-DEC-80 800 {} 20 AAABLnAACAAACoQAAA
% puts $results(2,rpc)
1
%

3.5 BUILDING A CUSTOM BENCHMARK SUITE 293
tus variable to anything more useful than OK or NOT OK. The oci_fetch call will
set the variable to “no data found,” if the fetch returns no data.

The data returned from cursor 2 is put into the variable $results(2,0). One
NULL, as denoted by the {} in the output list, was returned. One row was
returned, as shown by $results(2,rpc), and the column names are all stored in the
$results(2,header) variable. Example output from the oci_list command can also be
seen, showing the SQL for each of the currently open cursors.

Using this example code fragment, we can turn this into a single user
simulation using standard Tcl coding:

Single user simulation demonstration using dbaman.
set sleep_time 1000
set max_iter 50

oci_logon scott/tiger
oci_open -assign 256
oci_parse 256 { alter session set events ‘10046 trace name context forever, level 4’}
oci_exec 256
oci_close 256
oci_open -assign 1
oci_parse 1 { alter session set nls_language= ‘AMERICAN’ nls_territory= ‘AMERICA’ nls_currency= ‘$’ nls_iso_currency=
‘AMERICA’ nls_numeric_characters= ‘.,’ nls_date_format= ‘DD-MON-YY’ nls_date_language= ‘AMERICAN’ nls_sort=
‘BINARY’ nls_calendar= ‘GREGORIAN’ }
alter session set nls_language= ‘AMERICAN’ nls_territory= ‘AMERICA’ n ...
oci_exec 1
Main section - loop through until max_iter reached.
while {$max_iter > 0} {

oci_open -assign 2
oci_parse 2 { SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,
ROWID FROM EMP WHERE (ENAME LIKE :1) }
oci_bind_begin 2
oci_bind_pos 2 0 “D%”
oci_bind_end 2
SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,ROWID FROM EMP WH ...
oci_exec 2
oci_fetch 2 1
oci_cancel 2
oci_bind_begin 2
oci_bind_pos 2 0 “SMI%”
oci_bind_end 2
SELECT EMPNO,ENAME,JOB,MGR,HIREDATE,SAL,COMM,DEPTNO,ROWID FROM EMP WH ...
oci_exec 2
oci_fetch 2 1

Following added from original trace file to allow looping

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN294
We now have a very simplistic single-user simulation script. In this case, it
repeatedly performs the same operations, although in reality you would
want to vary the actual work performed each time. This is a straightfor-
ward change to make, with this kind of a construct replacing the oci_bind_pos

2 0 “SMI%”:

Again, this is still very simplistic, but demonstrates the kind of constructs
that should be built into the final script. For some of the more critical data
points in the simulation, you will need some kind of more generic way to
supply data to the script, particularly when simulating more than one user
at a time. This will be discussed in Section 6.2.

3.5.5 Validate Server-Side System Utilization
Once each single transaction is complete, run it through on your test sys-
tem and compare it with a real user from the perspective of system utiliza-
tion, including CPU, memory, and disk I/O. If you have done a good job,
it should be possible to get the system utilization pretty close to that of a
real user.

One of the checks that you should perform is to trace the simulated
session in the same way that the original tracefile was produced and com-
pare it with the original tracefile. This is the reason why the tclconv.awk script
turns on a trace as the very first thing it executes. While there will almost
certainly be differences in the number of recursive calls within the respec-
tive sessions, running the before and after tracefiles through the tkprof facil-
ity will quickly split these out and report back accordingly.

switch [expr $max_iter % 5] {
0 { oci_bind_pos 2 0 “JON%” }
1 { oci_bind_pos 2 0 “SMI%” }
2 { oci_bind_pos 2 0 “MIG%” }
3 { oci_bind_pos 2 0 “ALB%” }
4 { oci_bind_pos 2 0 “WHI%” }

}

Following added from original trace file to allow looping
oci_cancel 2
oci_close 2
incr max_iter -1
after $sleep_time

}

3.5 BUILDING A CUSTOM BENCHMARK SUITE 295
Tests performed on the tclconv.awk/dbaman combination have thus far yielded
very good results as far as accuracy is concerned. Using a transaction from a
very complex Forms application, the following tkprof summaries are created
with the original Form and the simulation session, respectively:

The tkprof summaries show some differences, mostly in the execute/rows
cell, but otherwise all looks good. One of the reasons that this value is dif-
ferent is a shortcoming in dbaman: the inability to simulate array inserts. This
results more from the shortcomings of the trace facility, because the bind
variables are dumped only for one of the rows to be inserted.

More information about the accuracy can be gained by querying v$sesstat

for the respective sessions and determining the differences. For a session
similar to the one above, the statistics in Table 3.6 were generated.

Some of these differences could be associated with different activities
going on in the database at that point in time, particularly the cluster-related

Original:
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 80 0.00 0.00 0 2 0 0
Execute 147 0.00 0.00 1 157 65 83
Fetch 162 0.00 0.00 0 1436 219 324
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 389 0.00 0.00 1 1595 284 407

Misses in library cache during parse: 0

dbaman:
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 82 0.00 0.00 0 0 0 0
Execute 149 0.00 0.00 0 15 68 35
Fetch 163 0.00 0.00 7 1913 220 326
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 394 0.00 0.00 7 1928 288 361

Misses in library cache during parse: 0

Generated by 'TKPROF SYS=NO'

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN296
Table 3.6 Statistical Differences Between Original and Simulated Session

Name Forms dbaman Accuracy*

SQL*Net roundtrips to/from client 306 709 132%

buffer is not pinned count 2616 1972 (25%)

buffer is pinned count 6964 3739 (46%)

bytes received via SQL*Net from client 36232 62985 74%

bytes sent via SQL*Net to client 26523 60532 128%

calls to get snapshot scn: kcmgss 149 152 2%

calls to kcmgas 2 1 (50%)

cluster key scan block gets 3 28 833%

cluster key scans 3 19 533%

consistent gets 3072 2106 (31%)

db block changes 28 76 171%

db block gets 295 319 8%

enqueue releases 6 5 (17%)

enqueue requests 6 5 (17%)

execute count 175 187 7%

free buffer requested 1 2 100%

messages sent 2 1 (50%)

no work—consistent read gets 2416 1592 (34%)

opened cursors cumulative 86 102 19%

opened cursors current 81 81 0%

parse count (total) 105 102 (3%)

recursive calls 120 146 22%

redo entries 14 40 186%

redo size 4904 10400 112%

redo small copies 13 39 200%

3.5 BUILDING A CUSTOM BENCHMARK SUITE 297
items: these cluster statistics are attributed to recursive work performed by
the session. However, there are large differences in other areas also:

• SQL*Net. Clearly, the dbaman tool was a good deal more verbose over
SQL*Net than the original Forms session. This could be attributed
mostly to the use of a different API (application programming inter-
face) into the database server. Forms uses the proprietary UPI layer,
whereas dbaman has to use OCI.

• Memory utilization. Again, dbaman used a good deal (30 to 53 percent)
more server-side memory than the Forms session. This could also be
attributed in part to the use of a different API. In addition, any varia-
tions in the other statistics could radically change this ratio.

Table 3.6 continued

Name Forms dbaman Accuracy*

* Values in parentheses denote negative values.

redo synch writes 2 1 (50%)

session cursor cache count 18 16 (11%)

session cursor cache hits 6 4 (33%)

session logical reads 3367 2423 (28%)

session pga memory 331856 508040 53%

session pga memory max 347160 508040 46%

session uga memory 223476 325612 46%

session uga memory max 248932 325612 31%

sorts (memory) 37 21 (43%)

sorts (rows) 39 70 79%

table fetch by rowid 1749 821 (53%)

table scan blocks gotten 2673 1257 (53%)

table scan rows gotten 17103 14242 (17%)

table scans (short tables) 89 83 (7%)

user calls 287 692 141%

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN298
• Amount of data read. The dbaman session shows that it returned more data
than the Forms session. Once again, the API could come into play here,
but it is most likely to be affected by differing amounts of recursive
work performed by each session. Although the dbaman session made
more recursive calls, this does not mean that it performed as much
work.

• Other. Not all information is explicitly logged in the tracefile. There-
fore, some amount of guesswork needs to be done in order to work
out, for example, where cursors should be closed.

In summary, however, dbaman is capable of a reasonably good simulation of
the Forms session. Some of the discrepancies may balance out over time
(particularly the memory-related ones), while others are already very close
on target.

3.5.6 Building a Multiuser Framework
Once we have a selection of accurate single-user simulations, we can
start to think about how to convert them into a benchmark suite. In order
to do this, it becomes necessary to build a simple control framework for
all of the sessions. The framework should allow the following actions to
be performed:

• Start specified number of sessions.

• Update active set of users.

• Update “sleep time” multiplier for each transaction type.

• Update logon/logoff rate for simulated sessions.

This kind of a framework is an important method of keeping the simula-
tion scientific. Without this kind of control, the simulation is not controlla-
ble for long enough to gain repeatable, dependable results.

The complexity of this kind of framework varies, depending on the
scale of the simulation. It can range from a simple shell script that starts up
the required number of sessions, with checks that keep the number of con-
nected sessions at the required level, all the way to a full UNIX IPC (Inter-
process Communication) implementation using shared memory,
semaphores, and message queues (see Section 3.6).

3.6 SCALE THE SIMULATOR 299
The extent of engineering required for the framework is dependent on
the amount of control needed and the number of users that the simulator
will be driving. Once several hundred sessions are trying to do the same
thing on the system at the same time, some of the more simplistic tech-
niques no longer scale adequately.

3.6 Scale the Simulator
3.6.1 Data Problems
One of the most important portions of any simulation, whether written
from scratch using OCI or using a third-party tool (see Section 3.4), is the
portion that provides the simulating sessions with data that

• Is usable by the application, with no greater collisions in data access
than would occur in real life

• Does not provide the database server with an artificially high cache hit
ratio

• Does not provide the database server with an artificially low cache hit
ratio

• Is plentiful. (It makes no sense to run out of driving data 1 hour into an
8-hour stress test)

This is an area that is unique to each particular application and should not
be overlooked: the simulation will not scale sufficiently unless the data
needs of the application are satisfied.

For example, assume that we are simulating an application that allows
the creation of invoices and the subsequent processing of payments
against those invoices. During the invoice creation stage, the users simply
type in the part number and the quantity; the details of the line items are
automatically filled in by the application. When all the lines are entered,
the transaction is committed and an invoice number is generated.

Later on in the life cycle of the invoice, a payment is received against it.
This occurs several weeks or months after the original invoice was created.
At this stage, the total on the invoice is checked, and the credit is applied.

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN300
If we are simulating this application, by whatever means, it would be
tempting to have each simulated session enter an invoice using a canned
set of line items and then proceed to post the credits against the invoice in
order to make the simulation self-perpetuating. Unfortunately, this would
result in the dreaded “optimal transaction profile,” which spoils the
results of many benchmarks.

The transaction becomes optimal for the following reasons:

• The same line items are used each time. This means that the database
validation on the part numbers will always be resolved by a small
number of cached index leaf blocks and their corresponding table data
blocks. This means the blocks will always be hot in the buffer cache,
ensuring that the lookups require zero disk I/O.

• The retrieval of the invoice by invoice number is also certain to be in
cache, because it has just been committed by the same session a few
seconds ago. In real life, the invoice is likely to be somewhat older
and therefore more likely to require several disk reads to obtain the
data.

It can be seen that a workload with this profile is nothing like real life. It
is far more realistic to have two distinct sets of connections, each fulfill-
ing one of the functions of data entry, or credit posting. The data that
each uses should not be shared, and must be prebuilt and loaded into
the database as in-flight transactions. Any lookup information should
be as random as it would be in real transactions. For example, the line
item lookup in the example above should be driven from a very much
larger list of potential line items, making life a little more realistic for
the database server.

Many of the RTE packages provide functionality to drive the sessions
with different sets of data, and this kind of functionality is not difficult to
build into a custom simulation suite.

3.6.2 User Control Problems
Another problem in trying to scale a simulator is control of the user ses-
sions. In simulating many thousands of users from potentially one driver

3.6 SCALE THE SIMULATOR 301
machine, the system can behave in very peculiar ways, and controlling the
users may not be as straightforward as it seems.

As mentioned in Section 3.5.6, UNIX Interprocess Communication
(IPC) facilities are a very good way of providing user control. Comprising
shared memory, semaphores, and message queues, IPC provides a flexible
way to control the sessions and to supply the simulator with the required
data. Figure 3.4 shows one way in which IPC can be used to control the
sessions and feed them with data.

Shared
Memory

IPC Library

Data
Generator

Message
Queues

IPC Library

Control
Session

Semaphores

Explicit Serialization
and control

D
ata

D
at

a

an
d

D
at

a
C

on
tr

ol

C
on

tro
l

D
at

a

C
on

tr
ol

IPC Library

User
Sessions

Figure 3.4 Simulation control and data supply

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN302
In Figure 3.4, all three types of IPC have been used for various reasons.
Access to the IPC mechanisms is provided through a common set of librar-
ies. The IPC in this example is used as follows:

• Shared memory is used to supply each session with the data it
requires. The shared memory segment is populated by a data genera-
tor, which maintains lists of operating data in the segment. In addition,
the user sessions can use the shared memory to log statistics about
themselves during a run and to return data for use elsewhere.

• Message queues are used as pipes for submitting data to the sessions,
in addition to providing control messages such as sleep multipliers.

• Semaphores are used by the sessions themselves for explicit serializa-
tion operations, where necessary, and as a global “active list” that
ensures that the correct number of processes are active at any one time.

The use of IPC is a good way to provide a global control point for the sys-
tem, although caution needs to be observed in regard to the way some sys-
tems behave when many sessions all use the same instance of the IPC
mechanism. For example, I once worked on a benchmark that used UNIX
message queues as the mechanism for controlling the active user set. All of
the sessions would sleep, blocking on the read of the message queue, until
a message was sent to them to start work. The problem here was that,
although only one session would receive a message to start work at any
one time, all 3,000 of the user sessions would wake up (at kernel priority)
and go on the run queue each time a message went on the queue. This pre-
vented the system from scaling to the point where we needed it to go, and
so another mechanism had to be found. In this case, the easiest and quick-
est way to fix the problem and proceed was to define many messages
queues and have a smaller number of users waiting on them. This cer-
tainly fixed the problem well enough for us to proceed with the testing,
although we would probably have done it in some other way if the cir-
cumstances had been different.

3.6.3 Simpler Methods for Use with dbaman

Although IPC is very flexible, its use may seem a little complex or even
daunting at first. If this is the case, or if time is not available to produce an

3.6 SCALE THE SIMULATOR 303
IPC solution, a more simplistic solution can yield fairly accurate results,
albeit with somewhat less flexibility. In this section, we will cover a more
simplistic approach that can be integrated into a dbaman simulation with
only simple script and infrastructure changes.

The following section describes what is available in this infrastructure.

User Control
The user control process allows one-time setup prior to the execution of
the test and a way of terminating the test cleanly, which are considered the
bare essentials required during a benchmark. Highly desirable control
points such as midflight timing changes, live status messages, and guaran-
teed active user counts are not provided in this model.

Data Supply
The simulator is provided with data on a per-process basis with pre-
prepared datafiles for each process.

If these facilities are adequate, it can be relatively straightforward to
build the required infrastructure. First of all, a common start-up script
needs to be created, containing all the presets for the run:

##
Simulator startup script
Usage: startup <ID> <TX script to run> <userid/password>
##
#
###########
Globals
#
All timing values are in SECONDS
###########
set tx_sleep 120
set think_time 2
set max_iter 1000
set my_id [lindex $argv 0]
set dfiles /sim/input
set ofiles /sim/output
set userpass [lindex $argv 2]
###########
Common functions
###########
proc get_data {} {

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN304
Calling this start-up script from a master program that assigns unique
IDs to the start-up script, all the scripts can pick up a private datafile
from which they read a line for each transaction. If we were to use this to
simulate the invoice entry example, we would invoke the simulator as
follows:

This would initiate 1,000 invoice entry users, each trying to connect with a
username derived from its ID number and attempting to use a datafile
with the same ID number. The datafile would contain the part numbers
that the session was to enter and would need to be prerandomized in
order to avoid the optimal transaction profile.

The script itself can be modified to take advantage of all the facilities
now available:

cnt=1
while [$cnt -le 1000]
do

cnt=‘expr $cnt + 1‘
dbaman startup.tcl ${cnt} inv_entry.tcl user${cnt}/pass${cnt} &

done

global data_fd
return [gets $data_fd]

}
proc logit { wstr } {

global log_fd
return [puts $logfd $wstr]

}
###########
Open files
###########
set data_fd [open “$dfiles/scr$my_id.txt”]
set log_fd [open “$ofiles/ses$my_id.log” w]
###########
Execute script
###########
source [lindex $argv 1]

close $data_fd
close $log_fd

3.7 MAKE IT EASY TO RUN 305
This script now logs in as the specified user and reads through its private
datafile, inputting line items every $think_time and pausing for $tx_sleep

between each complete invoice. Nominal logging has been provided by
the total transaction time being logged after each transaction.

This is just a simple example and does not provide a great deal of con-
trol. However, it can be seen that most changes are relatively simple to
implement owing to the use of a scripting engine for the simulator.

3.7 Make It Easy to Run
Once the simulation software is complete, or fully configured if third-
party software has been used, it is important to finish the process by mak-
ing the entire process shrink-wrapped.

3.7.1 Portability
It is likely that, after all the effort you have just expended, you will want to
reuse this software on numerous occasions. The first step toward this is to
make sure that there is nothing in the benchmark suite that is terribly non-
portable. This includes all the usual C coding portability warnings, such as
relying on the size of a pointer, but equally includes any reliance on the
location of system files, Oracle files, and so on. This is worth thinking
about at the start of the development, and all the way through whenever
something potentially system-specific is used.

oci_logon $userpass
.... menu navigation
while { $max_iter > 0 } {

set start_click [clock ticks]
set tx_data [split [get_data] { }]
foreach part_num $tx_data {

..... enter line items
after [expr $think_time * 1000]

}
.... wrap up transaction
logit [expr [clock ticks] - $start_click]
after [expr $tx_sleep * 1000]

}

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN306
A good finishing touch to all of the portability work is to have one central file
that contains all of the lookup information required by the simulation, such as:

This file then serves as a checklist after the installation of the software as to
what will need to be configured.

3.7.2 Packaging
Again, you will probably want to run this software a few times, so make it
easy to install. Package the software on a single tape (or a range of tapes for
maximum portability), and provide setup and running instructions with
the software. Make the directory structure for the simulation intuitive, and
keep the content of each directory concise for all the main directories. This
would include keeping all the source code, the binaries, the driving data
sources, the run statistics, and the log files separate from each other.

3.7.3 Start-Up Scripts
When you are developing the simulation, you will become an expert in all the
nooks and crannies of the software. It makes sense to use this knowledge to
write some start-up scripts for the simulation, because you will have become
tired of typing in the same old commands, with their many parameters, over
and over again. This is especially useful because during execution of subse-
quent benchmarks, the start-up process could be executed many times a day.

The benefit of having good, well-documented start-up scripts extends
far beyond the laziness element of typing them in all the time, however.
Benchmarks frequently run long and late into the night, and having good
start-up scripts can make the difference between stupid mistakes and
high-quality, measurable benchmark results. In addition, the next time the
simulator is installed, it is likely that you will have forgotten many of the
idiosyncrasies of the software.

3.7.4 Automating Information Retrieval at Closedown
When a successful benchmark execution has been performed, it is likely
that there will be a lot of data in widely distributed places that you will
want to keep and log for that test. Among such data are the following:

PWDFILE= /etc/passwd
ORATAB= /etc/oratab

3.8 DEFINE LIMITATIONS IN ADVANCE 307
• Test start-up parameters

• Test notes, including reason for test parameters, changes since last run,
and why changes were made

• Response time and throughput statistics from the simulator sessions

• System statistics from all machines involved

• Database statistics from database server

• the init.ora

It is very frustrating to forget to retrieve some of this information at test
closedown, because it could invalidate the entire test at the analysis stage.
Therefore, invest sufficient time in creating information gathering and filing
systems. These routines can also be responsible for the clearing down of log-
ging areas at the end of a test phase in order to facilitate the next test session.

3.8 Define Limitations in Advance
3.8.1 A Benchmark Is Never Perfect
As we discussed earlier, it is almost impossible to create a 100 percent
accurate simulation of a system. It is possible to get it pretty close, how-
ever, and it is important that the proximity to real life be documented.
Some of the specific areas that would definitely need to be documented as
deficiencies were noted in Section 3.2.3, but there are many more that will
come up in the development of the simulator. It is important to accept that
the perfect simulation is not possible, and to make sure that all limitations
are clearly defined and made available for use in any results analysis.

3.8.2 Measure the Impact of the Inaccuracies
Assuming that the benchmark is not perfect, how far off the mark are we?
What is the impact of being erroneous? Which areas of the system must
we get absolutely correct, and which areas allow some room for error?

These are all good questions to answer up front. If the simulation
shows that it is using 5 percent less CPU per user than a real user, then this
needs to be factored into the analysis, and a risk assessment needs to be

CHAPTER 3 BENCHMARK CONCEPTS AND DESIGN308
produced. If the results show that an eight-processor machine is needed,
and the machine will scale well up to 12 or 16 processors, then this is not a
critical issue, because the option of adding more processors is available if
all else failes.

3.9 Chapter Summary
Throughout this chapter, we have covered a wide variety of topics, rang-
ing from choice of tools to development of a custom tool. This is indicative
of a real benchmark, because a successful benchmark depends on diverse
skill sets from the people developing and running it.

A complete solution to the benchmark problem has not been presented
in this chapter. To a degree this has been intentional, because the most
important attribute of all is to understand every minute aspect of the bench-
mark operation. The intent of this chapter has been to provide pointers
and a starting point for what is a very complex task.

When you are actually executing the benchmark, paranoia is a fine
quality. If something doesn’t seem quite right, or somebody does some-
thing that magically solves a problem, please be suspicious and ask ques-
tions. It is easy to have the wool pulled over one’s eyes, and there is a good
deal of wool involved in most benchmarks.

Most of all, enjoy the process. At the end of the benchmark, you are
likely to understand a great deal about all aspects of the system, including
the application, the tuning approach required for Oracle, the quirks of the
hardware platform—everything.

3.10 Further Reading
Aho, Alfred, B. W. Kernighan, and P. J. Weinberger. 1988. The AWK Programming

Language. Reading, MA: Addison-Wesley.
Ousterhout, J. 1994. Tcl and the Tk Toolkit. Reading, MA: Addison-Wesley.
Various. “Oracle Call Interface Programmer's Guide.” Oracle RDBMS Documentation.

Chapter 4

System/Database
Monitoring

4.1 Why Monitor?
Monitoring is a frequently overlooked component of essential system
development. Whether you purchase a third-party software product or
develop your own techniques for monitoring the system, it is important
not to underestimate either the effectiveness of good system monitoring or
the effort required to develop this capability.

The benefits provided by monitoring fall into three categories:

• Providing proactive fault-detection capability

• Providing rapid fault diagnosis capability from available data

• Providing historical performance records for capacity planning and
analysis

These are substantial benefits that even if taken alone would justify the
cost of implementing a quality monitoring solution.

4.1.1 Proactive Fault Detection
In an ideal world, fault detection would occur before the actual problem
arose, and the problem could therefore be fixed before it happened. This is,
of course, complete nonsense. However, using proactive fault-detection
313

CHAPTER 4 SYSTEM/DATABASE MONITORING314
techniques, it should be possible to preclude a selection of your least
favorite problems. Very often, major problems are caused by the combined
effect of several minor problems and can be prevented by providing early
warnings of these problems.

For example, let’s say that an Oracle Parallel Server system is capable of
handling 100 distributed lock operations per second under normal loading
and has 20 percent idle CPU during this loading. It is also known that serv-
icing of 20 lock operations could take up to 5 percent of the system CPU. If
something happened to increase the number of lock operations to 160 oper-
ations per second, this would not impose a response time problem on the
user community, and under many operational environments this event
would go unnoticed as a result. However, with a monitoring system, this
would be detected and an alert would be triggered indicating that some-
thing had changed significantly and that the system was now very vulnera-
ble to increases in CPU utilization. The system would now be running at 95
percent utilization, and even a small problem would cause user discomfort.

It can be seen that, using a suitable monitoring system, this problem can
be avoided. This is one of the greatest strengths of a monitoring system.

4.1.2 Rapid Fault Diagnosis
Another advantage of a monitoring system comes into play when the system
is not performing properly. In this instance, when the support person is called
out, considerably more information can be made available to him or her than
if the system were not monitored. For example, if one of the tablespaces in the
database had filled up, the only thing the users might get (if using Forms)
would be an “unhandled exception” error. If the system were not being proac-
tively monitored, the DBA would have to work through systematic checks to
discover that the tablespace was a problem. With a monitored system, how-
ever, the problem could be relayed to the support person as “tablespace full,”
and the DBA could rectify the problem immediately.

Typically, a DBA uses scripts, one at a time, to look through several “hot
buttons” in order to determine the operational status of the database. With
an adequately monitored system, the DBA has an enormous advantage over
script-based DBAs for determining the performance of the system. If the
monitored data is well presented to the DBA, such as through some kind of

4.1 WHY MONITOR? 315
histogram-based Graphical User Interface (GUI), trends and correlations
between many statistics can be immediately observed and interpreted.

For example, it is very simple to observe the relationship between the
user commit rate (as measured by “user commits” in v$sysstat) and the use of
the redo allocation and redo copy latches: when one increases in rate, it is
accompanied by a jump in the reported statistics from the related areas.
Viewing the rate that users enter wait states, in conjunction with the usage
rates for the relevant resource, can show where the pain threshold lies for
key areas of database operation. A good example of this would be moni-
toring the number of “latch free” wait events in conjunction with the
number of latch gets for each type of latch. This shows where the system
starts to have problems keeping up and provides explicit targets for appli-
cation tuning exercises.

4.1.3 Historical Performance Records
Whichever method you adopt for system monitoring, it is important to
make sure that historical records of all the performance data are kept for
later review. By doing this, you gain the ability to track gradual problems
(such as adverse row chaining in the database causing excessive I/O),
determine the effects of software releases in terms of system utilization,
and even perform high-level capacity planning by extrapolating resource
trends as business volumes increase.

Historical records are also useful for determining the impact of sys-
tem upgrades and database changes. For example, a recent upgrade of
Oracle on one of our production database servers allowed the use of
“hard locked SGA.” This is a facility that locks the SGA into real mem-
ory, removing the possibility of it being paged out onto disk. The benefit
of this is more than is immediately apparent. First, because it does not
need to be considered by the virtual memory system for paging, there is
no swap space allocated for the SGA. Second, the UNIX kernel can start
to share Process Table Maps (ptmaps) for each process that attaches to the
SGA (every user process and all Oracle background processes). A ptmap
is the space map kept by the kernel that provides VM information about
all pages of memory the process has mapped. On this particular system,
this means that it needs to allocate 4 bytes (i.e., a 32-bit address) for

CHAPTER 4 SYSTEM/DATABASE MONITORING316
every 4KB memory page that it maps. If each of your processes on the
system is mapping a 500MB SGA, this means that the effective size of
their process goes up by 500KB, just in management overhead. This can
become a major issue when there are 1,000 users or more connected to
your system, because this equates to a 500MB memory overhead.

Historical monitoring was a useful tool here to determine how much
memory we would need in the system once this facility was implemented.
We were able to plot charts of memory consumption over a period of more
than 1 year and to determine the impact.

4.2 Low-Intrusion Techniques
If you decide to develop your own monitoring suite, or even if you use the
framework of a third-party tool with your own collectors, you will need to
make sure that the collection methods are low-intrusion methods. This
means that the methods used for the collection should not impose too
much on the system when they are running—that is, you should not be
affecting the behavior of the system you are trying to monitor. This could
result in response time problems for the user community and could also
spoil the quality of any data that you collect from the system.

4.2.1 Go Easy on the System
When developing statistic-collection tools, taking care of the system
should be of primary concern. Most of the time, this will mean simply
minimizing the amount of CPU that the collector uses. However, when the
system has especially severe scaling requirements, it is important to factor
in all the types of resources that need to be minimized:

• Processor

• Disk I/O

• Memory

• Single-threaded resources

The first three resources may be fairly obvious, but the last one is not.
It is included here as a catchall for any type of resource that is a potential

4.2 LOW-INTRUSION TECHNIQUES 317
bottleneck in the system. Within Oracle this typically equates to latches,
but can include anything that has the same mutual exclusion effect. If it is
possible to implement the collector without using any single-threaded
resources, then that should be one of the primary design goals.

4.2.2 Avoiding Single-Threaded Resources
A good example of this might be the “ST” enqueue within Oracle. This is
visible in V$LOCK and is the enqueue that needs to be acquired by Oracle
before it can do a space transaction, which includes allocation, deallocation,
and coalescing of space in the database. This lock is taken out by your user
process (during recursive SQL) when you require an extent on disk to
extend a sort into, because the free extent table (SYS.FET$) and the used
extent table (SYS.UET$) need to be updated to reflect this.

The big problem with the ST enqueue is that, by design, there is only one
of them. This means by implication that only one session in the database can
be doing any space transactions at any one time, and has been the reason for
the ST lock to be aliased “Single Threaded” and “Seriously Throttling.”

So, avoiding the need to take out the ST lock is one good consideration that
you should make, both to ensure that you are not impacting the system and to
ensure that the monitoring is not affected by resource contention for ST. This is
often not as simple as it sounds, as the following SQL demonstrates:

In this query, a join operation needs to occur between v$sesstat and v$statname.
Whereas this may not be a problem in most systems, imagine what happens on
a 2,000-user OLTP system, where there is a very small sort area by design. A
disk sort segment needs to be allocated, because you are joining tables of
approximately 400,000 rows and 200 rows, respectively, and this cannot be
serviced out of the small sort area (areas as small as 16KB are not unusual).1

SELECT a.name,b.value
FROM v$statname a,v$sesstat b
WHERE a.statistic#=b.statistic#
AND a.name like “db file%’

1. This is less of an issue now that the sort_area parameters can be dynamically altered by
each user session: the monitoring session can invest in a larger sort area than the online
users in order to keep the impact to a minimum.

CHAPTER 4 SYSTEM/DATABASE MONITORING318
Of course, you would not be running the query above in an automated
monitoring system, but you may want to run queries like it in online diag-
nosis sessions. There are several ways around this type of problem:

• Avoid joining tables where it is not necessary; reference v$sesstat, for
example, directly by statistic# instead of joining it against v$statname.

• Use the “virtual” column indexes on the X$ tables found in Oracle 7.1
and above.

• Rely on the latch managed “sort segments” facility found in Oracle 7.3
and above. Note that while this helps a great deal, you should be
aware that the disk sorting is still occurring (and is expensive) and you
can still end up using ST if the sort segments are badly tuned.

• Use foreground (or application layer) joins. In extreme cases where
you have no other option, you could implement the joins as a series of
separate cursors in the monitoring application with which your appli-
cation then deals. This has a resource overhead all its own, but is an
option that is open to you under unusual circumstances.

Another single-threaded resource to be careful with is the library cache
latch. More details on the use of the library cache latch can be found in
Chapter 6, but for now we can simplify it by saying that it is taken out for
each SQL parse made on the system. Therefore, for each SQL parse made
on the system, the library cache latch needs to be taken out first, prevent-
ing any other sessions from parsing. This is largely relieved in Oracle 7.2
and above with the introduction of multiple library cache latches based on
the SQL hash value of the statement. However, in heavily loaded systems,
it does not make sense for an automated monitoring system to allocate
these latches every n seconds when it does a sample. There is also a
processing overhead in this scenario that does not need to be there.

Therefore, another good thing to do is to “parse once, execute many”
for all the statements that make up the monitoring suite. Once the state-
ment has been explicitly parsed once, it is only necessary to reexecute the
cursor and suck down the results. From the OCI discussions in the preced-
ing chapter, it should be clear how this can be easily achieved, and in fact I
will be showing ways of implementing an Oracle data collector using
dbaman later in Section 4.5.

4.3 INTRODUCTION TO V$ VIEWS 319
4.3 Introduction to V$ Views
4.3.1 What Are the V$ Views ?
The V$ views are views that are based on the X$ fixed tables. Although
referred to as tables, the X$ tables are not actually tables at all. An X$ table
simply presents data in a format that looks like a table in order to allow
standard SQL queries to be executed against it. However, the data is
extracted from a variety of sources, including memory structures and file
headers (see Figure 4.1).

The data available in the X$ tables is unrelated to the application data
stored in the database. Instead, the data in the X$ tables describes the oper-
ational state of the database server at any point in time. The actual con-
tents of the V$ views and X$ tables are discussed in more detail in Section
6.10. In this section we will concentrate on the methods of accessing them,
rather than on the contents themselves.

The structure of these tables is based on the underlying data structures
and subsequently has table names and column names that are unintelligi-
ble to anyone without strong source code knowledge of the RDBMS. They

X$ Tables

V$ Views

1010111101101
1010111100000
0010010001000
1010100100010

SGA
File

Header

Data File
Header

Data File
Header

Data

Figure 4.1 Data sources for V$ Views

CHAPTER 4 SYSTEM/DATABASE MONITORING320
are also subject to a good deal of change between releases, as the architec-
ture of the underlying software changes.

It is for these reasons that the V$ views are supplied by Oracle and that
their usage is recommended over the X$ tables. This having been said,
there are specific occasions for which knowledge of the underlying X$
tables is beneficial, and advice will be given accordingly when such occa-
sions arise.

4.3.2 Accessing the V$ Views
The V$ views are all owned by the SYS user. The catalog.sql script creates pub-
lic synonyms for all of the V$ views and grants SELECT to the
SELECT_CATALOG_ROLE role. Therefore, anybody with a privileged role can
access these views.

The method used to allow non-SYS users to access the views is worth
observing, because this is the method that is necessary for allowing non-
SYS access to the X$ tables also. The necessary steps are:

• Connected as SYS, create view x_$<name> as select * from x$<name>;

• create public synonym x$<name> for x_$<name>;

When these steps are used, any of the X$ tables can be externalized for
other database users to view.

4.3.3 Structure of the V$ Views
The V$ views have definitions, just as all other views in the database
have. The difference is that the V$ views are not visible in the
DBA_VIEWS view, because they are not real views.2 To see how a V$
view is defined, one needs to query the V$ view
V$FIXED_VIEW_DEFINITION. to find the definition.

The first thing you will notice when querying this view is that all the
V$ views seem to be simple views based on the like-named GV$ view. A
GV$ view is a new feature of Oracle8 that provides a global view of all the

2. However, the V_$<name> view exists, because it was created as a standard database
object in catalog.sql.

4.3 INTRODUCTION TO V$ VIEWS 321
instances that have the database open. The way to get the real definition is
to query V$FIXED_VIEW_DEFINITION for the respective GV$ view, which will
give the actual definition of the V$ view.

Many of the V$ views are composed of more than one X$ table, with a
join condition. An example of this is V$SESSION_WAIT, which joins X$KSUSECST

(the actual data) and X$KSLED (the names of the wait conditions) to provide
the readable information that is presented.

In addition to the table joins, the V$ views are frequently aggre-
gated rollup views of an underlying X$ table. An example of this is the
V$SQLAREA view, which provides a view of summary information of the
cursors stored in the library cache. Although a single cursor may have
several child cursors as a result of different bind variable thresholds,
for example, only one row will be returned from V$SQLAREA for any sin-
gle identical piece of SQL, because of the GROUP BY clause in the view
definition.

The performance of many of the views has been significantly
improved since release 7.0. The reason for this is the inclusion of virtual
indexes on selected columns within the underlying X$ tables. Another
view, V$INDEXED_FIXED_COLUMN, details which columns of the X$ tables
have indexes maintained on them. Although these indexes are some-
what limited in scope, their use can significantly improve the usability
of some of the views, particularly when joining against other fixed
views or tables.

4.3.4 Overhead of Using V$ Views
Alhough many of the V$ views access structures that are memory-
resident this does not mean that they have a low overhead on a large sys-
tem. In fact, the larger the system, the more resource is consumed in
processing queries on V$ views. For example, a very large buffer cache
may be covered by 1,000,000+ latches and the library cache by 100,000+
more. A subsequent query on V$LATCH involves a row for every one of these
latches, making a very large data set.

Likewise, joining V$SESSION to V$SESSTAT on a system with a substantial
user population (3,000+) results in a large join operation.

CHAPTER 4 SYSTEM/DATABASE MONITORING322
Other attributes of the V$ views that somewhat aggravate this prob-
lem include

• Table joins

• Aggregations

• Latch allocations

We have seen how table joins and aggregations are introduced, through
the actual views themselves, but the problem of latch allocations is not
immediately obvious. As many of the X$ tables are based on rapidly
changing memory structures, Oracle needs to protect the lists that it
traverses to obtain the results in order to prevent the list from being
changed by another session. If this were to happen, the X$ query could
easily find itself in a piece of list that is no longer valid, and could
return corrupt results or crash the session. Therefore, when an X$
query is executed, latch operations take place.

To demonstrate this to yourself, try the following on an idle
instance:

The first query is executed twice to demonstrate the constant number
of library cache latch gets that occur just from the execution of the
V$LATCH query (ten on my test system). The query to V$SQLAREA allocates
the library cache latch many times during its execution (more than one
latch get per cursor) and therefore contends directly with the users on
the system that are trying to parse SQL statements.

Table joins and aggregations can cause problems greater than just
the CPU overhead of the required sort. If the sort is too large for the
sort area, the sort will become a disk sort in temporary tablespace.
Although the sort_area_size parameters are now dynamic parameters (they
can be changed on a per-user basis as required), the number of rows
involved in some of these queries often makes it impractical to extend
the sort area to this size.

SELECT gets FROM V$LATCH WHERE name=’library cache’;
SELECT gets FROM V$LATCH WHERE name=’library cache’;
SELECT count(*) FROM V$SQLAREA;
SELECT gets FROM V$LATCH WHERE name=’library cache’;

4.4 MINIMIZING OVERHEAD 323
4.4 Minimizing Overhead
Now that we have seen the overhead of using the V$ views, it should be
apparent why there are cases where the X$ tables should be accessed in
preference. One such example is the use of V$LATCH in a continuous sam-
pling environment.

The V$LATCH view can take up to 15 seconds of CPU time to execute in a
large configuration, owing to the large number of rows in the underlying
X$ tables. V$LATCH aggregates this data into a summary view of all the
underlying child latches (V$LATCH_CHILDREN).

If this data is required, it makes sense to rewrite the view to reduce the
amount of data returned from each X$ table used in the view. This is espe-
cially important if you intend to execute the query many times in succes-
sion, such as in an automated monitoring environment, because the amount
of overhead imposed without good reason can really mount up.

Finally, it is common to join several V$ views in order to obtain the
desired result. Many of the V$ tables have relationships between them, and it
is beneficial to join them in this way. However, many of the views also use the
same underlying X$ tables, and the entire query can be rewritten in order to
eliminate any unnecessary extra accesses that may occur. When joining the X$
tables, you should also try to join on the indexed columns (usually the ADDR
column), because this can make a huge difference on some of the larger views.

4.5 Using dbaman to Optimize Data Collection
Now that we have a general-purpose scripting interface to the OCI API, it
makes sense to use that interface to automate the low-intrusion data col-
lection process. In this section, we will look at ways to implement dbaman as
a general-purpose monitoring tool.

4.5.1 Defining the Cursors
First of all, we don’t want to end up with a system that needs to be repro-
grammed every time we want to monitor something new. So, a standard
method is required for entering SQL statements in a user-friendly manner.

CHAPTER 4 SYSTEM/DATABASE MONITORING324
One way to do this is to provide a separate file containing the SQL, for-
matted as a simplistic Tcl script that loads up all the SQL strings:

Each call to the defined add_sql procedure loads up the SQL along with its
processing requirements to the array sql_list. The processing types adopted
for this implementation are del and abs, denoting delta processing and abso-
lute processing, respectively. In delta processing mode, the SQL is exe-
cuted, and the delta (difference) is returned between its result set and the
result set from the prior execution. In absolute mode, the absolute value is
returned directly from the SQL execution.

The format of the SQL in the setup file should be such that the query
always returns data in two columns, tag and value. In addition, all SQL

##
sqllist.tcl - list of statements to sample with
##

##
Setup required procedure
#####
set next_ind 1
catch { unset sql_list }
proc add_sql { stmt } {

global next_ind
upvar sql_list x

set x($next_ind) $stmt

incr next_ind
}

##
Actual SQL Statements. All must be of the form “add_sql { <del|abs> { SQL } }”
#####
Delta System Stats.
add_sql {
del { select name,value

 from v$sysstat
 where statistic# in (4,40) }

}

Absolute System Stats.
add_sql {
abs { select name,value

 from v$sysstat
 where statistic# in (1) }

}

4.5 USING dbaman TO OPTIMIZE DATA COLLECTION 325
submitted for delta processing must always return the same number of
rows. If this is not the case, the deltas cannot be processed.

4.5.2 Parsing and Executing the SQL
Once the SQL is all loaded up into a local variable within dbaman, we can go
through the array in sequence, parsing all the SQL one at a time, and stor-
ing the cursor handle each time:

This step needs to be executed only once, in order to keep the processing
overhead (and use of the library cache latches) to a minimum.

Now we need a procedure that will go through each of the statements
and do the right thing accordingly:

This procedure executes each statement and fetches all the available data
in array fetches of 30 rows at a time. As all the data from oci_fetch is stored in

##
parse_all - parses all statements in $sql_list()
##
proc parse_all {} {

global sql_list
upvar cursor l_cur

foreach stmt [array names sql_list] {
set l_cur($stmt) [oci_open]
oci_parse $l_cur($stmt) [lindex $sql_list($stmt) 1]

}
}

##
exe_all - execute all the statements, and fetch all the data.
##
proc exe_all { } {

global sql_list oci_error cursor results

foreach stmt [array names sql_list] {

oci_exec $cursor($stmt)

while { [lindex $oci_error 0] != 1403 } {

oci_fetch $cursor($stmt) 30

}
}

}

CHAPTER 4 SYSTEM/DATABASE MONITORING326
the global namespace, all this data will be accessible from everywhere else
in the program.

4.5.3 Process the Result Sets
Finally, we need a routine that will perform the specified processing on
each set of data. It should put all the results into a specific array so that the
output stage can just traverse the array and output in the desired format:

##
calc - go through each statement and calculate the correct values. Put the
results into an array when finished in order to make display easy.
##
proc calc { } {

 global sql_list display prior results

 set now [clock seconds]

 foreach stmt [array names sql_list] {
 switch [lindex $sql_list($stmt) 0] {

 “abs” {
 foreach row [array names results “$stmt,\[0-9]*”] {
 set display($row) [concat [list \

[clock format $now]] $results($row)]
 }

 }

 “del” {
 foreach row [array names results “$stmt,\[0-9]*”] {

if {[catch { set prvval [lindex \
 $prior(“$stmt,[lindex $results($row) 0]”) 1] }]==0} {

set prvtmsp [lindex \
 $prior(“$stmt,[lindex $results($row) 0]”) 0]
set nowval “[lindex $results($row) 1].0”
set difftm [expr $now - $prvtmsp]

set display($row) [list [clock format $now] \
 [lindex $results($row) 0] \
 [expr ($nowval-$prvval)/$difftm]]

}

 # Set up for next fetch
set prior(“$stmt,[lindex $results($row) 0]”) [list \

$now [lindex $results($row) 1]]
}

 }
 }

}
}

4.5 USING dbaman TO OPTIMIZE DATA COLLECTION 327
In this procedure, we attempt to set as many of the $display array ele-
ments as possible. In the case of the delta processing, if there has been no
previous execution, the $display array element is simply not set. If there has
been no prior corresponding row it is also ignored, apart from setting up
the prior data for the next row. If there has been a corresponding prior data
point but there is none on this runthrough no delta will be calcutlated for
the data point. However, if the data point reappears at some point in the
future, a delta will be calculated at that time, using a delta calculation
based on the stored timestamp of the prior sample (whenever that was).

4.5.4 Pulling it Together with a Main Loop
Once we have all the required procedures, we can build a main loop that
takes care of the repetitive execution of the procedures:

That’s about all that is needed to get a fairly low-intrusion, dbaman-based
monitoring system. The actual monitoring process can be run on a non-

##
Main routine for dbaman-based sampling monitor
##
#
###
read in all the support procedures
###
source all_procs.tcl
###
read in the SQL configuration file
###
source sqllist.tcl

oci_logon /

parse_all

set fd [open [lindex $argv 0] a+]
set sample [lindex $argv 1]

while { 1==1 } {

exe_all
calc
foreach dpoint [array names display] {

puts $fd $display($dpoint)
unset display($dpoint)
flush $fd

}
after [expr $sample * 1000]

}

CHAPTER 4 SYSTEM/DATABASE MONITORING328
production platform, because it will use standard Oracle client/server con-
nections to the actual database server. This ensures that the intrusion on the
actual server is kept to a minimum. Combined with well-written and well-
understood SQL statements, the result is a useful monitoring system.

This main routine is very simplistic—just writing out all the data to a file.
More complex monitor presentations can be created by linking the TK compo-
nent into the dbaman shell in order to gain a full GUI capability. Once this has
been performed, there is practically no limit to how the data can be presented.

4.6 Processing Statistics
4.6.1 Data Transports
After going to the trouble of making a low intrusion data collector, it
makes sense at least to run the database collector in client/server mode, as
shown in Figure 4.2. This means that only the actual data extraction, and

Oracle
Server

Process

Critical Platform

�
dbaman
Client

Process

Non-critical Platform

Processed Data

R
aw

 S
ta

tis
tic

s
N

et
8

Figure 4.2 Running dbaman in client/server configuration

4.6 PROCESSING STATISTICS 329
none of the pattern matching and actual delta processing, is performed on
the database server.

Wherever possible, all other data processing of the statistics should
take place on noncritical resources such as, for example, a development
server. One project that is slightly beyond the scope of this book but
worthwhile nonetheless is building a network infrastructure among all the
monitoring components (dbaman, system monitors, etc.) in order to funnel
all the data to a central place in real time. This allows several activities to
be performed on the data, such as data analysis and data display.

The latest version of Tcl supports both client and server network sock-
ets (socket command) and is a good starting point for building such an infra-
structure. In this example program, we have most of the makings of a
network data concentrator:

##
journal.tcl

A TCL based concentrator for producing a serialized journal for all
incoming streams.
#
Usage: tclsh/dbaman journal.tcl <output file> <listen port>
#
J.A. Morle, November 1998
#

proc main { outfile listen_port } {

Open the server socket, to listen for incoming requests
set a [socket -server { add_stream } $listen_port]

Open the output journal
set outfd [open $outfile a+]

Loop forever accepting connections and writing out the data
while { 1 } {

after 300 { set vwait_ret 1 }
vwait vwait_ret
write_logs

}
}

proc write_logs {} {

upvar sock_arr l_sa
upvar outfd l_ofd

CHAPTER 4 SYSTEM/DATABASE MONITORING330
The program works by first of all setting up a server socket. A server
socket is a socket that listens for incoming requests and creates a new cli-
ent socket for any such requests that come in. This action frees up the
server socket and allows multiple connections by connecting to the same
port. The new client socket is assigned a port that is guaranteed to be
unique.

Every 300 milliseconds, or less if a new socket connection interrupts
the sleep, the program wakes up, scans all the defines client socket connec-
tions, and writes all the data from each socket to the file supplied on the
command line.

This is a fairly simplistic version of what is needed and will actually
work well as long as no exceptional circumstances arise. One such excep-
tional circumstance is noted in the source code, where a single session can
effectively lock the write_logs procedure by never giving it a chance to finish
on that socket. However, there would need to be a great deal of data flow-
ing in for this to happen.

Go through each socket connection, and write out every line in the
buffer. This is not very fair share, as it allows one stream to
dominate if it desires.
foreach elem [array names l_sa] {

while { [gets $l_sa($elem) out_line] != -1 } {
puts $l_ofd $out_line

}
}
flush $l_ofd

}

proc add_stream { sockd addr port } {

global vwait_ret
upvar sock_arr l_sa

Setup the client socket connection
fconfigure $sockd -blocking false -buffersize 524288
set l_sa($addr,$port) $sockd
set vwait_ret 1

}

main [lindex $argv 0] [lindex $argv 1]

4.6 PROCESSING STATISTICS 331
In order to use this framework with the dbaman-based database data
gatherer, we need to amend the main routine to use the network instead of
a local file:

The only changes in this program relate to opening a socket instead of the
file, and using puts to write down the network instead of to the local file.

4.6.2 Alarm Propagation
Once a network forwarding infrastructure has been implemented, this
infrastructure is also an ideal vehicle for centralizing and reporting on all
subsystem alerts. Useful things to include are

##
Main routine for dbaman-based sampling monitor
##
#
###
read in all the support procedures
###
source all_procs.tcl
###
read in the SQL configuration file
###
source sqllist.tcl

oci_logon /

parse_all

set sendaddr [lindex $argv 0]
set sendport [lindex $argv 1]
set sample [lindex $argv 2]

set sd [socket $sendaddr $sendport]

while { 1==1 } {

exe_all
calc
foreach dpoint [array names display] {

puts $sd $display($dpoint)
unset display($dpoint)

}
after [expr $sample * 1000]

}

CHAPTER 4 SYSTEM/DATABASE MONITORING332
• The Oracle alertXXXX.log files

• The UNIX hardware error log

• Any middleware or application logfiles

It does not make sense to ship the entire logfile, however, because this is not
much more useful than the original logfile. Instead, a text filter can be applied to
the logfile in order to extract only specific types of messages. These messages can
then be distilled and rewritten prior to shipping across the network, with the end
result being a much more useful set of messages, all in a central location.

This example code fragment of one such text filter searches its input
for ORA-00600 errors, the dreaded internal error:

This awk pattern match and action detects the ORA-00600 error, extracts the
arguments of the string, and reports only the fact that there is an internal
error, of the type denoted by the arguments.

This could be run as follows:

This command line filters all the future output from the alertfile and pipes
the output to a command called sendmesg. This is a fabricated program that
simply takes standard input and pushes it down an open client socket to
the host and port specified on the command line.

In the ORA-00600 example, we prefix the message with a string denot-
ing the severity of the message. All that is now required to make a simplis-
tic alert console is to tail the single journal that is now being created and
grep for the type of message required (STATUS, ALARM, etc.).

4.7 Defining the “Flight Envelope”
4.7.1 What Is a “Flight Envelope”?
A flight envelope is the way that the operating characteristics of an aircraft
are specified. For example, a plane may be able to fly at 300 knots at 20,000

/^ORA-00600/ { sub("[[]"," ");
 sub("[]]"," ");
 sprintf("STATUS: Oracle Internal error: type %d.",$6);
}

$ tail -f alertDB.ora | awk -f filter.nawk | sendmesg dev_host 12345

4.7 DEFINING THE “FLIGHT ENVELOPE” 333
feet but at only 150 knots at 3,000 feet. This is very similar to the way that
large complex systems work.

In your system, you may be able either to cope with 3,000 pageouts per
second or to run at 90 percent CPU utilization. If the system were to start
paging at 3,000 pageouts per second while your system was at 90 percent
CPU utilization, the system would be in big trouble, with end user
response times being degraded accordingly. This is a simplified version of
a system flight envelope.

A flight envelope is a very useful thing to define, both for your own
benefit and for the benefit of people who simply cannot understand the
complex interactions of the system.

4.7.2 How Do I Define a Flight Envelope for the System?
Much of the definition of the flight envelope comes down to “getting a feel”
for the particular system on which you run your database. The hardware
vendor may be able to provide some raw statistics about on the system’s
capability, but these numbers need to be used with a good pinch of caution.

In fact, one of the best ways to define a flight envelope is to break it out
into several child flight envelopes. Certain operational parameters within
the system will directly compete against each other, while others will work
in their own discrete groups.

For example, there is a direct correlation between the number of latch
acquisitions per second and the amount of idle CPU on the system,
because of the impact of spinning to obtain latches. Whereas a normal
latch get is not very CPU-intensive, a spin get of a latch is very CPU-inten-
sive. Therefore, one of the system flight envelopes may be how the latch
get potential relates to idle CPU on the system (see Figure 4.3).

This envelope shows that the number of potential latch gets increases
linearly up to a certain point. At this point, a proportion of the latch gets
must be acquired by spinning, and therefore the act of gaining the latch
starts to eat into the idle CPU. As the available CPU is reduced, the latch
acquisition problem is compounded, and so the number of potential latch
gets per second is further reduced.

These kinds of flight envelopes can be as scientific as you like; some-
times the best metric of all is “I can do up to n transactions per second
before the response time degrades.”

CHAPTER 4 SYSTEM/DATABASE MONITORING334
4.8 Using Excel Spreadsheets for Data Visualization
Microsoft Excel spreadsheets provide an excellent way of visualizing
trends in otherwise meaningless streams of data. Typically, they provide
an entire spectrum of different plotting options that should always pro-
vide you with enough choices to produce meaningful results.

Unfortunately, there are also several limitations that probably don’t nor-
mally affect standard bean-counter users of the spreadsheet products (unless
they have unusually large numbers of very complex beans to count). The first
one is the row count limitation. In Excel, this is limited to 16,384 rows in ver-
sion 7.0 and to 65,536 in the 97 version. It is amazing how easy it is to exceed
16,384 rows in your data; for example, if your data collector is sampling every
15 seconds, it only takes 68 hours of one statistic to exceed the limit, and pro-
portionately less if you are showing several instances and a small number of
different statistics. This comes down to only 5.67 hours if you are trying to
plot four different statistics over three database instances, for example.

Li
br

ar
y

C
ac

he
 L

at
ch

 G
et

s/
s

Idle CPU Capacity100% 0%
0

n,000

Figure 4.3 Latch gets versus idle CPU flight envelope

4.8 USING EXCEL SPREADSHEETS FOR DATA VISUALIZATION 335
The other problems with using Excel for this type of function relate to the
assumptions it makes about the size and complexity of the spreadsheet that you can
use on it. The spreadsheet is always memory-resident, for example, which can
cause havoc with the Windows virtual memory system when large sheets are used.

Related to this is the fundamental assumption from the charting tool in Excel
that you are plotting “a few” data points. It clearly is not expecting 16,383 (the first
row is the heading row) points to plot, because otherwise it would not redraw the
chart in the “Chart Wizard” box every time you changed the settings.

Despite these problems, however, Excel is still one of the most power-
ful tools in the domestic tool bag for data analysis. Using Excel to best
effect requires several preliminary steps in order to make the most of the
charting facilities it contains.

The most fundamental requirement is that you massage the data before
trying to do anything with it in Excel. This is necessary because of the vari-
ety of different sources from which the data may originate. More often than
not, data from different sources will have different sample periods, differ-
ent snapshot times, and widely different numbers of samples. It is often
these mismatched data points that you will want to chart together on a sin-
gle chart—for example, charting transaction rate against CPU utilization.

In order to achieve this with high-quality results, several steps must be
taken. First, all the data must be quantized to common snapshot times and
sample periods. This can be achieved using one of the powerful text-
processing languages such as awk or perl.

Quantization means time-aligning the data points from the separate data
sources. Individual circumstances will determine the most suitable granularity
for the quantization, but using nearest whole minutes often works very well.

The input data may look like this:

1997/12/17 23:42:26 882430946 dbmon BMA2.user_commits 14.58
1997/12/17 23:42:59 882430979 dbmon BMA2.user_commits 14.79
1997/12/17 23:43:32 882431012 dbmon BMA2.user_commits 15.30
1997/12/17 23:44:06 882431046 dbmon BMA2.user_commits 14.79
1997/12/17 23:44:39 882431079 dbmon BMA2.user_commits 13.79
1997/12/17 23:45:12 882431112 dbmon BMA2.user_commits 14.58
1997/12/17 23:45:46 882431146 dbmon BMA2.user_commits 14.33
1997/12/17 23:46:19 882431179 dbmon BMA2.user_commits 13.00
1997/12/17 23:46:53 882431213 dbmon BMA2.user_commits 14.50
1997/12/17 23:47:27 882431247 dbmon BMA2.user_commits 14.97
1997/12/17 23:48:00 882431280 dbmon BMA2.user_commits 15.27
1997/12/17 23:48:34 882431314 dbmon BMA2.user_commits 15.18

CHAPTER 4 SYSTEM/DATABASE MONITORING336
All of the samples lie on almost random time boundaries as a result of
rounding in system timers, scheduling glitches, and so on. This makes
such data very difficult to match up with any other data.

The following awk script will take data in the form above and time-
align it to whole-minute boundaries:

Quant.awk -
Quantizes to fixed minute boundaries
J.A. Morle
Input should be of form:
1997/12/17 23:43:32 882431012 dbmon BMA2.user_commits 15.30
Output is of form:
23:43:00,882431012,15.06
#
{ now_min=substr($2,4,2);

 now_hr=substr($2,1,2);
 now_sec=substr($2,7,2);
 now_tstamp=$3;

 if (last_min!=0 && last_min!=now_min) {
if (go==0) {

now_value=(now_tstamp%60*$NF);
nsec+=(now_tstamp%60);
go=1;

}
 }

 if (go==1) {
if (now_min==last_min) {

#Add weighting to value
now_value+=(now_tstamp%60*$NF);
nsec+=(now_tstamp%60)-(last_tstamp%60);

} else {
#check for “missing minute”
if (((now_min==”00”) ? 60 : now_min)-last_min != 1) {

l_hr=last_hr;
l_min=last_min;
l_tstamp=last_tstamp;
for(i=0;i<((now_min==”00”) ? 60 : now_min)\

-last_min;i++) {
 printf(“%02d:%02d:00,%s,%0.2f\n”,\

l_hr,l_min,\
l_tstamp,now_value/nsec);

if(++l_min>59) {
l_min=0;
if(++l_hr>23)

l_hr=0;
}

}
}

4.8 USING EXCEL SPREADSHEETS FOR DATA VISUALIZATION 337
The program takes all the samples, or portions of samples, that fall within
the boundaries of the minute. A weighted average is then calculated for
the minute, and the output timestamp is adjusted accordingly.

This results in data of the following form:

This data is now ready for the next step.
The next step varies depending on the amount of data analysis

required. If one-off charting of a few choice statistics is all that is required,
the next step is simply to load up the CSV (comma separated value) file
into Excel and perform the charting.

If the requirement is in-depth analysis of hundreds of statistics, span-
ning multiple days and possibly multiple systems, the next step should be
a little more preparation, in order to save a good deal of time later.

One of the best (and most enjoyable) ways to proceed in this case is to
use Oracle and Open Data Base Connectivity (ODBC) to aid the process. I
used this technique after a large benchmark and found it to be a most flexi-
ble method of rapidly comparing and cross-checking results from numerous
tests from both benchmark sites.

23:42:00,882430979,15.30
23:43:00,882431012,15.06
23:44:00,882431079,15.55
23:45:00,882431146,16.94
23:46:00,882431213,18.67
23:47:00,882431247,15.13

#add partial piece
if (nsec!=0) { # ie NOT the first sample set

nsec+=(now_tstamp-last_tstamp-(now_tstamp%60));
now_value+=((now_tstamp-last_tstamp-\

(now_tstamp%60))*$NF);
printf(“%s:%s:00,%s,%0.2f\n”,last_hr,last_min,\

last_tstamp,now_value/nsec);
now_value=(now_tstamp%60*$NF);
nsec=now_tstamp%60;

}
 }

} # last_tstamp!=0

last_min=now_min;
last_hr=now_hr;
last_sec=now_sec;
last_tstamp=now_tstamp;

}

CHAPTER 4 SYSTEM/DATABASE MONITORING338
The first step is to create a table in an Oracle database:

This table stored the date and time, the UNIX date/time (seconds since
epoch), the vendor name, the test ID, the namespace of the statistic (e.g., db,
system), the statistic name (e.g., user_commits), and the actual value.

On top of this, four bitmap indexes were built—on VENDOR, ID, NAME-

SPACE, and STATNAME. No other indexes were required. The total number of
data points in this particular analysis was just over 1 million.

Owing to the quantization effort prior to this, any statistic for a given
timestamp could be directly compared with any other for that time-
stamp. This is a fundamental requirement for when we start using pivot
tables in the Excel product, because any inconsistencies will result in
“gaps” in the data, where the value suddenly crashes down to zero every
few samples. This results in false spikes in the data owing to quantiza-
tion errors.

Next, an ODBC/SQL*Net connection is defined between the database
server and the PC running Excel. Once this is running, a pivot table can be
created that drives from a query to the Oracle database. This is defined
when you initially invoke the pivot table, specifying that you want to use
an “external data source.” You are then given the opportunity to define the
query that will act as the data set for the pivot table. The screen shot in Fig-
ure 4.4 shows one of the master pivot tables used to flip quickly between
different tests at the different vendor sites.

The pull-down-menu-type cells (B1:B2) change the parameters for the
data selection from the database, and the query is reexecuted in order to
define the new set of data to display on the pivot table.

In this particular example, the tabs on the bottom of the workbook
point to predefined chart worksheets: when a test is recalled from the

 Name Null? Type
 ------------------------------- -------- ----
 STIME DATE
 SYSTIME NUMBER(10)
 VENDOR VARCHAR2(10)
 ID VARCHAR2(20)
 NAMESPACE VARCHAR2(10)
 STATNAME VARCHAR2(80)
 VALUE NUMBER

4.9 CHAPTER SUMMARY 339
database, all of the required charts are already drawn and finished on the
other sheets in the workbook, by virtue of the fact that they contain static
references back to the data in the pivot table.

4.9 Chapter Summary
Having the right tools is an essential part of building a large system.
Without the data provided by such tools, it is very difficult to make sci-
entific decisions and hypotheses about the system—you are quite liter-
ally in the dark.

Hopefully, some of the building blocks presented in this chapter will
be of use in building some of the fundamental tools required, in addition
to allowing rapid development of any subsequent tool requirements
(using dbaman).

Figure 4.4 Using pivot tables with ODBC connections

P A R T I I I

How Oracle Works

Chapter 5

Physical Oracle

5.1 Introduction
Oracle can be viewed as having two different groups of aspects that work
very closely together and are difficult to separate cleanly for explanation.
These two groups of aspects are the physical aspects, such as files and
blocks, and the operational aspects, such as the memory architecture and
the Oracle kernel.

This chapter covers the physical aspects of Oracle. It is not intended to
replace, or to be a subset or superset of, the Oracle Server Concepts Guide.
Instead, it is a look at some of the more important aspects of Oracle opera-
tion—aspects that are most important in building a very large system
using Oracle. None of the various Oracle cache or process architectures are
covered in this chapter; these features are covered in the next chapter.

5.2 Overview
What is Oracle? This chapter details the common understanding of what
Oracle is—a front end to a load of data on disk. I frequently like to think of
Oracle in terms of the other aspect—a complex operating system that also
stores a bunch of data—and this is the aspect presented in the next chapter.
Anyway, in order to cover the physical structure, we will briefly discuss the
higher level and then drill down to some finer detail throughout the chapter.
347

CHAPTER 5 PHYSICAL ORACLE348
The Oracle database consists of several different types of files that sup-
port its operation (as shown in Figure 5.1):

• Control files

• Initialization files

• Datafiles

• Logfiles

5.3 Control Files
The control files within Oracle store information about the physical data-
base. Within each control file is the following information:

• Datafile information (names, locations, status, etc.)

• Operating information (database name, number of threads, number of
datafiles, etc.)

Oracle
Instance

Initialization
Files

Start-up

Control
Files

Data Files
(Tables, Indexes, Etc.)

“Oracle Database”

Online REDO Logs

Recovery only

Figure 5.1 The physical Oracle

5.3 CONTROL FILES 349
• Redo log thread information

• Redo log information

• Log history

• Backup information (if using Oracle Recovery Manager)

Although these files are usually quite small (typically less than 3MB if not
using Recovery Manager), their importance should not be overlooked.
Therefore, it is common practice to have two or more control files for each
database, placed on different disk drives and controllers to increase availa-
bility in the event of a failure. Oracle automatically mirrors (i.e., keeps two
or more copies in sync with each other) the control files once they have
been configured into the system.

In previous releases of Oracle, the loss or corruption of a control file
while in operation would result in a database crash. This appears to have
been fixed in Oracle8, where certain failures can be sustained provided
that at least one of the control files is still available. If the control file that is
lost is also the primary control file (i.e., the first-named control file), cer-
tain operations requiring the control file (such as queries on v$datafile) will
fail, but the instance will remain in operation.

5.3.1 Datafile Information
Within the control file, there is a directory of all datafiles in the database.
The control file stores

• Full pathname

• Size of file in Oracle blocks

• Oracle block size

• File status

• “Stop” SCN (system change number)

The first three of these items are self-explanatory. The file status can be set
to one of many values depending on whether the file is online, offline,
needing recovery, and so on. The “stop” SCN is the change number up to
which media recovery will continue for that file. This is set to infinity
when the file is online but to the current change number when the
tablespace it belongs to is taken offline or made READ ONLY. This allows the

CHAPTER 5 PHYSICAL ORACLE350
media recovery operation to recover the tablespace only to the point in
time at which it was taken offline or made READ ONLY.

5.3.2 Operating Information
This portion of the control file includes how many redo threads are cur-
rently open, how many datafiles there are, and how many logfiles there
are. In addition, the maximum numbers of datafiles, logfiles, and instances
specified at database creation time, and whether or not the database is cur-
rently running in ARCHIVELOG mode, are recorded.

5.3.3 Redo Log Information
This part contains information about each of the redo groups—which
thread it belongs to, whether the thread is public or private, and which log
group is the currently active one. It also contains more detailed informa-
tion about the individual logfiles, including the full pathname, the size,
the low and high SCN numbers for that log, the log sequence number, and
thread allocation information.

5.3.4 Log History
This is the source of the V$LOG_HISTORY view. It contains historical informa-
tion about logs that have been archived, including low and high SCN num-
bers and timestamp. The maximum number of entries for historical
information is controlled by the MAXLOGHISTORY section of the CREATE DATABASE

command.

5.3.5 Backup Information
If the database backup is performed using Oracle Recovery Manager, the
control file is also used to store information about backups and file copies
that have taken place. This information is used on recovery of the datafiles
if the Recovery Catalog is not available.

5.4 THE init.ora FILE 351
5.4 The init.ora File
I make no apology for this section of the book, because it is not going to
be a verbatim regurgitation of the Server Reference Guide as found in some
“tuning” books. The purpose of this section is to give real advice on
putting together a safe, usable initialization file to be applied to a large-
scale database system. However, explanations of some of the more
important init.ora parameters are included as an appendix, because expla-
nations are more meaningful once the concepts are understood properly.

5.4.1 Rules for init.ora Creation
On the face of it, the init.ora looks to be a fairly straightforward entity—that
is, it simply contains multiple parameter=value declarations. This is almost true,
and for the most part, simplistic declarations are all you need to worry
about. However, there are some lesser-known facts about the way Oracle
parses the init.ora that you should understand, because your life will be a
good deal simpler and less confusing if you do.

Value Overrides
First of all, beware of inadvertently assigning a value to a parameter twice,
and thus overriding the original value. This should not happen if you follow
strict layout procedures as detailed in “Layout Recommendations” but if it
does it can cost you many lost hours chasing system performance problems.
A good example of this would be the setting of our old friend db_block_buffers. If
you are the proud owner of a file that looks like this

.

.
db_block_buffers= 10000
#changed by JM
#db_block_buffers= 100000
.
.

CHAPTER 5 PHYSICAL ORACLE352
then you are asking for trouble. Using this example, it would be very easy
for the file to be changed accidentally (say, during maintenance) to

Once the maintenance was completed and the database started up, every-
thing would probably look good. It is likely that you wouldn’t even notice
the extra zero on the size of the database buffers section of the SGA on
instance start-up.

The rest of this story is painfully obvious, involving “missing” mem-
ory on the database server, poor performance, and a very well hidden
problem in that the initial setting all looks OK. In general, you should
avoid retaining multiple settings for the same parameter, except under
very specific circumstances, as detailed in the next section.

Value Concatenation
There are some init.ora parameters that can be legitimately specified several
times in the file without overrides occurring. A good example of this is the
event specification, used to set system-wide database events (normally for
debugging purposes). If there is more than one event to set in the init.ora file,
this can be achieved without overriding the previous one by keeping all

.

.
db_block_buffers= 10000
#changed by JM
db_block_buffers= 100000
.
.

5.4 THE init.ora FILE 353
the event settings bunched together in the file. This means that no other
parameters can be set in between, as shown below:

In the first example, both of the events are successfully set for the instance.
However, in the second example we would end up with the 4031 event
being the only one set, because Oracle has legitimately overridden the
1547 event.

This rule also applies to all other multiple-value parameters, such as
rollback_segments and control_files.

init.ora File Sizes/Limits
When working on init.ora files, it is important to be wary of the limits Oracle
puts on init.ora files. There are limitations on both the size of any individual
file and the length of the string assigned to a parameter.

These limitations have been lifted in Oracle8 to the extent that they are
unlikely to become a problem, even with enormous numbers of com-
ments. However, caution should be observed on the remaining Oracle7
databases in your company.

The limits in Oracle7 are port-specific, but the values given in Table 5.1
are very typical for Oracle 7.3 on a UNIX platform

Layout Recommendations
When implementing a large system, it is important to maintain a highly
readable init.ora file and to incorporate strict change controls. This helps to

Correct way to specify events

event = "1547 trace name errorstack"
event = "4031 trace name errorstack level 1"

.

.

#Incorrect way to specify events

event = "1547 trace name errorstack"
processes = 3500
event = "4031 trace name errorstack level 1"

CHAPTER 5 PHYSICAL ORACLE354
prevent costly mistakes when making changes in the database configura-
tion parameters.

The first rule to follow when putting together an init.ora is to create and
maintain the file in sections. This makes it easier to find specific compo-
nents of the file when editing it and creates some structure in the file.

In the Oracle Reference Guide, it is recommended that all parameters be
grouped together alphabetically; I don’t like this idea, because it puts
unrelated parameters adjacent to each other, but the choice of grouping
should ultimately be something that makes sense to all the people who
could edit the file.

Each of the recommended groupings will be presented individually.

Change Control Header. The first section of an init.ora file should be a
change control header. This can also be formalized by the use of a source
code management system such as rcs or sccs, but such a system should be
used in addition to the inclusion of a header at the top of the actual file. The
header should include the following information:

• Name of system

• Name of file

• Owner of file

• Purpose of file

• Change history

This is a very formal approach to file headers but makes all aspects of the
file absolutely clear. Don’t forget, DBAs come and go, and you don’t want

Table 5.1 Parsing Limits for init.ora File

Name of Limit Size of Limit

Size of a file (init.ora, or ifile) 8,192 bytes

Size of a string assigned to a parameter 512 bytes

5.4 THE init.ora FILE 355
to have to explain every minute detail of the system to each new recruit.
Here’s an example of a header for an init.ora file:

It is important to keep the change descriptions meaningful, because
over the life of a large system, it is likely that the reasons for change will be
forgotten.

Common, Database-Wide, and Parallel Server Parameters

This section includes all Parallel Server settings, if used. These may appear to
be strange things to include as the first settings, but there is a reason for this,

##
$Id: initRMS1.ora,v 1.44 97/02/14 19:18:34 foobar Exp $
##
Copyright (c) 1997 xyz Limited
##
System : Reservations Management System
File : initRMS1.ora
Owner : Production Database Administration
Purpose : Instance RMS1 initialisation file
#
Change History

#
Who Date Change
#=========== ========= ============
J.A.Morle 01-Jan-94 Initial Creation
#
J.A.Morle 08-Jan-94 Increased
shared_pool_size->200MB
to alleviate ORA-04031
#
A.Einstein 01-APR-95 Added event 1547
#
##
...etc...

########################
Instance/Thread Definition
########################
thread = 1
instance_number = 1
########################
Common Parameters
########################
ifile = /opt/oracle/RMS/initshared.ora

CHAPTER 5 PHYSICAL ORACLE356
which will become clear when the contents of the initshared.ora file are shown.
This file is located on a shared-disk volume, in order to be accessible by all
nodes in the OPS cluster. It is therefore readable by all instances, which will
all specify the ifile instruction in the main init.ora for that instance.

This is the first part of the ifile, used for setting parameters that are
common to all instances but are not Parallel Server parameters them-
selves. Notice the change control header at the top of the file, describing
the usage of the file.

If Parallel Server were not in operation on this system, this part of the
file would be included (inlined) as part of the main init.ora file, because the
logic is no longer there to maintain a separate file. This is the reason for
including this section first in the breakdown—it is common practice
among DBAs to include the db_name, control_files, and so on at the top of the
main init.ora file when running a single-instance database.

##
$Id: initshared.txt,v 1.44 97/02/14 19:18:34 foobar Exp $
##
Copyright (c) 1997 xyz Limited
##
System : Reservations Management System
File : initshared.ora
Owner : Production Database Administration
Purpose : Instance independent (Common)
initialisation parameters
#
Change History

#
Who Date Change
#=========== ========= ============
J.A.Morle 01-Jan-94 Initial Creation
##

db_name = PRDRMS
control_files = (/opt/oracle/RMS/ctrl1.dbf,

/opt/oracle/RMS/ctrl2.dbf,
/opt/oracle/RMS/ctrl3.dbf)

db_files = 256
dml_locks = 0
ccf_io_size = 4194304
optimizer_mode = RULE
..contd...

5.4 THE init.ora FILE 357
The eagle-eyed will have spotted the dml_locks parameter and will be won-
dering why it declared as a common parameter between instances—surely
there can be different settings on each instance, can’t there? Yes, and no.
There can be different settings unless any instance has it set to zero, which is
why it must be a common setting. More information as to why one would
set it to zero can be found in the Parallel Server section of this book.

This is the final part of the initshared.ora file, containing all the settings specific
to Parallel Server operation for this database. The gc_files_to_locks parameter is
another good example of using multiple lines to build up a complex
parameter value, such as demonstrated with the event specification in the
next section.

Event Specification
Returning to the main init.ora file, we maintain a separate section for the event

specifications:

.....contd..
########################
Parallel Server
########################
gc_lck_procs = 6
gc_freelist_groups = 100
gc_rollback_segments= 164
gc_rollback_locks = 40
gc_save_rollback_locks = 64
gc_segments = 1800
gc_db_locks = 29000
gc_files_to_locks ="1,34=4000EACH"
gc_files_to_locks = "7-8,18-19,21,30-31=1000EACH"

########################
Events
########################
#
1547 - To create a trace file when a tablespace runs
out of space.
4031 - To dump the cause of a ORA-600 [4031]
" out of shared memory when trying to allocate %s bytes"
event = "1547 trace name errorstack"
event = "4031 trace name errorstack"

CHAPTER 5 PHYSICAL ORACLE358
Again, note that both of the event specifications are on contiguous lines,
with no other parameters between them.

Other Groupings
Rather than waste paper by listing the remainder of the example init.ora file,
the list in Table 5.2 should prove useful. It suggests categories for each of
an example set of parameters.

Further Tips
Although in Section 5.4.1 it is advised that value overrides should be
avoided, there is one special case in which it actually can be safer to have
them than not to have them. That special case is when a special mainte-
nance ifile is created and referenced at the bottom of the main init.ora file. The
contents of the file could be

sort_area_size = 10485760
dml_locks = 1000
db_block_buffers = 100000

Table 5.2 Parameter Grouping Suggestions

Section Heading Example Parameters

High water marks processes,sessions, transactions

Platform and version specifics compatible, use_asyncio, _lock_sga, async_write, use_listio

Rollback information rollback_segments, transactions_per_rollback_segment

Cache parameters db_block_buffers, sequence_cache_entries, shared_pool_size

Process specific sort_area_size, sort_area_retained_size, session_cached_cursors

Logging background_dump_dest, user_dump_dest, max_dump_file_size

Archive and REDO logs log_buffer_size, log_archive_dest, log_buffer,
log_simultaneous_copies, log_checkpoint_interval

Miscellaneous spin_count, use_readv

5.4 THE INIT.ORA FILE 359
and the tail end of the main init.ora file could look like this:

When maintenance parameters are set in this way, they are very easy to
take in and out in order to perform maintenance—only a single comment
character needs to be toggled in front of the ifile specification.

Setting Up a Maintenance Instance
Another excellent way to toggle in and out of maintenance mode is to set
up an alternative instance. This method is very flexible and completely
removes any risk of leaving parameters unsuitably set when you enter
production mode once more. The method for doing this is simple.

First, create another init.ora file with a name totally different from that
used for the production init.ora file—for example, initMNT.ora file to indicate the
MaiNTenance mode of the database. Within this file, use the same db_name

and control_file parameters as in the production init.ora file. This will allow the
newly created instance definition to access the production database. Next,
set up all of the required maintenance parameters in the initMNT.ora, such as
db_block_buffers and sort_area_%. If space is available, rollback segments can per-
manently exist in the database. These can be included in the initMNT.ora in
order to bring them online for use during maintenance.

The maintenance instance is now ready for use. In order to use the
maintenance instance, the following procedure should be followed.

1. Shutdown the production instance cleanly.

2. Ensure that all processes related to the production instance are cleaned
up. This can take a few seconds to complete even after the instance has
closed cleanly. If some of the processes do not die off naturally, manu-
ally kill off the remaining processes.

3. Ensure that the shared memory segment used to accommodate the
SGA has been removed. If it has not, remove it manually.

4. Reset ORACLE_SID to point to your new instance definition (i.e., ORACLE_SID=MNT).

5. Start Oracle, and perform maintenance tasks.

.

.
################
Maintenance Parameter specification
################
#ifile = maint.ora

CHAPTER 5 PHYSICAL ORACLE360
6. When complete, shut down the instance and switch back to the pro-
duction instance. It is vital to take good care that all traces of the main-
tenance instance have been cleaned up, in the same way as the
production instance was cleaned up in step 2.

Using this technique, a totally different environment can be safely and eas-
ily set up for database maintenance. It is also worth noting, from a safety
standpoint, that the production instance cannot be started while the main-
tenance instance has the database mounted, and vice versa, because Ora-
cle takes out an exclusive lock on the datafiles.

5.5 Data Storage
5.5.1 Overview: The Physical Picture
It is important to have a full understanding of tablespaces (see Figure 5.2),
segments, objects, extents, and so on. If you do not have a comprehensive
understanding of these concepts, it is important that you read the Oracle

D
at

af
ile

s
Tablespace

Oracle
Block

Figure 5.2 Oracle physical storage hierarchy

5.5 DATA STORAGE 361
Server Concepts Guide. This section deals exclusively with the different
types of Oracle blocks, where they are found, and what they are used for.

5.5.2 Blocks: An Introduction
Every datafile1 is comprised of blocks, as illustrated in Figure 5.3. The size
of the block is defined in the init.ora (db_block_size) when the database is created
and cannot be changed thereafter. All I/O operations within Oracle are
performed in some multiple of the block size. Blocks are used in order to
simplify the I/O, storage, and caching algorithms used within Oracle.

The block size chosen for any particular implementation affects the
fundamental operation of the database and therefore needs to be set to
an optimal value at database creation. This is actually not as daunting
as it sounds, because there is generally one range of sizes that are opti-
mal for transaction-based systems and another for read-intensive sys-
tems such as data warehousing. The setting of the block size is a matter
of balancing the read and caching advantages of a large block against
the caching advantages of a small block when write activity is high. In
this way, the determination of the correct block size is very much
dependent on the operation of the database and will be covered later in
this book.

Several different block types are used in Oracle.

1. A “datafile” is a file containing information from a tablespace. Logfiles and controlfiles
are not considered datafiles in the Oracle naming convention.

Data Blocks

File Header

Figure 5.3 Oracle datafile

CHAPTER 5 PHYSICAL ORACLE362
First, there is a data block. The term “data block” is used to describe a
block containing table data, index data, clustered data, and so on. Basi-
cally, it is a block that contains data.

Next, there are blocks that are associated with internal Oracle opera-
tion, such as header blocks and freelist group blocks. These blocks do not
contain any user data but contain important structures that the implemen-
tor should be aware of when building a large system.

Data Blocks
The structure of a data block (see Figure 5.4) is the same whether the block
belongs to a table or to an index.

Block Header. Each block contains a block header. This portion contains
the block’s identity in terms of

• Address of block

• Type of block (index, table, rollback, etc.)

• Interested Transaction List (ITL)

Although this piece is of variable size, it remains on the order of 100
bytes. This should be considered when assessing the efficiency of using
small Oracle blocks: A 2,048-byte block would lose 5 percent in overhead,
whereas a 4,096-byte block would lose only 2.5 percent.

An important part of the block header from a read consistency stand-
point is the ITL portion. This is a variable list of “interested transactions”

Free Space

Row Directory

Header

Figure 5.4 Oracle data block format

5.5 DATA STORAGE 363
for that block, and the number of entries is determined by the settings of
INITRANS and MAXTRANS. For each of these entries, the undo (roll-
back) block address, the transaction ID, and the system change number are
recorded. This information is used by Oracle to facilitate the read consist-
ency model, for which a small explanation is necessary.

When a query starts, the SCN is recorded in order to determine the
start time of the query. This SCN is then compared against the SCN of
the actual block when it is read in order to determine whether the ver-
sion of the block is consistent with the query start time. If the SCN is
greater than the expected SCN, a new version of the block (called a con-
stant read [CR] block) is created in the buffer cache out of the applica-
ble undo entries to get the prior version of the block. These undo
entries are determined by reading the ITL, and so the ITL is the entry
point for constructing the CR block. Note: The CR block is a cache
entity only—it is never written to disk.

Once the relevant undo records have been applied, the SCN of the
block is checked once again. If the SCN is still greater than the required
SCN, the ITLs are reviewed again—because the entire block had undo
applied to it, including the block header, the ITL entries in the new CR
block also reflect the state of the block prior to the last change. Therefore,
this process can be continued until the desired version of the block is
created, or the required undo records are no longer available, due to
forced reuse. At this point, the query session receives a “snapshot too old”
message, because the read-consistent version of the block can not be
constructed.

Row Directory. The row directory is the secret of how Oracle finds a spe-
cific row within the block. It is what its name suggests: a directory of the
rows contained in the block. It contains the offset in the block for each row
it contains. Therefore, the block does not need to be scanned beyond the
row directory before the index to the row data required is found.

Take, for example, a single-row lookup for which Oracle has already
determined the rowid of the required row from the index on the table. Part
of the rowid is the row number within the actual block, and therefore Oracle

CHAPTER 5 PHYSICAL ORACLE364
can read the row directory out of the block header and proceed directly to
the actual row data.

It is worth noting that the row directory is not subject to any shrinking
when rows are deleted. The space allocated for the row directory is never
returned to the block but is reused on subsequent inserts. This does not
present a problem in practice, because the rows that are subsequently
inserted are typically of the same size as the deleted rows, therefore yield-
ing the same number of rows per block. Anyway, we’re not talking about a
large amount of space for the row directory, unless you have tables with a
very small row size.

Free Space. Free space is the currently unoccupied portion of the block
that is used when new rows are inserted or when existing rows are
extended.

Row Data. At last! This is where the actual data is stored for the
block. The row data (or index data) is stored in length:value pairs for each
column. That is, if a column for a particular row contains the value
“YES,” this is recorded as 3:’YES’. When a NULL column is stored, it is
stored as a length zero, with no data associated with it. If these NULL
columns all occur at the tail end of the column list, nothing is stored at
all, because the start of the next row implies that the row had trailing
NULL columns.

It is worth bearing in mind that when ordering the columns in a table
it makes sense to put all the NULLable columns at the tail end of the col-
umn list in order to reduce storage and the amount of data Oracle has to
read to determine that there are NULL columns.

Data Block Dump. The following block dump of a table block will help
to demonstrate some of these attributes:

Starting at the top, we have the rdba, or relative data block address, of the
block. The rdba is an internal rowid format for every block and is used by
Oracle for every operation that addresses a specific block.

5.5 DATA STORAGE 365
buffer tsn: 1 rdba: 0x00805003 (2/20483)
scn:0x0000.00054c1c seq:0x02 flg:0x00 tail:0x4c1c0602
 frmt:0x02 chkval:0x0000 type:0x06=trans data

Block header dump: 0x00805003
 Object id on Block? Y
 seg/obj: 0xaf7 csc: 0x00.54c19 itc: 1 flg: - typ: 1 - DATA
 fsl: 0 fnx: 0x0 ver: 0x01

 Itl Xid Uba Flag Lck Scn/Fsc
0x01 xid: 0x0003.02d.0000018e uba: 0x00000000.00001.00 ---- 0 fsc 0x000
0.00000000

data_block_dump
===============
tsiz: 0xfb8
hsiz: 0x8c
pbl: 0x4010c844
bdba: 0x00805003
flag=-----------
ntab=1
nrow=61
frre=-1
fsbo=0x8c
fseo=0x233
avsp=0x1a7
tosp=0x1a7
0xe:pti[0] nrow=61 offs=0
0x12:pri[0] offs=0xf81
0x14:pri[1] offs=0xf49
0x16:pri[2] offs=0xf10
0x18:pri[3] offs=0xed7
0x1a:pri[4] offs=0xe9e
0x1c:pri[5] offs=0xe66
0x1e:pri[6] offs=0xe2d
0x20:pri[7] offs=0xdf4
0x22:pri[8] offs=0xdbb
0x24:pri[9] offs=0xd82
0x26:pri[10] offs=0xd4a
0x28:pri[11] offs=0xd11
0x2a:pri[12] offs=0xcd8
..... contd.
0x8a:pri[60] offs=0x233
block_row_dump:
tab 0, row 0, @0xf81
tl: 55 fb: --H-FL-- lb: 0x0 cc: 7
col 0: [7] 77 c6 01 0f 14 10 01
col 1: [5] c5 09 55 5d 06
col 2: [2] 68 70
col 3: [7] 49 44 30 30 35 2e 31
col 4: [4] 42 4d 41 32
col 5: [17] 43 52 5f 62 6c 6f 63 6b 73 5f 63 72 65 61 74 65 64
col 6: [3] c1 04 33
tab 0, row 1, @0xf49
tl: 56 fb: --H-FL-- lb: 0x0 cc: 7
col 0: [7] 77 c6 01 0f 14 11 01
col 1: [6] c5 09 55 5d 06 3d
col 2: [2] 68 70
col 3: [7] 49 44 30 30 35 2e 31
col 4: [4] 42 4d 41 32
col 5: [17] 43 52 5f 62 6c 6f 63 6b 73 5f 63 72 65 61 74 65 64
col 6: [3] c1 1f 28
.... etc
end_of_block_dump

CHAPTER 5 PHYSICAL ORACLE366
The SCN for the block is listed next, as described in “File Headers”
below. The “tail” field is the last 2 bytes of the SCN, combined with the
“type” and the “seq” for the block. This value is the mechanism used by
Oracle to determine whether the entire block is consistent with itself after
a recovery operation. The “tail” value is physically stored at the tail end of
the block and should always match the SCN, seq, and type stored at the
head of the block. If not, recovery needs to be performed on this block to
bring the entire block into sync with itself.

Next, we have the block header information. The “Object id on Block?”
piece is a throwback to version 6—it should always be “Y” now, indicating
that the “seg/obj” value below it is the actual object number stored in
SYS.OBJ$ (main constituent of the DBA_OBJECTS view).

The “csc” is the cleanout system change, or a short extract of the SCN
used to show when block cleanout was last performed on this block. Block
cleanout is covered in Section 5.5.3.

The “itc” value is simply a count of the ITLs on the block, which are
listed farther down. The “flg” is either “-” or “O’, where “-” means that the
block is not on the freelist (i.e., more than PCTUSED used in the block), and
“O” means that the block is on the freelist. The remaining fields denote
which ITL’s freelist the block appears on (if any).

Next are the actual ITLs themselves, containing the information described
at the beginning of this section, required in order to construct CR blocks out of
committed or uncommitted transactions that have modified the block. This
represents the end of the transactional portion of the block header.

Then comes some information about the space usage in the block and
the row directory, used to locate specific row offsets within the block.
Included in the general information are the following:

• tsiz is the actual usable space in the block on which PCTUSED and PCT-

FREE are calculated.

• ntab is the number of tables (if this is a cluster).

• nrow is the number of actual rows in the block.

• fseo is the start of row data above header overhead.

5.5 DATA STORAGE 367
The section beginning “0xe” is the start of the row directory, which
shows once again that there are 61 rows in this block. This is immediately
followed by the row directory entries, which are in the following format:

<directory_address>:pri[rownum-1] offs=<offset_address_into block>

One interesting thing to note here is that the rows are inserted into the
block starting at the end of the block. In other words, the row data grows
toward the row header, not away from it. This is reflected in Figure 5.4,
where the free space is shown as being adjacent to the row directory.

The last thing in the block dump is the actual data, formatted as
described under “Row Data” above. Above each row is a header showing
the row number in the block and a summary of the content:

• tl is the total number (in bytes) of the row plus the header.

• fb is a set of flags where, in this example, we have a “H”ead of a row,
and we have the “F”irst piece and “L”ast piece of the row: this row is
not chained.

• cc is the column count for this row.

The actual data follows, one line per column. In this dump, the first
two columns are SYSDATE and NUMBER(10), respectively, stored in Oracle
internal format. The following four columns are VARCHAR2 columns, and
their contents can be viewed by turning the hexadecimal values into
ASCII characters.

Header Blocks
There are several different types of header blocks.2 Each of these types of
header blocks has a very different purpose and will be covered in turn.

File Headers. The first block of a datafile contains the file header. Stored
in this block is information such as the file number, the database that it
belongs to, and the last change number for that file. The overhead of this

2. Header blocks should not be confused with block headers (see “Block Header” above).

CHAPTER 5 PHYSICAL ORACLE368
block is important to remember when creating datafiles within Oracle
using raw disk devices.

When sizing the raw disk partitions, it is important to remember to
add the overhead of the file header block. It is common to find raw disk
based Oracle databases with the file size within Oracle defined as 99M,
199M, 499M, and so on. This is because the raw disk partitions have been
sized to exactly 100M, 200M, 500M, and so on, and no provision has been
made for the file header.

In this situation, Oracle will fail to create a datafile of size 100M,
because a 100M+1 block is required. It is very good practice to slice the
disk in order to allow for the additional Oracle block. This makes the space
management tasks for the database far easier because more human numbers
are used in calculating free/used space.

The change number information is used by Oracle to determine the
version number of the file in order to perform recovery on the file if neces-
sary. During a hot backup,3 this change number is frozen, and a hot
backup “fuzzy bit” is also set in the file header to indicate that the file is in
the process of being backed up hot. The change number is frozen in order
to determine where recovery should start.

In Figure 5.5, the file (or rather the tablespace containing the file) is put
into hot backup mode using the ALTER TABLESPACE BEGIN BACKUP syntax. At
this point in time, the system change number (SCN) is 23, and all the
blocks in the file are guaranteed to be at the same version number as a
result of the implied checkpoint when the file is put into backup mode.

During the backup, changes continue to be applied to the datafile, con-
trary to many beliefs. Therefore, the image that is recorded on tape will
look a lot like the middle picture; many of the blocks have the original
change number (i.e., have not changed), but a great deal of them have
changed during the actual saving of the file to tape.

In fact, two of the blocks are denoted as having two version numbers.
This is known as a “fractured block” and is the result of having an external
reader operating on the file. When the UNIX kernel issues a read from the
file (in 512-byte increments), the block is not guaranteed to remain the

3. Not using Oracle Recovery Manager.

5.5 DATA STORAGE 369
same until it has read the entire block, because this could entail many
physical read operations. Oracle could be in the process of writing this
particular block at the same time, resulting in the tail end of the block hav-
ing a newer version than the older header portion of the block shows. The
physical mechanism for this will be shown in “Segment Headers” below.

This is the key difference between this standard hot backup approach
and the Oracle Recovery Manager approach. The Recovery Manager uses
the Oracle buffer cache to copy the blocks out of the file onto tape, there-
fore guaranteeing that a consistent, nonfractured copy of each block is
made on tape.

For the standard hot backup approach, Oracle has to make a change in
the way it writes redo information to the redo log for the duration of the
backup. The first time Oracle writes a particular block to the redo log, it
records a before-image of the entire block in addition to the changes to the
block. Although the full block is recorded only on the first change to that
block during backup mode, this can result in a significant increase in the
amount of redo information recorded during the backup, especially if
batch processing is running at the same time.

Change
Number: 23
Hot Backup
Fuzzy Bit: Set

Start of Backup

Block Versions:
23
23
23
23
23
23
23
23
23
23
23
23
23

Change
Number: 23
Hot Backup
Fuzzy Bit: Set

Image on Tape

Block Versions:
23
28
23
100
202/203
204
23
367
455/460
489
558
23
640

Change
Number: 674
Hot Backup
Fuzzy Bit:Clear

End of Backup
and Checkpoint

Block Versions:
674
674
674
674
674
674
674
674
674
674
674
674
674

Figure 5.5 Hot backup recovery principle

CHAPTER 5 PHYSICAL ORACLE370
The end of the backup shows all the blocks having the same version
number, because a checkpoint is performed following the backup. This
checkpoint is recorded in the redo log and marks the minimum recovery
point for this backup.

When this file is recovered onto disk, it will look like the middle pic-
ture once again. However, Oracle is aware that this file was copied out in
backup mode (due to the fuzzy bit being set) and starts to apply redo
information to the file beginning with the SCN stored in the file header.
This process ensures that all blocks in the file are updated to consistent
versions and that all fractured blocks are repaired accordingly.

Segment Headers. The segment header is an important header for us to
understand when building databases for maximum scalability. Contained
in the segment header are

• Segment identification information, such as object number

• Extent information, such as a map of extents allocated (start address,
size), the high-water mark of used extents (used for ALTER TABLE xxxx

DEALLOCATE UNUSED)

• Freelist information

• Segment-specific information (such as the transaction table in a roll-
back segment)

Freelist information is stored in the segment header of each segment. What
is a freelist? It’s exactly what its name suggests: a list of free things. In the
case of a segment freelist, it is a list of the free space in the segment, as
determined by the PCTUSED setting for the segment. If a segment had data
stored as shown in Figure 5.6, the freelist would contain entries for the last
two blocks only, because both of the blocks have greater than PCTUSED of
the block free.

A segment header can contain several freelists, each of which is protected
(locked) individually during use. This allows the number of concurrent
inserts in the table to be increased, because multiple freelists are available.

In the case of Oracle Parallel Server, this does not mean multiple
inserts from different instances, because the buffer for the segment
header cannot be concurrently held in exclusive mode on multiple

5.5 DATA STORAGE 371
nodes. For Parallel Server installations, the concept of freelist groups is
used to provide this facility, which assigns additional blocks for freelists.
This gives each instance preferential access to that block, thereby allow-
ing concurrent access by multiple nodes.

Segment Header Block Dump. A block dump of a table segment header
looks like this:

The initial portion is identical to the dump of the table data block
above. After that comes the extent information for the block. Here we see
that this segment has 14 extents and 2,139 blocks, and the high-water mark

buffer tsn: 1 rdba: 0x00805002 (2/20482)
scn:0x0000.00054c5d seq:0x0a flg:0x00 tail:0x4c5d100a
 frmt:0x02 chkval:0x0000 type:0x10=DATA SEGMENT HEADER - UNLIMITED

 Extent Control Header

 Extent Header:: spare1: 0 space2: 0 #extents: 14 #blocks: 2139
 last map 0x00000000 #maps: 0 offset: 2080
 Highwater:: 0x00805684 ext#: 13 blk#: 236 ext size: 710
 #blocks in seg. hdr's freelists: 28
 #blocks below: 1665
 mapblk 0x00000000 offset: 13
 Unlocked
 Map Header:: next 0x00000000 #extents: 14 obj#: 2807 flag: 0x40000000
 Extent Map

 0x00805003 length: 4
 0x00805007 length: 5
 0x0080500c length: 10
 0x00805016 length: 15
 0x00805025 length: 20
 0x00805039 length: 30
 0x00805057 length: 45
 0x00805084 length: 65
 0x008050c5 length: 95
 0x00805124 length: 140
 0x008051b0 length: 210
 0x00805282 length: 315
 0x008053bd length: 475
 0x00805598 length: 710

 nfl = 1, nfb = 1 typ = 1 nxf = 1
 SEG LST:: flg: UNUSED lhd: 0x00000000 ltl: 0x00000000
 XCT LST:: flg: USED lhd: 0x00805652 ltl: 0x00805062 xid: 0x0001.028.00000193

CHAPTER 5 PHYSICAL ORACLE372
(i.e., any blocks above this point have never been used to store data) is at
0x00805684. This is 236 blocks into the 13th extent, which has 710 blocks
allocated to it. We can see that there are 28 blocks reported in the seg-
ment’s freelist(s).

It’s worth noting that the high-water mark is not the same as the free-
list. When Oracle goes to allocate space for a new row, it will use one or
the other of these pieces of information to find space for it according to the
following algorithm:

• If space is available in the segment freelist (also called the process freelist), it
will be allocated from there. Each process is restricted to one segment free-
list that it can search, allocated by the algorithm illustrated in Figure 5.7.

• If not, the process will search the “master freelist” for the space. The
master is simply one of the segment freelists that is nominated as the
master. If space is found in this list, it is allocated to the process.

• If no space is found there, the “transaction freelists” are searched.
These are freelists that are created when a process gives space back to
the segment during a transaction. There can be many of these freelists
per segment, and they can be searched by any process. If space is
found, it is allocated to the process.

• If space is not found in any of the above freelists, the high-water mark
must be increased. When it is increased, all space gained from the

Greater than
PCTUSED

free in block

Segment Header

Full Datablock

Partially Full Block

Empty Block

Fr
ee

lis
t

Freelist

Entry 1

Entry 2

Figure 5.6 “Free” definition in Oracle freelist management

5.5 DATA STORAGE 373
increase is allocated to the segment freelist. This is done to allow sub-
sequent inserts to be satisfied by the first freelist search in this
sequence.

• If the high-water mark is already at the top of the final extent, a new
extent must be allocated.

The respective freelists can be seen at the tail end of this block dump,
showing (nfl=1, nfb=1) that we have one freelist per freelist block (a.k.a freelist
group) and one freelist block. We have a currently unused segment freelist
and a used transaction freelist, which stores the 28 blocks that are in the
segment header’s freelists.

In the extent map for the segment, we see that all the extents are five
blocks in size except the first one—because the first extent stores the segment
header, and if additional freelist groups were assigned to the segment (at crea-
tion time), the usable size of the initial extent would be reduced accordingly.

When multiple freelists and freelist groups are created in a segment
header, they are assigned to processes using a simple modulo hash. The
freelist group used is determined by <thread#>/<number of freelist groups>,
and the freelist within the freelist group is determined by <process
id>/<number of freelists>. For example, if a segment has three freelists and
two freelist groups, it is used as shown in Figure 5.7.

Freelist Group 1

Freelist 3

Freelist 2

Freelist 1

Freelist Group 2

Freelist 3

Freelist 2

Freelist 1

Process 2543 will use freelist
(2543%3) + 1 = 3

Thread 5 will use freelist group (5%2) + 1 = 2

Figure 5.7 Freelist allocation algorithm

CHAPTER 5 PHYSICAL ORACLE374
The “+1” addition in the example is to prevent the algorithm from
mapping to freelist group 0, which does not exist.

5.5.3 Block Cleanout
Block cleanout is an optimization made by Oracle to speed up the commit
process. When a transaction is committed, Oracle will only perform the
minimum amount of work in the block required to guarantee the transac-
tion. In addition to this work, there is an amount of housekeeping that
needs to be performed in order to keep the database running smoothly.
Oracle does not perform this housekeeping at the commit phase in order
to keep the commits as fast as possible.

Block cleanout is the name given to these housekeeping tasks, and it is
performed by the next session to read the block. The idea of this is that
many sessions could be doing the housekeeping in parallel, therefore
keeping the overhead for any single session to a minimum.

During block cleanout, the following duties are performed, where
applicable to the prior transaction:

• The SCN in the block header is updated to reflect the contents of the ITLs.

• The ITL entry is cleaned, including free space credit given back to the
block, and the SCN is updated to reflect the current state of the block.

• The freespace in the block is updated in the row directory.

• The row directory is updated to show the deleted rows (gaining a tag
of sfll instead of offs).

• The row data is actually purged instead of being flagged as deleted.

Block cleanout is a frequently forgotten part of the operation of Oracle,
and it can affect the performance of the system significantly.

For example, data purge is mostly performed as part of the batch cycle
in the evenings. Even if the deletes are kept separate from any batch access
to the affected tables, the subsequent batch jobs will still be very much
slower than the evenings in which the deletes do not occur. In fact, after a
mass delete, it could take many times longer for a read-only batch job that
follows it to complete. One good procedure for at least keeping things pre-

5.6 REDO LOGFILES 375
dictable in this scenario is to always perform full table scans on tables that
have had large numbers of deletes performed against them.

The other side effect of block cleanout is that you might notice a sud-
den increase in redo writes that does not relate to the execution of a batch
job (i.e., it has already finished). This is the logging of the block updates
necessary as part of the block cleanout operation.

5.6 Redo Logfiles
The redo logfiles are responsible for the integrity of the database. All
changes in the database, both committed and uncommitted, are written to
the redo log.

Unlike writes to the data files4 in the database, the redo log does not oper-
ate through the buffer cache in the SGA. Instead, the redo log is accessed
through the redo log buffer, which will be covered in the next chapter.

The redo logs are used to record all changes in the database by record-
ing the changes made to the actual blocks. This includes changes made to
rollback segments, and so the complete state of the database can be rebuilt
by reapplying the redo information to a recovered database. When a com-
mit is issued, all the session’s redo records are written out to the redo log
by the Log Writer (LGWR) process, in addition to a commit marker for
that transaction. If several other sessions are to commit while this write
activity takes place, all of the commits are serviced concurrently by the
LGWR, in a process called group commit. In this way, the rate of writes to
the redo log is not proportional to the rate of commits, and the system can
scale more efficiently.

During a database recovery operation, the database is rolled forward
to the specified point. During this rollforward from the redo log, all the
rollback segments are rebuilt and any committed transactions are recom-
mitted back to the database. Think of the rollforward as a more efficient
replay of the work recorded in the redo logs. Once the recovery is com-
plete, any uncommitted transactions left in the rollback segments are
rolled back, in order to return the database to a consistent state.

4. Excluding temporary tablespaces, which neither generate any redo information nor go
through the buffer cache for read or write activity.

CHAPTER 5 PHYSICAL ORACLE376
Owing to the serial nature of the redo logs, it is important that the logs be
optimized for write performance, because sessions issuing a commit will wait
until the records are all synchronously (i.e., we wait for the operation to com-
plete) written to disk. Therefore, locating the redo logs on a UNIX file system is
almost always a bad thing to do unless special support is provided by the oper-
ating system for direct writes, because of the additional overhead of the file sys-
tem buffer cache, where it provides no benefit to the write-only operation.

Often, the best way to optimize redo log placement is to build the logs
on raw disk partitions and place the logs on their own disk, preferably
with their own controller (although this gets less important when Ultra
SCSI or fibre channel is used). In this way, the writing to disk is not inter-
rupted by an external influence, such as another file operation or file sys-
tem cache contention.

When the redo logs are placed on their own disks, the physical drive
spindle is much more capable of sustaining a high write throughput,
because very little (if any) seeking is required by the disk head. The opti-
mal way to lay out redo logs on a large system is shown in Figure 5.8.

Figure 5.8 is more of a schematic than an I/O channel configura-
tion. What it shows is that, at any one time, the LGWR process has a
dedicated write channel through to the redo log. When Oracle switches
the active redo log to the next defined log, it implicitly switches to
another disk spindle, allowing the archiver process a free channel on
which to archive the full log to the archive destination.

5.7 Key Database Objects
5.7.1 Rollback Segments
Rollback segments are also known as undo segments because of their role in
database operation. During a transaction in the database, data manipula-
tion language (DML) statements modify the actual data blocks that are
affected by the operation. In order to have the ability to undo these opera-
tions, the before-image of the changed data is stored in the rollback seg-
ment. When the user issues a rollback command, or some kind of failure

5.7 KEY DATABASE OBJECTS 377
implies a rollback, this rollback information is applied back onto the data
blocks, restoring them to their state before the transaction started.

In addition to undoing uncommitted transactions, the rollback segments
are also used to construct a read-consistent view of the data blocks for all
other users who access the blocks prior to the commit of the transaction.

The Oracle consistency model is covered in detail in the next chapter,
because it uses many different attributes of the Oracle system, not the least
of which is the buffer cache layer. In this chapter, we will concentrate on
the physical types of rollback segments and their usage.

User Rollback Segments
User rollback segments are used to store the undo information for user
transactions—that is, for nonrecursive SYS transactions. All rollback seg-
ments except the SYSTEM rollback segment are considered user rollback
segments.

Archive
Destination

LGWR

Log 3

Log 1

Log 5

Log 7

Log 2

Log 4

Log 6

Log 8

Figure 5.8 Optimal redo log placement

CHAPTER 5 PHYSICAL ORACLE378
Full information on the physical usage of rollback segments can be
determined from the Oracle Server Concepts Guide and won’t be repeated
here. However, some of the pertinent points will be restated.

If a long-running query is running against an object in the database,
and other sessions are writing to that object at the same time, none of the
undo information for the writing sessions can be released until the long-
running query is complete. This occurs because the undo information for
the writing sessions is required to reconstruct a read-consistent version of
the modified blocks on behalf of the reading session. If the rollback seg-
ment needs to reuse these blocks that were retained for consistent read, it
will do so and cause the reading session to fail with a “snapshot too old”
error. The creation of consistent blocks will be covered in the next chapter.

A rollback segment’s extents are reused in a circular fashion. If the
tablespace that contains the rollback segment is full, or if maxextents is
exceeded for the rollback segment, this affects how a rollback segment is
deemed to be “full.” As an extreme example, take the scenario where the
first and last extents of the rollback segment contain active transactions.
When a new transaction requires space in this rollback segment, it will
attempt to reuse the first extent and will fail because active transactions
reside in that block. This makes the rollback segment effectively “full”
despite all the extents between the first and last remaining empty.

A common practice among DBAs is to use the OPTIMAL setting for roll-
back segments. This allows the segment to be automatically kept close to
the specified size by Oracle. It does this by deallocating the oldest inactive
extents in the segment until the segment is close to the requested size. This
is a popular option, because it allows runaway jobs to operate in a com-
mon “pool” of rollback segments without leaving one or more of the seg-
ments dominating the space in the tablespace.

However, for a large-scale implementation, this is probably not an
“optimal” approach, because it is working around a more fundamental
problem. The problem is: What is the runaway job in the online pool of
rollback segments? If it is a batch job, then it should use the SET TRANSACTION

USE ROLLBACK SEGMENT call in order to assign it to some large, prebuilt roll-
back segments. If it is an online session, it probably shouldn’t use so much
rollback.

5.7 KEY DATABASE OBJECTS 379
The online user session can only be using a lot of rollback for one of
two reasons: either it is making a lot of changes in the database, or it is
holding a cursor open for a long time, requiring a great deal of consistent
read support from the rollback segment. In the first case, if the changes are
UPDATE or DELETE, the session is committing a worse sin than growing a roll-
back segment, in that it is locking many, many records in the database and
probably causing TX enqueue contention in the database. In the second
case, it would be unusual to find a requirement that called for this kind of
long-lasting, read-consistent view in an online session.

The other reason to avoid the OPTIMAL setting is that it can severely
limit the capability to retain consistent reads, even for short periods,
because extents that are maintained only for consistent reads are eligible
for deallocation in order to shrink the segment back to its optimal size.

System Rollback Segment
The SYSTEM rollback segment resides in the SYSTEM tablespace. It is used in
the same way as user rollback segments are used, but only for recursive
transactions in the database, otherwise known as data definition language
(DDL) statements. If no other rollback segments are created, this segment
is also used for user transactions.

Deferred Rollback Segments
Deferred rollback segments are temporary rollback segments that are cre-
ated in the SYSTEM tablespace automatically as needed. They are used to
store undo information that cannot be applied because a tablespace is
offline at the time of the rollback operation.

5.7.2 Read-Only Tablespaces
When a tablespace is defined READ ONLY, this tells Oracle that no writes can
occur to the tablespace. If no writes can occur, there is no need to update
the SCN for the file either, because nothing can change.

This tablespace declaration is most useful in data warehousing appli-
cations, where tablespaces can be marked READ ONLY once they are loaded.
As the former restriction of a table residing in only one tablespace is now

CHAPTER 5 PHYSICAL ORACLE380
removed (when using partitioning), this becomes a very useable way of
controlling the backup requirements for very large data warehouses.

Once a particular partition is loaded and is residing in its own
tablespace, this entire tablespace can be made READ ONLY. After this is done,
the files that make up the tablespace can be backed up to tape, possibly
multiple times to protect against bad tapes, and then can be stored forever
at an offsite location. As the files never change (unless they are taken out
of READ ONLY mode), this backup is all that is required to effect a full restore
of the tablespace.

5.7.3 Temporary Tablespaces and Temporary Segments
These two entities are closely related and overlap in function. A temporary
segment can exist in any tablespace, but a tablespace of type TEMPORARY can
store only temporary segments. Specifically, a TEMPORARY tablespace can
contain only sort segments.

In release 7.3, Oracle introduced a tablespace of type TEMPORARY, and
also introduced the principle of SORT_DIRECT_WRITES5 for all writes to tempo-
rary segments.

All users in Oracle have a tablespace assigned to them as their tempo-
rary tablespace. This tells Oracle where it should create sort segments
when it needs to sort on disk. Complex join operations, GROUP BY opera-
tions, ORDER BY operations, and so on, can all result in a disk sort. In addi-
tion to temporary segments needed for the sort, temporary segments are
created in the target tablespace of a CREATE INDEX operation, used for the
actual construction of the index. Both of these types of temporary seg-
ments benefit from the direct write capability.

The direct writes functionality instructs Oracle not to use the buffer cache
when writing sort segments—they can be written directly to the datafile by
the active session.6 In addition to this, Oracle does not generate any redo

5. This parameter is now obsolete. The functionality still exists, however, and is managed
automatically by Oracle.

6. Apart from some sort directory information, which is still maintained in the buffer
cache.

5.7 KEY DATABASE OBJECTS 381
information for the temporary blocks written. These two factors combined
allow far greater performance for large queries than was possible before.

In addition to this change, the ability to create a tablespace of type
TEMPORARY was introduced. This is a special type of tablespace solely for
use in disk sorts and cannot be used to store permanent objects. In addi-
tion to gaining the direct write capability for all writes to this tablespace,
the concept of a sort segment was introduced.

Sort segments were implemented to relieve the pressure exerted on the
space transaction (ST) enqueue in the database. The ST enqueue is the lock
that needs to be held before any space management can be done in recur-
sive SQL. Whenever any new extents are created in or removed from the
database, the ST lock must be acquired; if it is already in use, you must
wait for it to become available. In a system where a great deal of this activ-
ity takes place, such as a busy system with a several disk sorts occurring at
any one time, there can be fierce contention for the ST lock. This is mas-
sively compounded in a Parallel Server environment, where there is still
only a single ST lock for all instances that are running.

The introduction of sort segment practically removes this type of ST
contention. When a sort segment is first created, it requires the use of the ST
lock, just as before. However, instead of acquiring the lock again to remove
the segments once it becomes free, the segment is handed over to a pool of
sort segments managed by instance-local latches instead of a database-
wide enqueue. The next session that requires a sort segment can check the
pool and reuse any free segments that the instance has allocated to it.

The net effect is that, once the instance has built enough sort segments
using the ST lock, their management is then handled by the local sort seg-
ment management, leaving ST free for its other tasks.

5.7.4 Tables
The concept of a table is no longer as simple as it once was. In addition to
the standard table and clusters that have existed since version 6, we now
have partitioned tables, temporary tables, and index-organized tables. The
index-organized table is covered as an index, because it resembles an
index more closely than it does a table.

CHAPTER 5 PHYSICAL ORACLE382
Standard Tables
A standard table is still the most common table in most Oracle databases.
The structure of the standard table was covered under “Row Data” in Sec-
tion 5.5.2.

Partitioned Tables
Partitioning is one of the big changes in Oracle8. This facility allows the
administrator to break up large tables into several smaller partitions while
accessing the table in the normal manner (see Figure 5.9).

The table is split into partitions based on key ranges on one or more
columns, either by direct value or by hashing7 the value to gain the parti-
tion number. The choice of how the partitioning is performed is up to the
administrator. In this example, the “bookings” table is broken up into four
partitions by the first letter of the booker’s name. Each of the partitions is
stored in its own tablespace, although they could all be stored in the same
tablespace if desired.

A good way to view partitions is as “subtables” of the global table.
Oracle handles all the joining of the partitions to form a single view of the
data, but also takes care of partition elimination (or pruning) using the cost-
based optimizer. In partition elimination, the optimizer excludes certain
partitions from the execution plan of a given piece of SQL based on the
predicates in the query.

Partitioning brings three important features to the table:

7. In Oracle 8.1 and upward.

Tablespace tbs00

Partition book_00

A – F

Tablespace tbs01

Partition book_01

G – M

Tablespace tbs02

Partition book_02

N – S

Tablespace tbs03

Partition book_03

T – Z

Bookings Table

Figure 5.9 Partitioned table “bookings”

5.7 KEY DATABASE OBJECTS 383
1. Manageability

2. Performance

3. Scalability

The manageability comes from being able to perform maintenance at a par-
tition level without affecting the other table partitions. Using partitions, we
can lock an entire partition (for data maintenance, or to do local index
builds8) while users continue to execute against the remaining partitions.
Likewise, if a file goes offline as a result of hardware problems, only the par-
tition that is within the file is affected; the rest of the table is accessible and
does not require recovery.

We can also remove certain partitions from the table, either by turning
these partitions into tables in their own right or by dropping them. If a
table is partitioned by a range that also works well for the purge rules, the
delete process can be as simple as dropping the oldest partition when its
data becomes older than the required retention period.

In addition to purging of data, partitions allow far greater flexibility
performing data loads. Data that needs to be loaded into the large parti-
tioned table can first be loaded into an interim table that has the same def-
inition. When all the data is loaded, the table can be merged into the
partitioned table as an additional partition, making the data load compar-
atively transparent to the end user.

Performance gains in partitioned tables come from the fact that the
optimizer can now physically exclude data from the search path. This is
true for all dimensions: We now effectively have multiple tables where we
previously had only one. Therefore, all operations on the table can be per-
formed much faster, provided that the access paths are evenly distributed
across the partitions.

In the case of INSERTs, we now have several segment headers from which
to retrieve freelist information, and so the contention on the segment
header is reduced accordingly. In the case of DELETEs and UPDATEs, a
new facility is available in partitioned tables called parallel DML. Using par-

8. See “Partitioned Indexes” in Section 5.7.5.

CHAPTER 5 PHYSICAL ORACLE384
allel DML, these two operations can be executed in parallel from a single
session, as long as the operations fall in different partitions.

The scalability advantages come from two dimensions that span the
manageability and performance categories. As a table gets past a certain
size,9 it simply becomes unmanageable in terms of indexing, backups—
everything. A system cannot scale if the objects within it become unman-
ageable. With partitioning, a table can be processed in pieces, doing only
what is required for one partition at a time.10

In a data warehousing environment, it makes sense to load the data by
date range if possible. In this way, the data can be loaded into different
partitions when the current one gets unmanageable to backup (this could
mean a day, a week, a month, or any time period). When the loads start to
go into a different partition, the previous one can be made read-only and
can be archived off to tape as a one-time exercise. When local indexes are
used (see Figure 5.15), the index building can be restricted to the compara-
tively small (relative to the whole table) partition.

From the performance perspective, we will cover less obvious reasons
why partitions scale well later in the book. The more obvious reasons are
the use of partition elimination in queries, which reduces the amount of
unnecessary work that the database performs. Partition elimination is the
process that the cost based optimizer (CBO) uses to determine whether or
not certain partitions need to be read. Based on the values submitted for
predicates using partition columns, the optimizer can elect to omit irrele-
vant partitions from the execution plan.

Hash Clusters
Hash clusters have been in the Oracle product for quite some time. Despite
this, they remain relatively unused in the field, despite their performance
and scalability advantages. The reason for this is that they also come with
several limitations that make them unsuitable for most purposes.

9. The meaning of “a certain size” keeps changing: as I/O and processing get faster, the
“line in the sand” gets farther away. However, we are normally pushing way beyond wher-
ever the line is drawn anyway.

10. Global indexes are the exception to this rule.

5.7 KEY DATABASE OBJECTS 385
The theory behind a hash cluster is that a column, or several columns,
can be passed through a hash algorithm so as to produce the approximate
location of the actual data in the database.

In the example shown in Figure 5.10, a user submits a query to the data-
base with a single set of criteria: ID = 346782, Name = Jones, Flight = ZZ437.
Oracle takes these values and performs a hash operation on them, deriving
a hash value of 8465874852. Neither the user nor the administrator needs to
know what this value is.

The content of the hash cluster is physically stored on disk according
to the same hashing algorithm. Therefore, if the data exists in the cluster, it
must exist under the same hash bucket that has just been calculated for the
user’s query. In this example, there are three rows that reside in this hash
bucket, and so Oracle will check each one for equality against the supplied
predicate and then return the data.

It is important to remember that a hash cluster will provide good per-
formance only when

• There are a small number of records for a given hash value

• The data is accessed mostly through direct lookup as opposed to any
type of scan

Keeping the number of records low for a given hash value is achieved by
setting the HASHKEYS parameter appropriately on hash cluster creation.
You will need to know a good deal about the current and future row

Hash Cluster

Bucket
5776356822

Bucket
8465874852

Bucket
8563658935

Row Data

Row Data

Row Data

ID

346782

Name

Jones

Flight

ZZ437

Hash Value

8465874852

Oracle RDBMS

Figure 5.10 Hash cluster access method

CHAPTER 5 PHYSICAL ORACLE386
counts for this table in order to set this parameter adequately, because the
correct setting is likely to be different in six months as a result of table
growth. Keeping the row count per hash low allows Oracle to go straight
to the correct row based on the hash value, with no subsequent scanning
of peer rows in that hash bucket.

Full table scans are very inefficient in hash clusters because of the rela-
tively sparse block population resulting from a well-configured hash clus-
ter. Likewise, range scans across the cluster key are not very efficient
because of the number of blocks required to satisfy the request.

In summary, hash clusters work well where the data is relatively static
and where the cluster is configured correctly for the number of hash keys.
They scale well as a result of the small number of block visits (probably only
one) needed to retrieve the single row requested. This eliminates the root and
branch block contention encountered on very busy B-tree indexes. Hash clus-
ters are ideal for very large reference tables, for all of these reasons.

5.7.5 Indexes
Gone are the days when there was only one type of index. We now have as
many as five variations on the indexing theme. Although the old B-tree
index continues to suit most purposes well, the performance requirement
on indexing has increased over time, and new data access methods have
been implemented to improve the capability of the database.

Structure of B-Tree
A B-tree index in its purest form is a binary tree structure that maps the
path to the required leaf block by making yes/no answers. Figure 5.11
illustrates the structure of an Oracle B-tree.

Unless the index is very small (only one block required for all keys), it
will have at least a root block and probably many branch blocks. There is
no difference between a root block and a branch block except that the root
block is always the entry point for the index and is therefore a kind of
“super branch block.”

When Oracle needs to find a row, and the query contains predicate
information to allow Oracle to use an index, it will start by going to the
root block of the appropriate index. The root block contains the informa-

5.7 KEY DATABASE OBJECTS 387
tion required to get to either the leaf block itself (in the case of small
indexes) or the next branch block. The next branch block homes in further
on the actual leaf block, based on the supplied data values.

The leaf block contains all the data values for the indexed columns and
the rowid for the corresponding row in the table. If the query can be satis-
fied using only the columns in the index, the rowid is not used any further.
However, if additional columns are required from the table, the rowid is
used to access the row directly, without any scanning.

If the query contains a range of possible values for the key, Oracle can
elect to perform a “range scan.” Oracle will start at one end of the supplied
range and use the links between the leaf blocks in order to go directly to
the next applicable index block, without going back to the root and branch
blocks.

Oracle maintains very shallow B-trees. This means that the number
of root/branch blocks read before the actual leaf block is hit is very
low—typically two (one root, one branch), with a maximum of four
levels. This directly correlates to the size of the Oracle block, because
this is the ultimate limit on how many pointers to the next level can be
stored.

Key: AAA
Key: ABA
Key: BBA

Key: BBB
Key: BCB
Key: BZE

Key: CCC
Key: CDE
Key: CFR

Key: CGG
Key: DDD
Key: DAR

<CCC <EEE

<BBB <CCC <CGG <EEE

Leaf Blocks

Branch Blocks

Root Block

Figure 5.11 B-tree structure

CHAPTER 5 PHYSICAL ORACLE388
When an index block is filled, Oracle allocates another block from the
freelist, as described previously. However, owing to the B-tree structure,
Oracle normally cannot start to use the block immediately, because the
inserted key value is likely to fall somewhere between existing keys (e.g.,
the inserted value is 1,000, and the leaf block contains a range from 500 to
4,000). In this case, Oracle performs an index leaf block split, which means
that the upper half of the keys are transferred to the new block while the
lower half remain in the old block. This way, the key can be applied to the
correct leaf block in the B-tree. When the split is complete, the branch
block above the blocks must be updated to reflect this new block’s keys
and location, in addition to updating the key range for the old block.

Reverse Key Indexes
Reverse key indexes are primarily an Oracle Parallel Server optimization. They
are exactly what their name implies: The key is reversed before being inserted
into the index. This allows a far more scalable spread of index keys when an
ascending key is used for the leading edge of the index (see Figure 5.12).

This spread of keys is critical in a Parallel Server configuration where
many instances can be inserting rows into a common, indexed table. One
example of this would be invoice records, where each instance is creating

Key Values

Key: 4321 Key: 5321 Key: 6321 Key: 7321

1234 1235 1236 1237

<6000 <8000

<5000 <6000 <7000 <8000

Leaf Blocks

Actual Key Values

Branch Blocks

Root Block

Figure 5.12 Reverse key indexes

5.7 KEY DATABASE OBJECTS 389
invoices and by implication requiring insertion into the exact same leaf
block. This can cause huge cross-instance contention, because the leaf
blocks must be pinged between the nodes each time.

For insertion into a standard table, this is not a problem, because free-
list groups allow each instance to maintain its own set of freespace for the
inserts. This is particularly true when entire extents are explicitly allocated
to certain freelist groups. In the case of a standard B-tree, this does not
apply, because Oracle has to insert keys into specific blocks in order to pre-
serve the structure of the B-tree.

When a reverse key index is used, the least significant portion of the key
suddenly becomes the most significant, and the index keys “stripe” across
the entire range of leaf blocks, reducing the likelihood of a hot leak block.

This benefit does not come without restrictions, however. As a
result of the key now being reversed, a range scan is no longer an
option, because Oracle may need to scan the entire set of index leaf
blocks hundreds of times, or full scan the whole index, before the com-
plete range is satisfied. Therefore, reverse key indexes are useful only
where single-row fetches are used to retrieve the inserted rows. If this
is not possible because of application design, alternative methods for
reducing index leaf block contention must be considered in a Parallel
Server environment.

Bitmapped Indexes
Bitmapped indexes were introduced in release 7.3 and were the first var-
iation on the trusty B-tree index. Primarily designed for decision support
queries rather than transaction processing, bitmapped indexes provide
both excellent performance and comparatively small size.

They are referred to as bitmapped indexes because they provide Ora-
cle with simple true/false answers as to whether the keys match certain
criteria. In physical terms, the equivalents of branch blocks now contain
the possible combinations of key values in the indexed column, equiva-
lent to performing a SELECT DISTINCT column_name on the table.

The leaf blocks contain bitmaps for a range of rows in the table, declar-
ing which combinations the row matches (i.e., TRUE) and which it does

CHAPTER 5 PHYSICAL ORACLE390
not (i.e., FALSE). These bitmaps are very small, and therefore the entire
bitmapped index can be scanned very quickly.

For example, if we had a table called STUFF with a column called TYPE

that contained the values GOOD, BAD, and INDIFFERENT, the result would be
entries in the index leaf block of the form

This example shows the key to which this bitmap relates, followed by a
range of dbas to which this bitmap corresponds. The bitmap consists of
an array of bits set to 1 if the row it relates to has the value “GOOD,” and
to 0 if it does not. Every row is reported here, including NULL columns,
which never “equal” anything. This makes a bitmapped index an accept-
able method for counting all the rows in a table or where something IS

[NOT] NULL.
Bitmaps are particularly useful in conjunction with other bitmaps,

including themselves. To continue with the example, if a query were writ-
ten as

there would be a bitmap “merge” of different portions of the same bit-
mapped index on STUFF. The “GOOD” and “INDIFFERENT” bitmaps would be
ORed together to produce another bitmap that could be used to satisfy the
query by counting all the set bits in it. This technique applies equally to
different bitmaps, on different columns.

Bitmapped indexes are useful only if there are a small number of dis-
tinct values for the indexed column. If this is not the case, the overhead of
building a bitmap for every combination can quickly make the bitmapped
index unwieldy, and the advantages become liabilities.

Updates to a table covered by a bitmapped index are deferred
until the entire DML operation is complete. This means that if one
row or one million rows are changed, the bitmap will not be updated
until the end of the operation. This does not affect readers, because
the bitmap will always be updated before any other session needs it,

col 0: GOOD
col 1: start dba
col 2: end dba
col 3: <bitmap>

SELECT count(*) FROM stuff WHERE TYPE in (‘GOOD’,’INDIFFERENT’);

5.7 KEY DATABASE OBJECTS 391
because the update always completes before the updating session
issues a commit.

Locking of the bitmap index is done on a dba range basis in order to
maintain the whole bitmap portions. This is logical, considering the way
that Oracle stores the bitmap fragments in the leaf blocks; managing
multiple updates within a single bitmap would be very difficult. Despite
being logical, however, this makes bitmaps tricky to use in a transac-
tional environment, because the concurrency of updates is directly
affected.

Partitioned Indexes
Just as tables can now be partitioned, so can indexes. However, in the case
of indexes, there are more considerations to be made.

Indexes now have terminology associated with them that declares the
scope of table coverage for the index. An index can be either global or local
under this terminology. A global index covers all partitions of the underly-
ing table, whereas a local index covers only the table partition to which it
is assigned. A global index can be partitioned or nonpartitioned, and a
local index is partitioned by implication that it covers a partition of a table.

When a global index is nonpartitioned, it is exactly the same as a
standard B-tree index. It does not have to be built on a partitioned table.

The index illustrated in Figure 5.13 can be partitioned only in one of
the two possible ways—that of a prefixed index and a nonprefixed index. A
prefixed global index is partitioned on the leading edge column within the

Global Index

Tablespace tbs00

Partition book_00

A – F

Tablespace tbs01

Partition book_01

G – M

Tablespace tbs02

Partition book_02

N – S

Tablespace tbs03

Partition book_03

T – Z

Bookings Table

Figure 5.13 Nonpartitioned global index on a partitioned table

CHAPTER 5 PHYSICAL ORACLE392
index. That is, if the index in Figure 5.13 were built on book_ref and book_time,
the prefixed index would be split into several partitions based on ranges
of book_ref or of book_ref and book_time combined. It could not be partitioned on
book_time, because this would be a global nonprefixed index, which is not pro-
vided for by Oracle. The result is shown in Figure 5.14.

Global prefixed indexes are not as preferable as local prefixed indexes.
However, sometimes it is not possible (or practical) to build local prefixed
indexes, because the required indexes for any given table will often lead
on columns other than the table partition key (as required for local pre-
fixed indexes). Also, there are situations in which a partitioned index may
be preferable for contention management reasons and partitioning of the
table is not required at all.

The specific situation in which this may be desired is the case of
heavy index root block contention. This kind of contention is possible for
many reasons and can even occur when the index is simply being read a
great deal. In this case, the object of contention is the latch protecting the
piece of cache in which the root block is stored. In this situation, there is
not much else to do (apart from checking for strange data pathologies)
than to partition the index to form multiple root blocks. If the partition
ranges are carefully chosen (by access rate, rather than by strict storage
ranges), this kind of partitioning can result in multiple blocks in the

Partition gi_00 Partition gi_01 Partition gi_02

Global Index

Tablespace tbs00

Partition book_00

A – F

Tablespace tbs01

Partition book_01

G – M

Tablespace tbs02

Partition book_02

N – S

Tablespace tbs03

Partition book_03

T – Z

Bookings Table

Figure 5.14 Partitioned global index on a partitioned table

5.7 KEY DATABASE OBJECTS 393
cache, each protected by its own latch (assuming that the cache is well
tuned—see Chapter 6).

Local indexes can be built only on partitioned tables, but can be either
prefixed or nonprefixed. When prefixed, the index is partitioned on the same
column and range as the table partition, shown in Figure 5.15.

With local prefixed indexes, each index partition directly maps to one
corresponding table partition. The index can include additional columns
but must lead on the same columns as the table partition.

With local nonprefixed indexes, the index columns do not have the
same leading columns as the table partition. However, the index partitions
contain only data related to the table partitions they cover: Leaf blocks in a
local nonprefixed index point only to rows in the related table partition,
not to any other partitions.

For example, assume that the bookings table were partitioned on book_name

range, as shown above. A prefixed index on this partitioned table would
be built using the same ranges of book_name. A local nonprefixed index could
be built on book_time, and each local index partition would contain a mini B-
tree of book_time keys, built locally on each table partition of book_name.

When one is determining which type of index to build, the following
performance consideration must be taken into account. Prefixed indexes
allow Oracle to determine which index partitions will be needed at execu-
tion time. When the index is nonprefixed, Oracle cannot know which parti-

Partition lpi_00 Partition lpi_01 Partition lpi_02 Partition lpi_03

Local Index

Tablespace tbs00

Partition book_00

A – F

Tablespace tbs01

Partition book_01

G – M

Tablespace tbs02

Partition book_02

N – S

Tablespace tbs03

Partition book_03

T – Z

Bookings Table

Figure 5.15 Local index partitions

CHAPTER 5 PHYSICAL ORACLE394
tions can be excluded from the search. Therefore, all index partitions must
be examined at runtime in order to determine the locations of all the data,
unless they can be eliminated on the basis of other predicates in the query.

Index-Organized Tables (IOTs)
Index-organized tables are also known as index-only tables. The best way
to visualize an IOT is to view it as a normal B-tree index in which, instead
of a rowid partnering the key columns, all the columns in the table are
included in the actual leaf block (see Figure 5.16).

With all the columns included in the “index,” the storage of an actual
table is not necessary, and so the B-tree itself becomes an IOT, accompa-
nied by a few changes in the way the table is accessed.

The major change is that an index does not have a rowid—only tables
have rowids. The new unique row identifier is now the primary key on
which the table is organized. In order to support the creation of additional
indexes on the IOT, a new logical rowid is created in the new index in an
attempt to allow direct access to the row without traversing the branch
blocks of the actual IOT when a different index is used to access the table.

Key: 146
col 1: 'FRED'
col 2: 'MGR'

Key: 856
col 1: 'JOE'
col 2: 'TECH'

Key: 1200
col 1: 'MARK'
col 2: 'TECH'

Key: 1999
col 1: 'JOHN'
col 2: 'CEO'

<1000 <2000

<500 <1000 <1500 <2000

Leaf Blocks

Branch Blocks

Root Block

Figure 5.16 Index-organized tables

5.7 KEY DATABASE OBJECTS 395
Unfortunately, the physical location of a given row in an IOT is not
fixed, owing to the index block split phenomenon required to maintain the
structure of the B-tree when inserting rows. For this reason, Oracle refers
to the physical portion of the logical rowid as a “physical guess.” This guess
is stored in the logical rowid, along with the primary key of the row. When
accessing the table through a secondary index, Oracle probes the guess
point first to see if the row is still present. If it is not, Oracle must traverse
the IOT, starting at the root block, in order to locate the row. In this
instance, the physical guess is considered stale.

The only way that stale guesses can be rebuilt is by a physical rebuild
of the secondary index. This includes a full scan of the IOT, because the
physical locations cannot be determined in any other way.

Full table scans are still possible on IOTs, with the interesting side
effect that the rows now come out in primary key order, regardless of the
order in which they were inserted into the table. This occurs because the
full table scan equivalent for an IOT is an index range scan.

Prior to Oracle 8.1, IOTs were not very usable, because several capabil-
ities of a standard “heap” (normal) table were absent from IOTs. Included
in this list were support for additional indexes, support for large object
(LOB) columns, and the ability to partition the table. These restrictions
have been removed in Oracle 8.1.

More importantly, Oracle has made a significant change in database
operation that makes IOTs more attractive for widespread use.

Over time, tables become fragmented within the rows themselves,
because rows are deleted from the table over time and updating of rows
can result in row chaining. The only way to reorganize these tables, and to
compact the data into the blocks, is to rebuild the table physically. In previ-
ous releases, these tables could not be rebuilt online, because a full table
lock was the only way to ensure that the table was not updated while the
rebuild was underway.

In release 8.1, this is still true. However, in this release, Oracle allows
indexes to be rebuilt online, while DML continues against the underlying
table. Because this also applies to IOTs, it therefore allows for full database
reorganization online, including tables (IOTs only) and indexes.

CHAPTER 5 PHYSICAL ORACLE396
5.7.6 Other Database Objects
Some objects do not fit under any of the prior headings, but are still worth
reviewing in terms of their impact on the database.

Sequences
Sequences, or sequence number generators, are automatic number genera-
tors that are used mostly for the provision of generated primary keys for
tables where this is preferred. These numbers can be cached within the
SGA to improve the throughput for requests made against them. The
implementation of the cache is simply the storage of a single number in
the SGA, which can be incremented in memory without touching the on-
disk representation.

The disk value is updated each time the cached “bundle” of numbers
is depleted, and the value reflects the next value after the cache is all used
up. This is a benefit for the DBA but a potential problem for application
developers. Table 5.3 shows how caching relates to disk values in a two-
node Parallel Server configuration.

This table clearly shows that the two instances can maintain very dis-
tinct ranges of numbers from each other through the use of caching.

Table 5.3 Sequence Caching Process

Step On-Disk Value
Cache:
Instance 1

Cache:
Instance 2

Both instances cold started 1000 N/A N/A

First access from instance 1 2000 1000 N/A

First access from instance 2; instance 1 has
used 45 numbers

3000 1045 2000

All numbers used on instance 1 and cache
refreshed from disk; 645 numbers used from
instance 2

4000 3000 2645

5.7 KEY DATABASE OBJECTS 397
The downside of this is that if instance 1 is shut down in the third
step in Table 5.3, all 955 numbers in its cache will be “lost,” because Ora-
cle cannot write back the lower number after the other instance allocates
its higher cache range. This will always result in lost sequence numbers,
much to the frustration of application developers who were relying on
sequentiality of numbering in order to provide, for example, invoice
numbers.

Other ways in which numbers can get lost (in both non-OPS and OPS
configurations) are (a) abnormal instance termination (crash) and (b)
flushing of the shared pool when sequences are not pinned using the
DBMS_SHARED_POOL.KEEP package.

The moral of this is that developers should be clearly told that
sequence generators will guarantee only uniqueness. They do not, and will
not, guarantee sequentiality.

The final implication of the cache model is that if the ORDER flag is speci-
fied on the sequence generator, this will implicitly defeat all caching and
will go to disk every time the NEXTVAL is gotten. In frequently accessed
sequences, this will result in contention in the SYSTEM tablespace and a large
increase in recursive SQL in order to retrieve the next value from disk.

Packages, Procedures, and Functions
Packages are bundles of stored procedures and/or functions. They are
provided to enable server-side processing using PL/SQL, aimed primarily
at reducing the number of round trips to the application client over
SQL*Net and improving code reuse across modules. Packages can become
very large in complex applications and can impose large processing bur-
dens on the database server.

As the database server is fundamentally the least scalable point in the
network, it makes sense to review carefully the use of packages in the
database and to have them perform realistic duties rather than being just
convenient places to store large program modules. For example, use of
packages as conduits to database server-based batch processing should be
avoided.

Since release 7.3, packages have been able to use noncontiguous frag-
ments of free memory in the shared pool when loading for the first time.

CHAPTER 5 PHYSICAL ORACLE398
This change made a huge difference in the impact of loading a large pack-
age into a fragmented shared pool. It is still very advisable, however,
always to pin database packages into the shared pool at start-up, using the
DBMS_SHARED_POOL.KEEP package. The method required for doing this is to
reference the package once (for example, call a small function in the pack-
age) and then issue the KEEP package against it. The list of packages to keep
should include the SYSTEM packages as well as the application packages.

A package is always executed with the identity and authorization lev-
els of the owner of the actual package, not those of the user who executes
it. The execution of the actual SQL within the package therefore shows up
as recursive SQL calls, not user calls. Likewise, all statistics logged by the
integral package contents are rolled up and also logged against the call to
execute the package, in addition to the actual statements.

It’s worth mentioning here that functions are very often abused by
application programmers. It is commonly believed that a function is a very
fast method of converting data and that this can be done on the server
prior to sending the data back. However, it is impossible for a user-written
function to perform anywhere near as fast as the built-in functions such as
TRUNC(), because of both the language that the routines are written in and
the code path required to get there.

Built-in functions are written in C and compiled into native machine
instructions by the machine’s optimizing compiler. They are called by
branching to the function’s memory location when required by the SQL
engine. Conversely, a user-written function is written in PL/SQL an inter-
preted high-level language. It requires many orders of magnitude more
machine clock cycles to process a given line of PL/SQL than to process a
similar line of C. To execute it, Oracle must leap up through several func-
tions, take out several latches, call the PL/SQL interpreter, and then go
through the code. There is obviously no comparison between the impacts
of these executions.

Try to limit the use of functions to the areas where no other solution is
possible. When they are used in the select list, limit the row count to the
number of rows that are actually required. This can be done using simple
business logic (does the user really need a list of 3,000 reservations in a

5.7 KEY DATABASE OBJECTS 399
scrollable box?), or by some kind of arbitrary rownum restriction on the tail
end of the query.

Triggers
Triggers provide a way of executing PL/SQL based on certain events
occurring in the database. They can be fired BEFORE, AFTER, or INSTEAD OF the
actual event that fired the trigger, and can operate on DML, DDL, and
database events.

For example, a trigger can be set up to fire AFTER an UPDATE to a certain
table. This is an application developer’s favorite way of implementing
audit requirements, because it requires no special considerations to take
place on the part of the application. However, this is also an expensive
way to implement what is already an expensive operation.

When the trigger is fired, it goes through the same kind of code path as
demonstrated above in function execution. Typically, the code that proc-
esses updates will compare all the old values with the new values to deter-
mine which columns have actually been updated. This too is a very
expensive operation, when the application already has this information.

Using triggers in this way is an attempt to gain some of the advantages
of a multitier application without the work. Unfortunately, the work still
has to be done, and it has to be done from scratch each time by the data-
base server, with no context to start with.

The new INSTEAD OF trigger type is useful in allowing updatable views,
because the trigger is fired instead of actually attempting the update or
insert. Once again, however, be aware that this convenience is not without
significant performance degradation when compared with accessing the
underlying tables directly.

Perhaps one of the best uses for triggers is that of the database event
triggers. These can be fired whenever there is a server error, log-on, log-
off, or start-up and shut-down. Using the start-up trigger, for example, a
package could be executed to take care of post-start-up tasks such as pin-
ning packages.

CHAPTER 5 PHYSICAL ORACLE400
Security Roles
Database roles are a facility in Oracle that allows transparent, role-based
privileges based on login ID. These roles are designed to group together
certain privileges in the database and to be able to assign them to users as
single entities.

For example, a role could be created to allow users to connect to the
database, to execute the ALTER SESSION command, and to access a set of spe-
cific tables in the database. This role is then assigned to a user, and that
user can then perform any of the allowed functions.

A user can have several roles assigned, and can switch between roles
based on location in the application and password authentication.

Although the use of roles is very flexible, allowing simple manage-
ment of privileges within the database, it currently does not scale very
well. In a very large system, where several thousand users are defined, in
addition to more than 100 defined roles, the overhead of queries on the
%_ENABLED_ROLES views, for example, can be very unwieldy. One example of
this is on a large Oracle8 system, where a single user could generate 8 mil-
lion buffer gets from a single roles query.

It does not take very complex use of the roles facility for this kind of
burden to become evident. For example, Form 4.5 (in Developer/2000 1.X)
uses database roles in order to implement menu security. This is not a very
sophisticated use of the roles, but was the reality behind the 8 million
buffer get example above. In this case, the problem was removed by

• Moving all the data from the database roles configuration to user tables

• Creating correct indexes on the new user tables

• Dropping the FRM45_ENABLED_ROLES view and recreating it so that it ref-
erenced the new user tables

• Changing all code that issued CREATE ROLE, ALTER ROLE, and so on, simply
to INSERT, UPDATE, and DELETE the user table.

This made all accesses to this data go from 200 to 8,000,000 buffer gets to
about 4, with subsequent improvements in both response time and system
utilization on the server.

There can be an additional side effect that compounds the perform-
ance problems of using database roles. If the dictionary cache is
squeezed to a small size in the shared pool, owing to an unruly set of
SQL statements in the library cache, many of the calls to check database

5.8 THE DATA DICTIONARY 401
roles do not get hits in the dictionary cache. The impact of this is that
many of the 8 million buffer gets end up going to disk, the recursive
calls rate goes through the roof, and the system performance goes
down.

5.8 The Data Dictionary
The data dictionary is a widely misunderstood entity in the database. It is
comprised of two components:

1. The objects in the SYS schema

2. The dictionary cache (a.k.a. the rowcache)

It’s true, the dictionary cache is the same thing as the rowcache. It is
known as the rowcache because the unit of management is a row out of
the SYS tables, rather than a block unit in the buffer cache for user tables.
The dictionary cache itself will be covered in Section 6.8. For now, we will
concentrate on the physical elements of the dictionary cache.

The data dictionary is physically stored in the database as objects
within the SYS schema. For all intents and purposes, these tables are just
the same as normal user tables in any other tablespace. However, the con-
sistency model is completely different for these tables, and they should
therefore never be written to directly by the user, even if the user has a
good understanding of their usage.

Table 5.4 shows some of the more interesting tables in the SYS schema,
along with their parent clusters. Many of the tables in the SYS schema are
mostly joined with each other and therefore merit the use of a cluster for
their storage.

The main time to be aware of these tables is when looking at the defini-
tions of the DBA_% views and other SYS views. These views will break
out into views of these underlying tables, and it is useful to be able to
interpret the view definition, potentially to write a more efficient version
of the view for specific reasons.

Table 5.4 Selected SYS Schema Tables

Cluster Name Table Name Comments

C_FILE#_BLOCK# SEG$ Segments and Used Extents Table. SEG$ provides
the guts of the DBA_SEGMENTS view, while UET$
provides the DBA_EXTENTS view.UET$

C_OBJ# ATTRCOL$ Fundamental information about each object in the
database, including tables (TAB$), indexes (IND$),
and clusters (CLU$). Includes column definitions
(COL$).

CLU$

COL$

COLTYPE$

ICOL$

ICOLDEP$

IND$

LIBRARY$

LOB$

NTAB$

REFCON$

TAB$

TYPE_MISC$

C_TS# FET$ Free extent table and tablespace definitions. FET$
forms the basis of DBA_FREE_SPACE; TS$ forms the
basis of DBA_TABLESPACES.TS$

C_USER# TSQ$ User creation records and tablespace quota
settings.

USER$

None DUAL Normal table, despite existing in the SYS schema;
infamous table, used to dummy out queries.

FILE$ Datafile information

OBJ$ Object definitions

UNDO$ Rollback definitions

VIEW$ View definitions

PROPS$ Database properties, mainly NLS definitions

5.9 CHAPTER SUMMARY 403
5.9 Chapter Summary
In this chapter, we have attempted to cover Oracle from a physical stand-
point, without venturing into the operating architecture of Oracle. These
two areas are finely interwoven, and some of the concepts in this chapter
or the next may not make much sense in isolation from each other. For this
reason, Part III should be read as a single unit.

Oracle is a complex product and has many more physical attributes
than those covered in this chapter. It is for this reason that it is imperative
to be well versed in all areas of physical Oracle, at least from a “Server
Concepts” perspective, before attempting to implement anything on a
large scale.

5.10 Further Reading
Various. “Oracle 8i Concepts,” Oracle RDBBMS Documentation.

CHAPTER 5 PHYSICAL ORACLE404

Chapter 6

Oracle8 in Operation

6.1 Introduction
This chapter will cover the other side of the Oracle database—the process
and memory architecture. These are the aspects of Oracle that make it a
scalable database as opposed to a static filestore, and a good understanding
of these concepts is essential for building a very scalable Oracle system.

The combination of these operational aspects of Oracle form the
Oracle kernel.

6.1.1 The Oracle Kernel
The Oracle kernel is not a kernel in the same sense that an operating sys-
tem kernel is. All execution on the host operating system occurs in user
mode, with standard system calls made to access system functionality.
Oracle does not have any special privileges with regard to memory visibil-
ity or system function.

Instead, the Oracle kernel is a set of processes and shared a memory seg-
ment upon which they operate. The processes and shared memory combined
form an instance of Oracle. The physical side of Oracle on which the instance
works is an Oracle database. Although these two entities are very much inter-
twined, Oracle Parallel Server provides ways to allow multiple instances to
operate on the same database. This will be covered in Section 6.9.

Having declared that Oracle is not like an operating system kernel, it is
time to contradict myself in some respects. The Oracle kernel is very much
405

CHAPTER 6 ORACLE8 IN OPERATION406
like an operating system kernel in that it performs the following functions
on behalf of user connections:

• File I/O (through the operating system)

• Caching

• Process scheduling

• Runtime memory management (especially when using multithreaded server)

However, Oracle does not provide the following operating system kernel
functions:

• Virtual memory

• Cache coherent multiprocessor support

• Timesliced process execution

• Direct hardware interfacing

These functions are all provided by the operating system and are funda-
mental to the operation of Oracle. They are so fundamental, in fact, that
most hardware vendors provide a variety of special facilities in their oper-
ating system kernels for Oracle to use. These facilities include

• Asynchronous I/O to take the I/O scheduling burden away from Oracle

• Physically locked virtual memory that is not subject to any further vir-
tual memory management, such as paging

• The ability to stop processes from being preempted by the operating
system (OS) kernel for short periods while holding latches

In this chapter, we will look in detail at some of the services provided by
the Oracle kernel.

6.2 Process Architecture
This is the most straightforward part of the Oracle system to understand.
An Oracle instance consists of two different types of processes:

• Shadow (or server) processes

• Background processes

6.2 PROCESS ARCHITECTURE 407
All processes in an Oracle instance are considered to be part of the Oracle
kernel. In fact, all background and shadow processes are invoked from the
same binary image—that of $ORACLE_HOME/bin/oracle. In this way, Oracle can
rely on the fact that all the connected processes will follow the same rules
about accessing objects in the SGA, and will not corrupt other sessions as a
result of invalid writes to the shared areas.

6.2.1 Shadow Processes
The shadow processes constitute the server-side portion of a user TWO_TASK

connection and therefore are also known as “server processes.” There are
two different architectures provided in Oracle8 for database connections:
the dedicated server and multithreaded server (MTS). Whichever option is
adopted, the shadow process is the process that performs the actual
request servicing within the database.

Each process attaches to the Shared Global Area (SGA) for read and write
use of the global caches. The process waits for requests to come over the net-
work either directly (dedicated server) or through a dispatcher (MTS). When
a request comes in from the client application, the server process interprets the
request through the Net8 software that forms part of the process.

When the Net8 work has been completed, the process acts directly on that
request on behalf of the user. Although the shadow process has Oracle kernel
privileges and can do anything at all to the database or SGA, the process will
not allow this unless the user connection is authorized to do so. However,
when the user session has permission, the shadow process will do all the I/O,
sorting, package execution, and whatever else the user session has requested.

In this way, the shadow process can be considered a proxy worker for
the client application. The client application never accesses the SGA or the
database itself directly, but only through the shadow process. It is the
responsibility of the shadow process to enforce the security of the database
and to service all work on behalf of the user.

Dedicated Server
Dedicated server processes are private to the user. That is, there is one
process for each connected user, and that process is dedicated to the
processing of that user’s requests only.

CHAPTER 6 ORACLE8 IN OPERATION408
The oracle executable is renamed on execution to become something like

or

for remote and local connections, respectively. Note that the actual oracle

executable on disk is not renamed; only the name of the running process is
changed.

The dedicated server process maintains its own private working space
and caches in a private piece of memory called the Process Global Area
(PGA). The working memory is also known as session memory and is the
portion of memory that stores the context of the session for the user session.

The dedicated server process listens on the direct network connection
that was setup when the user connected to the database. The network con-
nection is private between the dedicated server shadow process and the
user application client—no other processes can use this network connection.

With one physical process for each user connection, large dedicated server-
based systems can put a large burden on the host operating system in scheduling
the processes, in addition to an increased overhead in memory management.

Multithreaded Server (MTS)
The multithreaded server removes dedicated shadow processes from the
system by switching user connections in and out of a pool of shared servers.

In Figure 6.1, three users are connected to the database using both ded-
icated server and the multi-threaded server. Where the dedicated server
maintains a one-to-one relationship with its corresponding client process,
the MTS clients are sharing just two servers from a common pool.

The key component to consider in an MTS configuration is the dis-
patcher process. The dispatcher process acts as a software switch, listening
for incoming requests from the client and connecting the client to a free
server when required. The client is said to have a virtual circuit to the
server process. During the time that the server is processing the request for
the client, it is unavailable for any other session. Really, shared servers are
not multithreaded at all, but serially reusable.

oracleSID (LOCAL=NO)

oracleSID (DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq))

6.2 PROCESS ARCHITECTURE 409
In order to support this server reuse by multiple client sessions, Oracle
moves the session information, which was formerly stored in the PGA of
the server process, into the SGA. Specifically, the memory is allocated from
the large pool, or from the shared pool if no large pool is defined. This
memory allocation is not insignificant and can increase the size of the SGA
by many hundreds of megabytes in a large system. In reality, the memory
savings offered by MTS are not great, if any.

The increase in required SGA memory can have other consequences on
some systems. Many 32-bit platforms have quite low restrictions on the
maximum size of the SGA, for example. On some platforms, this can mean
that the maximum size of the SGA is less than 1GB, which somewhat lim-
its the maximum number of connections possible with MTS.

In addition, the enlarged SGA can cause problems with the virtual
memory management of the host operating system. If the host does not
support the locking of the SGA into real memory, each server process
that attaches to the SGA must maintain page table entries (PTEs) for
each of the (typically) 4KB pages that make up the SGA. With a 4GB
SGA, this equates to around one million additional page table entries to
manage for each process. If the SGA can be locked into memory, all

Dedicated
Server

Process

Dedicated
Server

Process

Dedicated
Server

Process

Shared
Server

Process

Shared
Server

Process

Dispatcher
Process

Client
Application

Client
Application

Client
Application

Client
Application

Client
Application

Client
Application

Virtual C
ircuit

Network

Dedicated Server Multi-Threaded Server

Figure 6.1 MTS operation

CHAPTER 6 ORACLE8 IN OPERATION410
processes can share a common set of page table entries and so this is less
of a problem.

The MTS shared servers are classified as background processes by
Oracle, as are the dispatchers. However, unlike the other “real” back-
ground processes, Oracle will not crash if the processes are killed from the
operating system. The impact of killing shared servers is minimal; the ter-
mination will be detected, and a replacement server will be started. All
sessions will be unaffected by this operation unless they were active in the
shared server at that time. Killing a dispatcher will terminate all sessions
connected through it.

6.3 Net8
Net8, formerly known as SQL*Net, is the software used on both sides of
the client/server connection in order to provide a platform-independent
transport layer between client applications and the database server. It has
become increasingly complex over the last few years, but the principles
remain the same from a tuning perspective.

We are not going to cover any of the Net8 functionality here; this is
well covered in the Oracle documentation. Instead, there are a few basics
that need to be understood, particularly if your application is to be rolled
out over a large geographic area.

The fundamental thing to bear in mind with Net8 is that it operates
over a network. A network, like any communication medium, has two pri-
mary measures of “speed”: latency and bandwidth. It is frequently the
latency aspect that is overlooked, resulting in poor application response
times for the user.

If an application is written in SQL*Forms, and each user runs the
actual form locally on their PC, the Net8 communication is between the
actual user PC and the database server. If the two are separated by a wide
area network (WAN), problems frequently arise as a result of the latency
of the underlying network rather than any particular Oracle problem.

As an extreme example, imagine locating a worldwide database server
in North America and user PCs as far away as Asia. This wide area net-
work could be implemented using satellite technology, providing a high-

6.4 THE SGA COMPONENTS 411
bandwidth network at relatively low cost. Unfortunately, the latency of a
satellite-based network is approximately 0.5 second for each hop between
the client and the server. This means that a round trip takes about 1 second
and forms the minimum response time for any database access.

Database access includes parsing, every fetch, and so on. This means
that a query on sys.dual will take about 3 seconds using this network.
Increasing the bandwidth of the network will not improve this problem at
all, because it is the latency of the network that causes the problem.

Therefore, the first rule of Net8 should be to keep network latencies
between the client and the server to a minimum, preferably on the same
physical local area network (LAN) in the datacenter.

The second rule of Net8 also relates to the underlying network. There
is a tunable for Net8, specified in the tnsnames.ora, called the SDU (session
data unit). This is the size of the data that Net8 will send to the native net-
work transport for sending across the network.

There are occasions when the default setting of the SDU is not appro-
priate and the value must be increased. Typical reasons for increasing this
value include

• Client performing large array fetches from the server

• Large number of requests not fitting in one physical network frame

The second reason is of particular importance where the network has a
higher latency than desired. One symptom of a small SDU is when sessions
are frequently found to be in “SQL*Net more data to/from client” wait states.

6.4 The SGA Components
6.4.1 High-Level View
The SGA is the area of shared memory that Oracle creates on start-up. All
Oracle processes (background and shadow processes) connect to this
shared memory when they are started. The various areas of the SGA are
provided to meet the following needs of the database system:

• Caching

• Concurrency

CHAPTER 6 ORACLE8 IN OPERATION412
• Consistency

• Control

On its own, the SGA does nothing at all—it is just a piece of shared mem-
ory. It is the use of the SGA by the Oracle kernel that provides all of the
above-listed attributes of the database.

The SGA, shown in Figure 6.2, is composed of four distinct components:

1. Fixed region

2. Variable region

3. Buffer cache

4. Redo buffer

All of these areas, with the exception of the redo buffer, are comprised of
many other subareas.

6.4.2 Fixed Region
The fixed region is very small, typically on the order of 40–60KB.
Within this region Oracle stores singleton latches, such as the redo
allocation latch, in addition to the parent latches for variable lists of
latches. The contents of this region are defined by a platform-specific
assembly language source file called ksms.s. This file used to be resi-
dent in $ORACLE_HOME/rdbms/lib prior to release 7.3, but is no longer
shipped. It was used as the mechanism for relocating the SGA, but

F
ix

ed
 R

eg
io

n

Variable Region Buffer Cache

R
ed

o
B

uf
fe

r

SGA

Figure 6.2 SGA components

6.4 THE SGA COMPONENTS 413
this is now handled through init.ora parameters, and the assembly lan-
guage file is no longer needed.

This is a shame, because the file was essentially a symbolic map of the
fixed region of the SGA. For example, there was an entry showing

This shows that the structure for kcrfal (redo allocation) is stored in the fixed
region, 19,072 bytes from the beginning of the SGA. Part of this structure is
the actual latch itself.

The names of structures relate to the names of the software modules
that contain them and therefore are considered Oracle Proprietary (and
therefore cannot be published). Anyway, it’s immaterial now, because ksms.s

is no longer shipped.
Essentially, the fixed region contains the structures that relate to the

contents of V$LATCH: If you subtract the lowest ADDR from v$latch from the
highest ADDR, you will get an approximate size of the fixed region. It is
called the fixed region because this component is sized at compile time.
No amount of change in the init.ora will change the size and structure of the
fixed region, only its location in memory.

Now is a good time to get into some specifics of how Oracle imple-
ments latches.

Anatomy of an Oracle Latch
In the example above, we state that the kcrfal structure starts at an offset of
19,072 bytes from the beginning of the SGA. This structure might look a
little like that shown in Figure 6.3.

The latch is physically stored at the head of the structure. Due to the
serialization provided by the system bus, we already know (from Chapter
2) that we can perform atomic writes to memory locations of certain sizes.
The limit on the size of the location that can be atomically updated is
dependent on the platform (processor) architecture.

In this example, we assume that a 32-bit atomic memory write is availa-
ble. Therefore, the mechanism for acquiring the latch is simply a test-and-set
operation on the memory location at 19,072 bytes into the SGA memory
region. If the test-and-set operation is successful, you have acquired the
latch and can continue to modify any other part of the structure, copy data

.set kcrfal_,sgabeg+19072

CHAPTER 6 ORACLE8 IN OPERATION414
into buffers, or modify several elements in a linked list of which this struc-
ture is the head. When the work is complete, the memory location is reset
back to the “unset” value, and other sessions can allocate the latch.

You may have noticed that the latch location has been “padded” to 32
bytes in length. This, again, is just an example and assumes that the length
of a single CPU cache line is 32 bytes on this platform. The reason for the
padding is to guarantee that the latch itself is isolated in its own cache line
and is not coexisting with another, unrelated latch. If this were not the case,
it would result in false contention on the cache line, making the allocation
of a little-used latch as difficult as that of a highly-contended-for latch.

6.4.3 Variable Region
The variable region contains the following elements:

• Shared pool

• Large pool

• Variable lists of latches (i.e., all the cache buffers chains latches)

• All lists (cache buffers chains, LRU lists, etc.)

In turn, the shared pool contents include the following elements:

• Library cache

• Dictionary cache

• NLS loadable objects

• Session and process context

Redo Allocation Latch 1 Word (32 bits), Padded to 32 Bytes0

32 Next Free Location

End of Structure120

.

.

.

Figure 6.3 Conceptual view of a latch structure

6.4 THE SGA COMPONENTS 415
• Enqueue resources

• Session memory (if running MTS and no large_pool is defined)

The large pool contains:

• Session memory (if running MTS)

• Parallel query buffers

• Oracle backup work areas

6.4.4 Buffer Cache
The buffer cache is an area of the SGA that is set aside for the caching of
data blocks. From release Oracle8 onwards, it can contain up to three dis-
tinct “buffer pools,” which are separately managed caches for different
types of data usage:

• DEFAULT

• KEEP

• RECYCLE

The default buffer pool is the buffer cache that is created by default and
has all objects assigned to it by default. This can be directly compared to
the single buffer cache found in Oracle7. Optionally, two other buffer
caches (pools) can be defined, which can be tuned to behave more suitably
for specific situations. These two additional caches are the KEEP and RECY-

CLE caches (see Figure 6.4).
All three of the buffer pools have separate allocations of buffers and

LRU lists that manage the buffers. The RECYCLE and KEEP pools are explic-
itly defined in the init.ora, whereas the DEFAULT pool allocates the remainder
of the buffers and LRU lists for itself.

There are subtle differences between the three buffer pools, and some
of these are highlighted next. One of the major differences, however, is that
we now have the ability to individually tune the pools individually,
dependent on their use.

RECYCLE Buffer Pool
The idea of the RECYCLE buffer pool is to use it more as a work area than a
cache; this pool is used to store blocks that are virtually never reused after

CHAPTER 6 ORACLE8 IN OPERATION416
the initial read. Even though the blocks will rarely be reused, Oracle still
needs to run all database blocks through the buffer cache in order to main-
tain consistent read views, and thus a buffer cache is still necessary for
these blocks.

However, in a single buffer cache configuration, these single-use
blocks could quickly dominate the buffer cache, implicitly flushing out
other blocks that will be reused. Blocks that are frequently referenced are
not affected by this cache pollution, because they will always be at the
most recently used (MRU) end of the LRU lists. It is blocks that are reusa-
ble, but are not necessarily used very often, that are affected by this kind of
cache pollution.

One operation that can pollute a cache is random single-row lookups
on a table that is much larger than the cache itself. Each time one of these
rows is read from disk, it must occupy an entire buffer in the cache. If
these reads are part of an index-driven scan across the table, all of these
buffers will need to be allocated from the cache, quickly dominating the
space in the cache. Other blocks will need to be flushed from the cache to
make space for these incoming blocks.

In this case, the table that is being accessed in this way can be moved
to the RECYCLE pool. The idea of this pool is that we just give Oracle a work
area for the blocks but don’t really expect any kind of reusability. This hav-

Buffer Cache

DEFAULTKEEPRECYCLE

LRU Lists

Buffers

LRU Lists

LRU Lists
LRU Lists

Figure 6.4 Organization of buffer pools

6.4 THE SGA COMPONENTS 417
ing been said, the standard LRU mechanism still applies to this buffer pool
but is managed in isolation from the other buffer pools. Therefore, if a few
of the blocks in this table are reused from time to time (such as an index
root block, as opposed to the leaf blocks), they will still remain in the cache
if the access frequency merits the retention of the block.

When allocating a RECYCLE pool, we typically want it to be just large
enough to allow contention-free allocation of the buffers. If the buffer is
created too small, there will be too much demand for the number of buff-
ers available, and potentially reusable blocks will be eliminated from the
cache before they are requested again. However, this cache is typically not
directly aiding system performance a great deal and so should not be
wasting memory that could be used by the other caches. The sizing of the
RECYCLE pool can require a little trial and error, and Oracle recommends an
initial setting of one-quarter the number of buffers that the object occupies
in the DEFAULT pool prior to being moved.

KEEP Pool
The KEEP pool is for the allocation of buffers for objects that are accessed
with medium frequency, or those for which a consistent response time is
desirable. Blocks that are accessed very often will remain in cache anyway,
even in the DEFAULT or RECYCLE pools. The KEEP pool is for the blocks that are
not accessed quite enough to remain in cache, or those with a mixture of
hot blocks and warm blocks.

Using the KEEP pool, it is possible to assign just a few small objects to
the cache and thus have the peace of mind of knowing that the buffers will
never be aged out by unrelated blocks over time. This allows consistent
response times for queries that access that object.

In order to support this a little more than the DEFAULT pool, some subtle
changes are made in the algorithms used for the KEEP pool. First, to minimize
cache pollution by excess CR versions of buffers (see Section 6.5.5), these buff-
ers are not created in the KEEP pool. As they are assumed to be short-lived, CR
versions of buffers in the KEEP pool are created in the DEFAULT pool in order to
keep the content of the KEEP pool as static as possible.

In addition, the LRU algorithm used in the KEEP pool is slightly differ-
ent. This will be discussed on Section 6.5.3.

CHAPTER 6 ORACLE8 IN OPERATION418
6.5 Operation of the Buffer Cache
6.5.1 Introduction
The buffer cache is a portion of the SGA that is set aside for the caching of
database blocks. As memory access is approximately 100,000 times faster
than disk reads, it is highly desirable to service as many data requests
from buffers in the cache as possible, without going to disk.

This is the ultimate goal of the buffer cache and is often the only infor-
mation needed about the buffer cache in order to run a system fairly effec-
tively. Simply keep an eye on your cache hit ratio:

Hit ratio = 1 – [physical reads/(db block gets – consistent gets)]1

However, when the buffer cache is pushed very hard, it is useful to under-
stand the workings of the buffer cache.

The buffer cache is a set of buffers in memory, each sized as one Oracle
block. When a query needs a block of data from disk, Oracle first checks
the buffer cache for the presence of that block in memory. This search is
performed using hash chains.

6.5.2 Hash Chains
The hash chains are fixed-depth lists of pointers to the actual buffers in the
cache. A conceptual view of the list elements is shown in Figure 6.5.

When Oracle has determined which block it requires, it can then
hash this dba2 to gain the ID of the hash chain that it should search.
The buffer pool that the object is assigned to does not form part of this
hashing algorithm; the entire set of hash chains is shared among all

1. Many people are not sure about the definition of this formula. db block gets are blocks
retrieved without going through the CR mechanism, such as segment headers. consistent gets
are blocks retrieved through the CR mechanism. The two combined make the total number
of blocks retrieved, whether as a cached read or as a physical read.

2. Remember that dba stands for data block address and is the way that Oracle identifies
disk blocks.

6.5 OPERATION OF THE BUFFER CACHE 419
the buffer pools, with the chain ID determined by dba only. This
means that an object that is cached in the RECYCLE pool could easily
share the same hash chain as an object in the KEEP pool by virtue of
dbas that hash to the same value.

Oracle maintains many hash chains, and they can be explicitly set
using the _db_block_hash_buckets parameter in the init.ora. The maximum total
number of elements in all of the hash chains is the same as db_block_buffers,
because the hash chains are a list of the contents of the actual buffer cache.

Let’s start an example that highlights this concept and the others that follow.
In this example, we assume that we are using a single buffer pool, as in Oracle7.

A user submits a query to the database. It is determined that dba 153 is
required as one of the blocks that is needed to execute this query. Oracle
then hashes this dba, using the total number of hash chains as one of the
hashing parameters. This yields a result of SEVEN, and so Oracle has
determined that this dba will be listed in hash chain number 7 if it is
present in the cache.

3. This dba value is nothing like a real dba, of course. It is used for simplicity only.

Next Element

DBA of Block

Location in
Buffer Cache

Actual Buffer

Actual Buffer

Buffer Info

Next Element

DBA of Block

Location in
Buffer Cache

Buffer Info

Figure 6.5 Hash chains

CHAPTER 6 ORACLE8 IN OPERATION420
Oracle then starts at the top of hash chain 7 and checks the actual dbas
of all the entries until it either hits the end of the chain or finds a match on
the requested dba.

If the dba is matched in the hash chain, Oracle then checks to see if this
buffer is OK to use. The information required to determine this is also
likely to be stored within the hash chain element itself. One reason that the
buffer may not be OK to use could be that the buffer is for an incompatible
CR version of the block. If the buffer is not available for use, the hash chain
is traversed further to determine whether more buffers store the same dba.
If none of these buffers are available, or no further matching buffers are
found for that dba, Oracle does not have a buffer in the cache that can sat-
isfy the requirement and must go to the LRU list to create a new one (see
Section 6.5.3).

If the buffer is found and deemed to be usable, Oracle can heat the
buffer on the LRU list (again, see Section 6.5.3) and pin the buffer while it is
in use. This pinning operation is a little like a latch but operates on a single
element in the chain.

At this point, the buffer request has been serviced for the query, and
Oracle can proceed to read the buffer and to read the actual contents of the
buffer to act on the query. After use, the buffer is unpinned and is availa-
ble for other sessions.

Twice in this section we have mentioned the LRU list, so let’s go into
some more detail on this.

6.5.3 LRU Chains
In order to have a cache that is based on frequency of use, a list that shows
how often the blocks have been accessed needs to be maintained. In the
Oracle kernel, this is implemented using an ordered LRU list, where the
blocks with entries at one end of the list have been accessed most recently
and the blocks entered at the other end of the list have been accessed least
recently. This is the basis of a simple LRU chain.

In Chapter 1, we saw an example of an LRU chain in operation (see
Section 1.5.4). This is the way Oracle managed its LRU chain right up until
version 7.2. In this release, Oracle split the single LRU chain into multiple
LRU chains in order to improve the scalability of the system.

6.5 OPERATION OF THE BUFFER CACHE 421
We have two scenarios passed down from the section on hash chains:

1. Heating the buffer when it is located successfully in the hash chains

2. Finding a buffer to use when a block is not present in the cache, or
when one is needed to create a CR version of the block

A simple view of the heating procedure is covered in Chapter 1 (see Sec-
tion 1.5.4). Each time we access a block, it becomes the most recently used
(MRU) buffer by implication. Therefore, the buffer is heated to the MRU of
the LRU list. This heating process ensures that blocks that are not used as
often as others will get implicitly aged down the LRU list by the heating
process of the other blocks. When they get to the LRU end of the list, they
become targets for replacement.

This is where the buffers come from in the second scenario. Oracle will
go to the relevant LRU list when it needs a buffer and will take the first
available buffer slot from the list. Note: The buffers at the LRU end of the
list may not necessarily be available for use, because they could be dirty
buffers (modified, but not written to disk).

The buffer is then heated to the top of the LRU list and is moved from
its prior hash chain to the correct hash chain for the dba of the new block.

With the introduction of multiple LRU lists, sessions can no longer
assume the location of a single LRU list. Instead, each session will round-
robin between the multiple LRU lists, based on the buffer pool in which
the object is cached. If an LRU is locked, the session will move onto the
next LRU without waiting.

This is the basis of a simplified linear LRU mechanism, applied to the
Oracle buffer cache. However, Oracle implements LRU slightly differently
in order to gain better performance from the cache.

Oracle 8.1 Buffer Cache LRU
This description applies to Oracle 8.1 only. Prior (and probably future)
releases of Oracle do not (will not) necessarily operate in this way.

When Oracle reads a block into the default buffer cache, it is not heated
to the MRU end of the list immediately. The new block is generally inserted
into the middle of the LRU list, because it is not known at this stage whether
the block will be accessed enough to deserve a slot at the MRU end.

CHAPTER 6 ORACLE8 IN OPERATION422
There then follows a short period of time during which the buffer will
not be heated, even if it is accessed again. This timeout period is designed to
be used in situations in which a block could be read and updated in quick
succession and then never used again. One example of this would be a sin-
gle row update: Oracle reads in the block in order to determine whether it
meets the criteria for update and then modifies the block. This kind of activ-
ity could quickly dominate the MRU end of the cache in an OLTP system if
the timeout period were not imposed. If the block continues to be accessed
outside of this period, it will be heated to the MRU end of the list.

In the KEEP pool, the blocks are all assumed to be useful, especially
because the kernel does not need to cater to CR buffers in its LRU algorithm.
Therefore, all new blocks going into the KEEP pool are heated on first access.

Oracle 8.1 adds further optimizations for the LRU algorithm. Using the
simple “read and heat” algorithm, every access to a block requires an LRU
operation in order to heat the buffer, imposing a significant overhead in buffer
access.4 In order to improve on this, 8.1 implements an LRU algorithm that
keeps a reference count for each buffer. No heating occurs at all, unless the
buffer hits the end of the LRU list and has a high enough reference count. This
way, the required LRU manipulations are very much reduced.

6.5.4 Latch Coverage
The buffer cache is covered by a large number of latches, typically more
than all other parts of the Oracle kernel combined. This is vital, because
the buffer cache needs to be completely free of corruption and yet retain a
high degree of concurrency in access.

First, every hash chain is protected by a latch. These latches are the
“cache buffers chains” latches and, like all child latches, are reported in
v$latch_children. This is one of the important aspects of a system to watch,
especially when the application is very heavy on the buffer cache.

Viewing v$latch_children, the number of gets and sleeps can be determined for
each child latch. It is possible and likely that a small number of these child
latches are requested much more often than the others. This is sometimes

4. Oracle has always had an algorithm that does not heat a buffer if it is close to the MRU
end. This significantly cuts down on the number of LRU manipulations.

6.5 OPERATION OF THE BUFFER CACHE 423
attributed to a single block being heavy, but more often than not it is the result
of several blocks hashing to the same chain. When this happens, a large pro-
portion of accesses to the buffer cache become serialized through this latch.
The following query will report on the hottest hash chains:

The output from this query might look a little like this:

This shows several things about the operation of the hash chains in Oracle.
First, there are multiple completely different blocks in the database on the
same hash chain (HLADDR). This shows the hashing process sharing the chain
among a diverse range of dbas. Second, it can be seen that there is still heavy
contention for the first hash chain. There are 50 percent more sleeps occur-
ring on the latch protecting this chain than on the next hottest chain, even
though it has been acquired only one-quarter as often. This is likely to be
caused by the duration of each latch operation that protects the chain, or by
a series of “burst” allocation requests.

In this example, a good next step is to create more hash chains
using the _db_block_hash_buckets parameter. The top two hash chains have
two file/block combinations that could be the objects contended for:
File 480, blocks 3343 and 3543; or File 158, blocks 3139 and 3339. The

SELECT a.HLADDR,a.DBARFIL,a.DBABLK,b.GETS,b.SLEEPS
FROM v$latch_children b,

sys.x$bh a
WHEREa.HLADDR=b.ADDR
AND a.state != 0 /* ie, currently in use*/
AND b.sleeps > (SELECT 100*avg(SLEEPS) from v$latch_children

WHERE name='cache buffers chains')
ORDER BY b.SLEEPS desc

HLADDR DBARFIL DBABLK GETS SLEEPS
-------- ---------- ---------- ---------- ----------
AA416498 158 3139 538830353 1588779
AA416498 208 374 538830353 1588779
AA416498 480 3343 538830353 1588779
AA41CED8 480 3543 1974346642 950985
AA41CED8 158 3339 1974346642 950985
AA33A8C8 157 12803 555346192 112729
AA3F5268 307 1283 148471828 93581
AA340B98 85 71701 263159467 81874
AA3C1498 480 783 554143110 78639
AA3E48C8 72 58417 358435709 46844

CHAPTER 6 ORACLE8 IN OPERATION424
only way we can determine which of the objects is getting requested so
much is to create more hash buckets and hopefully split up the dba
ranges into different hash chains: The guilty object would then be
clearly visible.

The second set of latches over the buffer cache come from every LRU
chain being protected by a latch, shown as “cache buffer lru chains” in
v$latch_children. There are many times fewer LRU chains than there are cache
buffers chains, because there is a minimum ratio of buffers to LRUs
enforced at start-up time of 50 buffers per chain.

6.5.5 CR Versions
CR (consistent read) block creation was first discussed in “Block Header”
in Section 5.5, in the anatomy of an Oracle block. In order to support the
CR model provided by Oracle, the buffer cache must be employed to sup-
ply buffers that contain versions of a given block that differ from its on-
disk representation. There may be several different versions of the same
block in cache at any one time. This is a CR block.

When a CR version of a block is needed by a query, it will first of all
determine if there is any version of the block in cache at that point. If so, it
will choose the version that has a version number closest to, but no lower
than, the desired one. If the version number were lower than the desired
number, the block would need to be rolled forward from redo log; CR is
supported from undo information only.

If a buffer is found that can be used to construct the CR block, it is
cloned onto a free buffer in the cache and assigned to the same hash chain
as the original. If no version can be found, the block is read off disk.

Once the buffer is available for constructing the CR block, the last rele-
vant piece of undo information is applied to the block, as determined by
the ITL entries in the block. This rolls back both the contents of the block
and the ITL entries themselves. This process repeats until the change
number of the block matches that of the start of the query. At this stage, we
have a CR version of the actual block.

As previously discussed, this block is never written to disk. It exists
only in the cache, as a reflection of a previous version of a block. Writing
the block to disk would mean corrupting the database.

6.5 OPERATION OF THE BUFFER CACHE 425
6.5.6 DBWR Operation
In our discussion of the LRU list, we referred to a dirty buffer that could be
found at the tail end of the LRU list. The list of dirty buffers is also main-
tained within the LRU structures. The reason for this is simple: There is no
point in writing out dirty buffers if they are about to get updated in the
very near future.

However, it can be seen that without a formal way to clean (write out)
these buffers, the cache would quickly become full of dirty buffers. This
never happens in reality, because a given session will search only a certain
percentage of the LRU list for a clean, reusable buffer. If it does not find
one before hitting the threshold, the session will post5 the database writer
and wait on “free buffer waits” until buffers become available for reuse.

Every time the database writer is woken up to write out some dirty
buffers, it will start at the cold end of each LRU and scan toward the hot
end until a complete write batch full of dirty buffers is found. The size of
this write batch is determined by the write batch size. This used to be a
parameter in the init.ora but is now derived according to the algorithm in the
Oracle8 Tuning Guide (“Internal Write Batch Size”).

Another way in which the database writer is woken is by the check-
point process. The checkpoint process doesn’t actually do the writing asso-
ciated with the checkpoint; it simply posts the database writer to write
dirty blocks that are less than a given change number out to disk. This is
an incremental checkpoint, because not all the dirty buffers need to be
written out at each checkpoint. Each time a checkpoint occurs, this deter-
mines where rollforward recovery must start in the event of a failure prior
to the next checkpoint.

Multiple database writers can operate on a given buffer cache/instance.
Each database writer will work on LRUs in a round-robin fashion, ensur-
ing that they do not contend with themselves for the latch. This implemen-
tation of true (i.e., independent) database writers is an improvement on
Oracle7, where multiple database writers were implemented as a mas-
ter/slave arrangement.

5. Posting is the term used by Oracle for telling a process to wake up.

CHAPTER 6 ORACLE8 IN OPERATION426
6.5.7 Flowchart Summary of Buffer Cache Operation
The flowchart presented in Figure 6.6 should serve as a useful reference
for the operation of the buffer cache. It is not a complete view of the opera-
tions but provides a simplified version for ease of use. In particular, the
two items marked with asterisks should be viewed in conjunction with the
text in the relevant preceding sections.

Hash Dba to Gain
Hash Chain ID

Search Through
Hash Chain for Dba

Found dba?

No

Yes
OK to
Use?

No

Execute Query;
Determine Dbas

Needed

Is My Current
LRU Locked?

No

YesGo to Next LRU List

Search LRU, Cold
End to Hot End

Buffer Clean?

No

Yes

Add Buffer Entry to
Hash Chain

Heat LRU Entry to

MRU*

Yes

Read Block From
Disk and Populate

Buffer

Aquire Cache
Buffers Chains
Latch for Chain

Aquire Cache
Buffer LRU Chain
Latch for LRU List

Pin Buffer/
Release Hash
Chain Latch

Use Buffer

Unpin Buffer

Release LRU
Latch

Latch Activity

End

Block Version
OK?

Block Version

OK?

Yes

Apply Rollback to
Create CR Block of
Required Version*

No

Allocate New
Buffer From LRU

as Section A

No

Find Closest
Version to That

Required

*See Main Text

Section AA

Figure 6.6 Buffer cache flowchart

6.6 SHARED POOL STRUCTURE 427
6.6 Shared Pool Structure
The shared pool (see Figure 6.7) is a portion of the SGA, and itself contains
several components.

These components compete for space within the space allocated to the shared
pool. This means that if a poor cache hit ratio is being achieved in the library or
dictionary cache, the other caches in the shared pool will be reduced in size pro-
portionately, attempting to allow the badly controlled area to stabilize.

The “Other” portion of the shared pool is used to cache other structures
needed for operation of the instance. The detail of the components in the
shared pool (and the rest of the SGA) can be found by querying v$sgastat:

POOL NAME BYTES
----------- -------------------------- ----------
 fixed_sga 47852
 db_block_buffers 167772160
 log_buffer 1048576
shared pool free memory 294079744
shared pool miscellaneous 5625880
shared pool transactions 3424000
shared pool db_files 264736
shared pool table columns 72928
shared pool SEQ S.O. 336000
shared pool KGK heap 24408
shared pool db_handles 1470000
shared pool KQLS heap 8121648
shared pool fixed allocation callback 3560
shared pool branches 960240
shared pool Checkpoint queue 347888
shared pool PLS non-lib hp 2104
shared pool ktlbk state objects 1712000
shared pool partitioning d 32024
shared pool db_block_hash_buckets 6062232
shared pool DML locks 1856000
shared pool State objects 2913312
shared pool KGFF heap 383656
shared pool trigger defini 18360
shared pool distributed_transactions- 392168
shared pool db_block_buffers 8683520
shared pool dictionary cache 37045784
shared pool state objects 886728
shared pool messages 504000
shared pool PL/SQL MPCODE 1899184
shared pool enqueue_resources 576000
shared pool library cache 201110312
shared pool table definiti 23448
shared pool sql area 115850968
shared pool processes 2632000
shared pool sessions 8384000
shared pool kxfp buffer su 14932792
shared pool event statistics per sess 9920000
shared pool PL/SQL DIANA 1616072
shared pool transaction_branches 736000
shared pool kxfp subheap 240616

CHAPTER 6 ORACLE8 IN OPERATION428
6.7 Shared Pool: The Library Cache
6.7.1 Introduction
The library cache was introduced in Oracle7 as a means of cutting down
on the amount of processing required just to parse an SQL statement. Prior
to Oracle7, all incoming SQL requests were individually parsed each time,
regardless of whether or not the statement had been parsed before. The
CPU cost of performing a parse is high, and it was determined that a
method of reducing parsing was needed.

In Oracle7, the library cache was introduced as the mechanism of
reducing the amount of parsing in the database.

6.7.2 Cursors
All SQL statements are classed as cursors. Physically, a cursor consists of
the following components:

• Client-side runtime memory (SQL runtime library)

• Server-side runtime memory (known as runtime memory)

• Server-side private SQL area (known as persistent memory)

• Server-side shared SQL area (the library cache)

Shared Pool

Library Cache

D
ic

tio
na

ry
 C

ac
he

O
th

er

Figure 6.7 Shared pool composition

6.7 SHARED POOL: THE LIBRARY CACHE 429
When a cursor is opened and parsed, Oracle determines (as detailed
next) whether or not the statement is identical to a previously submitted
cursor. If it is, Oracle will reuse the parse information from the prior exe-
cution of the cursor.

6.7.3 The Parsing Mechanism
In order to convert a SQL request, which is essentially just a human reada-
ble text string, into an executable request, Oracle parses the statement.

Hard Parse
There are several steps involved in parsing a statement:

• Semantic and syntactic checking of the statement

• Dictionary validation that all the objects and columns exist

• Name translation of objects (i.e., synonym expansion to actual objects)

• Checking user privileges on the objects accessed in the cursor

• Production of an execution plan by means of the optimizer

• Loading of the statement into the library cache

These steps comprise the extreme of parsing—a hard parse. At this stage,
although the cursor exists in the shared pool, it is not currently actually shared,
other than by the session that created it. It exists as sharable, but the final steps
have not been performed to make it usable by another session. These steps
occur during the first execution of the statement by another session.

Cursor Representation in the Library Cache
When a statement is loaded into the library cache, two different entities
are created:

1. Cursor head

2. Cursor body

When the statement is first parsed, it creates one head and one body for
the statement. The cursor head can be thought of as the master record for
that statement, containing the following information:

CHAPTER 6 ORACLE8 IN OPERATION430
• The SQL text

• The optimizer goal

The head is locked when the cursor is first opened and is unlocked
only when the cursor is closed by all sessions. The head cannot get aged
out of the library cache while it is locked. When the head is unlocked, it is
eligible for aging out of the cache, at which point all the corresponding
body entries are also flushed out.

The body contains all the specifics for the cursor, such as the actual
execution plan and the bind variable information. A cursor may have
many bodies for its single head, even though the text is the same for each.
The number of bodies is reported in the VERSION_COUNT column of v$sqlarea,
and each body’s statistics are reported in v$sql.

Identical executions of the same statement will reuse both the head
and the body of the statement. New bodies are created under the follow-
ing conditions:

• Bind thresholds differ greatly from prior executions.

• Optimizer plan changes as a result of bind variables supplied.

When a SQL statement is submitted using bind variables, Oracle builds a cur-
sor body that can cater to bind variables of that specific length. The body will
also cater to bind variables that are similar to that length, subject to different
buckets of sizes. For example, if a query has a bind variable for NAME, the first
time it is executed the value bound to the NAME variable is 6 bytes, and Oracle
creates bind information to cope with up to 50 bytes in that bind position. The
next time it is executed, NAME is 200 bytes in length (a really long name), and
Oracle cannot reuse the existing body—the runtime requirements of the state-
ment go beyond the definition in the current body. At this point, Oracle will
create a new body to cater for—say, 65 to 256 byte bind variables at that point.
The previous body will remain for future use, subject to being aged out.

The optimizer plan can also change between executions, owing to the
existence of histograms for the values for a column. If a value is supplied
that can be approached in a more efficient way as a result of cardinality,
then a new plan is created and put into a new body for the statement.

Cursor bodies are eligible for aging out at any time, regardless of
whether the cursor is open or not. If a cursor is open and the body is aged

6.7 SHARED POOL: THE LIBRARY CACHE 431
out, the head (which is locked) contains sufficient information to recon-
struct the body for when it is next used. This is classed as a reload, and the
hit rate of executions to reloads can be determined by the following query
on V$LIBRARYCACHE:

Soft Parse
Prior to the steps of a hard parse, Oracle hashes the statement to produce
an identifier to look for in the library cache. The range of the hashing algo-
rithm is very broad, and most of the time there will be only one statement
for a given hash value. It is not guaranteed to be unique, however, and the
ADDRESS of the statement in the shared pool should always be used in con-
junction with the hash value in order to gain uniqueness when querying
the library cache. If this hash value corresponds with one already stored in
the library cache, and further checks prove this to be the same statement as
one that has already been parsed, then this statement only requires one of
the three types of soft parse instead of the full hard parse.

Soft Parse Type 1. The first time a session attempts to use a sharable cur-
sor (i.e., one that resides in the shared pool but has never been executed by
this session), two actions are taken by Oracle. First, a name translation
occurs, just as in the hard parse. The reason for this is that this session is
not the same user as the original, and it must be determined that this ses-
sion is referring to the same objects.

Second, the user has to be authenticated on all the objects in the cursor.
Once this has been completed, the user is put on the authentication list.

Soft Parse Type 2. The second time a session attempts to use a cursor, it
is now classed as shared because of the prior name translation and authen-
tication steps. However, because grants may have changed since the last
execution, the authentication step must still occur.

Soft Parse Type 3: Session Cached Cursors. When session cached cur-
sors (session_cached_cursor init.ora parameter) are used, it is the third parse call for

SELECT 100*sum(reloads)/sum(pins) Reload_Ratio
FROM v$librarycache

CHAPTER 6 ORACLE8 IN OPERATION432
a cursor that creates the entry in the session’s cursor cache. Once in the
session cursor cache, any CLOSE calls to the cursor are ignored, and the
statement does not need to be reparsed, up to the number of cursors speci-
fied in the init.ora.

Parse Hit Ratio
Once the hash value for the statement has been determined, Oracle goes to
the library cache and determines whether the statement is already cached.
If so, Oracle uses that information to reduce the steps needed to execute
the statement. This is known as a soft parse, and there are up to three differ-
ent severity levels for this type of parse.

The ratio of hard parses to soft parses should as close to zero as pos-
sible. In this case, good sharing of SQL is occurring, and the system is
running efficiently from the library cache. The cache hit ratio for the
library cache can be determined by the following query:

This query reports the hit ratio as a percentage, and should be as close to
100 percent as possible.

6.7.4 Latch Coverage
The library cache is protected by latches, in the same way as are the other
memory structures in Oracle. Prior to Oracle 7.2, this was performed using
a single latch on the entire library cache, and scalability was a big problem
on systems that had heavy parse overheads.

Since 7.2, Oracle has maintained multiple library cache latches, where
the latch used is based on the hash value of the statement. The default
number of latches is the nearest prime number greater than the number of
CPUs on the system, but can be explicitly set using the _kgl_latch_count param-
eter in the init.ora. The inclusion of multiple latches protecting the library
cache allows for far greater work to be achieved on the system.

Work occurring in the library cache must be carried out while holding
the relevant library cache latch. For most requests, the library cache latch

SELECT 100*(1-(gets-gethits)/gets) Ratio
FROM v$librarycache
WHERE namespace='SQL AREA'

6.7 SHARED POOL: THE LIBRARY CACHE 433
is acquired and released several times before the request is complete. The
number of times the latch is required depends on the severity of the opera-
tion. For example, a simple SELECT * FROM DUAL acquires the library cache
latch 29 times to hard parse the statement, but only 19 times for the next
execution, and only 10 times for executions after that. The amount of work
performed in the library cache decreases each time, owing to the different
levels of parsing.

A badly sized shared pool, or an application that does a poor job of
sharing SQL, will quickly fill up the shared pool. In this eventuality, Ora-
cle must start to age items out of the library cache using a “modified” LRU
algorithm.

When space must be found, Oracle starts at the cold end of the LRU
and flushes out cache entries until a contiguous area is available that is
large enough for the minimum contiguous size required by the statement
being parsed. The actual amount of memory freed up by this process
could be far in excess of the actual required memory, because the entries
that are aged out are unlikely to be contiguous themselves. This means
that a fairly severe flush is required to gain the space needed for the new
statement. Each time this aging process occurs, the demand on the library
cache latch increases greatly as a result of the extra strain put on it by the
aging process.

As time goes on, the shared pool becomes more and more fragmented,
resulting in more and more pressure on the library cache latch. There
comes a point where the miss rate on the library cache latch becomes unac-
ceptably high, and the shared pool must be flushed explicitly to relieve the
pressure on the latch. Even having to hard parse all the requests for the
foreseeable future is not as bad as having a full and fragmented shared
pool.

During the aging-out process, Oracle can age out only objects that are
not currently being executed, pinned in memory, or locked (i.e., cursor
heads). If an area of library cache needs to be found for the parsing of a
large object, this can result in Oracle being unable to flush any further
objects out of the cache and still not finding enough space for the object. In
this case, an ORA-04031 error is returned, and the request fails. The shared
pool is dangerously undersized and/or badly treated by the application if
this occurs.

CHAPTER 6 ORACLE8 IN OPERATION434
The latch cost of a 4031 error can be estimated by a simple test. With
a large shared pool, a connection to the database using SQL*Plus
requires approximately 3,357 latch gets. The same test performed on
the same instance with a small shared pool (to provoke 4031 errors)
takes out the latch 4,596 times. These measurements reflect only acqui-
sition counts, but it is also likely that the period during which the latch
is held will increase when the management overhead is increased in
this way. These two factors combined result in high latch contention on
a busy system.

6.8 Other Memory Structures
6.8.1 Dictionary Cache
The dictionary cache is a special cache designed expressly for the caching
of certain objects in the SYS schema, as described in Section 5.7.6. It is also
known as the rowcache, because it operates on a row-by-row basis rather
than the block basis on which the buffer cache works. These two terms are
used interchangeably in Oracle documentation.

The purpose of the dictionary cache is to speed up access to the tables
that Oracle needs to operate. Included in this are all the table definitions,
storage information, user information, optimizer histograms, constraints,
and rollback segment information.

When an object is not found in the dictionary cache, Oracle must go to
disk and retrieve the required dictionary information. The process of get-
ting dictionary information from disk is called recursive SQL. Often, a sin-
gle SQL statement will require many recursive calls before it can be
executed, if the information is not found in the dictionary cache. The
recursive calls quickly dominate the cost of executing a single statement at
this point.

Due to the presence of the dictionary cache, the tables that make up the
data dictionary cannot be manipulated by DML. In physical terms they
can be, and Oracle will allow you to do so without complaint. However,
this can cause database corruption as a result of the dictionary cache being
unaware of these changes.

6.8 OTHER MEMORY STRUCTURES 435
If SYS.FET$, for example, were to be modified by a user session, any
updates would occur with a standard DML TX enqueue rather than the ST
enqueue that is used when the kernel manipulates this part of the diction-
ary. In addition, when the update is committed, the dictionary cache
would not be invalidated, therefore making the operational state of the
database inconsistent with the state stored on disk.

6.8.2 Log Buffer
The log buffer is the buffer that stages database changes prior to being
written to the redo log. When a change is made to database blocks, they
are written to both the buffer cache and the log buffer. If a commit occurs
on the system, regardless of origin, all data in the log buffer is written to
the redo log. This is the way Oracle guarantees that committed transac-
tions are on disk; the dirty buffer cache blocks can be re-created from the
redo log in the event of a crash.

The log buffer is a circular buffer, as shown in Figure 6.8.
This means that the log writer “chases the tail” of the new buffers being

copied in. It also means that the new buffers can chase the tail of the log
writer. To prevent the buffer from filling up, the log writer will start to write
out the buffers when the log becomes one-third full, or every 3 seconds.

New Buffers Copied in

Log
Writer Writing Buffers

ou
t

Figure 6.8 Circular redo buffer

CHAPTER 6 ORACLE8 IN OPERATION436
In reality, a busy system commits a good deal more often than every 3
seconds, and so this typically is not a problem (at least in a transactional
system). The important thing to ensure is that the log buffer is large
enough to allow the log writer to catch up before any burst writes to the
buffer threaten to fill it up.

When a commit is issued, Oracle writes a commit record to the redo
buffer for that transaction and flushes all of the buffer to disk. If any com-
mits are issued while this is happening, they will all be handled as an
atomic unit by the log writer when it returns. This is known as a group
commit and reduces the amount of time a session will wait for a commit
confirmation.

Latch Coverage
The log buffer is ultimately protected by just one latch—the redo allocation
latch. This latch is serialized by design, because it is the only point in the
design of the Oracle database that is inherently serial. All records must be
written to the buffer in order, and without interfering with each other.

However, a single latch would not scale very effectively, as sessions
must copy potentially large amounts of redo records into the log buffer.
This could take a long time and would result in high contention for the
latch as many sessions waited to copy in their data. To prevent this, Oracle
provides redo copy latches.

Redo copy latches are an abstraction of the redo allocation latch specif-
ically geared toward reducing the amount of time that any one session
holds the redo allocation latch. Using copy latches, the redo allocation
latch is acquired for just long enough to reserve the amount of space
needed for the copy. One of the redo copy latches is then acquired in order
to perform the actual copy.

The use of redo copy latches is governed by two init.ora parameters:
log_simultaneous_copies and log_small_entry_max_size. The log_simulataneous_copies parameter sets the
number of copy latches to create, where 2*cpu_count is the default. The
log_small_entry_max_size parameter determines the threshold over which it is
preferable to copy using copy latches rather than the allocation latch.

6.9 ORACLE PARALLEL SERVER CONCEPTS 437
6.9 Oracle Parallel Server Concepts
6.9.1 Introduction
Oracle Parallel Server (OPS) is typically surrounded in mystery, because
not many people have experience in implementing or administering such
a system. However, the basic concepts of OPS are not very complex and
should be understood by anyone involved in specifying or implementing
very-large-scale systems.

Ultimately, the scalability of a single system has a limit at any given
point in time. If your application looks to require three times more CPU
than the largest server on the planet can provide, even after tuning, then a
single-system solution is no longer an option. Without OPS, Oracle is lim-
ited to the scalability provided by the hardware vendor.

Figure 6.9 shows a high-level view of the operation of OPS. Starting at
the bottom, we have a database that is accessible by all nodes that need to

Instance A Instance B

Redo
Thread 2

Redo
Thread 1

Database

Distributed Lock Manager

Figure 6.9 High-level view of OPS

CHAPTER 6 ORACLE8 IN OPERATION438
run an Oracle instance against this database. The access can be direct,
through a shared disk array found in clustered systems, or indirect,
through software layers commonly found in shared-nothing MPP sys-
tems. All nodes open the database in shared mode, which allows other
instances to open the same database. Each node acquires a set (or thread)
of redo logs for exclusive use during normal operation. The gray arrows
are intended to demonstrate that the redo logs must be available to all
other instances for recovery purposes.

6.9.2 Distributed Lock Manager (DLM)
On top of the physical database, each node runs an Oracle instance exactly
as normal, with the addition of the distributed lock manager (DLM) to
take care of communication between the instances.

In single-instance Oracle, the state of locks is held internally as a series
of structures in the SGA. When a lock needs to be acquired or released, it is
simply a case of taking a latch (the enqueues latch) and updating the struc-
tures in memory. When there is more than one instance accessing the same
data, a common view of lock states must be maintained for all nodes; this
is the function of the DLM. In addition to standard enqueues that we are
familiar with, the DLM also controls access of a variety of other resources,
most notably the buffer cache by means of parallel cache management
(PCM) locks. This is covered in Section 6.9.3 and is one of the fundamental
differences between single-node Oracle and OPS.

In the Oracle7 days, the DLM was typically provided by the hardware
vendor rather than by Oracle. This was both good and bad, depending on
the implementation of the DLM.

The good thing about a vendor-supplied DLM was that it could be
implemented as part of the operating system kernel and subsequently
always run at kernel priority. It could also have direct access to the hard-
ware layer in order to communicate with DLMs running on the other nodes.

The bad thing about a vendor-supplied DLM was that if problems
occured (and they did, many times), the resolution of the problem lay across
the boundaries of two companies. Frequently, these problems took a long
time to be resolved and sometimes never got fixed because neither side
believed it to be their issue. The other bad thing was that the Oracle soft-

6.9 ORACLE PARALLEL SERVER CONCEPTS 439
ware had to communicate with the DLM through a published API. This pre-
vented Oracle from being able to change things from release to release and
drastically reduced the speed at which improvements could be made in the
DLM architecture. These problems have all gone away in Oracle8, due to the
introduction of an integrated DLM in the OPS version of the RDBMS.

The DLM is implemented as a new set of background processes with
special hardware support in the operating system for the best internode
communication method for that platform. On SMP platforms, this is typi-
cally a private Ethernet LAN or some kind of proprietary interconnect. On
MPP systems, the communication is performed over the MPP intercon-
nect. It is the latency of the DLM communication medium that is one of the
prime limiting factors in an OPS environment, because it directly affects
the time taken to service each remote lock request.

The existence of the DLM allows multiple Oracle instances to synchro-
nize their use of shared resources.

Not all Oracle resources are shared, even in an OPS environment.
Examples of this would be the redo allocation latch and cache buffer LRU
chains latches. These entities are private to the local instance and therefore
do not need to be coordinated through the DLM.

Therefore, in an OPS configuration, Oracle has a total of five different
types of resources to consider:

1. PCM locks

2. Global enqueues (non-PCM lock)

3. Global locks (non-PCM lock)

4. Local enqueues (non-PCM lock)

5. Local latches (non-PCM lock)

The first three of these resources are handled by the DLM, and the remain-
der are handled the same as in a single-instance configuration.

6.9.3 Parallel Cache Management
The concept of a parallel cache is fundamental to OPS. It is important to
understand this concept thoroughly before attempting to recommend or
implement an OPS solution.

CHAPTER 6 ORACLE8 IN OPERATION440
What Is a Parallel Cache?
In a single-instance configuration of Oracle, a buffer cache is used to speed
up access to frequently used pieces of data, to provide a fast commit mech-
anism, and to reduce the overall number of writes to disk. These attributes
of the Oracle buffer cache are absolutely essential, and if OPS were to
remove any of these advantages it would not be a viable option.

However, to retain these features in an OPS configuration, a cache on every
instance is required. This is not an issue if the database is purely read-only, but
in a deferred write environment such as Oracle, data corruption would occur as
multiple instances all wrote differing data to common blocks on disk.

To eliminate this problem, and retain most of the advantages, OPS has the
concept of a parallel cache. This is simply a fancy name for multiple Oracle buffer
caches glued together with a DLM. However, the DLM cannot coordinate the
access to every buffer on every instance, because its latency would cause all buffer
operations to slow to a crawl, not to mention use a great deal of resource. Instead,
Oracle implements parallel cache management (PCM) locks, over the datafiles in the
database, and coordinates the use of these locks with the DLM.

Note: PCM locks are not related to transaction locks in any way. This
will become clear as we go on.

Each PCM lock can cover one or more actual data blocks in the files, and
they are used to group data blocks together into commonly managed resources.
This dramatically reduces the number of resources managed by the DLM and
also reduces the overall communication between the nodes, provided that the
application and database implementation have been performed adequately.

When an instance wants to access a block covered by a PCM lock, it
must ask the DLM for the PCM lock covering that block and must obtain it
in a mode suitable for the intended operation. In simple terms, this means
Shared Mode for read and Exclusive Mode for write, although more states
than this are used by OPS.

If another instance has the PCM lock in any mode higher than Shared
Mode, the DLM will not grant the lock to the requesting instance right away.
The fact that another instance has a higher-level lock than Shared means that
the other instance has modified the block. In this case, the DLM downgrades
the Exclusive Mode lock of the other instance to a Shared Mode if the new
request is for read or to NULL Mode (i.e., no lock) if the new request is for
Exclusive Mode. This forces the other instance to flush the block from the

6.9 ORACLE PARALLEL SERVER CONCEPTS 441
buffer cache back onto disk and to report back when complete. When this
synchronous operation is complete, the DLM grants the requested lock to the
instance requesting it. This operation is known as a ping (see Figure 6.10).

Instance
One

Instance
Two

PCM Lock “23”

DLM Locks

23: 1,N;2,S

2. DLM downgrades mode of PCM lock for Instance Two, forcing a
 write to disk.

Covered by

Block “A”

Instance
One

Instance
Two

PCM Lock “23”

DLM Locks

23: 1,N; 2,X;

1. Instance One requests Shared Mode PCM lock
 in order to read data block 'A'. Instance Two has it in X mode.

Covered by

Block “A”

Datafile Datafile

Instance
One

Instance
Two

PCM Lock “23”

DLM Locks

23: 1,S;2,S

3. DLM grants Instance One a Shared Mode lock.

Covered by

Block “A”

Datafile

Instance
One

Instance
Two

PCM Lock “23”

DLM Locks

23: 1,S;2,S

4. Instance One reads the block from disk and continues work.

Covered by

Block “A”

Datafile

Figure 6.10 OPS ping for READ

CHAPTER 6 ORACLE8 IN OPERATION442
As stated earlier, a PCM lock is not the same as a transaction lock. A
PCM lock has the granularity of a single database block at best, whereas a
transaction lock has the granularity of a single row within a block. There-
fore, the PCM operations cannot interfere with the critical ability to per-
form row-level locking in Oracle.

Oracle achieves this isolation by keeping transaction and PCM locks
totally independent of each other. While a transaction will typically cause
a buffer to be written to in the first place, it is not linked to the PCM opera-
tion in any way, or vice versa.

In the example above, an update of block “A” by Instance Two caused
the buffer to be dirty in the first place. This update has not been committed
at this point. When the request comes in from Instance One, the transac-
tion has still not been committed, but because PCM and transactions are
not related, the buffer can be written to disk and used by the other node.
The other node is only trying to read the block and so is not affected by the
fact that there is an outstanding TX lock on one of the rows (remember,
writers don’t block readers). When Instance Two is ready to make more
changes in the block, it will request that its lock be upgraded to an Exclu-
sive Mode once more and will continue work.

CR Server
Of course, in this example, Instance One has just gained permission to
read a block that is of no use to it. The block it read from disk has uncom-
mitted data in it, and the query running on Instance One needs to see the
version of the block before it is changed by Instance Two. Therefore, an
additional ping is required of the transaction table and undo information
in order to rebuild the old version of the block. This is known as
reader/writer contention in the OPS world and is the reason that the CR
server has been implemented for Oracle8.1. The CR server vastly
improves this type of contention by constructing the correct version (that’s
where the CR part comes in) of the block using required undo (on Instance
Two in this case), and ships the buffer directly over to the buffer cache of
Instance One. No disk writes occur, because CR blocks are useless anyway
once they are finished with by the requesting session; they should never
be written to disk.

6.9 ORACLE PARALLEL SERVER CONCEPTS 443
Types of Locks
Further complexity now arises; it is impractical to have a PCM lock for
every block in the database. Doing this would cause an enormous
memory burden on each instance in the configuration, because each
PCM lock requires memory to be allocated for the lifetime of the
instance. The exact amount of memory varies among platforms and
releases, but it is reasonable to estimate this memory burden at 100
bytes per lock. This would make 11GB of memory overhead per
instance for a 450GB online database.

To alleviate this problem, Oracle provides two types of locks:

1. Fixed PCM locks

2. Releasable PCM locks

Fixed PCM Locks
A fixed PCM lock is one that is created at start-up and not released until
instance shutdown. Therefore, every instance has a copy of each lock,
potentially in a NULL Mode if it has not been used. Fixed locks cover
between one and n blocks of the database for each lock, although fixed
locks are typically used to cover multiple blocks. Therefore, the rest of this
subsection will concentrate on hashed PCM locks—the type used to cover
multiple blocks with a single PCM lock.

Hashed locks are specified on a per-file basis in the init.ora and are
evenly distributed across the file according to the blocking factor specified
(used as the modulo in the hash), as shown in Figure 6.11.

11 1 112 3 3 3 3 32 2 2 24 4 4 4 4

51 13 1792 3 7 11 15 196 10 14 184 8 12 16 20Block:

Figure 6.11 Hashed PCM locks distribution

CHAPTER 6 ORACLE8 IN OPERATION444
In this example, a 20-block datafile is configured to have four locks
covering it, with a blocking factor of 5. This means that every fifth block is
protected by the same PCM lock.

Hashed locks have a serious problem when covering files with a com-
paratively small number of locks. As the number of locks covering a file
decreases, the probability of lock collisions increases proportionately. A
lock collision is where, say, one instance is updating block 6, and another
instance wants to read block 18. Both of these blocks are covered by PCM
lock “2,” and so the DLM has to downgrade that lock on the other node’s
behalf, causing a ping. This situation is known as a false ping, because it
did not need to be performed in order to preserve coherency between the
buffer caches. In reality, one false ping can potentially cause many, many
disk writes, and so should be avoided wherever possible.

As previously mentioned, it is not really practical to allocate one fixed
PCM lock per block in the database. Therefore, another option is needed
for situations where block level PCM is needed.

Releasable PCM Locks
A releasable lock is a PCM lock that is allocated from a pool defined in the
init.ora. If a lock has not been used, it does not exist on any instance, but only
as a blank entry in the common pool. Although the coverage of releasable
locks can be specified as hashed, covering many blocks, this rarely makes
sense because of the additional overhead of using releasable locks for each
lock operation. Therefore, releasable locks tend to be most useful for cov-
ering one block or a few blocks for each lock.

As their name suggests, releasable locks are released when they are no
longer in use. That is, there is no concept of a NULL Mode lock with
releasable locks—they are simply released. This allows a relatively modest
pool of releasable locks to be used to provide block level locking across the
entire database.

Unfortunately, nothing in life is free. There is about a 30 percent over-
head imposed by using releasable locks, because the lock must be created
and destroyed for each NULL-to-X or anything-to-NULL conversion pair.
Therefore, greater performance can be achieved using fixed locks as long
as the false pinging can be tuned to acceptable levels.

6.9 ORACLE PARALLEL SERVER CONCEPTS 445
6.9.4 Design Considerations for OPS
The whole point of the preceding section is to give you a feel for operations
that occur in an OPS configuration. Although this topic really needs an
entire book in its own right, hopefully you will have realized that careful
design and planning are required when implementing an OPS system.

Application Design
The application design component of OPS is probably the single most crit-
ical component in obtaining good horizontal scalability (i.e., more nodes)
from OPS. Primary in this is the concept of partitioning the application.

Application partitioning has nothing to do with table or index parti-
tions, although the partitioning strategy may elect to use those features.
Rather, it involves the partitioning of function within the application to
allow users on different instances of the OPS database to operate without
incurring too much synchronization overhead from the DLM. To achieve
this, the data access for users on a given node should be as independent of
the data access on other nodes as possible.

Specifically, the ideal application would be one that shared only read-
only data in the database, such as reference information. This is known as
a hard partitioning of the application. However, this is rarely a practical
proposition, particularly when many nodes become involved.

The flipside of a hard-partitioned application is a soft-partitioned
application. This is where the application designer has quantified where
read/write and write/write synchronization is required between nodes
and provides functionality in those areas to allow measures to be taken in
the database to reduce the synchronization.

In practice, a combination approach is usually required, using hard
partitioning wherever possible and soft partitioning elsewhere.

Step 1. Determine how much partitioning is required. A two- or three-
node OPS system is significantly easier to design than a ten-, 50-, or 150-
node system. In systems where the node count is significantly greater than
the number of hard-partitionable functions in the application, most of the
design attention needs to be put into the soft-partitioning effort.

CHAPTER 6 ORACLE8 IN OPERATION446
As a rule of thumb, if there is a great deal of read/write and
write/write sharing between functions, the hardware platform choice will
become an increasingly dominant factor in the performance of the system.
In this situation, considerably greater scalability will be obtained by mini-
mizing the node count and maximizing the power in each node.

In read/read OPS applications, such as decision support, good scala-
bility can be obtained by increasing the node count to quite high numbers.
In these applications, the nodes quickly stabilize their locks into being
Shared Mode, and the synchronization overhead is reduced significantly
because lock operations remain local.

Step 2. The next step should be an analysis of the tables that each func-
tion in the application requires. This is the opportunity to make the high-
level hard-partitioning decisions. For example, in a financial application
there may be a good split between Accounts Payable and Accounts
Receivable. If this split continues to look good right down to the table
level, then this will already allow the application to run efficiently on two
nodes of OPS owing to minimal synchronization overhead.

If there is not a clean split between functions in the initial data model,
are there any changes that can be made to change this situation? For exam-
ple, if one part of the application updates a table frequently, and the other
function reads only nonupdated columns in the table, can the model be
amended to split this table into two? This would eliminate the pinging
every time the read function needed to access a row.

Clearly, changes in the data model are very much more suited to this
stage in the design process, and this is why the more successful OPS appli-
cations take care of this overhead at the right time.

Step 3. Once the hard partitioning has been defined, how much further
do we need to go (defined in Step 1)? In our example, we allowed the
application to scale from one node to two nodes, just by finding a good
hard partition in the application. Let’s assume that we need twice as many
nodes to support Accounts Receivable as to support Accounts Payable. In
this case, we need to find a way to split Accounts Receivable. This is going
to involve some support from the application to allow certain database
operations to work most efficiently.

6.9 ORACLE PARALLEL SERVER CONCEPTS 447
For example, in order to minimize contention on index leaf blocks for a
table that is written to by both AR nodes, we may want to take either of
two approaches:

1. Sequence number caching

2. Reverse key indexes

Both of these approaches have implications for the application and there-
fore will need application support prior to implementation in the database.

Sequence number caching was one of the first techniques to be used in
gaining index leaf block separation (and therefore minimizing concurrent
updating of the same block by multiple OPS nodes). The theory is that if
the primary key for an index is system-generated by a sequence number
generator, then the sequentiality of the numbers will force the additional
row inserts to update the same block in the primary key index. This is a
result of the primary key being in exactly the same part of the index B-tree
due to close values being used by all nodes.

The solution is to use a large sequence cache for this sequence number
on each node. This would typically be on the order of 2,000, depending on
insert frequency. This means that when the first node needs a sequence
number, it will read the next value from disk and update the on-disk value
to be 2,000 greater. It will then have exclusive use of a set of 2,000 numbers.
The next node to use the sequence will start 2,000 higher and update the
on-disk version of the sequence to be 2,000 higher still. In this way, each
node gets a discrete set of numbers to use as primary key values.

The impact of this is that, if the cache is sized correctly with respect to
the number of keys in a leaf block, each node will typically be updating a
different leaf block to the other nodes.

Here’s the downside: you should never assume that sequence numbers
are sequential; they are guaranteed only to be unique. If there is an instance
crash, or even a normal shutdown in OPS environments, Oracle will “lose”
numbers from the defined range due to the cache. In the case of a normal
shutdown, the value used at next start-up will be one greater than the high-
est number last used. This is the only value that Oracle can use.

In the extreme case of AR, we might be using this technique to provide
index separation in the INVOICES table, on the INVOICE_NUMBER column. Two
situations can arise here that financial people are rarely very pleased about.

CHAPTER 6 ORACLE8 IN OPERATION448
First, if an invoice is created by an AR user on one node and then can-
celled and replaced by a user on another AR node, it is very feasible that
the replacement invoice will have an invoice number less than the original.

Second, whenever there is a crash, or even a normal maintenance shut-
down of the instances, numbers will get lost. Again, financial people get
upset about this, because they have to account for all invoice numbers.

Both of these issues can be catered for with application reporting, user
signoff, and so on, but they need to be taken care of up front.

Reverse key indexes are another database-level change that affects the
application. Using reverse key indexes, a noncached sequence number can
be used to generate the keys (although this requires greatly increased syn-
chronization on the sequence generator itself), and the key will be inverted
by Oracle before determining which leaf block it belongs to. For example,
key 123456789 would become 987654321.

This ensures that the most significant digits of the index are the ones
that change every time there is a sequential insert. When the key is read by
Oracle, it is simply flipped back to the way the application expects it.
However, all is not as transparent as it seems.

Now that the keys are inverted in the actual index, range scans can no
longer be performed on the index. The only way this could occur would
be for Oracle to perform either a Full Fast Scan of the index and check each
key to see whether it was in the required range, or to perform potentially
thousands of physical index range scans. Neither of these options bodes
well for performance, and so the application designer needs to ensure that
no range scans are required on this index.

Step 4. Don’t forget the batch cycle. Is there a defined batch window for the
system? If batch needs to run concurrently with the users, is the user count a
great deal smaller at that point? Can the batch processes be hard partitioned?

The reason these questions need to be answered is that batch typically
runs while some users are still operational and traverses many areas of the
database schema in order to produce the desired result. In this case, mas-
sive amounts of pinging can occur as a result of the large synchronization
overhead.

In order to minimize this, the ideal solution would be to hard partition
all the batch processes. Unfortunately, this is very rarely possible, simply

6.9 ORACLE PARALLEL SERVER CONCEPTS 449
because of the nature of batch processing. Instead, it often becomes an
operational solution that is required.

During the batch cycle, the system can normally be operated with a
single node because of reduced user load at night. This involves some
kind of change in the login process during the batch window to ensure
that users connect to the same system. Once all the users are on one node,
batch can also be executed on that node.

This is a strange one to sell to management sometimes. They see that
batch is running slow and that there are loads of unused CPUs on the idle
instances. However, the real issue is the cost of synchronization. Even if
the single batch node is at 100 percent CPU, it is unlikely that moving jobs
to the other nodes will speed things up—usually the contrary.

Database Design
Once the application design is OPS-friendly, all the attention has to be
turned to the database. While the application design phase is likely to
have included database changes to reduce data sharing, the physical data-
base implementation requires a great deal of attention in order to scale the
system effectively.

Removing Contention for Blocks
Contention for blocks is the single most gating factor in scaling OPS systems
because of the required DLM synchronization between the nodes, which is
many orders of magnitude slower than within a single instance. Therefore,
contention for blocks and the resultant pinging must be minimized wher-
ever possible. There are several options open to the DBA at this point, and
some of them should be used by default in an OPS implementation.

The first of these “must haves” are freelist groups and process freelists.
These were covered in some detail in Section 5.5.2, where the usage of
these entities was discussed. In summary, freelist groups remove segment
header contention from the Parallel Server synchronization list, because
each node now has its own freelist block to update. As the overhead of
freelist groups is so minimal, it is almost not worth thinking about where
they are required; they can be added to every table in the database. For
example, in a five-node clustered OPS system with 1,500 tables (i.e., a com-

CHAPTER 6 ORACLE8 IN OPERATION450
plex application), the total overhead would be 7,500 database blocks, or
approximately 30MB. This is a very small price to pay for the advantages it
gives with little complexity.

With Oracle8, another “must have” became available. Partitioned
objects allow physical separation of data, including freelists, high-water
marks, and in many cases the indexes for the table. To use partitioned
objects for OPS, some kind of node identifier needs to be used as the parti-
tion key, and this clearly has an impact on the application. Partitioned tables
should be used wherever practical, not necessarily just on large objects.

If there are any tablespaces that are truly read-only, consider changing
their status in Oracle to read-only. Not only does this reduce the amount of
data that needs to be backed up regularly, but also removes the tablespace
from the DLM’s consideration.

Once all the physical measures have been taken, including the meth-
ods mentioned in the application design section, all that remains is the
tuning of the PCM lock allocations with the init.ora parameters, especially
with a view toward reducing false pinging.

This is where a more in-depth analysis of the application is required,
including knowledge of SELECT, UPDATE, INSERT, and DELETE frequencies and
distribution to all of the tables in the application. This will allow the type
and distribution of the PCM locks to be set accordingly. Consider Table
6.1. when planning for PCM lock distribution.

There are many shades of gray in the way a table is accessed, and other
approaches are required accordingly. It is important to go through the
kind of thought process presented in Table 6.1 for each of the situations, in
order to come up with the correct allocation and type of PCM locks.

Removing Contention for Non-PCM Locks
In addition to the PCM lock synchronization that occurs in OPS, there are
several non-PCM locks that must be coordinated. The most straightfor-
ward of these is the TX or row-level lock and its associated TM table lock.

The careful use of TX locks is not really an OPS design issue, but rather
an issue for any application. It is not good design to allow users to hold
row-level locks for any extended period. The TM locks are created implic-
itly when a TX lock is created and are a preventative measure.

6.9 ORACLE PARALLEL SERVER CONCEPTS 451
A TM lock is held in a non-NULL mode when a TX lock is created in the
table, because this prevents the table from being dropped, or locked in exclu-
sive mode (such as for building an index), while the transaction is active.

In OPS mode, it is preferable to remove this synchronization overhead
by either setting DML_LOCKS=0 in the init.ora or using the ALTER TABLE ... DISABLE

TABLE LOCK directive. The implications of using either of these approaches
are as follows:

• No TM locks are created.

• All attempts to lock the table are rejected.

Table 6.1 PCM Lock Approaches

Table Access Method PCM Lock Tuning Why

Read-only, all nodes If the table is in its own
tablespace, set the
tablespace to read-only.

Take it out of the DLM
equation.

Mostly read-only, all nodes Cover the file with com-
paratively few fixed hash
locks. False pinging will
not be a problem if the
table is rarely written to.

Save memory by using few
locks. The table access will
still be fast owing to fixed
locks. Rare writes will not
present large synchroniza-
tion problems.

One node updates, other
nodes read

CR server should be con-
sidered, in addition to cov-
ering the file with fairly
fine-grained fixed hash
locks.

Updates can occur all over
a table. The use of CR
server minimizes the ping-
ing required by the read-
ers, because no undo needs
pinging.

Heavy insert from all
nodes

Partitioned table, parti-
tioned by presence of
instance number in parti-
tion key. Sparse PCM lock
coverage, potentially using
releasable locks.

Physical separation
removes synchronization
problems.

Heavy update from all
nodes

Fine-grained fixed locks,
CR server on all nodes.

Updates cause reads and
writes, and high CR
requirement.

CHAPTER 6 ORACLE8 IN OPERATION452
When Oracle knows that nobody can lock the table, it does not need to
synchronize the lock states between the instances, therefore cutting down
on the DLM overhead.

One lock that needs very careful attention in an OPS environment is
the ST (space transaction) lock. In the event of a great deal of work to be
performed while holding ST, such as a large amount of free extents to coa-
lesce, the additional overhead of passing the ST lock around the many
nodes can quickly bring a system to its knees. This is especially true when
anybody needs to create a new extent while the ST lock is already in
demand from SIMON doing cleanup work.

One situation in which new extents are frequently created and dis-
carded is that of temporary disk sort areas. For this reason, tablespaces of
type TEMPORARY and sort segments should always be used in OPS environ-
ments, as discussed in Section 5.7.3.

6.9.5 Summary
The goal of this section has not been to provide exhaustive OPS informa-
tion. Rather, it has been to provide enough information for you to be
aware of when OPS is a viable scaling option for a large application. Fur-
ther reading is strongly encouraged before any attempt is made to imple-
ment OPS, as detailed below.

6.9.6 Further Reading for OPS
The best place to learn the details of OPS is the Oracle8 Parallel Server Concepts
and Administration Guide. This is a very comprehensive guide to OPS and is
surprisingly readable. Included in this manual are comprehensive worksheets
to aid the application design and analysis required for successful OPS deploy-
ment, in addition to background information and configuration syntax.

6.10 V$ Views Exposed
In this section we visit several of the more interesting V$ views and
present some examples of how they should be interrogated to extract

6.10 V$ VIEWS EXPOSED 453
information that can be used for operational, tuning, and capacity plan-
ning purposes.

The information in the V$ views can be put into three high-level cat-
egories:

• Session-level information

• System-level information

• Miscellaneous information

In this section we will cover the first two of these categories in varying
detail. Full details of all the V$ views can be found in the Oracle Server Ref-
erence Guide.

6.10.1 Session-Level Information
A great deal of information is available about individual sessions connected
to the database. Connected sessions include everything that attaches to the
SGA, including all the Oracle background processes. This information is
centered around the V$SESSION view, and we will use this view as the driving
table as we go through the session information, as shown in Figure 6.12.

V$SESSION

V$SESSION contains one row for every connection to the database. Connec-
tions to the database include any shadow processes (the server side of the
two-task architecture) and all of the background processes, such as DBWR
and any parallel query slaves. Table 6.2 is the master record of every ses-
sion in the database and contains foreign key information for gaining
greater detail in a variety of areas.

The primary key for this table is the SADDR column, but this is not the
most useful column for using this table. It is far more useful to use the
SID,SERIAL# combination as the primary key, because this provides many
more join options against other tables. The reason that the serial number is
present is to define this session uniquely: If this session were to log off and
somebody else logged on, they could very well pick up the same SID.
Therefore, a different SERIAL# is assigned in order to distinguish among the
session information for the respective sessions.

CHAPTER 6 ORACLE8 IN OPERATION454
Continuing on through the view, skipping AUDSID, the next column is
PADDR. This is a very useful column, because it is the foreign key used to
join against the V$PROCESS table on the ADDR column (see Table 6.3).

An important distinction needs to be made between the SPID column of
V$PROCESS and the PROCESS column of V$SESSION; the SPID is the Unix PID of
the server-side shadow process, whereas the PROCESS is the PID of the client
process (sqlplus, f45runx, etc.). Before returning to V$SESSION, we can go through
the V$PROCESS information.

Highlights of V$PROCESS (apart from the server side SPID) are the
LATCHWAIT and LATCHSPIN columns. These columns show the address of the
latch on which the process is waiting or spinning, respectively, and can be
a good source of information when aggregated as a count.

V$SESSION

V$PROCESS

PADDR

DBA_USERS
USER#

V$SESSION_EVENT

V$SESSION_WAIT

SID,SERIAL#

V$TRANSACTION

V$LOCK

LOCKWAIT

SID

V$SQLAREA
V$SQLTEXT
V$SQLTEXT_WITH_NEWLINES

V$SQL

SQL_HASH_VALUE,
SQL_ADDRESS

DBA_OBJECTS

ROW_WAIT_OBJ#

DBA_EXTENTS

ROW_WAIT_FILE#,
ROW_WAIT_BLOCK#

SES_ADDR

V$SESSTAT SID

TADDR

Figure 6.12 Session information

6.10 V$ VIEWS EXPOSED 455
Table 6.2 V$SESSION Detail

Column Type Useful Joins/Notes

SADDR RAW(4) Session address
(V$TRANSACTION.SES_ADDR)

SID NUMBER V$SESSION_WAIT.SID,
V$SESSTAT.SID,
V$SESS_IO.SID,
V$LOCK.SID

SERIAL# NUMBER Increments each time SID is reused.
Used to identify this session
uniquely.

AUDSID NUMBER

PADDR RAW(4) V$PROCESS.ADDR

USER# NUMBER DBA_USERS.USER_ID
SEG$.USER#

USERNAME VARCHAR2(30) DBA_USERS.USERNAME

COMMAND NUMBER Command type. See Server Reference
Guide.

OWNERID NUMBER

TADDR VARCHAR2(8) V$TRANSACTION.ADDR

LOCKWAIT VARCHAR2(8) V$LOCK.KADDR

STATUS VARCHAR2(8) ACTIVE, INACTIVE, KILLED. Killed
status exists until PMON cleans up the
session.

SERVER VARCHAR2(9) DEDICATED. SHARED, NONE (an inac-
tive MTS session has no server associ-
ated with it)

SCHEMA# NUMBER

SCHEMANAME VARCHAR2(30)

OSUSER VARCHAR2(15) Operating system user ID for the cli-
ent process.

PROCESS VARCHAR2(9) Client process ID

MACHINE VARCHAR2(64) Client machine name

CHAPTER 6 ORACLE8 IN OPERATION456
Table 6.2 continued

Column Type Useful Joins/Notes

TERMINAL VARCHAR2(10) Client terminal ID

PROGRAM VARCHAR2(48) Program name for client

TYPE VARCHAR2(10) USER or BACKGROUND

SQL_ADDRESS RAW(4) V$SQLAREA.ADDRESS,
V$SQLTEXT.ADDRESS,
V$SQL.ADDRESS,
V$SQLTEXT_WITH_NEWLINES.ADDRES
S

SQL_HASH_VALUE NUMBER V$SQLAREA.HASH_VALUE,
V$SQLTEXT.HASH_VALUE,
V$SQL.HASH_VALUE,
V$SQLTEXT_WITH_NEWLINES.HASH_VALUE

PREV_SQL_ADDR RAW(4) As above. This reflects the last state-
ment for the session.

PREV_HASH_VALUE NUMBER

MODULE VARCHAR2(48) The application can set these columns
using DBMS_APPLICATION_INFO pack-
age. This is highly recommended for
any complex application, but should
not be used for very small compo-
nents of the application.

MODULE_HASH NUMBER

ACTION VARCHAR2(32)

ACTION_HASH NUMBER

CLIENT_INFO VARCHAR2(64)

FIXED_TABLE_SEQUENCE NUMBER This increments each time a session
does any work. Can be used to deter-
mine which sessions are active at any
one time, within the granularity pro-
vided by LAST_CALL_ET.

ROW_WAIT_OBJ# NUMBER These four columns identify which
row a session is waiting on. The row
in question will be locked by another
session if these are populated.

ROW_WAIT_FILE# NUMBER

ROW_WAIT_BLOCK# NUMBER

ROW_WAIT_ROW# NUMBER

LOGON_TIME DATE Hmm...

LAST_CALL_ET NUMBER Number of seconds since last activity

6.10 V$ VIEWS EXPOSED 457
The other columns in the view are not especially useful in a client/server
architecture, because the program is always “oracle,” and the username is also
“oracle.” In a multithreaded server (MTS) environment, there will be multiple ses-
sion records that can map to a single entry in V$PROCESS, because there are multi-
ple sessions sharing the same physical server process. Latch waits always
operate on a process level, and so this is the correct location for this information.

Table 6.2 continued

Column Type Useful Joins/Notes

PDML_ENABLED VARCHAR2(3) Yes/No

FAILOVER_TYPE VARCHAR2(13) OPS failover type

FAILOVER_METHOD VARCHAR2(10) NONE/BASIC/PRECONNECT

FAILED_OVER VARCHAR2(3) Yes/No

RESOURCE_CONSUMER_GRO
UP

VARCHAR2(32) Name of resource consumer group

Table 6.3 V$PROCESS Detail

Column Type Useful Joins/ Notes

ADDR RAW(4) V$SESSION.PADDR

PID NUMBER Oracle PID. Used by the Oracle ker-
nel and not related to any UNIX PID.

SPID VARCHAR2(9) Unix PID for shadow process

USERNAME VARCHAR2(15) UNIX username for owner of server
process

SERIAL# NUMBER

TERMINAL VARCHAR2(10)

PROGRAM VARCHAR2(48) Always “oracle,” unless using single-
task executable.

BACKGROUND VARCHAR2(1) Yes/No

LATCHWAIT VARCHAR2(8) Address of the latch this process is cur-
rently waiting on

LATCHSPIN VARCHAR2(8) Address of the latch this process is
spinning on

CHAPTER 6 ORACLE8 IN OPERATION458
Back in the V$SESSION view, we find the username information in both text
form and numeric ID format. The next column is the COMMAND column, which
shows the command type of the last statement parsed. A full reference to all
the command types is included in the Server Reference Guide but typically will
be 2 (INSERT), 3 (SELECT), 6 (UPDATE), 7 (DELETE), or 45 (ROLLBACK).

The OWNERID column is used to identify the owner of a parallel query
operation. All the parallel query slave processes started on this instance
have an entry in V$SESSION, showing the username to be that of the calling
session. However, this is not sufficient to identify the session uniquely—
particularly if the initiating session is actually connected to another
instance of a parallel server database. In this case, the value of this column
is a 4-byte value, with the low-order bytes identifying the session ID and
the high-order bytes identifying the instance number.

The TADDR column is a good one to remember. It is the foreign key ref-
erence through to the V$TRANSACTION view (see Table 6.4) and uniquely
identifies the transaction that the session holds active.

Many of the columns in V$TRANSACTION are of use only in very specific
debugging situations. However, there are other columns that are invalua-
ble in tracking down common problems and determining how long roll-
back operations are going to take. These columns are

• XIDUSN

• START_TIME

• USED_UREC/USED_UBLK

• LOG_IO

• PHY_IO

• CR_GET

• CR_CHANGE

The XIDUSN column shows the (U)ndo (S)egment (N)umber for the transac-
tion—that is, the rollback segment number. This is useful when tracking
back users of a particular rollback segment, going back to the session
information by means of the SES_ADDR column. The START_TIME column is a
character representation of the time at which the transaction started and
can be used to locate long-running updates.

6.10 V$ VIEWS EXPOSED 459
Table 6.4 V$TRANSACTION Detail

Column Type Useful Joins/ Notes

ADDR RAW(4) Joins against V$SESSION.TADDR

XIDUSN NUMBER Undo segment number (SYS.UNDO$.US#)

XIDSLOT NUMBER Undo slot number

XIDSQN NUMBER Undo sequence

UBAFIL NUMBER File number of current undo block

UBABLK NUMBER Block number of current undo block

UBASQN NUMBER Sequence number of current undo block

UBAREC NUMBER Record number of current undo block

STATUS VARCHAR2(16) Mostly ACTIVE in nondistributed, nonparallel-
DML environments

START_TIME VARCHAR2(20) Character representation of actual start time

START_SCNB NUMBER SCN when transaction started

START_SCNW NUMBER Wrap number when transaction started

START_UEXT NUMBER Extent number of initial undo block

START_UBAFIL NUMBER File number of initial undo block

START_UBABLK NUMBER Block number of initial undo block

START_UBASQN NUMBER Sequence number of initial undo block

START_UBAREC NUMBER Record number of initial undo block

SES_ADDR RAW(4) V$SESSION.SADDR

FLAG NUMBER <Unknown>

SPACE VARCHAR2(3) These four columns contain Yes/No answers to
denote whether the transaction is a space transac-
tion (i.e., implicit operations on the extent tables of
the data dictionary), a recursive transaction, a
“noundo” transaction (i.e.,
DISCRETE_TRANSACTION), or a parallel DML trans-
action, respectively.

RECURSIVE VARCHAR2(3)

NOUNDO VARCHAR2(3)

PTX VARCHAR2(3)

CHAPTER 6 ORACLE8 IN OPERATION460
The USED_% columns show how much real undo space is being used by
the transaction. Probably the most useful of this pair is the UREC column,
which shows the number of data records in the undo segment. This is an
effective way to determine how long a rollback operation will take on the
transaction, because it decreases in real-time during rollback operations.

The remaining four columns provide a nice summary of the block
operations that have occurred during the transaction.

V$SESSION_WAIT

V$SESSION_WAIT (see Table 6.5) is one of the primary views for determining the
cause of poor response time. It provides a snapshot view of every connec-
tion to the database and what the session is currently waiting on. If the ses-
sion is not currently waiting, it provides the last wait event for that session.

Table 6.4 continued

Column Type Useful Joins/ Notes

PRV_XIDUSN NUMBER Transaction information for previous transaction

PRV_XIDSLT NUMBER

PRV_XIDSQN NUMBER

PTX_XIDUSN NUMBER Parent transaction information for parallel DML

PTX_XIDSLT NUMBER

PTX_XIDSQN NUMBER

DSCN-B NUMBER SCN on which this transaction is dependent. In an
environment where multiple redo threads are asso-
ciated with recovery, the dependent SCN deter-
mines the sequence of recovery.

DSCN-W NUMBER

USED_UBLK NUMBER Number of used undo blocks

USED_UREC NUMBER Number of used undo records

LOG_IO NUMBER Logical I/Os used by this transaction

PHY_IO NUMBER Physical I/Os used by this transaction

CR_GET NUMBER Number of consistent read gets for transaction

CR_CHANGE NUMBER Number of blocks constructed for CR prior to update

6.10 V$ VIEWS EXPOSED 461
Initial queries to this table should aggregate the data to provide a read-
able view of the wait states in the system:

This query provides a rolled-up view of all the sessions in the system that are
currently in a wait state. While this is useful information, it is often more use-
ful to include all sessions in this query, not just sessions that are currently

 SELECT event,
 count(event)
 FROM v$session_wait
 WHERE wait_time = 0 /* i.e. still waiting */
GROUP BY event;

Table 6.5 V$SESSION_WAIT Detail

Column Type Useful Joins/ Notes

SID NUMBER V$SESSION.SID

SEQ# NUMBER Increases each time the session starts a wait.
Used to differentiate between consecutive waits
of the same event type.

EVENT VARCHAR2(64) The name of the wait event

P1TEXT VARCHAR2(64) All the P% columns are different for each event
type. They represent three different parameters
that relate to the specific wait event. The
PxTEXT columns contain the name of the
parameter, and the Px and PxRAW columns con-
tain the value in decimal and RAW formats,
respectively.

P1 NUMBER

P1RAW RAW(4)

P2TEXT VARCHAR2(64)

P2 NUMBER

P2RAW RAW(4)

P3TEXT VARCHAR2(64)

WAIT_TIME NUMBER A value of ZERO means the session is still wait-
ing. Negative numbers show time last waited,
unless it is –1 (WAITED SHORT TIME) or –2
(unknown wait time).

SECONDS_IN_WAIT NUMBER If TIMED_STATISTICS is enabled, shows the
number of wall clock seconds the session has
been waiting on this event

STATE VARCHAR2(19) WAITING, WAITED SHORT TIME, WAITED
UNKNOWN TIME, WAITED KNOWN TIME

CHAPTER 6 ORACLE8 IN OPERATION462
waiting. The reason for this is that it gives a more accurate feel for the trend of
the system and often exaggerates problems enough for them to be easily iden-
tified. For example, the query above may return the following results:

At first glance, this looks like a reasonably healthy system: Most users are
not in a wait state other than waiting for a new request from the application.
However, the “db file sequential read” may not be as normal as it looks. If the query
is executed without the WHERE clause, the following is produced:

Now a potential problem is evident. This clearly shows that several ses-
sions have been waiting for single-block physical I/O from disk.6 It is now
time to drill down, using some of the other columns in the view.

We need to get more detail on the sequential read wait event, so we
need to incorporate the general-purpose columns p1, p2, and p3 into our
query, and exclude the wait states that we are not interested in. The
parameter columns (p1,p2,p3) have a different meaning for nearly every
different wait event, and so the p?text columns should be used to find out
what the values relate to. This can be done in two ways, either by

EVENT COUNT(EVENT)
-- ------------
SQL*Net message from client 988
pmon timer 1
rdbms ipc message 4
smon timer 1
db file sequential read 9
db file scattered read 1

EVENT COUNT(EVENT)
-- ------------
SQL*Net message from client 988
SQL*Net message to client 20
pmon timer 1
rdbms ipc message 4
smon timer 1
db file sequential read 198
db file scattered read 4

6. The two statistics “db file sequential read” and “db file scattered read” are a little con-
fusing in naming convention. A “sequential” read is a single block read, usually indicating
the use of an index. A “scattered read” indicates a full table scan or index fast scan, and is
so named (presumably) because of the use of multiblock reads.

SELECT * FROM V$SESSION_WAIT
WHERE event=’db file sequential read” AND ROWNUM=1;

6.10 V$ VIEWS EXPOSED 463
or by

V$EVENT_NAME is a simple view of X$KSLED, which is one of the tables used by
the V$SESSION_WAIT view. From either of these two techniques, we find that the
parameter columns for “db file sequential read” are as shown in Table 6.6.

In this case, we do not really care about P3, because it is likely to always
be 1 anyway (single-block read). When we run the following query:

the following discovery is made:

This shows that 196 of the 198 sessions that have waited for physical I/O
have been reading from the same file and the same block ranges. This is
likely to be a rogue query, and so the next step for this particular problem
is to join V$SESSION_WAIT and V$SESSION in order to find common hash values
for running SQL:

SELECT * FROM V$EVENT_NAME
WHERE event=’db file sequential read’;

SELECT p1,FLOOR(p2/100),count(*)
 FROM V$SESSION_WAIT
 WHERE event=’db file sequential read’
GROUP BY p1,FLOOR(p2/100);

 P1 FLOOR(P2/100) COUNT(*)
---------- ------------- ----------
 15 10 2
 42 139 103
 42 140 93

SELECT se.sql_hash_value,count(se.sql_hash_value)
 FROM V$SESSION se,
 V$SESSION_WAIT sw
 WHERE se.SID=sw.SID
 AND sw.event=’db file sequential read’
GROUP BY se.sql_hash_value;

Table 6.6 Parameter Descriptions for “db file sequential read”

Column Name Column Value Description

P1 FILE# File number of file being read

P2 BLOCK# Block number of file being read

P3 BLOCKS Number of blocks being read

CHAPTER 6 ORACLE8 IN OPERATION464
This query joins the two tables by their common primary key, the SID of
the session. This query produces output like this:

The guilty hash value is clearly 828483197, and this can now be extracted
from the library cache using the V$SQLTEXT view.

This is one example of how to interrogate the V$SESSION_WAIT view in
order to find the causes of problems in the system. Frequently, this type of
approach is the only one necessary when reacting to performance prob-
lems in the system, because it provides an instant view of sessions that are
spending time waiting rather than working.

6.10.2 V$SESSION_EVENT
One of the drawbacks of V$SESSION_WAIT is that it provides only a transient
view of the current wait state. V$SESSION_EVENT (see Table 6.7) is the cumula-
tive view of wait states for all the sessions in the database. It reports the
same wait events as V$SESSION_WAIT and provides a history of wait states
and durations for that session.

 SQL_HASH_VALUE COUNT(SE.SQL_HASH_VALUE)
-------------- ------------------------

828483197 186
 0 10
1356206681 2

Table 6.7 V$SESSION_EVENT Detail

Column Type Useful Joins/ Notes

SID NUMBER V$SESSION.SID

EVENT VARCHAR2(64) Name of event, as seen in V$SESSION_WAIT

TOTAL_WAITS NUMBER Number of times this session entered the wait
routine for this event

TOTAL_TIMEOUTS NUMBER Number of times the wait timed out and had to
be restarted for this event

TIME_WAITED NUMBER Total time this session waited for this event

AVERAGE_WAIT NUMBER TIME_WAITED/TOTAL_WAITS

MAX_WAIT NUMBER Maximum time waited on this event

6.10 V$ VIEWS EXPOSED 465
This view is useful for getting an idea of the severity of waits in the
database. Take a look at the following example:

In this example, the session has waited a large number of times on
SQL*Net messages to and from the client. This is an indication of the
number of requests this session has made of the server—in this case,
the session has executed many short queries against the database.

The worrysome thing in this example is that a high number of
timeouts have occurred waiting on the “latch-free” event. This event
is a catchall for every latch in the system, but in this kind of situation
it is typically one latch that is causing the majority of the timeouts.
Multiple latch wait timeouts are normally an indicator that latch con-
tention is occurring and should be investigated further.

V$SESSTAT

The V$SESSTAT (see Table 6.8) view provides approximately 200 differ-
ent statistics related to the operation of each session in the database.
The names of these statistics are recorded in the V$STATNAME view (see
Table 6.9), where they are also grouped according to the type of statis-
tic reported.

These statistics are identical to the ones reported for the system level,
and accordingly some will be more useful as a global total.

EVENT TOTAL_WAITS TOTAL_TIMEOUTS
-- ----------- --------------
SQL*Net message to client 16465777 0
SQL*Net message from client 16465776 0
db file sequential read 4938379 0
buffer busy waits 829199 125
SQL*Net more data to client 637883 0
SQL*Net more data from client 328281 0
latch free 153494 118651
free buffer waits 11314 1656
db file scattered read 811 0
file open 81 0
library cache pin 15 0

11 rows selected.

CHAPTER 6 ORACLE8 IN OPERATION466
6.10.3 System-Level Information
Most of the remaining V$ views refer to system-level information. It does
not make much sense to go through all of the remaining views, because
many of the views are very rarely used. Instead, we will take a look at
some of the most useful views in common use.

V$SYSSTAT, V$SYSTEM_EVENT

These two views show the same statistics as their session-based counter-
parts. v$system_event can give a fast overview of the system wait states, while

Table 6.8 V$SESSTAT Detail

Column Type Useful Joins/ Notes

SID NUMBER V$SESSION.SID

STATISTIC# NUMBER V$STATNAME.STATISTIC#

VALUE NUMBER Actual value for this statistic

Table 6.9 V$STATNAME Class Types

Class Type of Statistic

1 Session activity, such as CPU used, SQL*Net activity, calls made, private memory usage

2 Redo activity on behalf of this session (sesstat), or globally (sysstat)

4 Enqueue activity

8 Buffer cache centric statistics

16 O/S statistics (port-specific)

32 Parallel server instance coordination (SCN management, non-PCM locks) and
parallel query

40 Global (parallel) cache management

64 Data access (sorts, table access statistics) and SQL layer statistics (parse calls,
execute calls, session cursor cache statistics)

72 Buffer pin statistics

128 Rollback statistics/SCN

6.10 V$ VIEWS EXPOSED 467
V$SYSSTAT can give detailed information on all of the actual activity in the
database.

V$FILESTAT

Joining this table to V$DATAFILE yields statistics about physical I/O occur-
ring against the datafile that comprise the database. Several conclusions
can be made about the usage of certain datafiles based on the relationships
of columns in this table. For example, if PHYBLKRD/PHYRDS is greater than 1,
full table scans or index fast scans are occurring on this file.

V$SGASTAT

This view shows the component parts of the SGA and their respective
sizes. The most common use of this information is to determine whether
or not there is free space in the shared pool. Monitoring the free space in
the shared pool is a vital step in maintaining a smoothly running system.

V$LIBRARYCACHE

Following up on maintaining sufficient space in the shared pool using
V$SGASTAT, V$LIBRARYCACHE will report on the efficiency of the cached objects
in the library cache. For example, if the shared pool is correctly sized, and
the application reuses SQL efficiently, the GETHITRATIO for the SQL AREA

namespace will be close to 1 (100 percent hits).

V$ROWCACHE

An incorrectly sized shared pool will also result in an undersized diction-
ary cache (a.k.a. rowcache) as a result of the SQL area squeezing out other
namespaces. If this is occurring, misses will start to occur on dictionary
cache objects. The cache hit ratio is reported in this view as GETHITS/(GETH-

ITS+GETMISSES).

V$DB_OBJECT_CACHE

This view shows statistics about tables, views, indexes, sequences, pack-
ages, and even cursors. Historically, this table was once used for objects
that had owners, not anonymous SQL statements. It was used to show

CHAPTER 6 ORACLE8 IN OPERATION468
whether an object was currently cached and whether or not it was “kept”
in memory using the DBMS_SHARED_POOL package. Now that this package
supports the “keeping” of cursors in the shared pool, the cursors are also
listed.

V$BH

This view is reported in the Oracle documentation as a parallel server
view. However, it is now created as part of the catalog.sql script and therefore
present in every Oracle instance. The BH in this view name stands for
buffer hash and refers to the actual buffers in the buffer cache; there is one
row in V$BH for each buffer in the cache. Simple queries can be run against
this view to determine such things as population of the buffer cache by a
given object, and it is thus very useful for maximizing the potential of the
cache by ensuring that it is fairly used.

V$LATCH_CHILDREN

Many of the latches in an Oracle instance consist of a parent latch and
many child latches. One good example of this is the “cache buffers chains”
latch. This view reports on all the child latches for those parent latches.

The columns in the V$LATCH% views are worth discussing some more.
When a latch acquisition fails, this is deemed to be a miss. A success is
deemed a hit. When a miss occurs, Oracle then attempts to acquire the
latch by spinning on it spin_count times. If this is not successful, Oracle puts
the process to sleep (sleeps) and then reattempts the get. If this is unsuccess-
ful, the process is put to sleep for an exponentially longer period each time
until the acquisition is successful.

The columns from SLEEP5 upward are no longer used by Oracle.

V$LATCH

This view is an aggregate view of statistics for all the latches in the system.
Statistics for any latches that are composed of many child latches are
rolled up into a single row in V$LATCH. This view also contains statistics for
all the singleton latches, which are not reported in the V$LATCH_CHILDREN

view.

6.10 V$ VIEWS EXPOSED 469
V$LOCK

All locks are reported in this view, whether they are enqueue locks or oth-
erwise. When sessions are found to be waiting on a lock, this view can be
queried to find the holder of the lock. The columns LMODE and REQUEST are
used for this; LMODE shows the lock mode that the session currently has on
the lock, and REQUEST shows the mode in which the session is trying to
obtain the lock.

Incidentally, there is an easy way to determine for which lock type a
session is waiting on “enqueue” in V$SESSION_WAIT. The P1 value in this instance
is named “name|mode,” which means that the name of the enqueue is OR’d
together with the mode in the value for P1. The net effect of this is that if
you take the P1RAW value (hex version of the value), and use the first two
bytes (first pair of two characters) this is an ASCII representation of the
enqueue name. The character values for these bytes are easily determined
using the “man ascii” command at the UNIX prompt.

V$WAITSTAT

When an Oracle session waits for a block to become available for use for
some reason (such as another session having it pinned for exclusive use),
Oracle increments a counter in V$WAITSTAT for that type of block. In normal
use, one would expect the “data block” class to be the block type most fre-
quently waited on. Problems are evident when other types of blocks are
waited on frequently. For example, many waits on “segment header” demon-
strates segment header contention, probably due to heavy inserts into a
table resulting in freelist contention.

V$BACKUP

When the old hot backup method (i.e., not Recovery Manager) is used,
each file that is in backup mode will have a status of ACTIVE in this view.

V$SORT_SEGMENT, V$SORT_USAGE

When a tablespace of type TEMPORARY is created, it is used solely as stor-
age for sort segments. These are segments that are used for on-disk sort-
ing of data and are not automatically freed after use. Instead, they

CHAPTER 6 ORACLE8 IN OPERATION470
become eligible for reuse by other sessions under the control of the sort

extent pool latch instead of going through all the overhead of using the sin-
gle ST lock.

6.11 Chapter Summary
The operation of Oracle is tightly linked to its physical side. As it all oper-
ates in memory structures, however, so this is not immediately apparent.
Documentation of these aspects has historically been poor, and word of
mouth was the only way to determine answers to some questions. Hope-
fully, this chapter has been enlightening and interesting in this respect.

Use of the V$ and X$ tables are the window to Oracle’s soul, and it’s
important to stay on top of the new views/tables that appear in each
release. Oracle is fairly unique in the amount of information it divulges,
and this should be used to your advantage.

6.12 Further Reading
Various. Oracle 8i Concepts, Oracle RDBMS Documentation.
Various. Oracle8i Parallel Server Concepts and Administration, Oracle RDBMS Docu-

mentation.
Various. Oracle 8i Tuning, Oracle RDBMS Documentation.

PA R T I V

How UNIX Works

473
Chapter 7

Introduction to UNIX

7.1 What Is a Kernel?
The most fundamental level of UNIX is the kernel. User programs execute
under the protection of the kernel and use its services. The kernel provides
a standard interface to the system hardware and provides standard serv-
ices over and above that to ease the process of developing and executing
software on the hardware platform.

7.1.1 “That Picture”
I must apologize for Figure 7.1. This kind of representation never helped
me when I went through the familiarization process myself. That having
been said, it does provide a concise view of the structure of a UNIX sys-
tem, and hopefully a little verbiage will make it clear.

This diagram is supposed to represent the various layers in a UNIX
system. Going from bottom to top, the software engineering effort
becomes less complex and less shared. For example, every program in the
system uses the virtual memory subsystem, although this is a very com-
plex part of the system. It is a sharable part of the system, but each of its
users is protected from the inherent complexity by the layers below it. This
is the overriding mission of the kernel: to protect users from each other,
and from the complexity of the system.

Starting at the lowest level, we have the platform itself, or the hard-
ware domain. Included in this domain are all the physical attributes that

CHAPTER 7 INTRODUCTION TO UNIX474
need to be taken care of in order to execute software on the system. Some
of these things are partially taken care of by the hardware but still require
explicit action from the software on the system to instruct the hardware
how it should, for example, ensure that the CPU cache reflects valid data
for the next process to use.

Moving up the stack, we get to the core kernel services. This layer
ensures that all layers above it are taken care of, in addition to providing
standard interfaces to the hardware domain. For example, one of the over-
riding concepts of the UNIX model is that everything is a file. The core
kernel services take care of this interface, providing the upper layers with
a way of viewing (nearly) all hardware objects as a linear file.

This layer also provides the process abstraction. This is essentially how
executing programs are handled by the system, providing each process
with the illusion that it is operating independently on private hardware. It
also takes care of isolation between these processes, ensuring that one
process cannot corrupt the execution environment of another in any way.

In addition, the kernel also provides value-added services that can be
used by the user programs. These are software modules that are not essen-
tial for the operation of the system but provide a more usable interface for
the user. A prime example of this is the availability of many filesystems. A
filesystem does not contribute directly to the running of the system but is

Cache
coherency

Bus
protocols

Virtual
memory

Hardware
devices

Hardware Domain

Core Kernel Services

User Services

User Programs

Streams, file systems, etc.

Multitasking, isolation, standard API to hardware

C libraries

Shell, grep, awk, Oracle, custom, etc.

Le
ss

 C
om

pl
ex

ity

Figure 7.1 UNIX hierarchy

7.1 WHAT IS A KERNEL? 475
more than just a simple service. It must have access to kernel memory for
the sharing of the filesystem buffer cache and must have fast access to the
hardware itself.

Everything else on the stack is user code. That is, it is not directly asso-
ciated with the kernel. The C libraries are reusable software modules that
are used to aid the rapid construction of user software. Note that Oracle is
associated with the user processes at the very top of the model.

This is probably the highest-level view of what the kernel does; now
it is time to take a look at how this is achieved from an implementation
perspective.

7.1.2 Execution Modes
The UNIX operating system operates in two distinct modes: kernel and
user. The kernel does not do anything mysterious; it is just software like
the rest of the system:

It is executed on the same processors as the user software. However, the
kernel has special duties and normally operates with a privileged status
from a hardware perspective, able to access and modify addresses and reg-
isters that user mode cannot. This mode of execution is called kernel mode.

There are two distinct situations in which kernel mode is entered,
excluding the boot process:

• A user process executes a system call or raises an exception (explicit
kernel processing).

• System housekeeping occurs, such as time-slicing and servicing inter-
rupts (implicit kernel processing).

$ file unix
unix: ELF 32-bit LSB executable 80386 Version 1
$ file /bin/grep
/bin/grep: ELF 32-bit LSB executable 80386 Version 1

or

$ file vmunix
vmunix: ELF-64 executable object file - PA-RISC 2.0 (LP64)
$ file iotest
iotest: ELF-64 executable object file - PA-RISC 2.0 (LP64)

CHAPTER 7 INTRODUCTION TO UNIX476
7.1.3 Explicit Kernel Processing (Process Context Kernel Mode)
Starting with the user process, let’s have a look at UNIX from a user per-
spective in order to see where the kernel fits in.

A user connects to the UNIX system by some mechanism, such as a
login process for a shell user or an SQL*Net connection for a database user.
Whichever way the user connects, the net result is a process on the system.
This process is the executing context of a user program, and it is supported
by the kernel with an operating environment. The environment for a proc-
ess consists of

• A private memory map, including private stack and program counter

• A share of available processor capacity, up to 100 percent of one CPU if
required and available

• The system call interface

The private memory map is a set of memory pages over which the user has
exclusive rights. This memory map is actually a virtual memory map,
which will be discussed in Section 7.3.2. For now, it is enough to think of
this memory as a contiguous block of memory that is private to the user
process. The block of memory is composed as shown in Figure 7.2.

Kernel Memory

User Addess
Space

Program Stack

Program Memory

Figure 7.2 Process memory map

7.1 WHAT IS A KERNEL? 477
The lower portion of the memory map is accessible to the process, and
the upper half of the map is a shared mapping of the kernel memory. All
user processes have the kernel memory in their address spaces but cannot
access it. In 32-bit UNIX implementations, it is common for the lower 2GB
of the 32-bit address range to be used for user memory and the upper 2GB
for kernel memory.

The “program memory” in the Figure 7.2 refers to all memory used to
execute the user program, excluding the stack. This memory is further
divided into as many as five types:

1. Text (the program itself)

2. Data (initialized variables)

3. BSS (uninitialized variables), including heap memory allocated by the
malloc() family

4. Shared libraries (can include all items above for each library)

5. Shared locations (shared memory, memory mapped files)

The program stack is typically started at the top of the user address space,
growing downward, while the program memory starts at the base and
grows upward.

If this process is executing a program that operates only within that
private memory map—that is, never requests more memory (program
memory or stack), never causes an exception, and never needs to do any
I/O—this process will never explicitly switch into kernel mode.

Considering that any kind of output, including screen output, is I/O,
this hypothetical program would not be very useful to anybody. In order
to perform I/O, however, the process needs to access the hardware of the
system, which it cannot do in user mode. In this case, the process will exe-
cute a system call, which invokes a few actions on the system and results
in the process running in kernel mode. This mode of execution is consid-
ered as process context kernel mode.

In modern systems, kernel mode is a hardware state invoked by a
hardware trap on the processor. This puts the processor into kernel mode
and allows the executing process to perform the required privileged oper-
ations. In order to continue, the kernel must first save the processing con-
text of the user process—that is, program counter, general-purpose

CHAPTER 7 INTRODUCTION TO UNIX478
registers, memory management information, and stack pointer. It’s worth
noting that a switch to kernel mode usually does not need to perform any
processor cache management, because the memory map does not change.
Kernel mode and user mode both exist within the same process context, so
no cache lines need to be invalidated on a switch into kernel mode. In fact,
it is likely that the kernel processing will require some of the user pages,
particularly the u-area (see Section 7.2.1), and any buffers required to proc-
ess system calls. Once the transition to kernel mode is complete, the kernel
can start to process the system call request.

While a process is in kernel mode, it has access to both kernel mem-
ory and user memory. However, no user code is executed while the
process is in kernel mode. Instead, the user request is validated and, if
permitted, performed on behalf of the user mode side (user context) of
the process. Kernel execution occurs in the same process context as the
user program, so all processor cycles consumed during this process are
logged against the process under SYS mode (as viewed with sar -u).

It was mentioned earlier that a process could cause an exception. An
exception is caused by a process attempting to do something that is either
impossible or prohibited. Examples of this include segmentation viola-
tions (a process attempting to access memory that has not been allocated
to it) and divide-by-zero exceptions. In this case, the kernel processes the
relevant exception handler for that event, such as initiating a core dump,
within the context of the process.

7.1.4 Implicit Kernel Processing (System Context Kernel Mode)
The second way that kernel code executes is when certain events occur in
the system. These events basically consist of software and hardware inter-
rupts and occur for various reasons. By processing these interrupts with
interrupt handlers, the kernel ensures that

• All runnable processes receive a “fair share” of the CPU.

• All hardware interfacing is performed.

When a processor receives interrupts, it stops executing the current proc-
ess and executes the interrupt handler for that interrupt. This happens

7.1 WHAT IS A KERNEL? 479
regardless of whether the process was operating in user mode or in kernel
mode, although the kernel has the ability to block interrupts selectively.

Interrupts are asynchronous with respect to the currently executing
process and are caused by events that are not directly initiated by the proc-
ess itself. Therefore, the handler must execute outside the context of the
current process and neither logs its execution cycles against that process1

nor accesses its address space.2 This type of execution is considered as sys-
tem context kernel mode.

The kinds of things that generate interrupts are I/O devices returning
a completion status (including network traffic) and the hardware clock.

There are situations in the execution of the kernel code in which an
interrupt handler cannot be serviced. One prime example of this would be
if the kernel were already executing kernel code for a prior interrupt of
that type. In this case, the kernel could corrupt its own address space by
having incomplete memory updates from the first interrupt when the sec-
ond is received. This situation is prevented through the use of interrupt pri-
ority levels (IPLs).

Using IPLs, the kernel can instruct the processor to ignore interrupts
that it receives that have a lower priority than the specified level. There-
fore, the kernel can set the interrupt level at a suitable level prior to
processing a critical (i.e., protected) section of code. Any interrupts that
have a lower priority than the one set are ignored by the processor, and the
critical section can complete safely.

Interrupt levels are hardware-dependent entities and thus vary among
processor architectures. Typically, there are several hardware interrupts,
and a smaller number of software interrupts that can be programmed. The
highest interrupt level is always reserved for machine exceptions: If there
is a fatal problem in the hardware or the operating system, all processing
must cease immediately to protect against widespread data corruption
resulting from unknown states in the system. When a fault of this nature is

1. Some implementations log these CPU cycles on the process that was executing on the
processor before the interrupt was received.

2. Unless the interrupt is directly related to the process—for example, a context switch or
the return from an outstanding I/O.

CHAPTER 7 INTRODUCTION TO UNIX480
detected, the highest-level interrupt is generated in order to generate a
“panic” of the system.

The next level down is usually reserved for the hardware clock, fol-
lowed by various peripheral interrupts (disk, network, etc.), and software
interrupts have the lowest priority level. Below all of this comes level zero,
which is the level at which user mode processing occurs. This allows any-
thing to interrupt user mode processing.

The Hardware Clock
The hardware clock is a critical component of a UNIX system. It not only
determines the rate at which the processor is driven (this is why it is
known as clock speed) but also generates interrupts that the kernel uses to
implement timeslicing.

When the system boots, the kernel programs the hardware clock to
interrupt the processor at defined intervals. Each time this interval arrives,
a high-priority interrupt is received that is processed by the kernel’s clock
interrupt handler. This handler runs in system context, because it has noth-
ing to do with any user process.

The period that the clock interrupts is determined by the value for one
tick, frequently set at 100 Hz, or 10 milliseconds. Every 10 milliseconds, the
interrupt handler is fired and must perform several critical functions, such
as incrementing the system time, updating the system and user time statis-
tics for running processes, and posting alarm() signals to processes that have
requested them. The clock handler also ensures that the illusion of concur-
rent execution is maintained on the system by providing the mechanism
for implementing time sharing.

Time Sharing
Every process in the system is assigned a quantum, which is the maximum
amount of time the process can execute on the processor, before other
processes must be considered for execution. This period varies between
platforms and between scheduler classes, but is typically 100 milliseconds,
or ten ticks of the hardware clock.

When the quantum is used up, the kernel checks the run queue, and deter-
mines whether the process must be suspended from execution and put back

7.2 PROCESSES 481
onto the run queue. If there are no processes on the run queue of sufficient pri-
ority, the process is allowed to execute for another quantum. If the process is
taken off the processor, it remains dormant until it is scheduled back onto the
processor when it reaches the head of the queue. This period is typically very
short and is weighted by the priority of processes on the run queue.

In this way, the kernel can provide the illusion to all the processes in the
system that they are concurrently running on the processor. This, combined
with the private memory map, provides a private environment for each
process. More detail is provided on process scheduling in the next section.

7.2 Processes
In the preceding section, a level of detail was reached with regard to what
a process is from an execution standpoint. From a high-level perspective, a
process is simply the kernel’s abstraction of all the attributes of a running
program, in order to control its execution.

All user processes in the system have an entry in the process table, with
the following attributes:

• A private, virtual3 memory map

• A runtime context (program counter, registers, stack pointer, etc.)

• System resources

7.2.1 The Process “Table”
The process table is the master reference for the process. Although the
detail of the process table is not directly useful in implementing large Ora-
cle systems, an understanding of the concepts is useful and helps when
developing monitoring hooks into the system.

In physical terms, the process table exists as two structures for each
process: a proc structure and a u structure (or u-area). Historically, the proc

structure was a table of fixed size that was set at kernel link time and was

3. The “virtual” part will be covered in Section 7.3.

CHAPTER 7 INTRODUCTION TO UNIX482
not changeable at runtime. This is the reason for the quotation marks
around the word “table” in the head—it really isn’t a “table” any more.

The proc structure contains all the information that the kernel could
require when the process is not running, and so exists in kernel memory
that is always mapped. By contrast, the u-area contains information that
usually is needed only while the process is actually running; the u-area is
stored in the private memory map of the process.4

The reason for using two structures to maintain the process control
information is that some of the information does not need to be accessible
by the kernel when the process is not running. It does not make sense to tie
up global kernel memory for information that is typically not required
when the process is not running.

Depending on the specific implementation, the u-area can contain the
following information for each process:

• File descriptor table

• Process control block (execution context of the process, including gen-
eral-purpose registers, stack pointer, MMU registers, etc.)

• Per-process kernel stack

• Pointer to corresponding proc structure

Though the list above covers the major items, many other pieces of infor-
mation can be stored in the u-area.

The proc structure focuses on the more globally accessed attributes of a
process:

• User credentials

• Signal masks

• PID

• Active process list pointer (see Section 7.2.2)

• Queue list pointers for run queue

• Priority information

• Indirect pointer to u-area

4. Some modern implementations have migrated much of the u-area to the proc structure in
order to increase flexibility.

7.2 PROCESSES 483
All of the items listed above, with the exception of the PID, can be writ-
ten to by other processes in the system or the kernel, and therefore need
to be globally accessible. The list pointers will be covered in more detail
in Section 7.2.2.

When the process information is divided among such structures, it can
complicate the retrieval of this information. UNIX commands, such as ps and
fuser, use information from both of these structures and therefore require
access to all of this information, even when the process in question is not
active and could even be swapped out to disk. When the process is swapped
out to disk, this includes the u-area, and so special access methods need to be
available for gaining access to this information from the swap area. This can
be achieved using special system calls or through the use of a custom API.
The actual method used is implementation-dependent.

7.2.2 Process Scheduling
The subject of process scheduling is one that can have a direct bearing on
the performance of your Oracle database. Although this has been touched
on already in this chapter, it merits some more detail.

As previously mentioned, UNIX is a time-sharing system at heart. This
means that the kernel will provide the illusion to all the processes on the
system that they all have their own CPU to run on. On a large database
server with 4,000 processes, it is not practical (or scalable) to provide a
processor for each process, and so it is the time sharing that allows a far
smaller number of processors to provide this illusion.

The key to providing this illusion is the hardware clock, as previously
discussed, and context switches. Context switching is best covered in Section
7.3, and so for now it is safe to view context switching from the high level of
just switching processes on and off processors. Also, to make this discussion
simple, assume that we are referring to a uniprocessor UNIX platform.

Process Scheduling Primer: Uniprocessor Platforms
When a process has used its time quantum (i.e., when the hardware clock
interrupt handler has fired) and another process is waiting to execute (the
other process is termed runnable), it is switched off the processor and the
new process is switched onto the processor. The switching of processes,

CHAPTER 7 INTRODUCTION TO UNIX484
and the entire clock interrupt handler, must be very efficient in order to
minimize the overhead of processing small time slices. If this operation is
a noticeable percentage of the quantum itself, then this is the percentage of
system that is “wasted” on the task of time sharing.

This simplistic view of time sharing is useful in gaining an initial
understanding of the concepts. However, the actual implementation of
time sharing is a good deal more complex, having to deal with such things
as different priority processes, balancing throughput against response
time, managing CPU cache warmth on multiprocessor machines, and so
on. The handling of this complex time-sharing requirement is called proc-
ess scheduling.

There are several variables that affect which process will be placed on
an available processor:

• Priority of process

• Recent CPU usage for process

• “Nice” value

• Machine load average

• Position in run queue

When a process becomes runnable, it is placed on a run queue—that is, a
queue for the processor in order to be run. This is achieved by adding the
proc structure of the process onto a linked list that makes up the run queue.

The architecture of the run queues is very platform-specific, especially
when the platform supports complex hardware arrangements such as
NUMA. In order to keep this discussion simple, we will refer to the Berke-
ley software distribution (BSD) run queue architecture.

BSD maintains several run queues, each of which queues processes
of a specific priority. When a process has used its quantum on the proces-
sor, the scheduler scans the run queues in order, from highest priority to
lowest priority. If a process is found on a run queue with a priority
greater than or equal to that of the currently executing process, the old
process is switched off the processor and the queued process is switched
on. If there are no processes on queues with priority greater than or
equal to that of the currently executing process, the process is permitted

7.2 PROCESSES 485
to continue running for up to another quantum before the queues are
checked once again.

If a process of higher priority becomes runnable, the current process is
preempted off the processor even if it has not used its entire quantum.

The priority of a process is governed by two factors and will be con-
stantly adjusted by the kernel during the lifetime of the process based on
the system load average. These factors are the estimated recent CPU usage
by this process and the “nice” value of the process.

The nice value of a process is specified by the user at process start-up
using the nice command. This value ranges from –20 to +19, with the
default being 0. Superuser privileges are required to decrease the nice
value, because this increases the priority of the process above the normal
priority for user processes. A user can elect to put a larger nice value on
the process in order to run at a lower priority and therefore be “nice” to
the other users of the system.

The recent CPU usage of the process is calculated using several algo-
rithms. It is not necessary to go into the specifics of these algorithms, because
they are covered comprehensively in various other books (see Section 7.9 at
the end of this chapter). It worthwhile discussing the basics, however.

If a process is using a good deal of CPU, this will be reflected in the
recent CPU counter, which in turn is used as a negative weighting factor in
the algorithm that determines the priority of the process. Therefore, CPU-
intensive processes cannot dominate a system unless there are only lower-
priority processes in the run queue or the system is idle. Likewise, if there
are two processes trying to use as much CPU as possible, they will end up
on the same low-priority run queue and will compete against each other.

The recent CPU counter is incremented for every tick the process exe-
cutes. This value is then weighted once a second, using the system load aver-
age5 and the process nice value in order to give the counter a decay over time.
The load average is used as the amnesia factor in keeping track of the used
CPU; if the system is very heavily loaded, the CPU counter will take a long
time to forget previous CPU usage, and the priority of the process will be

5. The system “load average” is a set of numbers, calculated over 1-minute, 5-minute, and 15-
minute intervals, using several types of scheduling statistics such as run queue length, priority
waitlist length, and so on. The actual algorithm varies among implementations.

CHAPTER 7 INTRODUCTION TO UNIX486
proportionately lower. If the load average is small, the used CPU will be for-
gotten relatively quickly, and the process will gain a higher priority.

If a process needs to block while it is running, such as waiting for an
I/O operation to complete, it is taken off the processor and placed on a dif-
ferent type of queue—one of the sleep queues. The process stores a wait
channel in its proc structure and puts itself onto the correct sleep queue for
that resource. The wait channel is typically the address of the structure on
which the process is waiting, which is hashed to obtain the correct sleep
queue. When a resource becomes available, its address is hashed by the
kernel to find the correct queue, and all processes waiting on it are woken
and put back on a run queue.

If the process was blocked waiting for the completion of a system call,
such as a read(), the process is put on a high-priority run queue until the
process completes the switch back into user mode. At this point, the proc-
ess priority is reduced, typically resulting in the process being switched off
the processor in order to service processes of higher priority.

When processes are executing on a processor, they are neither on a run
queue nor on a sleep queue. At this point, the process is active and exists
on another list. In SVR4, this list is known as practive and is a linked list of all
the processes currently on the processor, linked against the “active proces-
sor link” item in each proc structure.

Advanced Scheduling: Multiprocessor Process Scheduling
When multiple processors are present in a system, the scheduling algo-
rithms become more complex. In the case of NUMA systems, this is an
attempt to keep active processes close to their resident memory. In SMP
machines, it is implementation-dependent: Some platforms do no extra
scheduling work, whereas others do.

SMP. With multiple processors (sometimes referred to as engines by ker-
nel engineers) and a relatively low number of runnable processes at any
one time, some major optimizations can be made by maintaining cache
warmth in the CPU caches. This is known as cache affinity.

An algorithm can be implemented, using the number of clock ticks
since the process last ran, which determines whether the process is likely

7.2 PROCESSES 487
to have cache warmth on the processor on which it last ran. Waiting for the
correct engine to become available may incur a delay in the execution of
the process, and so this algorithm needs to be well tested with real appli-
cations.

In testing with and without affinity, OLTP Oracle workloads have been
shown to exhibit as much as 15 percent more throughput when affinity is
enabled.

NUMA. In NUMA configurations, it becomes more critical that the
scheduler place processes on the correct engine. Although some NUMA
configurations support dynamic page relocation between NUMA nodes,
this is expensive at best, and the majority of memory for a given process
will always reside on one node or another anyway. Therefore, it is a fair
assumption that the scheduler should always attempt to schedule proc-
esses on engines on the same node as the resident set of the process.

This results in several per-node run queues, in order to ensure the
locality bias in selecting processes to run. It’s worth noting that the sched-
uler cannot factor in the location of any mapped shared memory, because
this is not part of the process’s private memory. In the case of all the proc-
esses in the system all running the same binary (such as oracle), the operat-
ing system may elect to store a single shared text segment local to each
NUMA node in order to maximize the locality of reference.

7.2.3 Signals
Signals are the mechanism used to notify processes of asynchronous
events. Even novice users are familiar with the kill command, which is
used to send these signals to processes.

Most users are aware of the signal mechanism only from the user per-
spective—that of killing a process in order to terminate its execution. In
fact, signals are very much more flexible than a simple termination mecha-
nism, and most can be trapped and controlled in a programmable manner
by the process.

Signals are passed to the process by the kernel. They can be initiated
by other processes in the system or by the target process itself. The kernel

CHAPTER 7 INTRODUCTION TO UNIX488
passes the signal to the process by setting a bit that corresponds to the sig-
nal in the proc structure for the process, as shown in Figure 7.3.

This bitmask is called p_sig in SVR4 and p_siglist in BSD-based implemen-
tations. The bitfield is used to store pending signals for the process.

Before the pending signal bitmask is updated, however, the kernel checks
that the signal has not been explicitly ignored by the process. If the signal has
been ignored, the kernel will not even set the bit in the bitmask. Once the bit is
set in the proc structure, the kernel will attempt to wake up the process in order
to receive the signal (if it is not already running). After this, the processing of
the signal is entirely the responsibility of the process itself.

The signal bitmask is checked

• Every time the process returns to user mode from kernel mode

• Before going to sleep in kernel mode

• On waking from an interruptible sleep

The trend here is for the bitmask to be checked prior to returning to user
mode from kernel mode. The reason for this is that some signals (namely
SIGKILL and SIGSTOP) cannot be processed in user mode, because their han-
dlers are not programmable. Once the bitmask is checked, the signals that
have been received are processed by the process in kernel mode. The first
action the kernel takes is to check if the signal is SIGKILL or SIGSTOP. If so, the
actions are taken in kernel mode without returning to user mode. These
actions terminate the process, or suspend the process and put it to sleep,
respectively.

If the signal is not one of these two, the kernel checks the u-area for the
process to find out if it has a handler declared for this signal. If there is no
handler, the default action is taken, as shown in Table 7.1.

p_sig

S
IG

H
U

P
S

IG
IN

T
S

IG
Q

U
IT

S
IG

IL
L

S
IG

TR
A

P
S

IG
IO

T
S

IG
E

M
T

S
IG

FP
E

S
IG

K
IL

L
S

IG
BU

S
S

IG
S

E
G

V
S

IG
S

Y
S

S
IG

P
IP

E
S

IG
A

LR
M

S
IG

TE
R

M
S

IG
U

S
R

1
S

IG
U

S
R

2
S

IG
C

H
LD

And So on

Figure 7.3 Signal bitmask in proc structure

7.2 PROCESSES 489
Table 7.1 Signal Names

Name Description Default Action

SIGHUP hangup exit

SIGINT interrupt exit

SIGQUIT quit core dump

SIGILL illegal instruction core dump

SIGTRAP trace trap core dump

SIGIOT illegal operation trap core dump

SIGABRT abort and dump core core dump

SIGEMT EMT instruction core dump

SIGFPE floating point exception core dump

SIGKILL kill (cannot be caught or ignored) exit

SIGBUS bus error core dump

SIGSEGV segmentation violation core dump

SIGSYS nonexistent system call core dump

SIGPIPE write on a pipe with no one to read it exit

SIGALRM alarm clock exit

SIGTERM software termination signal exit

SIGUSR1 user-defined signal 1 exit

SIGUSR2 user-defined signal 2 exit

SIGCHLD death of a child ignore

SIGPWR power fail ignore

SIGWINCH screen size change ignore

SIGURG urgent condition on socket ignore

SIGPOLL selectable event pending exit

SIGIO socket I/O possible (SIGPOLL alias) exit

CHAPTER 7 INTRODUCTION TO UNIX490
Any signal without a default action of “ignore” will not switch back
into user mode. Instead, the process will exit, core dump, or be suspended,
all without leaving kernel mode. If there is a handler defined for the sig-
nal, the kernel will switch into user mode and execute the signal handler.

It’s worth noting that a process may not act on a signal for a compara-
tively long time. If the process is blocking on a noninterruptible kernel
resource or is swapped out to disk, the process may remain unchanged in
the system for a while before the signal is acted on.

7.2.4 Process Lifecycle
To finish up with processes, several the concepts in this section are sum-
marized in Figure 7.4, which shows an example mini-application in which
a network listener process listens for connections and creates a slave proc-
ess in order to process requests as they come in.

Table 7.1 continued

Name Description Default Action

SIGIO socket I/O possible (SIGPOLL alias) exit

SIGSTOP stop process (cannot be caught or ignored) stop

SIGTSTP interactive stop signal stop

SIGCONT continue process ignore

SIGTTIN input from background stop

SIGTTOU output from background stop

SIGVTAL virtual timer expired exit

SIGPROF profiling timer expired exit

SIGXCPU CPU limit exceeded core dump

SIGXFSZ file size limit exceeded core dump

7.2 PROCESSES 491

Network Listener Slave Process

Blocked on accept() system call, listening
for new network connections

S
le

ep
in

g
S

le
ep

in
g

S
le

ep
in

g
S

le
ep

in
g

Connection comes in; kernel receives
interrupt and schedules this process

onto processor E
xe

cu
te

:
K

er
ne

l M
od

e

E
xe

cu
te

:
K

er
ne

l M
od

e

E
xe

cu
te

:
U

se
r

M
od

e

E
xe

cu
te

:
U

se
r

M
od

e

E
xe

cu
te

:
K

er
ne

l M
od

e

E
xe

cu
te

:
K

er
ne

l M
od

e

Return from kernel mode

R
es

to
re

 U
se

r
C

on
te

xt

R
es

to
re

 U
se

r
C

on
te

xt

R
es

to
re

 U
se

r
C

on
te

xt
(Miscellaneous work in user mode)

 fork() system call

exec() system call to run new program
that performs requested task

S
av

e
us

er
 c

on
te

xt
,

R
es

to
re

 K
er

ne
l C

on
te

xt

S
av

e
U

se
r

C
on

te
xt

,
R

es
to

re
 K

er
ne

l C
on

te
xt

Create New Process

Quantum Used Up;
Context Switch

Quantum Used Up;
Context Switch

New process created to perform specific task

New process switched onto CPU for first time.
Has same image as parent, returning from fork()

Load new program image

Exit status from fork() shows this
process is the child.

Returning from fork()system call

Loop back to accept() system call for
more connections

Figure 7.4 Listener application

CHAPTER 7 INTRODUCTION TO UNIX492
7.3 Memory Management: The Virtual Memory System
7.3.1 Introduction
In simplistic, single-tasking computer systems, programs can be compiled to
locate themselves, and run, at specific memory addresses within the available
physical memory. The flow of control is passed from task to task on comple-
tion, with potentially only one program in memory at any one time.

A very simple operating system, for example, has an operating system
“kernel” compiled to run at a specific address and all user programs compiled
to run at another specific address. The control of the system starts with the
operating system, from which other programs can be executed. The other pro-
grams all locate themselves at addresses separate from that of the O/S; the
O/S can remain in memory while this happens. Once the program is com-
plete, the operating system gains control of the system once more.

There are several problems with this arrangement:

• Little or no memory protection between programs: All programs can
read or write all memory locations.

• Programs are limited to an unknown, finite amount of physical mem-
ory on the system.

• Programs must execute serially and, unless compiled for physically sep-
arate memory ranges, must overlay the previously executing program.

The last problem has two serious implications:

1. The system cannot support multitasking.

2. Software development is complex and machine-dependent.

These implications go directly against two of the design goals of UNIX, and so
this arrangement is a nonstarter. Another scheme must therefore be
adopted—virtual memory and its associated memory management.

7.3.2 Virtual Memory Introduction
UNIX systems implement virtual memory. Virtual memory separates the
address space seen by a process from real physical memory addresses.
This is achieved using memory address translation as an operating system
function.

7.3 MEMORY MANAGEMENT: THE VIRTUAL MEMORY SYSTEM 493
Address Translation
Address translation allows all processes in the system to address the same
locations as if they were private, with the system ensuring that the physi-
cal address used is distinct from other processes.

In Figure 7.5, there are two processes, each using half of the physical
memory in the machine (for simplicity of example). Each of the two proc-
esses has an identical address space, or memory map, that is the same size
as the physical address space. Although these processes are using physi-
cally different memory locations, both are under the illusion that they start
at address zero6 and have contiguous memory allocated beyond that (plus
stack).

Each of the cells in Figure 7.5 represents the smallest unit of granular-
ity that the UNIX system considers from a memory management perspec-
tive—a page. The concept of a page is used in order to reduce the space and

6. Most implementations reserve address zero in order to catch program errors. When a
program dereferences a null pointer, a segmentation violation error occurs because this
page is not part of the process address space.

��
��
yy
yy
��yy��yy��yy��yy
��yy��yy��yy

��yy��yy

��yy��yy��yy��yy��yy��yy

�y
�
�
y
y

�
�
y
y
�
�
y
y
�
�
y
y
�y�y�y

Process One Process Two
Physical
Memory

Process One
Translation Tables

Process Two
Translation Tables

Figure 7.5 Address translation

CHAPTER 7 INTRODUCTION TO UNIX494
resource overhead of managing a large amount of memory on the system.
It is common in modern systems for the page size to be set at 4KB,7

although some systems now support variable page sizes in order to
increase the efficiency of very large memory (VLM) applications.

The glue that holds this process together is the address translation tables.
These tables hold the mapping of virtual addresses (those that the process
uses) to physical addresses (actual memory locations). In UNIX systems,
these tables normally come in the form of page tables and, optionally, transla-
tion lookaside buffers (TLBs) in the processor memory management unit (MMU).

The page table consists of several page table entries (PTEs) for each proc-
ess, arranged as an array, as shown in Figure 7.6.

For a given virtual page frame (00 to 07 in Figure 7.6) of a process, there
is a corresponding PTE, located at the same offset in the array that makes
up the page table. So, the first page that makes up the address space of the
process in this example is mapped to the page starting at physical address
0x000E1000. The actual offset within the page remains the same as the offset
within the virtual page.

It was mentioned earlier that some systems now support variable-size
pages. This is a result of the overhead now imposed in managing the huge
quantities of memory found in very large systems. For example, if an Ora-
cle database server has a 4GB SGA, this typically means that each connec-
tion to the database needs to have a page table large enough to cater for
every page in the SGA in addition to the process memory itself. Each PTE
is typically 32 bits, and so a 4KB page size would yield a 4MB (1 million
times 4 bytes) page table for each process. Not only does this size of page
table mean the kernel is spending a good deal of time managing page
tables, but this memory is also located in kernel memory, not user mem-
ory. If 5,000 users are due to connect to this system, this means the kernel
memory needs to be greater than 20GB. When variable page sizes are
used, the SGA can be assigned, say, 4MB pages, thus reducing the size of
the page table for the mapping.

The actual structure of each entry in the page table is defined by the
hardware architecture—specifically the MMU of the processor. Each proc-

7. SPARC architectures use an 8KB page size.

7.3 MEMORY MANAGEMENT: THE VIRTUAL MEMORY SYSTEM 495
essor family has its own structure for defining virtual to physical map-
pings in the MMU, and some support more functionality in the hardware
than others, specifically in the area of memory protection and the presence
of a referenced bit.

Although the hardware dictates the structure of the page table entries,
it is the UNIX kernel that is responsible for all the manipulation of the
entries in the table and for ensuring that the MMU is using the correct
PTEs for the running process. At this stage, it is worth mentioning the

Physical Page
Frame Number M

od
ifie

d
(D

irt
y)

Vali
d

Refe
re

nc
ed

 (O
pt

ion
al)

Pro
te

cti
on

 B
its

 (O
pt

ion
al)

Page
Table

PTE 00

01

02

03

04

05

06

07

0x000E1000

Figure 7.6 Process page table

CHAPTER 7 INTRODUCTION TO UNIX496
effects of the two major variants of CPU cache architecture: physically
mapped and virtually mapped.

A physically mapped architecture is laid out as shown in Figure 7.7.
This is the traditional approach to caching, because the operating system
does not need to be aware of the operation of the cache. Whenever a
request for data is made by the CPU, the address (which remains as a vir-
tual address) is passed through to the MMU, which does a conversion of
the virtual address to a physical address. It does this using the TLB, which
is a fully associative cache. This means that it has the ability to search all the
lines (fully associative access) in the TLB concurrently, to determine the
physical address to search for in the cache.

The TLB contains PTEs specified by the kernel, and this is the reason
why the structure of the PTE is dictated by the CPU architecture. The ker-
nel is responsible for loading the registers of the TLB with the correct PTE
information for the active process. For any given process, the kernel map-
pings will not change, because all processes have the kernel mapped in
their address space. On the right of the MMU in Figure 7.7, all addresses
are physical.

It is clear that having to precede even the cache access with a lookup
on the TLB can impose a significant overhead. In the case that the TLB
does not contain the PTE required for the operation, a reference to main
memory needs to be made in order to prime the TLB. Luckily, this nor-
mally means that the page has not been accessed for a comparatively long
time, and so the impact is not felt very frequently.

CPU MMU
+ TLB

Cache

M
em

or
y

Figure 7.7 Physically mapped cache

7.3 MEMORY MANAGEMENT: THE VIRTUAL MEMORY SYSTEM 497
In some modern systems, a different approach has been taken with the
cache. Instead of using the physical address to determine the correct line
and tag within the cache, the virtual address is used (see Figure 7.8).

The effect of this is that the CPU can request data from the cache
directly by virtual address. The MMU needs to be used only when a cache
miss occurs and a physical memory access is required. The requirement
for a TLB is less in this arrangement, because the MMU is now positioned
in a slower part of the system than it is in a physically mapped architec-
ture. This having been said, many architectures implement virtual caches
with TLBs for enhanced performance.

The downside of a virtual cache is that the kernel is now required to
manage much of the cache coherency, because the hardware is unaware of
the differences among the many identical virtual addresses that refer to
different physical memory locations. Address 0x1000 for process A is not
the same memory location as address 0x1000 for process B.

To alleviate the ambiguity in the cache, the system typically uses the
process ID of the relevant process as part of the tagging infrastructure in
the cache. The hardware has no concept of process IDs,8 and so the coher-
ency of the cache must involve the operating system: At a minimum, the
kernel must inform the processor of the identity of the current process in
order for the correct tags to be checked in the cache.

8. With the exception of a hardware register populated by the operating system to reflect
the current context/process.

CPU MMU
+ TLB

Cache

M
em

or
y

Figure 7.8 Virtual mapped cache

CHAPTER 7 INTRODUCTION TO UNIX498
Cache coherency across DMA operations is also more complex,
because the majority of I/O devices have no concept of virtual addresses;
they transfer to and from physical memory addresses.

Context Switch
When the operating system switches one process off the processor and
puts a different one on, several actions must be taken to

• Preserve the context of the prior process.

• Restore the context of the activated process.

These actions constitute the formal definition of a context switch. The con-
text of a process typically includes the following:

• Stack pointer

• Program counter

• Other general-use registers in CPU

• Virtual address mapping

The first three attributes are referred to as the process control block, or PCB,
and relate directly to saving the execution context of the process. The last
attribute is that of the PTEs, and their presence in the TLB.

When a new process is switched onto a processor, the MMU must be
informed of the new address mappings for that process. This applies
whether the cache is virtual or physical. If a TLB is present, the kernel
must also ensure that any mappings that are not relevant for the new proc-
ess are invalidated, making the MMU reload the correct mapping from
memory on access. This is necessary because the MMU does not have any
concept of the process executing on the CPU, and merely changing
address mappings does not mean that the process has just changed. The
classic example of this would be a process issuing an exec() call, which
results in all prior mappings changing to support the new program.

The kernel will load up the MMU’s registers with the location of the
new page table for the process, followed by a flush of the irrelevant TLB
entries for the new process. The new process will keep all of the kernel
TLB entries, because these addresses will continue to have the same map-
ping for the new process.

7.3 MEMORY MANAGEMENT: THE VIRTUAL MEMORY SYSTEM 499
Once this process has been completed, the new process is allowed to
run.

Further MMU Considerations
The operation of the MMU and associated TLB are somewhat complicated
by the following aspects of modern UNIX systems:

• Memory protection

• Presence of swap area

• Multiprocessor (MP) architectures

The MMU determines whether or not a page can be read from or written
to. This includes mapped pages with memory protection bits set in the
PTE and unmapped pages that the process cannot use. In either case, the
MMU raises a trap for the kernel to deal with.

The presence of the swap area is discussed in Section 7.4, where we
complicate the virtual memory system further by using more memory
than we physically have.

In multiprocessor systems, the presence of the TLB introduces further
cache coherency considerations that are unrelated to the CPU cache coher-
ency. For example, if the virtual-to-physical mapping or memory protec-
tion for a kernel page changes, TLBs in all MMUs must be updated to
reflect this change. Another example would be shared memory accessed
by several processes. This includes explicit shared memory segments and
also copy-on-write data segments for a program that has executed fork() with
no exec(). Copy on write will be discussed in Section 7.4.3.

In this case, the kernel must initiate a “TLB shootdown” in order to ensure
that all other TLBs are current with the new information. This is an explicit
operation, for which the kernel typically maintains a set of data structures that
map which PTEs are located in the various TLBs on the MP system. Using this
map, the kernel can explicitly invalidate the changed PTEs in all the TLBs.

Any changes in the PTEs are typically not loaded into the various TLBs,
because doing so would be a very expensive default operation. Instead, the
entries are simply invalidated, forcing the MMU to reload the entry on the
next reference. In many cases, the reload will not be required before the
process is switched off the CPU, and so the work is prevented altogether.

CHAPTER 7 INTRODUCTION TO UNIX500
7.4 Virtual Memory Hierarchy
The preceding section concentrated on the generic attributes of virtual
memory (VM), where a finite amount of memory is available on the sys-
tem and is the maximum amount of memory that can be used among all
the processes.

In reality, many of the pages of a given process do not need to be resi-
dent in memory all the time, and making them so would be wasteful of the
valuable memory resource. A good example of this is Oracle Forms, where
the size of the physical process may be 16MB or more. In a running sys-
tem, experience has shown that only around 8MB of these pages need to
be in memory at any one time in order to execute the Forms application
with performance quite comparable to that of a fully resident image.

In order to support this optimization of real memory, the memory hier-
archy needs to be extended to physical disk, the next step down in the
memory hierarchy (see Figure 7.9).

7.4.1 The Memory/Disk Hierarchy
The use of physical disk spindles is a natural extension of the familiar
memory hierarchy between CPU cache memory and main system mem-
ory. The next step after main system memory is physical disk, which is
much cheaper and slower than system memory.

Using disk to extend memory capacity was once a larger issue than it
is today. In the past, memory chips were scarce and expensive, and the
system architectures were not able to address large amounts of real mem-
ory. Therefore, disk-based memory hierarchies were essential to providing
the capability for many concurrent users on a UNIX system.

In modern systems, memory is a far less important issue than it used
to be, in terms of both cost and addressability. In fact, in building a high-

CPU
Cache

Memory DiskRegisters

Figure 7.9 Memory/disk hierarchy

7.4 VIRTUAL MEMORY HIERARCHY 501
performance Oracle database server, it is preferable always to work within
the confines of the physical memory on the system, and not to rely on
physical disk to provide additional memory capacity.

Unlike the case of Oracle Forms cited above, Oracle Server processes
share critical resources between them, meaning that one process can directly
slow down all other processes in the system by holding one of the resources
for an extended period. If the process needs memory that has been paged
out to disk in order to complete the processing under a latch, all other proc-
esses will wait for this page-in operation before the latch is released.

The use of disk in the memory hierarchy is not limited to the sharing of
physical memory, however. It also allows the rapid execution of program
executables, by breaking the reliance on the entire image being in memory
prior to execution. This allows the program to execute as soon as the first
page is resident in memory.

7.4.2 Implementing the Hierarchy

Demand Paging
Although the full detail of the hierarchy varies across implementations, all
modern virtual memory systems implement a form of demand paging.
Demand paging extends the concepts presented in the preceding section
by specifying that any given page in the system can be resident or nonres-
ident (on disk) at any one time. This does not affect the operation on that
piece of memory, because the kernel intervenes if the page is nonresident
and loads the page back into memory before the operation is carried out.

The implementation of demand paging is based on the operation of
the MMU and PTEs. When a page is requested, the request is serviced by
the MMU. If the MMU cannot resolve the request, because the page is
either not resident or not yet allocated, a page fault is generated. This is
serviced by the kernel, and the appropriate action is taken, based on why
the page reference could not be resolved by the MMU. If the page has
never been allocated, the kernel will generate an exception for the process
and send the appropriate signal.

If the page has been allocated but is located on disk, the kernel will
load the page back into memory and create a new map for that virtual
address, pointing it to the new physical address. The operation will then
be allowed to continue.

CHAPTER 7 INTRODUCTION TO UNIX502
Virtual Memory Cache Analogy
Virtual memory can be considered a cache of disk storage. This does not
mean that it is the same as the buffer cache, but rather a more complex
affair. However, it is safe to view the primary execution object as the on-
disk copy of the memory itself. In the same way that a CPU cache mirrors
the contents of physical memory in order to speed access, so the physical
memory of the system is mirroring the contents of the disk in order to
speed access to it.

In the case of program executables, this is a very straightforward con-
cept to grasp: The program is on disk and, on each access to the pages that
make up the file, the page is loaded into some available physical memory
location in order to speed the access to the instructions in that page. The
analogy to CPU caches here is the loading of cache lines (analogous to
pages) from physical memory (analogous to disk blocks) before execution.

In the case of other memory objects—namely, anonymous objects such
as data segments, user stacks, and so on—there is initially no on-disk rep-
resentation. In order to deal with this, an area of disk is allocated from the
swap area, a special partition or series of partitions set up for this task.
This then becomes the on-disk representation of the pages allocated for
this process.

When a page is first allocated to an anonymous piece of memory, noth-
ing happens; the kernel simply ensures that the disk area is available. On
first access, the page is allocated a physical memory page, which would be
zero-filled by the kernel on first use. The process can now use this page as
required, operating as a write-back cache (see Section 2.1.4). The disk ver-
sion of this block becomes stale at this point.

This allocation is just the same as a CPU writing to a cache line for the
first time; as soon as the CPU has written to it, the line in physical memory
is stale, and the line in cache represents the current version.

Pager Objects
The implementation of the actual paging interface varies among different
VM systems, so the method presented here represents one of the more
common approaches—that of an object-based implementation.

7.4 VIRTUAL MEMORY HIERARCHY 503
The first concept of an object-based pager interface was introduced
above; there are two different types of memory consumer, both of which
are used by a process:

• File-based memory objects, such as program executables and mmap() files.

• Anonymous memory, such as program data segments, heap, and stack.

When segments of these types are created by the kernel, the kernel instan-
tiates an object specific for that type of memory allocation. Both of the
classes that define this object implement a standard interface that the ker-
nel expects to be present (see Figure 7.10).

Standard
Pager

Abstract
Class

Vnode
Pager
Class

S
pe

ci
fic

at
io

n
C

od
e

In
di

vi
du

al
 “

V
er

si
on

s”
fo

r
ex

ec
ut

io
n

VM System
Vnode
Pager
Object

Figure 7.10 Memory objects

CHAPTER 7 INTRODUCTION TO UNIX504
For those not familiar with object-oriented concepts, don’t worry—it is
not important that you fully understand these concepts at this stage. Basi-
cally, an abstract class is one that simply defines what is required from a
class that subclasses it (it adopts the abstract class as its parent specifica-
tion). A class is code that is fully inclusive from data and function perspec-
tives. It contains all the data declarations and all the functions that operate
on that data.9 When a class is invoked, an object is created, which is basi-
cally a physical “version” of the class—one that exists in executable form
in memory.

In the case of memory objects, the VM system is no longer concerned
about the implementation or special requirements of a particular type of
pager. As long as the pager subclasses the abstract class (i.e., specification)
that the VM system expects, the VM system does not need to be cognizant
of any of the detail.

The example in Figure 7.10 uses a vnode pager object. A vnode is an
important part of the operation of modern UNIX kernels. It is the kernel’s
view of an active file. The “v” in vnode stands for virtual—that is, the
vnode is an abstraction of any particular filesystem’s unique file identifier.
It exists in order to break the prior hard link between the kernel and a file-
system, and allows any filesystem with a vnode interface to be mounted in
the same way as any other filesystem.

At the end of the vnode pointer is an actual node pointer to the physi-
cal file. Therefore, a vnode uniquely identifies a file on the system, and this
is the reason that the pager object that deals with files is based on the
vnode of the file.

One pager object is instantiated for every mapped file. If more than
one user has the file mapped, they will share the same pager object. When-
ever an operation must be performed on a page owned by this object, the
VM system will call one of the standard functions on the object in order for
the object to perform the operation accordingly. This includes freeing the
page for another process, or reallocating physical memory for a page that
has already been paged out to disk.

9. At least in concept. The detail is more complex, but is not required for this discussion.

7.4 VIRTUAL MEMORY HIERARCHY 505
The problem of handling memory mapped files is different from that
of anonymous memory allocations, and so this is why there are different
pager routines for each.

The pager routine for anonymous objects does not have a source file in
a filesystem to pass pages to and from. Instead, these objects are transient
objects that exist only for the lifetime of the process that is using them.
There is no on-disk representation of these objects before they exist in
physical memory. When memory pages used by these objects need to be
freed, the pager writes the page out to the swap area, which is a dedicated
set of disk partitions for this task that is shared by all processes. For this
reason, this pager routine is frequently termed the swap pager.

Although this pager is not the vnode pager, both classes present the
same interface to the kernel, using vnode and offset pairs to identify the
actual page. The vnode in the case of anonymous objects is that of the
swap area.

A process on the system uses both types of objects and looks a little
like the arrangement shown in Figure 7.11.

Figure 7.11 illustrates the pager interfaces used by a simple executable
program, such as the Korn Shell (/bin/ksh). When the program starts, a vnode

/usr/bin/ksh

Text

Data

Heap

Stack

/dev/swap1

Swap PagerVnode Pager

Figure 7.11 Paging interfaces

CHAPTER 7 INTRODUCTION TO UNIX506
pager object is created to map the executable file. The program starts to
execute but cannot do so until the first page of the executable10 is in mem-
ory. The vnode pager is called on at this point to allocate a page in memory
and bring in the first page of the executable.

Almost immediately after this, the first page of the data segment needs
to be available, and so a pager object needs to be made. The object would
be the swap pager, because the contents of this memory will be modified
during use, and this should not be reflected back into any file in the file-
system. The first page of the data segment is created by the swap pager,
and execution continues.

As soon as anything needs to be placed on the stack, the kernel creates
the first page of the stack segment and assigns the swap pager to it. Like-
wise, as soon as the program needs to use any memory on the heap,
another object is created to store the heap segment, which also is a swap
pager object.

In Figure 7.11, the vnode pager is a unidirectional arrow, because the
mapped file is an executable (executables never get written to by the VM
system). If the process were to map another file using mmap(), the vnode
pager would also be responsible for ensuring that all dirty pages were first
written back to the file before freeing the page.

Paging Mechanics
Now that the actual page handlers are known, we can forget about them
once again and concentrate on the VM system itself and the mechanics of
its operation.

The VM system varies to a large degree across implementations, but
they all have the same fundamental goal: to keep as many active (i.e., cur-
rently used) pages in physical memory at any one time. They also typi-
cally all have the same basic theory for achieving this goal.

Figure 7.12 shows the four parameters used by the SVR4 UNIX mem-
ory management algorithms. Essentially, these four parameters define
how aggressively the VM system should work toward freeing memory in

10. Or the first page of the dynamic link loader, in the case of dynamically linked executables.

7.4 VIRTUAL MEMORY HIERARCHY 507
the system. The first parameter, lotsfree, declares that if the free memory is
above this point, no action needs to be taken by the VM system to free
memory—there is lots free. When free memory falls below this threshold,
the VM system starts to find pages that can be written out to disk and sub-
sequently free the physical memory page. This pageout routine is run four
times per second at this point. In Figure 7.12, the rate of memory decline is
reduced because the VM system starts to free infrequently used pages.

The next threshold is desfree. If memory falls below this point, the VM
system starts desperation paging, because memory is getting very low. The
pageout process is executed on every clock() cycle at this point, and the VM
system works hard to free up memory. In the chart, the free memory level
starts to become more erratic, because the requests for memory continue
and the VM system is almost managing to keep the number of free pages
constant. Desfree defines the amount of memory the O/S must attempt to
keep free at all times.

The next threshold is minfree. Serious memory starvation occurs at this
point, and the system becomes far more aggressive over the selection of
pages to pageout. If memory still cannot be freed, and the free memory
count falls below gpgslo, the system has to admit defeat in using the pag-
ing algorithms.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

LOTSFREE

DESFREE

MINFREE

GPGSLO

Time

M
em

or
y

(G
B

)

Figure 7.12 Paging thresholds

CHAPTER 7 INTRODUCTION TO UNIX508
At gpgslo, the VM system changes gear and goes into swapping mode.
It is deemed that memory is so scarce at this point that VM operations will
dominate the CPU on the system and start thrashing. Thrashing is where
the system spends all of its time paging in and out in an attempt to keep
active pages in memory. Swapping involves paging out entire processes to
the swap area, rather than trying to work out which pages should go out.

The swapping starts with the processes that are oldest. In fact, very
old, inactive processes may have been swapped out much earlier in the
process, just as a housekeeping action. Then sleeping processes get
swapped out, followed by processes that are at the back of the run queue.
At this stage, the system is essentially unusable.

In order to implement this memory management, the VM system
adopts several algorithms for identifying pages to page out. One of the
common ones is the not recently used algorithm, also known as the two-
handed clock (see Figure 7.13).

This algorithm approximates an LRU algorithm but requires signifi-
cantly less management overhead. The pages of memory are arranged as a

Circular List of Pages

Direction of Hands

Front H
and

Bac
k

 H
an

d

Handspread

Figure 7.13 Two-handed clock algorithm

7.4 VIRTUAL MEMORY HIERARCHY 509
circular linked list, where the “last” element points to the first element in
order to make a full loop. There are then two “hands” that are applied to
searching of this list. The front hand goes through the list and turns off the
referenced bit of the PTE. If the page is accessed after this, the bit is turned
back on by the reference. If the bit remains off when the back hand
inspects the buffer, then it is not recently used and is eligible to be freed.

The handspread is the number of buffers that separate the scans of the
two hands. A small gap implies that only very frequently referenced pages
will be ineligible for freeing. A large gap allows less frequently accessed
pages to remain in memory. Alternatively, the speed at which the hands go
around has the same effect, and this is the variable that the kernel changes
depending on the amount of free memory.

When a page is to be freed, the VM system can pull the vnode and off-
set for the page out of the kernel structure and use this to call the correct
object pager in order to carry out the procedure. The routine in the pager is
called pageout(). If the page is dirty (written to but not flushed to disk), it
must be written out before being freed. It is the responsibility of the rele-
vant pager object to ensure that this occurs.

Likewise, when a page fault results in a trap, the vnode and offset for
the required page are passed to the relevant pagein() routine in the pager
object. This could happen for any of the following reasons:

• The page is part of an executable or mapped file and has not yet been
accessed.

• The page has been paged out to swap.

• The page is a new anonymous page and needs an initial allocation.

There is a separate routine for each of these cases. In the first case, the
pager simply needs to allocate a free page and fill it with the contents of
the corresponding vnode and offset on disk. In the second case, the pager
performs a similar operation using the swap area. The final case requires
allocation of a new page, and filling of the new page with zeros by the ker-
nel. This is defined behavior for new pages, and some programs expect
such behavior.

This kind of single-page demand paging is good in theory but not very
efficient in practice. In practice, just getting the required page does not
make the best use of statistical facts in the way that memory is accessed.

CHAPTER 7 INTRODUCTION TO UNIX510
The statistic in question, of course, is the locality of reference: If a certain
page is requested, it is likely that the adjacent pages will also be required
in the short term. The cost of a single page fetch from disk is so huge in
comparison with the time the CPU can process that page that it makes
sense to get a few adjacent pages at the same time. The additional disk
overhead is tiny if the next pages are also adjacent on the physical disk,
and so greater efficiency can be achieved in this way.

In addition to the standard threshold-based memory management
method, some implementations adopt further optimizations. Regardless
of the amount of memory left free in the system, it is also desirable to pre-
vent proactively any processes from growing beyond a reasonable11 size.
This reduces the VM work required when the thresholds are crossed.
While most VM systems keep track of the resident set size (RSS) of each
process, not all allow specific action to be carried out on the basis of that
number. Others, such as Sequent DYNIX/ptx, compare the current RSS of
the process against a tunable parameter called maxrs. If the process grows
beyond the defined value for maxrs, the VM system starts to pageout
older pages of the process’s resident set until its size comes back down to
the defined limit.

7.4.3 Implications of fork() and exec()

The fork() system call is used to create new processes. The kernel creates an
exact copy of the process that calls fork() and gives it a new execution thread
for that process. The new process has an individual PID and retains the
calling process as the parent of the process. At this point, both the parent
and the child continue to execute the same application code, from exactly
the same point: the return of the fork() system call.

The complexity of fork() and the reason it is present in the section on
memory management have to do with the way that it is typically used. It
may already be evident that the kernel will do anything to avoid work that
is not necessary; this is the secret of keeping operating system overhead to
a minimum. In the case of fork(), it is actually unusual for the child process

11. “Reasonable” is defined on an application-specific basis.

7.4 VIRTUAL MEMORY HIERARCHY 511
to continue executing the same code as the parent. Instead, the child typi-
cally calls the exec()12 system call.

The exec() call invokes another program within the process that calls it. In
order to do this, the address space for the process has to be redefined, mak-
ing the previous set of memory mappings irrelevant for the child process. If
the kernel has just gone to all the trouble of copying all the pages that com-
prise the parent to make this new process, that work would be wasted.

Therefore, when the kernel receives a fork() call, it typically makes an opti-
mized copy of the parent process. This copy involves only copying of the
PTEs for the parent process, thereby making the child an exact copy of the
parent, including the physical memory that it uses. Of course, if the parent or
the child were to write to one of the pages, it could corrupt the other process,
and so another procedure is required to support this optimized copy.

This procedure is called copy on write. The kernel makes a copy of the
parent’s address space and sets up protection bits on the PTEs. If the par-
ent or the child attempts to write to one of these pages, a protection excep-
tion is raised, which the kernel processes. Only at this stage does the
kernel make a copy of the page and set the master and the copy to
read/write. Therefore, if the child writes to only a few pages before issu-
ing an exec() call, only the required amount of memory copying occurs.

BSD offers an alternative to copy on write in the form of a vfork() system call.
Using this call, the child “borrows” the entire address space of the parent, and
the parent blocks until the child issues an exec(). This is specifically designed for
use in programs that know that an exec() always follows the fork().

7.4.4 Summary
The VM system is a fundamental part of the UNIX kernel. For large Oracle
database servers, the VM system can be required to perform a good deal of
work, even though the system should be configured to keep all the proc-
esses and SGA in real memory at all times.

The reason for this is that there are still a huge number of distinct proc-
esses on the system, and Oracle relies heavily on the operating system to

12. There are many members of the exec() family of calls, but the same concepts apply to all
of them.

CHAPTER 7 INTRODUCTION TO UNIX512
manage the address spaces for these processes. Each of these processes can
be very large, and certainly a great deal of PTE manipulation is required.

In the case of very large SGAs, the operating system must implement
changes above and beyond the provision of the standard 4KB page size.
One of these optimizations—variable page sizes—was discussed in this
section. Another good optimization for the reduction of PTEs in Oracle-
like systems is shared PTEs. Just as the operating system already shares the
PTEs for text segments, it is also possible to create just one set of PTEs for
the shared memory segment to which all processes refer. This reduces the
memory consumption of the page tables enormously.

Although the details of the virtual memory system are not essential for
building a high-performance Oracle database system, a good understand-
ing of VM can be helpful in comprehending system operation under load
and in correlating system statistics.

7.5 I/O System
7.5.1 Everything Is a File
One of the fundamental design concepts of the UNIX system was to abstract all
I/O operations as linear file operations. This allows the kernel to take the com-
plexity of physical hardware devices away from programmers, and to deal with
it internally instead. A good example of this would be a tape drive, which has
the concept of records. A linear file has no concept of records but only of a con-
tinuous stream of bytes. Therefore, the kernel takes care of the record-based
communication with the tape drive, allowing the programmer to read from and
write to the tape device using standard read() and write() system calls.

This concept has mostly held true to this day, although the number of
ioctl()13 and other custom call types available has sometimes made it appear
not to be so.

The rule, however, is that pretty much everything can be treated as a
file. This makes I/O programming on UNIX systems very portable and

13. ioctl() is used to perform device-dependent actions.

7.5 I/O SYSTEM 513
straightforward as a result of the kernel (specifically the device drivers)
taking the complexity away from the programmer.

Something to bear in mind when looking at system statistics is that the
number of read() and write() system calls being executed does not correlate
with disk I/O. Rather, these calls include logical I/O in and out of the file-
system buffer cache as well as all network and terminal I/O.

7.5.2 Filesystems
The filesystem is a user-friendly interface to the raw disk. It presents a
hierarchical tree of directories and files (see Figure 7.14) and allows con-
current access to files and directories by all users with permission to do so.

All UNIX filesystems share this common interface to the user, regardless of
the implementation details of the filesystem or of whether it is local or remote.

Although the interface to the filesystem is very different from the SQL
interface used by Oracle, the requirement for the filesystem is virtually iden-
tical to the Oracle database. Both are tasked with optimizing the reading
and writing of data, in an organized fashion, to and from physical disk.

Just like Oracle, it would be very inefficient to make all of the I/O
requests physical, requiring disk I/O for every request. Therefore, filesys-
tems perform all I/O through a cache layer known as the buffer cache14 (see
Figure 7.15).

14. Not to be confused with the Oracle buffer cache, although the two are similar in nature.

/

opt usrhome

oracle sharelangtools admdba sys

oracle dave pete john

export.dmpFILE: /home/dba/oracle/export.dmp

DIRECTORY:/home/dba/oracle

Figure 7.14 Filesystem hierarchy

CHAPTER 7 INTRODUCTION TO UNIX514
Using the layers shown in Figure 7.15, the filesystem presents a famil-
iar interface to the user, the hierarchical view, with two types of available
objects: files and directories. The access to the objects is all done by means
of the buffer cache, apart from special “trusted” operations. Although the
logical perspective of the file is that of a contiguous file, this is not physi-
cally true. All mappings to the blocks that make up a file are maintained
by the filesystem itself.

The filesystem implementation has changed a good deal over the life
of the UNIX operating system. The simplest filesystem is the System V
filesystem, known as the s5fs, and we will use this as an introduction to
filesystem implementations.

The s5 Filesystem maintains three different areas on disk, as shown in
Figure 7.16. The superblock is the equivalent of a segment header in Oracle, in
that it stores the freelist for inodes and data blocks and general information
about the file. It is always stored as the first block on disk and is of fixed
length. After the superblock comes the inodes.

Standard Interface

Buffer Cache

Raw Disk

Disk Blocks

Files and
Directories

/etc/hosts
Oracle Equivalent

SQL

Buffer Cache (SGA)

Datafiles

Figure 7.15 Filesystem layers

Sup
er

bl
oc

k
In

od
es

Dat
a

Blo
ck

s

Figure 7.16 s5 Filesystem organization

7.5 I/O SYSTEM 515
Inodes are the entry points for all files. There is one inode for each file
in the filesystem. Contained in the inode are pointers to actual data blocks,
access information, permissions, and file owner information. The inode is
read when ls -l is executed in a directory, in order to read the information
above.

The inode is of fixed length so that each inode in the table can be
addressed by a number*size formula. Included in this size is sufficient infor-
mation to store up to ten block addresses for the actual file. For very small
files (up to 10KB with 1,024 block size), this is sufficient. For larger files,
the inode stores three levels of indirect block addresses. The first level is a
pointer to a single data block that contains only further lists of block
addresses. This allows for an additional 256 blocks (256KB) to be
addressed. The second level of indirect block is a pointer to a block that
contains only indirect block pointers. Again, 256 pointers can be stored in
a single 1KB block, and so the maximum file size catered to by going to the
double indirect block is 64MB (256*256*1024 bytes). Finally, there is a third
level of indirection, a pointer to a block of pointers to blocks of pointers.
This yields a maximum file size of 16GB (256*256*256*1024 bytes),
although a 32-bit address limitation allows for only a 2GB maximum in
practice, because we have to be able to lseek() forward and backward the full
size of the file. Still, this is not too bad for an old, retired filesystem.

The first inode in a filesystem is reserved for the root directory of that
filesystem. This is not the same as the root directory; it assumes the name
of the directory at which it is mounted—that is, if a filesystem were
mounted as /opt/oracle, the first inode would be a pointer to the “oracle” direc-
tory when the filesystem was mounted there. More precisely, the first
inode is for the root directory of the filesystem.

A directory is simply another type of file. It is a file that has a format
known to the filesystem, containing a list of names and inode numbers for
the files within it. When ls is called without any options, only the directory is
read. When a file is referred to by name, the directory is checked first to get
the inode for the file. With the inode, it is just a case of going to correspond-
ing offset in the inode table and retrieving the access information for the file.

If a directory gets too large (too many entries), its performance can be
degraded. This is the equivalent of doing full table scans in Oracle; the file-

CHAPTER 7 INTRODUCTION TO UNIX516
system code must go all the way through the directory “file” in order to
satisfy certain requests, such as a vanilla ls. Likewise, ls -l requires a lookup
of the actual inode for each entry; this is something to bear in mind when
building filesystems.

Modern Filesystems
The s5fs did a reasonable job for its life span but suffered from several
drawbacks, including performance. The Berkeley fast filesystem (FFS)
improved on some of these drawbacks by optimizing the organization of
the filesystem on disk and allowing long filenames (s5 allowed only 14
characters). However, even FFS is not suitable for commercial application,
particularly if a database is to be built on the filesystem.

The drawbacks of these filesystems are

• Poor crash recovery

• Poor performance

• File size limitations

Traditional filesystems do not cope well with system crashes. Any dirty
(unwritten) blocks in the filesystem buffer cache at the time of the crash
will be lost, and there is no formal approach to recovering the filesystem.
Instead, the filesystem must be laboriously scanned with the fsck utility in
order to validate its integrity. Often the utility is not able to rationalize
what it finds, and intervention is required by an operator, possibly result-
ing in file loss or corruption. This is bad enough in itself, but it also takes a
good deal of time to get to this stage—possibly many, many minutes. It is
essential for a large production system to recover more quickly than this,
regardless of whether or not there is a hot standby system.

In order to get around the problem of unwritten dirty blocks, tradi-
tional filesystems have to support synchronous writes. This is the only way
the database writer, for example, can guarantee that a block is actually
going onto disk. This means that the database writer must wait for the
completion of this write, potentially taking place at several locations on
the physical disk, involving several lengthy seek operations. This results
in poor performance for the filesystem.

The traditional filesystems are block-based in their addressing. This is
not acceptable for large database systems, because there is an enormous

7.5 I/O SYSTEM 517
administration and performance overhead from this scheme when very
large files are used.

Modern filesystems have been engineered to overcome these problems
and to support database systems more effectively. One of the most suc-
cessful of these is the journaling filesystem, notably the Veritas VxFS. These
filesystems operate even more like database servers than do the traditional
ones.

Essentially, these filesystems rely on redo logs within the filesystem in
order to increase its performance and recovery. When a write occurs, it can
be written directly to the buffer cache and also to the redo log. The redo
log is on a sequential portion of disk, and so this write is fast. The write to
the actual redo log on disk only occurs at the commit point for the write,
which is the end of the write. Until this point, the writes go into a redo log
buffer, in much the same way as in Oracle. The redo log buffer scheme also
supports group commits of multiple transactions.

The write to the data area of the filesystem is not required, because
the redo log is capable of rebuilding the data area in the event of a crash.
The crash recovery is based on the presence of a redo log, the filesystem
check at start up needs only to roll forward the changes that have
occurred since the last checkpoint of the data area. This makes recovery
very reliable and fast.

The filesystem is designed for very large files, and so both the filesys-
tem and the files within it can be very large. Instead of using single block
references to the data area of the filesystem, the journaling filesystem
uses extents (contiguous groups of blocks), in the same way as Oracle
does. A new extent is allocated for the file, and the extent is referenced
instead of a single block. This allows large files to be supported with less
overhead than in the traditional block-based approach and to provide
considerably greater performance as a result of the contiguous grouping
of data blocks.

7.5.3 Raw Disk
UNIX allows direct access to raw disk. The interface to the disk is through
a UNIX special file, which is opened using standard system calls and
accessed using normal read, write, and seek calls. To an application using
the raw disk, it just looks like one large file.

CHAPTER 7 INTRODUCTION TO UNIX518
Raw disk partitions have several drawbacks:

• The unit of allocation to the database is the entire file.

• Cannot use standard file manipulation commands on datafiles.

• Cannot use bundled backup tools (cpio, tar, pax) to backup the files.

• Cannot easily determine how much space is free within a group of raw
device files, or how large the files actually are.

They also have positive attributes:

• Not subject to any operating system locking

• Not subject to any operating system caching

• Can be shared between multiple systems

These advantages are very important. Essentially, using raw disk removes
the operating system from the operation of the Oracle I/O process, with
the exception of the device drivers that perform the actual I/O. Any
number of processes can read from and write to the partition concurrently,
if the partition resides on multiple physical disks (see Section 7.5.5). Also,
raw disk is currently the only way of mounting the same Oracle database
on multiple UNIX hosts for Oracle Parallel Server.15

In order to gain these advantages, however, it is important to work
through the list of disadvantages and to produce procedures and tech-
niques that make them operationally acceptable.

Entire File Allocations
When raw disk is used, raw partitions are supplied to Oracle as a datafile.
This means that the entire file, and not just a part of it, must be allocated to
Oracle at any one time. In reality, this does not present much of a problem.
The physical disk can be sliced into several raw partitions of different
sizes.

15. There now exists a clustered filesystem, based on the journaling filesystem, that works
a little like a parallel server. The filesystem can be mounted on more than one node concur-
rently, with the coherency managed through the system cluster software (lock manager).
This filesystem will support the creation and use of OPS database files.

7.5 I/O SYSTEM 519
The size and number of these partitions will vary with database
requirements, but the concept maps to all databases. It makes sense to
keep the range of partition sizes fairly small in order to make the manage-
ment simplistic. For example, use allocation sizes of 4GB, 2GB, 1GB,
500MB, and 100MB. This allows quite large tablespaces to be built from a
relatively small number of files, and the small ones to be built from small
files.

Use of Standard File Manipulation Commands
Often the hardest attributes of raw disk to get used to is the inability to use
the standard UNIX file utilities such as cp and mv. In reality, a well-config-
ured database system does not require a great deal of file manipulation
once it is laid out. If a disk is found to be “hot,” a file can still be physically
moved by using the dd command to suck the contents out of one partition
and put it into a new partition.

When raw devices are used, it also makes sense to work around the
naming of typical raw devices. In fact, the naming of the files is one of the
major objections most people have to using them. What does
/dev/rdsk/c10t5d3s4 mean to anyone, as far as the size and location of
the raw device are concerned? Logical volume managers help a little here
by providing more user-definable naming conventions, but there are even
better ways around this.

The first thing to do after creating all the devices is to make a directory
of symbolic links (ln -s). These links should be placed in a common location
away from the /dev directory, somewhere near the Oracle codeset. A good
convention is to have a root from which all these things happen, such as
/opt/oracle. Under this root you can locate the codeset (say, /opt/ora-
cle/oracle815) and the directory containing the symbolic links to the
actual raw devices.

Each symbolic link should have a descriptive name, such as
“db00_1000M_10_000,” which means database set 00, 1000MB slice, RAID
1+0, slice number 000. With a directory called /opt/oracle/SPARE containing all
these files, it is very easy to determine the types and numbers of available
datafile slices and their RAID characteristics.

CHAPTER 7 INTRODUCTION TO UNIX520
At database creation time, make another directory under /opt/oracle
to put the used symbolic links in, such as /opt/oracle/PRD1. Creating the data-
base would then go a little like this (assuming that the init.ora has been cre-
ated and resides in /tmp for now):

For control files, they are ideally located in small pieces of “leftover” disk
allocation. These are pieces of disk that represent the 0.1GB of a 9.1GB
drive, for example, or remainder disk after rounding the allocations down.
It is required that these pieces be on raw disk if OPS is used. Otherwise, it
is possible to put the control files in the UNIX filesystem, although it is
best to keep all the datafiles in one form or the other (raw or FS).

Backup
Backup does not present a great problem in building very large database
systems. The reason for this is that you can no longer adequately manage
the backup of the database using cpio or tar anyway. For a large database, it
is necessary to use a fully featured backup product in order to get software
indexed backups, allowing more control over tape identification and faster
recovery times. In addition, the bundled archivers do not support features
such as parallel tape streaming, which allows much greater backup
throughput. This becomes important as the database size becomes very
large.

$ cd /opt/oracle/PRD1
$ mv /tmp/initPRD1.ora .
$ ln -s $PWD/initPRD1.ora $ORACLE_HOME/dbs/.
$ mv ../SPARE/db00_500M_10_000 system_01.dbf
$ svrmgrl

Oracle Server Manager Release 3.1.5.0.0

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8 Enterprise Edition Release 8.1.5.0.0
With the Partitioning option
PL/SQL Release 8.1.5.0.0

SVRMGR> connect internal
Connected.
SVRMGR> create database PRD1 CONTROLFILE REUSE

2> datafile “/opt/oracle/PRD1/system_01.dbf” size 500M REUSE
etc

7.5 I/O SYSTEM 521
All of the third-party backup products provide the facility to backup
raw disk partitions as easily as filesystems. However, you must ensure
that the symbolic link directory also gets backed up on a regular basis,
because this is the tie between the location of the files that Oracle expects,
and the actual location in /dev.

Space Management
When the procedures laid out above are used, space management does not
present any more problems than a filesystem presents. It is very clear how
much space is left for allocation to the database from looking in the SPARE

directory. The only thing that is not possible with raw devices is the auto-
matic extension of datafiles, using Oracle.

7.5.4 Filesystems Versus Raw Disk
The debate over the use of filesystems versus the use of raw disk has been
raging for years. There are good points and bad points on each side, and it
is not clear where the balance lies. Despite this, each has several clear
advantages that factor into the decision process.

Filesystems
There are two fundamental problems associated with the use of filesys-
tems. First, the filesystem buffer cache causes slow writes. As this is all
that occurs on redo logs during normal operation, this is bad. Second, the
single-writer lock imposed on a per-file basis can limit write performance
to datafiles.

On the plus side, the files in a filesystem are very visible and easy to
interpret and administrate. Nevertheless, when you are dealing with very
large datafiles, it is undesirable to be moving 4GB or 8GB files around, so
the significance of this advantage is debatable.

The other advantage of using a filesystem is application-specific—the
advantage of gaining additional benefit from the filesystem buffer cache.
In cache theory terms, the filesystem buffer cache can be viewed as the L2
cache, with the Oracle cache being the L1. It can also be viewed from the
perspective of double buffering; there is no difference in speed between
the two caches, and so there is no benefit for the frequently used blocks

CHAPTER 7 INTRODUCTION TO UNIX522
and a fairly significant overhead in managing the same blocks in two
caches. With 64-bit Oracle, this advantage is difficult to justify any more;
all the memory that would have been in the filesystem cache can now be
given to Oracle across all three buffer pools.

Raw Disk
Raw disk essentially puts Oracle in the driver’s seat as far as I/O is con-
cerned. With the operating system responsible only for communication
with the hardware, there is no additional CPU overhead incurred from
managing filesystem caches. Raw disk is not subject to any kind of operat-
ing system locking and can be used in parallel server configurations.

From a logical perspective, there is no reason why a raw disk database
system should ever be slower than a file-system-based system. The only
condition under which this could occur would be a deficiency in the Ora-
cle caching algorithms. With a file-system-based database, every miss in
the Oracle buffer cache results in a read() system call. This bears a finite cost,
as does the subsequent searching and cache management in the filesystem
buffer cache. If there still is a miss, the physical read must occur anyway,
making the true overhead for the miss twice as bad as it would be in a raw
disk system (ignoring the constant cost of the disk read).

If the memory used for the buffer cache were used in the Oracle buffer
cache, it is likely that there would be a hit in the Oracle cache layer, elimi-
nating the additional system call for the filesystem logical read.

Advanced filesystem implementations provide more hooks to allow
Oracle to circumvent the filesystem layer itself and go straight to raw disk.
This leaves the filesystem performing only an offline administration func-
tion and not participating in the actual operation of the database. This may
be the best of both worlds, providing all the advantages of the filesystem
(visibility, file extension capability) without the disadvantages.

7.5.5 Logical Volume Managers
In Section 2.8, we introduced I/O and RAID levels. In Chapter 2, these lev-
els were mostly hardware concepts focused on the disks and their per-
formance. In addition to hardware RAID, most vendors offer some kind of
logical volume manager (LVM).

7.5 I/O SYSTEM 523
An LVM is an addition to the kernel that provides RAID functionality
from the host. No special hardware is required to do this, only standard
disk drives.

There are several reasons why this is a good thing. First, if multiple
controllers are used, a stripe can be set up across all the controllers. This
maximizes the performance of the controllers to gain best performance. If
this approach is taken, however, care must be taken that controller redun-
dancy is preserved, because if one of the many controllers that make up
the stripe were to fail, the entire stripe array would be unavailable. In the
case of EMC disk arrays, the EMC does not provide a striping function.
Therefore, some kind of software stripe is required in order to perform
striping on this device. Although it provides the disk redundancy within,
controller redundancy is still required.

Second, using a software volume manager allows disk devices to be
given more user-friendly names than standard disk slicing offers. This will
become apparent in this rapid introduction to the operation of volume
managers.

There are several fairly basic concepts used in all software volume
managers. The first of these concepts is the volume group (see Figure 7.17).
A volume group is the largest grouping used within the volume manager
and is composed of several disk objects.

When the disks (or disk slices) have been added to the volume group,
this volume group has a capacity equal to the combined capacities of the
disk devices within it.

The next stage is to create logical volumes from the volume group.
These logical volumes can be called anything at all, therefore allowing
meaningful naming conventions to be implemented. From the volume
group in Figure 7.17, we could create a single volume four times larger

Volume Group

Figure 7.17 Volume group

CHAPTER 7 INTRODUCTION TO UNIX524
than a physical disk. This would create a very large logical volume, but it
would be practically useless because it is likely that the I/O would be con-
centrated within a small portion of the volume’s total size.

In order to create a more useful volume, we would instruct the volume
manager to create it (or, more likely, a smaller one) but to use a stripe (or
chunk) width somewhat smaller than that of a physical disk. If we use a
128KB stripe width, the volume manager will go off and distribute the vol-
ume across the disks 128KB at a time, round-robin fashion.This means that
a read of 512KB in the example above would include all drives in the vol-
ume group.

In Figure 7.18, six logical volumes have been created from the “bucket”
of space in the volume group. All of these volumes are striped across all
the disks within the volume group.

At this point, the operation of software RAID is the same as that of
hardware RAID but is calculated and initiated from the host. This has two
implications on the host processing. First, the administration of the RAID
subsystem is now a task that the operating system must be concerned
with, increasing the cost of any given I/O operation initiated on those
devices. While this is a fairly small increase, it is something that should
not be overlooked.

The second implication is, for the most part, valid only when LVM-
based mirroring is used. When mirroring from the host, the host must
make write requests to two controllers for every write request. This
increases the bus utilization on write-intensive applications. In addition,
when the system crashes, the host comes up trusting only one side of the
mirrored pair. The other side of the mirror is marked STALE and is in need

Volume Group (db00)

/dev/db00/1000M_10_000

/dev/db00/1000M_10_001

/dev/db00/1000M_10_002

/dev/db00/1000M_10_003

/dev/db00/1000M_10_004

/dev/db00/1000M_10_005

Lo
gi

ca
l V

ol
um

es

Figure 7.18 Logical volumes

7.6 INTERPROCESS COMMUNICATION (IPC) 525
of resilvering. Although this is a process that Oracle is now involved in,16

the traditional approach to it was to perform a full disk-to-disk copy from
the active side of the mirror to the stale side of the mirror. While this copy
is in progress, all new writes must also be written to both sides, whereas
all reads come only from the active side. This can have an enormous
impact on the I/O throughput of the system, and an even bigger impact
on the available CPU capacity on the system, because this operation is
very CPU-intensive.

7.6 Interprocess Communication (IPC)
As UNIX systems became more powerful and complex, it became appar-
ent that there was a need for some way to allow processes to communicate
in order to coordinate processing of common workloads. All types of such
communication are known as interprocess communication (IPC). The first
and most basic form of IPC comes in the form of the pipe.

7.6.1 Pipe Communication
A pipe is initiated by a process prior to forking a child process. The pipe()

system call opens two file descriptors. One of these descriptors is open for
reading, and the other is open for writing. In this preliminary state, any-
thing written to the write descriptor will be available for reading from the
other file descriptor. This is not very useful until a fork() call is made.

After the fork() call has been made, both processes retain all the open
files that the parent had before the call. The parent closes the read file
descriptor, and the child closes the write descriptor, and now there is a
useful way to communicate between the processes. At this stage the com-
munication is unidirectional only; if two pipe() calls had been made, bidirec-
tional communication could be set up.

16. Recently, Oracle has gotten involved in this process. The logic is simple: If we just had a
crash, why don’t we assume that both sides of the mirror are out of date and reapply the
redo information since the last checkpoint?

CHAPTER 7 INTRODUCTION TO UNIX526
This is the mechanism used by the shell in order to enable operations
such as

The shell forks once in order to continue processing with processes other
than itself. This parent shell process then simply blocks (suspends) with a
wait() call, waiting for the child processes to terminate execution.

The first child then initiates the pipe() sequence as above, but then takes it
one step further. After the fork() of the second process, the shell (it is still just
two clones of the shell; no exec() has been called yet) uses the dup() system call
to reallocate the file descriptors. For the process destined to become who, the
stdout descriptor is closed, and the writeable end of the pipe is associated with
the usual stout descriptor using dup(). This means that this process will now
send all normal output to the pipe instead of to the screen.

The process destined to become grep does the opposite—it closes the stdin

file descriptor and uses dup() to make the read end of the pipe become the
standard input for the process. At this stage, the two processes issue the
exec() system call to become the requested processes, and the output of who is
passed to grep.

This is the mechanism used by the Oracle PIPE driver for client/server
communication within a common host.

7.6.2 System V IPC
System V introduced three new forms of IPC: shared memory, sema-
phores, and message queues.

Shared Memory
Shared memory is a simple concept: Create a piece of memory that many
processes can map into their address spaces. Changes made by one user
are immediately visible to the other processes, without the need for any
kind of system call. Owing to the lack of required system calls once the
shared memory segment has been created, this is a very fast form of IPC.

The Oracle SGA is created within a shared memory segment for provid-
ing IPC among all the processes that are connected to the Oracle database. The
system call to create a shared memory segment is shmget(), which creates the

$ who -u | grep jeff

7.6 INTERPROCESS COMMUNICATION (IPC) 527
segment and returns a key for the segment. Any number of processes can now
attach the segment to their address space using the shmat() system call.

A shared memory segment, once created, is an entity in its own right.
Even if no processes are attached to it, it still remains in memory. It could
be created one day and only initially attached to a year later. The only
thing that will clear a shared memory segment, apart from a reboot, is an
explicit call to shmctl() with the remove flag set. This can be done from the
command line using the ipcrm -m <key> command.

As mentioned previously, it is preferable for the operating system to
provide some way of sharing page tables for shared memory regions. Oth-
erwise, a large Oracle SGA can use a very large amount of memory in page
table allocations.

Although shared memory provides no formal locking techniques, syn-
chronization of updates can be achieved either by using the atomic opera-
tions supported in the hardware or by using semaphores. Semaphores are
too slow to be used as latch mechanisms because of the required system
calls, and so Oracle uses atomic memory updates with test and set to man-
age the synchronization of the SGA.

Semaphores
Semaphores are used for coordinating processes. They are kernel-control-
led counters that support only two operations: increment and decrement.
Rather confusing, for English speakers at least, is the fact that these opera-
tions are called V ops and P ops, respectively. They are referred to in this
way because they were named by a Dutchman called Dijkstra, who is
credited with the invention of the semaphore.

A semaphore can have any positive value, or a value of zero. Negative
values are not permitted. The idea is that waiting processes attempt to
decrement the semaphore, and processes that have finished running incre-
ment the semaphore. If decrementing the semaphore by the requested
amount would result in a negative value, the process is blocked in the ker-
nel until the semaphore has been incremented (by other processes) such
that the operation would not result in a negative value.

Oracle uses semaphores (in non-OPS configurations) to implement slow
waits such as latch sleeps (not latch gets) and enqueues. OPS configurations

CHAPTER 7 INTRODUCTION TO UNIX528
have to hand this task off to the DLM in order to manage enqueues between
instances. In most configurations, Oracle uses semaphores to provide a com-
munication mechanism between Oracle processes. For example, when a
commit is issued, the message is sent to the log writer by way of a sema-
phore on which the log writer sleeps. Whenever required to perform work,
the log writer is posted by incrementing the semaphore on which the log
writer waits (seen in V$SESSION_WAIT as “rdbms ipc message”). The alternative mech-
anism for waking up processes to perform work is the post/wait driver. This is
typically a UNIX kernel addition that allows more specific communication
between the processes, through a direct posting mechanism.

Message Queues
Message queues are essentially multireader, multiwriter pipes that are
implemented in the kernel. Processes can place messages on a message
queue, and other processes can read these messages off the queue in a
first-in, first-out order.

The reading of messages is subject to the messages meeting the crite-
rion specified in the msgrcv() call. This criterion is a message type, specified as
an integer. If no message meeting the criterion is found, the receiver will
block (suspend) until such a message is sent to the message queue.

Message queues are not a very efficient means of communication,
because a write and a subsequent read require two system calls and two
copies to and from kernel memory. If the messages are large, this copying
becomes prohibitively expensive in processing terms.

Message queues are sometimes useful in implementing instructions to
running processes, where the message is small. Oracle does not utilize
message queues.

7.7 More on System Calls
It is worthwhile to become familiar with several of the system calls available
on a modern UNIX system, particularly the ones that are frequently used by
Oracle. These calls can be viewed on a running process by using the O/S sys-
tem call trace utility, or on a global basis using system monitoring tools.

7.7 MORE ON SYSTEM CALLS 529
The system calls used by a process can be analyzed in real time using a
vendor-supplied utility. This utility is frequently called truss on machines
based on System V, but other names are used on other platforms. The out-
put looks like this:

This output is from the command “ls smpool.c” on a Sequent platform. The for-
mat is common among all utilities of this type: system call, parameters, return
code.

At the head of the trace is the exec() call to execute the ls command, fol-
lowed by an mmap() of /dev/zero to create a zero-filled anonymous 4,096-byte
page of memory in the address space. Moving on a few lines, the first open()

represents the first stage of loading of a shared library (libseq.so), continuing
through to the mprotect(). The brk() calls show the process allocating memory
on the heap, probably using one of the function calls from the malloc() fam-
ily. The actual requested task is carried out using the lstat64() system call, to
get information about the file. Interestingly, if no file is passed to ls, it
opens the directory “.” and uses getdents() to retrieve the directory entries,

execve(path, argv, envp)
 argc = 2
mmap(0x00000000, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0) = 0xBFF9A000
mprotect(0x08048000, 21548, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
getuid() = 7688 [7688]
getuid() = 7688 [7688]
getgid() = 901 [901]
getgid() = 901 [901]
open("/lib/libseq.so", O_RDONLY, 027777746234) = 3
read(3, "7F E L F010101\0\0\0\0\0".., 308) = 308
mmap(0x00000000, 188384, PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, 0, 0) = 0xBFF6B000
mmap(0xBFF6B000, 126436, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 3, 0) = 0xBFF6B000
mmap(0xBFF8A000, 47144, PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE|MAP_FIXED, 3, 122880) = 0xBFF8A000
mprotect(0xBFF96000, 12288, PROT_READ|PROT_WRITE|PROT_EXEC) = 0
close(3) = 0
mprotect(0x08048000, 21548, PROT_READ|PROT_EXEC) = 0
time() = 922664565
ioctl(1, TCGETA, 0x08047B8E) Err#19 ENODEV
brk(0x0805D0C8) = 0
brk(0x080660C8) = 0
lstat64("smpool.c", 0x08047AF4) = 0
a_lstat("smpool.c", 0x08047A44) = 0
ioctl(1, TCGETA, 0x08047142) Err#19 ENODEV
fstatfs(1, 0x0804716C, 44, 0) = 0
brk(0x0806E0C8) = 0
ioctl(1, TCGETA, 0x08047142) Err#19 ENODEV
close(0) = 0
write(1, " s m p o o l . c\n", 9) = 9
close(1) = 0
close(2) = 0
_exit(0)

CHAPTER 7 INTRODUCTION TO UNIX530
because no clues are given. Issuing “ls *” performs an lstat64() call for every
file, because all the names are supplied implicitly by the shell wildcard
expansion.

After the lstat64() returns, the process writes the output to the terminal
using the write() system call, and then exits.

These utilities can be invaluable in determining strange behavior in
running processes and can identify a runaway process very quickly.

It is not necessary to be familiar with all of the available system calls;
that’s what the man pages are for. After all, HP-UX has 324 system calls, and
Sequent has 202, so the list is fairly large.

Table 7.2 identifies some of the common system calls used by Oracle.
Where not specified, the return code is zero for success or –1 for failure.

Table 7.2 Common System Calls

System Call Description Returns

open() Opens specified file in the specified
mode

File descriptor (fd)

close() Closes specified file descriptor

read() Reads n bytes from fd into supplied
buffer

Number of bytes read or -1

write() Writes n bytes to fd from supplied buffer Number of bytes written
or –1

readv() Vectored read. Return data from many
locations in specified file with one sys-
tem call

Number of bytes read or –1

writev() Vectored write. Write data to many loca-
tions in specified file with one system
call

Number of bytes written
or –1

lseek() Moves position in fd to specified position New offset or –1

select() File descriptor multiplexer—checks a
series of fds for reading or writing

Sets bitmask to show
which fds are ready

poll()

accept() Accepts incoming connections from
socket

File descriptor for new
socket

7.7 MORE ON SYSTEM CALLS 531
Table 7.2 continued

System Call Description Returns

accept() Accepts incoming connections from
socket

File descriptor for new
socket

alarm() Sends caller a SIGALRM in n seconds Remaining time of any
previous alarm() calls

brk() Expands heap to specified address

chdir() Changes working directory

creat() Creates file with specified mode fd of new file, or –1

dup() Duplicates file descriptor to first free
descriptor

File descriptor of duplicate

exec() Destroys current address space and
executes this program

–1 on failure

exit() Terminates program and sends SIGCHLD
and status information to parent

N/A

fork() Creates new child process Child PID if parent, or zero

getuid() Returns my UID UID

getgid() Returns my GID GID

getitimer() Gets current value of interval timer

setitimer() Sets up the interval timer

getpid() Retrieves current PID PID

ioctl() Device-dependent control for fd

kill() Sends signal to specified process

mmap() Maps file into process address space Address at which
mapping placed

mprotect() Protects this range of memory, subject to
supplied flags

pipe() Opens pipe 2 fds

semXXX() Semaphore administration

shmXXX() Shared memory administration

CHAPTER 7 INTRODUCTION TO UNIX532
7.8 Chapter Summary
This chapter may have been very tough going. It has been very deep on
occasion, and you may have found yourself wondering what this has to do
with Oracle. The simple answer is that Oracle relies heavily on nearly all
aspects of the UNIX operating system, and understanding how these func-
tions work is an important part of total system comprehension.

When problems occur on the system, such as memory exhaustion, it is
sometimes not immediately apparent what is causing the problem. An
understanding of how the operating system handles its resources can dra-
matically speed up determination of the root cause (pun intended).

Table 7.2 continued

System Call Description Returns

msgXXX() Message queue administration

signal() Changes signal handling for process Address of prior handler

socket() Creates network socket (endpoint) fd for socket

stat() Returns file information

time() Current time in seconds since epoch Current time

times() Gets time accounting information for
current process and children

Elapsed time

unlink() Decrements hard link count for file. If
zero, remove file.

wait() Wait for child process to return and
gather status information

PID of child

pstat() <Example> system call interface to
gather kernel statistics.

Varies between implemen-
tations

7.9 FURTHER READING 533
7.9 Further Reading
Vahalia, U. UNIX Internals: The New Frontiers. Upper Saddle River, NJ: Prentice

Hall, 1996.
McKusick, M. K., K. Bostic, and M. Karels. The Design and Implementation of the

4.4BSD Operating System. Reading, MA: Addison-Wesley, 1996.
Stevens, W. R. Advanced Programming in the UNIX Environment. Reading, MA:

Addison-Wesley, 1993.
Goodheart, B., and J. Cox. The Magic Garden Explained: The Internals of UNIX Sys-

tem V Release 4: An Open Systems Design. Upper Saddle River, NJ:
Prentice Hall, 1994.

Chapter 8

Oracle User’s
Guide to UNIX

8.1 Coengineering the Oracle Kernel
The Oracle RDBMS is engineered as a platform-independent product.
This means that there are many rules and procedures involved in the
development cycle at Oracle, in order to ensure that the source can be
built on a huge array of totally different platforms. The array of
platforms that Oracle runs on includes IBM VM mainframes, Micro-
soft NT, VMS, and Netware, not to mention the huge array of UNIX
variants. The differences among these platforms are more complex
than those among different UNIX platforms; the fundamental opera-
tion of the system is totally different, including data representation
formats, scheduling algorithms, interprocess communication, and
“file” architectures.

In order to allow the Oracle product to run on such an array of differ-
ent architectures, several steps are taken, including:

• Strict coding and naming standards in the base code

• Complete separation between host “natives” and base product

The first step involves the adherence to rules that allow the source to be
built on different platforms. Examples of this would be naming conven-
tions to cater to the lowest common denominator in linker capability, and
restrictions in the use of globally scoped variables.
535

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX536
The second step is where Oracle adopts the virtual operating system
(VOS) in order to provide separation of function.

8.1.1 VOS Responsibilities
In order to implement separation between the base code and the operating
system specifics, Oracle divides the product source code into two distinct
regions: generic (base) and operating system dependent (OSD). The base
code portion contains the common base code for the product, whereas the
OSD portion provides the OS-specific code.

This segregation has been a part of the Oracle product from the very
beginning and is how Oracle has been able to provide the product on so
many platforms.

However, until release 8.0, the interface was not 100 percent pure. This
meant that OSD changes often required engineering changes further up in
the base code (see Figure 8.1).

For Oracle8, an effort was undertaken to clean this up, and the VOS
layer was the result (see Figure 8.2).

The VOS layer is a formalized interface to the OSD code. It allows
complete separation of the generic code from the OSD code, thus making
the platform-specific engineering effort and the base development more
defined.

OSD

Generic
OSD

OSD

OSD

Figure 8.1 Software layers prior to Oracle8

OSD

VOS

Generic

Figure 8.2 Oracle8+ software layers

8.1 COENGINEERING THE ORACLE KERNEL 537
The base/generic code itself is divided further into named layers, but all
of these layers reside within core development from an organizational stand-
point and interface with the hardware through the generic VOS interface.

The platform-specific developers build VOS-compliant OSD code for
their platforms. This is sometimes a group within Oracle, a group within
the platform vendor, or a combination of both. Regardless of where the
work is done, it is not done by the same people who do the base coding of
the Oracle kernel.

When an OSD developer feels that some change in the generic code
would benefit the platform, this no longer results in OSD implants in the
base code. Instead, the change (assuming it is a good one) is adopted in the
base kernel, with a VOS interface to the OSD code. In this way, the base code
stays clean, and other platforms can benefit from the change by writing their
own OSD code. An example of this is covered in Section 8.1.2.

The VOS/OSD software is responsible for a variety of interfaces to the
operating system, including

• Datatype specification and manipulation

• I/O interfaces (including asynchronous I/O where applicable)

• Process management and threads

• IPC

• Memory management

• Stack management facilities/other utilities

Datatype Specification
With each operating system and architecture, there may be a different
specification for, say, a long. On one platform it may be 32 bits wide,
whereas on another it may be 64 bits wide. This kind of ambiguity of data
specification is avoided by Oracle by leaving it to the VOS to define the
datatypes for the base code. The base code avoids the use of int, long, double,
and so on, adopting instead an internal naming convention for data typ-
ing. Anybody who has used OCI will be familiar with the types ub4, sb2, text

*, and so on. These names explicitly define the width and usage of the
datatype; in this example, the types would be Unsigned-Byte-4, Signed-
Byte-2, and a pointer to text.

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX538
In addition to the typing of data, the VOS is responsible for the handling of
these datatypes in operations that are sensitive to byte ordering. The base code
is not concerned with the endian (byte-ordering) orientation of the system.

I/O Interfaces
As the I/O interface can also vary a great deal among platforms, it is ulti-
mately the responsibility of the VOS/OSD to perform the actual manipu-
lation of files on the system. The base code calls VOS functions with
common parameters in order to perform the I/O on the system. This
includes the opening, closing, seeking, reading, writing, and creation of
files. In addition, the VOS code is responsible for the implementation of
asynchronous I/O on the platform, with the system calls and semantics of
using the async I/O varying from platform to platform.

Process Management and Threads
On a UNIX system, new processes are created with the fork() system call. In
other operating systems, this is almost certainly not the method for creat-
ing processes, if processes are indeed the method used in order to have
multiple execution streams on that platform. Therefore, the VOS is respon-
sible for all process creation and management from an Oracle perspective.

On the WindowsNT platform, the database architecture is imple-
mented using threads instead of processes: All background and fore-
ground sessions exist as threads within a single process on the system. The
base code is simply calling the same VOS functions that create multiple
processes on the UNIX platform, but the NT OSD implementation manip-
ulates threads instead of processes.

IPC
Different platforms have different methods for IPC. In fact, it may be that
the operating system in question does not support a process model but
rather a threaded model. Once again, the base code is not concerned with
this—it is only aware of requesting common services from the VOS.

Memory Management
Memory management in this case includes two unrelated items: the SGA
and the process space. Both of these items are platform-specific. On UNIX

8.1 COENGINEERING THE ORACLE KERNEL 539
platforms, the semantics are at least the same—shared memory and some
kind of malloc() library. In other operating systems, the method for getting
the required result may be very different. Likewise, this area is of increas-
ing importance on NUMA-based UNIX servers, where the allocation
memory needs to be sensitive to location.

Stack Management Facilities/Other Utilities
Oracle relies on a variety of other miscellaneous services from the VOS,
including the provision of a full feature stack unwind library for the crea-
tion of trace files when failures occur. Without this facility, Oracle would
be unable to support the product and therefore unable to ship it.

In addition to the stack tools, the VOS is called on for other OS inter-
facing, such as extraction of operating statistics, interfacing with the proc-
ess scheduler, and other important aspects of operation on the UNIX
platform.

8.1.2 Vendor Coengineering
Although the VOS provides the Oracle base developer with the required
separation from the OS, there are also situations in which the product
requires changes in both the OSD and the base code to support enhanced
operation on certain platforms. This is especially true when the platform
has physical attributes that directly impact the operation of Oracle, such as
a NUMA system.

Case Study: Sequent NUMA-Q 2000
A good case study of Oracle coengineering is the work done by Sequent
and Oracle to enhance Oracle operation on the NUMA-Q platform.1

Although the NUMA-Q platform will run a standard Oracle port, the
nature of the NUMA architecture allows greater scalability if certain
changes are made in the way Oracle uses the platform. Several of these
changes have been incorporated by Sequent and Oracle, with each release

1. Thanks to Kevin Closson (Sequent Advanced Oracle Engineering) for his cooperation
on this subject.

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX540
adding more sophistication. In Oracle8i, the NUMA-Q port of Oracle adds
the following features:

• Extended buffer cache

• SGA memory placement

• Rapid SGA creation

• Quad-local buffer preference (QLBP)

Extended Buffer Cache. The provision of an extended buffer cache capa-
bility is not a NUMA optimization but rather a 32-bit operating system
optimization. Normally, a 32-bit OS can address a maximum of only 4GB
per process, including the kernel memory. In order to provide very large
memory (VLM) support for the Oracle buffer cache, an extended cache
facility has been engineered.

The extended cache code builds logic into the Oracle processes that
allows the processes selectively to map and unmap pieces of the SGA into
their 32-bit address space. When the process requires a portion of the
buffer cache that is not in its address space, it can make calls to the operat-
ing system to map the required buffers to a region within the 32-bit
address range. Oracle can then access the buffer as usual.

SGA Memory Placement. Owing to the distributed nature of the physi-
cal memory in a NUMA system, the location of the SGA can make a big
difference in the performance of the system. By default, the operating sys-
tem distributes the shared memory segment across all the quads in equal
portions. Unfortunately, this typically leaves a large proportion of the
fixed and variable portions of the SGA on the first quad in the system.
Therefore, the first quad is the only one that gets local memory access to
this portion of the SGA.

In the first of three optimizations, the portions of the SGA are treated
differently when creating the shared memory segment. The fixed and var-
iable portions of the SGA are striped across all the quads in the system, at a
4KB page granularity. This yields a probability of 1 divided by the number
of quads that the reference will be local, with the remainder of the access
distributed evenly across all of the remote cache components. The log

8.1 COENGINEERING THE ORACLE KERNEL 541
buffer is also treated this way by default. The buffer cache is divided
equally across the quads and distributed in contiguous pieces. It is not
striped, because the block size could be greater than the 4KB stripe size,
which would result in two or more memory references being required to
retrieve a single block.

The memory striping is a good example of the coengineering between
Oracle and, in this case, Sequent. Sequent provides the support in the OS
for explicit placement of shared memory on the physical quads. Oracle
then uses this facility when creating the shared memory in order to place
the memory segments on the correct quads.

The second optimization is a restriction of the number of quads across
which the SGA is spread. This allows quads that are not involved in Oracle
work to be kept out of the picture, or allows separate databases to be created
within their own set of quads. If a quad is not hosting active Oracle processes
for a database instance, it does not make sense for any of the SGA to be on that
quad—this only increases the number of remote memory references.

In the final optimization of SGA placement, the log buffer is allowed to
be created on one specific quad. The idea here is that the most critical
latency in the system is that of the writing of the log buffer to disk. All com-
mits wait for this event to complete, thus ultimately gating the throughput
of the system. By forcing the entire log buffer to be located on the same
quad that hosts the log writer, all memory references by the log writer are
kept local. When this is done, it is important that Oracle be configured so
that it always copies into the redo buffer using redo copy latches, not the
redo allocation latch. This is important because there is a high likelihood
that any given process will have to perform the entire copy operation into
remote memory; using the allocation latch will mean that the redo alloca-
tion is out of action for a longer period while the copy occurs.

Rapid SGA Creation. With all this talk of extended cache sizes and
spreading the SGA across multiple quads, there comes a side effect. The
initial behavior of the shmgetq()

2 system call was simply to allocate the mem-

2. This is the Sequent-specific NUMA-aware version of shmget() call used by the VOS code to
create the segments on specific quads, implementing the SGA placement optimizations.

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX542
ory on the correct quads as a NUMA-aware version of the standard shmget()

call. The processor that executes the system call is then responsible for the
creation of the page tables and validation of the pages for the entire seg-
ment across all the quads. This is not a big problem for small SGAs but
rapidly becomes unscalable as the SGA size increases, because most of the
memory references required to create the segment are remote.

In order to improve this situation, Sequent created a “kernel daemon“
within the operating system. One of these daemons is started by the OS on
every quad, and the shmgetq() call just makes calls to all the daemons to do the
work locally. This means that the work is all performed locally, resulting in a
speedup of approximately nine times compared with remote allocation.

This optimization has not required any changes in the Oracle code,
including the VOS portion. However, it does demonstrate why it is very
important for the operating system engineers to be clued in on the opera-
tion of Oracle.

In Oracle8i, the VOS is changed so that it can use a new shmgetv() system
call, which also allows all the allocations to be performed in parallel,
resulting in linear scalability of SGA creation time as quads are added.

Quad-Local Buffer Preference (QLBP). This enhancement is another
coengineering product. It allows the assignment of LRUs across the quads,
with each LRU list comprising buffers that are local to that quad. When a
buffer is required by Oracle, the requesting process determines the quad
that it runs on and tries to find a free buffer on one of the local LRUs for
that quad. Only if these LRUs contain no free buffers will the process try a
remote LRU.

This optimization affects the following operations:

• Reading of new blocks into the buffer cache

• Creation of CR blocks

• Disk sorts

• Multiple database writers

In the case of reading in a new block, the LRU read is local, the target
buffer is local, and the disk read is local. This does not provide a huge per-
formance benefit in itself, because the latency of this operation is domi-

8.1 COENGINEERING THE ORACLE KERNEL 543
nated by the disk access. However, it does reduce the overall work
required to load the block into the buffer and reduces the load on the
remote cache component.

In a heavy OLTP system, the creation of CR blocks in the buffer cache
can represent a reasonable proportion of the system workload because of
many queries and updates occurring on the same data. One of the overrid-
ing properties of a CR buffer is that it is rarely useful for any session other
than the session that creates it. Therefore, when a CR block is created, it
will be the local LRU that is scanned and a local buffer that it is created in,
and it will probably be used only for the query executing on that quad.
This provides a tremendous performance boost in CR block creation.

Large sorts—those that end up using disk storage as a secondary stor-
age during the sort—require buffers from the buffer cache. All of these
buffers would be allocated from the local LRU also.

One of the big benefits of QLBP is in its interaction with the true multi-
ple database writers found in Oracle8. Rather than the slave writer proc-
esses of Oracle7, which performed only synchronous I/O, the database
writers of Oracle8 can all perform the work associated with the old master
database writer. This means they scan the LRU chains, build write batches,
and issue I/O requests to write out the dirty buffers. Typically, the over-
head of finding and building the write batches accounts for up to 50 per-
cent of the database writer CPU time.

By allowing the multiple writers to be aware of QLBP, one or more
database writer processes can be made resident on each of the quads that
participate in the operation of the database. Each of these processes then
has a preferred set of LRUs on which it will operate—the set of local LRU
lists for that quad. This allows all the I/O and buffer scanning to be per-
formed on quad-local memory and fully in parallel with the other database
writers that operate on different quads and different LRUs. This enhance-
ment allows significantly more throughput to be gained from the database
writer component, and has demonstrated up to six times more throughput
than the maximum amount achieved using the old writer slaves.

Further benefits are gained from QLBP and Oracle8i, because the heat-
ing of buffers in the LRU chain no longer occurs on each access and so the
number of remote references is significantly lower than in prior Oracle
releases.

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX544
8.2 UNIX Tools
In addition to the services provided by the kernel, several of the UNIX
tools are invaluable in configuring and administering the database. A
selection of these tools is presented here, with some pointers on their use
in a large configuration. Some of these tools require root privileges to exe-
cute them, and this is sometimes a sticking point with the system adminis-
trator. The truth of the matter is that Oracle is the only thing that executes
on the database server, and the database engineer is therefore effectively
administering the system. It’s important to assert some kind of easy access
to root, even if it is done by means of a logged mechanism such as the sudo

facility.

8.2.1 top

The top command is a shareware utility, sometimes shipped with the actual
operating system as “contributed software.” Written by William LeFebvre
at Northwestern University, top shows real-time snapshots of the “top”
processes in the system. The following screen shows the output of top on an
HP platform.

System: vulcan Fri Apr 9 18:54:21 1999
Load averages: 2.81, 2.43, 2.10
3011 processes: 2987 sleeping, 24 running
Cpu states: (avg)
 LOAD USER NICE SYS IDLE BLOCK SWAIT INTR SSYS
 2.81 67.5% 0.0% 11.8% 20.7% 0.0% 0.0% 0.0% 0.0%

Memory: 4477088K (1510640K) real, 4712176K (1584728K) virtual, 9543984K free Page# 1/216

CPU TTY PID USERNAME PRI NI SIZE RES STATE TIME %WCPU %CPU COMMAND
 3 rroot 5283 oracle 154 20 19036K 1036K sleep 31:59 29.17 29.12 oraclePRD
10 rroot 4905 oracle 241 20 19276K 1284K run 221:40 23.31 23.27 oraclePRD
 4 rroot 5763 oracle 154 20 19276K 1284K sleep 234:02 23.10 23.06 oraclePRD
 8 rroot 5128 oracle 241 20 19644K 1644K run 228:06 22.74 22.71 oraclePRD
12 rroot 22202 oracle 154 20 19260K 1268K sleep 187:33 22.10 22.06 oraclePRD
 2 rroot 5282 oracle 154 20 19276K 1284K sleep 225:26 21.70 21.66 oraclePRD
 3 rroot 4523 oracle 241 20 19276K 1284K run 224:57 21.41 21.37 oraclePRD
10 rroot 22048 oracle 154 20 19276K 1284K sleep 188:32 21.07 21.03 oraclePRD
 9 rroot 5965 root 50 20 9968K 9564K sleep 575:27 20.81 20.77 midaemon
 0 rroot 5523 oracle 241 20 19276K 1284K run 224:54 20.55 20.52 oraclePRD
 3 rroot 5382 oracle 241 20 19388K 1400K run 226:29 20.19 20.16 oraclePRD
11 rroot 4676 oracle 241 20 19276K 1284K run 227:39 19.95 19.91 oraclePRD
11 rroot 22153 oracle 154 20 19372K 1384K sleep 183:21 19.95 19.91 oraclePRD

8.2 UNIX TOOLS 545
The main part of the screen is an ordered list of active processes on the
system, including the percentage of a CPU that the process is currently
using. It can also be seen that all the processes are Oracle foreground proc-
esses (oraclePRD)—this part of the display is not very useful on Oracle sys-
tems. In order to use top effectively, the PID should be used as the basis for
an Oracle query to determine what that session is actually doing to be the
most active in the system. This ordered list is the real value of top, in that it
is immediately apparent where the CPU is being used most on the system.

This HP-enhanced version includes better support for multiple proces-
sors, including per-processor loading statistics, but most uses of top do not
call on this kind of granularity. The rest of the display is virtually identical
to the standard public domain version, showing load average and mem-
ory statistics for the system.

The latest version of top can be found at

8.2.2 Tcl and expect

Tcl has already been extensively introduced in this book. Its power as a
general scripting language makes it an essential tool in building a large
system. In addition to custom extensions such as dbaman, the popular expect

extensions by Don Libes are a very powerful way to reduce the amount of
time spent performing laborious tasks. Using expect, the Tcl interpreter can
be used to automate previously manual tasks that require human input
with a keyboard.

For example, the database start-up process often gets a good deal more
complex than simply starting the database with Server Manager. It might
include subsequent procedures to be run after the database start-up, such
as “pinning” packages and sequences, starting daemons that connect to
the database, restarting system monitoring software, and so on. Using
expect, all of these things can be performed in a single operation, with excep-
tion handling all built in.

expect is an extension of Tcl that allows the script to spawn processes
that have their input and output connected to the Tcl interpreter. This
allows the output to be captured by the interpreter, processed, and acted

ftp://ftp.groupsys.com/pub/top

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX546
on by sending the relevant action back out to the process. This sounds
very complex until you consider using telnet as the process that is spawned:

In this example script, a telnet session is connected to the production
machine, and the database is started. The extensions provide a good deal
of control over the response handling, beyond what is shown in this small
example. In fact, there is an entire book about the expect extensions, called
Exploring Expect by Don Libes, published by O’Reilly & Associates, Inc.

To download the extension, go to Don’s home page at

For all other available Tcl extensions, visit the Tcl consortium at

8.2.3 Korn Shell
One of the most important tools to be familiar with is the Korn shell
(/bin/ksh). The Korn shell is available on all modern UNIX variants and so
provides a powerful common factor among all the operating systems.
Wherever it is easily possible, scripts should be written using the Korn
shell, to increase portability.

The Korn shell is based on the Bourne shell but is significantly
enhanced. It is beyond the scope of this book to cover all the points of the
Bourne and Korn shells, so some “select highlights” will be covered.

spawn telnet prodbox
expect ogin:
send "tigger\n"
expect word:
send "pooh\n"
expect "\\$"
send "export ORACLE_SID=PRD\n"
expect "\\$"
send "svrmgrl\n"
expect "SVRMGR>"
send "connect internal\n"
expect "SVRMGR>"
send "startup\n"
expect "Database opened."
...

http://expect.nist.gov

http://www.Tclconsortium.com

8.2 UNIX TOOLS 547
When Oracle is used on a UNIX system, it rapidly becomes important
to be able to perform tasks that cross the boundaries of both UNIX and
Oracle—for example, extracting lists of used datafiles from the database to
pass to a backup utility. This kind of activity is best performed using a
“here-document” in the shell:

In this script, sqlplus is invoked in silent mode (-s), which prevents it from dis-
playing the usual banners. The <<-ENDSQL construct is what makes up the
here-document. This construct tells the shell to take all the input for this
command (sqlplus) from the following lines in the script, instead of from
standard input. This will continue until the word “ENDSQL” is encountered,
at which point the command is terminated and inputs return to normal.
The dash (-) in front of ENDSQL specifies that the word could be anywhere on
the line, not just at column 0. The word ENDSQL is for demonstration pur-
poses only; any word can be used here. The final oddity in this example is
the use of a backslash in front of the $ sign in v$datafile, which is necessary to
prevent the shell from expanding $datafile as a shell variable.

Taking this concept further, the shell can be used to drive command-
line utilities programmatically, by remote control. This provides a primi-
tive version of the expect functionality shown earlier:

#!/bin/ksh -

Get list of file from database and put into specified file ($1)

outfile=$1

sqlplus -s / <<-ENDSQL >${outfile}
 set echo off head off feed off pages 0
 select name from v\$datafile;
ENDSQL

#!/bin/ksh -

sqlplus -s / |&

print -p "set pages 0 head off feed off"
print -p "select VALUE
 from v\$nls_parameters
 where PARAMETER='NLS_CHARACTERSET';"

read -p charset

CHAPTER 8 ORACLE USER’S GUIDE TO UNIX548
In this example, the script will return the string “Database <name> is US7ASCII.” if
this is the case, or nothing if this is not the case. The second query is exe-
cuted only if the database is found to be US7ASCII. The start of this proc-
ess is where the sqlplus command is appended with “|&”, instructing the
shell to create a coprocess for this command. A coprocess is a process that
is started in the background, with a two-way pipe between it and the shell.
This process can then be read from and written to using the -p argument to
the read and print commands, respectively.

This type of process provides a very powerful way to interface with
the Oracle tools from the shell level. The output from the SQL sessions can
then be processed very effectively with the UNIX text processing tools, the
most powerful of which is awk.

8.2.4 awk

The awk command is actually another language. It comes in several flavors,
from old awk, to nawk (new awk), to the Free Software Foundation’s gawk. Of all
of these, I would have to recommend gawk as the most powerful, because it
removes some of the restrictions imposed by the standard awk facilities,
such as the 3,000-bytes-per-line maximum. From this point on, the term
“awk” will refer to any of the variants and will be discussed generically.

The awk language is designed to process flat text files based on patterns
within the file. It has all the constructs normally associated with a proce-
dural language, such as for loops, while loops, if tests, functions, and array
variables. In fact, the syntax is very similar to the C language, and so C
programmers find they can pick it up very quickly.

The format of an awk program is a series of “test { action }” pairs, where the
action is performed only if the defined test returns a positive result. The
most common form of test performed is a pattern match against the cur-
rent line of the input file. If the pattern matches the current line, the action
is performed.

if ["$charset" = "US7ASCII"]
then
 print -p "select name from v\$database;"
 read -p dbname
 echo "Database $dbname is US7ASCII."
fi

8.3 FURTHER READING 549
Each of the tests is performed once for every line in the file, with the
exception of two special “tests” called BEGIN and END. The actions associ-
ated with these tags are executed only at the beginning and the end of the
file, respectively.

The awk language is a very powerful way to process text files, whether
large or small. With sufficient logic in the awk script, it is possible to write
parsers with awk, which is how awk was used to create the dbaman scripts from
Oracle tracefiles in Chapter 2. That script is a good example of many of
awk’s features.

In addition to processing files, awk can be run with only a BEGIN tag
specified. In this case, no input file needs to be given—the action for the
BEGIN tag is just executed and then awk exits. This often provides a faster
way to generate data than, say, using the shell:

This example prints a stream of numbers from 0 to 99 without requiring an
input file to drive from. More complex uses of BEGIN-only awk scripts can be
written, including entire scripts, using procedures if required.

Further reading on awk is highly recommended in order to gain a work-
ing competence with the language. Having a good understanding of its
capability will allow you to determine where and when the tool should be
used. A good alternative to awk, although not typically part of a standard
operating system installation, is perl. In terms of capability, perl is a tremen-
dous language, allowing many more interactions with the outside world
than awk was designed to do.

8.3 Further Reading
Aho, A. V., B. W. Kernighan, and P. J. Weinberger. The AWK Programming Lan-

guage. Reading, MA: Addison-Wesley, 1988.

awk 'BEGIN { for(i=0;i<100;i++) print i}'

P A R T V

Implementing
Oracle

Chapter 9

Scalable Transaction
Processing

9.1 Scalable Applications
This chapter demonstrates techniques for gaining maximum scalability
from a single system image. This should be considered an essential prereq-
uisite before considering Parallel Server. If the system does not perform
and scale adequately as a single entity, attempting to accept Parallel Server
will provide even worse scalability.

9.1.1 Application Design
The application design is the single most efficient area to optimize. Unfor-
tunately, database engineers are often left to tune the database into effi-
cient operation without input into the application. This is like trying to
tune a lawn mower into a racing car. If the fundamental design of the
application is flawed, little can be done on the server side to make the
application scale and perform adequately. This is why the first portion of
this chapter is dedicated to things that the database server engineer can do
to point the application developers in the right direction.

Maintaining Concurrency
When an application is being designed for a large user population, it is
important that the system be built to provide maximum concurrency. In
order to satisfy this requirement, the application developer needs to
develop the application using many of the same rules employed by the
553

CHAPTER 9 SCALABLE TRANSACTION PROCESSING554
developer of an operating system. One of the most vital things that the
application developer needs to do is to eliminate data-based contention in
the application.

Data-based contention occurs when many users of the application are
competing to write to the same physical records. Oracle must maintain the
data integrity of the database, and so locking is utilized to prevent concur-
rent writes to the same piece of data.

Oracle employs row-level locking as the default locking mechanism
for maintaining data integrity. This means essentially that when a write is
to occur to a particular row in the database, the database automatically
locks only that row. The rest of the rows in the table, and indeed in the
data block, will be accessible to other sessions for read and write. This is a
major plus for the database engineer, because it means that false lock con-
flicts do not occur in Oracle. However, the system is still not immune to
problems if locks are allowed to persist, and this should be carefully
explained to the application developer. In an order-processing system, for
example, the application might be designed to work as follows.

To ensure that an order is taken in its entirety, without encountering
out-of-stock problems at commit time, the designer of the application
decides that the inventory required for the order should be decremented as
the order is taken. The entire order can then be committed as a unit at the
end of the order, in the safe knowledge that all the inventory is available.

This design would work fine as a single-user system, but this really
defeats the object. The problem with this design is that the first user to take
an order for a particular item will hold a lock on the inventory for that
item, and until the order is complete, this lock will be held and no other
users will be able to use this item in their orders.

There are at least two more scalable ways to implement this system.
The first way involves not doing anything until the very end of the trans-
action, leaving all locking operations until right before the commit. This
way, locks are held only for short periods, and so lock collisions are pre-
vented. Unfortunately, this design is also defective, because this design
can easily result in deadlocks (more on this later in this section).

The second option is to update and commit each line item as it is
entered. This also holds locks for very short periods but is not subject to
deadlock because only one row is locked at any given time. However, if

9.1 SCALABLE APPLICATIONS 555
the session is terminated halfway through the order entry process, the
inventory is corrupted because the stock is decremented without the order
being completed. With a small change, this design can be made to work.

If the application creates a new order record at the start of the order,
immediately followed by a commit, then there is a master record for all
work that follows. When the line item is updated to reflect the decrement, a
record can be inserted into an ORDER_HISTORY table at the same time, refer-
encing the order number. As an INSERT cannot be blocked by other locks,
this cannot result in a deadlock, and the order is committed as it goes
along. If the session is terminated, the entry process can be continued at a
later stage by querying the order record on screen and continuing the order.

With this design, all locks are held very briefly (before being commit-
ted) and yet the atomicity of the transaction is maintained. In addition, the
transaction is completely restartable.

Restartability is very important in building any large system, for both
online processing and batch processing. In the case of online processing,
things must be restartable, or at least recoverable from a business transaction
perspective, in order to lessen the impact of the inevitable system or network
failures. In the case of the order entry application, it would not be acceptable
for the stock to be unaccounted for in the event of a failure, nor is it practical to
have developers manually patch the data after every such incident.

In the case of batch processing, all batch jobs need to be written under
the assumption that they will be killed off part way through. This sounds
severe, but batch processing has a nasty habit of interfering with the
response time of online sessions, and it is likely that there will be occasions
of batch overrun that necessitate the killing of such jobs. If the job is not
restartable, it will need to be started from the beginning the next evening,
and will be even less likely to clear the backlog plus the new transactions.

In the first design presented, the design was deemed to be prone to
deadlocks. Deadlocks present a real problem in database systems, and
thus systems should be designed around them as much as possible. In the
example, we could have two order-processing users entering the follow-
ing order:

User 1 User 2
1 x Foamy Soap 6 x Green Sponges

3 x Green Sponges 3 x Foamy Soap

CHAPTER 9 SCALABLE TRANSACTION PROCESSING556
If both of these sessions were to attempt their commits simultaneously,
each would manage to update and lock the first line item in its order.
When each session got to its next line item, the other user would already
have this record locked, and a deadlock would be evident. There would be
no way out of this situation, other than for one of the sessions to rollback
and reattempt the operation after a backoff period. Oracle would inter-
vene at this point and carry this out against one of the users, at which
point an error would be reported to the session: ORA-00060: deadlock detected while

waiting for resource.

The creation of a nonblocking application is the responsibility of the
application designer, not the database engineer, and especially not the user.
After all, if a user is able to provoke deadlocks and general lock contention,
then the user will do so all day long.

9.1.2 Scalable SQL
Many texts refer to efficient SQL, but the real goal in building very large
systems is to produce scalable SQL. The term “scalable” can be interpreted
in many different ways when referring to SQL statements, and we will
cover each in turn.

Poor Efficiency
Inefficient SQL is bad for everyone. It not only causes poor response times
for the user that submits the call, but also affects all other users as a result
of one or more of the following:

• Overuse of processor resources

• Overuse of disk resources

• Abuse of the buffer cache

SQL statements can be classified as inefficient for a variety of different rea-
sons, the impact of which is dependent on the particular blend of ineffi-
ciency that the statements provoke. For example, a full table scan requires
a great deal of CPU in addition to the disk bandwidth it consumes; a long
index range scan pollutes the buffer cache and causes a great deal of scat-
tered I/O.

9.1 SCALABLE APPLICATIONS 557
Most new applications should now be using the cost-based optimizer
(CBO), which is required in order to use the new execution plans and new
features such as partitioned tables effectively. All discussions in this book
assume the use of the CBO, not the rule-based optimizer.

The ultimate goal for data retrieval in a TP system is to go straight to
the location of the single required row and read it in; for now, we are not
concerned about whether the record is cached or not. In most cases, this
kind of lookup is not possible, because some kind of overhead is required
to locate the row initially. If we assumed that B-tree indexes were this
lookup mechanism, the number of Oracle blocks we would expect to need
in order to read the data would be from two to five, depending on the
depth of the B-tree.

If all queries in the system could be written this way, life would be good.
Unfortunately, it is a rare day that queries can be written this efficiently. In
practice, the act of normalizing the data model implies that several fetches
could be necessary in order to retrieve the single item of data required, prob-
ably in the form of a multitable join. In addition, user-friendly applications
require that the user be able to search using wildcards to some degree and
that certain data applies only to specific ranges of dates. All of these require-
ments push up the cost of data retrieval significantly.

Oracle 8.1 makes a significant improvement in the usability of the CBO
in a development environment by providing static plans and user-defina-
ble plans for the CBO to use. This allows a small development database to
be set up to provide the same execution plans from the CBO as from the
production database. Before this innovation, developing SQL for a CBO
environment was difficult to do in a reliable way.

One thing that should be considered essential when writing SQL for
the CBO, whether tested against a stable plan environment or not, is the
use of optimizer hints. It is almost always true that the developer knows a
great deal more about the data than the CBO is able to, and the use of hints
takes some of the gamble out of the CBO. The specific gamble in question
is that of the CBO electing to use a different execution plan than expected,
owing to a change in one or more of the statistics. The CBO is more than
capable of sabotaging a query that was previously not a problem, particu-
larly in very dynamic environments, such as a system that has recently

CHAPTER 9 SCALABLE TRANSACTION PROCESSING558
gone into production. New systems are especially prone to erratically
changing plans as a result of the rapid proportional growth of some of the
tables in the system, compared with the tables it joins against.

Using a simple query against V$SQLAREA, offending SQL can easily be
identified:

Included in the V$SQLAREA view is the MODULE column. This column should
be populated using the DBMS_UTILITY.SET_APPLICATION_INFO procedure by
every module in the application. This is often the only way to determine
the source of an SQL statement. Once this column is populated, the query

col gets_per_exe form 9999999

SELECT hash_value,buffer_gets/executions gets_per_exe
FROM V$SQLAREA
WHERE executions>0
AND buffer_gets/executions>10
ORDER BY 2 desc
/

HASH_VALUE GETS_PER_EXE
---------- ------------
3359911567 2865
4279157786 1188
 607327990 121
 32929334 102
3013728279 56
2303392424 51
3565234031 37
1425443843 34
3382451116 34
 731738013 32
2407357363 26
1592329314 24
3441224864 20
1714733582 19
1428100621 15
2918884618 14
4261939565 14
3127019320 13
1737259834 12
 365454555 11

20 rows selected.

SQL>

9.1 SCALABLE APPLICATIONS 559
can be confined to online modules, because batch jobs will always domi-
nate the list if this is not the case.

When the priority for fixing these statements is being determined, con-
sideration should be given to the execution rate. If the query that uses 102
buffer gets per call is executed 10,000 times more than the query that uses
2,865 gets, it is clearly a higher priority.

One of the best ways to tune a statement is to put a trace on a session
that calls it, using the method detailed under “Tracing Sessions by Setting
Events” in Section 3.5.3. Once a tracefile that contains the query has been
obtained, a simple test case can be put together:

The query can be pulled out of the tracefile and put into a script, using
bind variables as in the original query.1 The tracefile can also be checked
for the number of buffer gets it is expected to need for those particular
bind combinations. This is determined by checking the cr= token in the
FETCH line. A reproducible test case can now be constructed for this query:

PARSING IN CURSOR #1 len=38 dep=0 uid=22 oct=3 lid=22 tim=0 hv=3024638592 ad='83842e20'
select * from sys.dual where 1234=:b0
END OF STMT
PARSE #1:c=0,e=0,p=0,cr=0,cu=0,mis=1,r=0,dep=0,og=0,tim=0
BINDS #1:
 bind 0: dty=2 mxl=22(22) mal=00 scl=00 pre=00 oacflg=03 oacfl2=0 size=24 offset=0
 bfp=4014b328 bln=22 avl=03 flg=05
 value=1234
EXEC #1:c=0,e=0,p=0,cr=0,cu=0,mis=0,r=0,dep=0,og=4,tim=0
WAIT #1: nam='SQL*Net message to client' ela= 0 p1=1650815232 p2=1 p3=0
FETCH #1:c=0,e=0,p=0,cr=1,cu=4,mis=0,r=1,dep=0,og=4,tim=0

1. The reason that bind variables must be used is that the optimizer does not consider the
values when servicing queries. This enhancement is proposed for a future release of Oracle8.

variable b0 number

begin
:b0:=1234;
end;
/

alter session set timed_statistics=true;
alter session set events '10046 trace name context forever, level 12';
select * from sys.dual where 1234=:b0;
exit

CHAPTER 9 SCALABLE TRANSACTION PROCESSING560
This test case should produce exactly the same result as the original query
in the application.

When looking at high buffer gets, consider the following potential
causes:

• Data skew in the underlying table/index

• Index column ordering

• Cost of joins

The first two items are related, in that they both concern cardinality prob-
lems in the table. It is important to keep indexes as selective as possible
when using B-tree indexes.

The cost of the join can make or break a query, and it is occasionally
worthwhile to denormalize the model a little for specific performance
cases. For example, if an intermediate table is used, would the addition of
another column make driving off this table more efficient?

One common misconception among SQL programmers is that it is
good to try to do everything in one statement. There are some cases in
which this is correct, but more often it is a very bad thing for performance.
If the data is known, it is often better to break complex correlated sub-
query statements into two cursors and glue them together with procedural
logic. Unfortunately for the programmer, this often means more typing in
order to set up the variables required for coding.

Another thing to look out for is the number of records being returned
by a query. For most kinds of online usage, it is not useful to return a large
number of rows for the user to look through. If anything, this normally
points to poor user-friendliness on the part of the application. Lists of val-
ues are best kept to a small number of rows, where “small” means a maxi-
mum of about 30 records. Obviously, there are cases in which this is
inappropriate or impossible, but these situations should be exceptions to
the general rule.

Large data sets can be spotted by once again using the V$SQLAREA view.
With the same type of query that was used to obtain the number of buffer
gets, we can obtain the average number of rows returned by a query:

9.1 SCALABLE APPLICATIONS 561
In this example, the average number of rows per execution was restricted
to 1,500 in order to reduce the list returned. It can be seen that some of
these queries are returning well over a reasonable number of rows. Once
the MODULE filter has been applied, this list can be worked on in order to
ensure that reasonable requests are being made to the database.

Avoiding High-Contention SQL
In addition to making SQL “reasonable” and efficient, other factors need
to be considered in order to ensure that the SQL does not create excessive
contention in the database. These factors fall into two main areas:

1. Write-read contention: reading sessions affected by writers

2. Read-read contention: sessions competing to pin the same physical block

col rows_per_exe form 9999999
SELECT hash_value,rows_processed/executions rows_per_exe
FROM V$SQLAREA
WHERE executions>0
AND rows_processed/executions>1500
ORDER BY 2 desc
/
HASH_VALUE ROWS_PER_EXE
---------- ------------
 603042213 30651
3490405195 12721
3189300438 9600
 647382473 6840
3399070700 4962
 893287616 3807
 327344171 3529
3137157321 2668
2437259511 2666
2056336900 2513
1767743086 2415
1623323819 2317
3691742970 1853
3575556459 1749
 88760771 1692
1074455672 1520
 980033159 1520

17 rows selected.

SQL>

CHAPTER 9 SCALABLE TRANSACTION PROCESSING562
When a heavily read table is updated, the blocks are subject to
cleanout at the next read, as discussed in Section 5.5.3. This can cause big
slowdowns for the next reader of the block. The following tkprof output
shows the cost of a given query for which no block cleanout is required:

The important fields to look at are the cpu and elapsed on Fetch. Compare them
with the same query that needs to perform block cleanout on each block as
it passes through:

The block cleanout is clearly expensive, even in this small example. The
implication of this is that a relatively fast update performed during online
operation of the database can affect the response times of queries for a
long time afterwards. In addition, if many other sessions are also trying to
read the data, they will queue up waiting on the event “buffer busy
waits”—that is, waiting for the cleanout to be performed by the first ses-
sion that accesses the block.

In addition to contention between writers and readers, contention
between two readers can also occur. Although this occurs only at signifi-

select sum(MONEY)
from
 MY_CASH where CASH_ID between 10000200 and 90004611

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.78 1.17 417 420 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.79 1.18 417 420 0 1

select sum(MONEY)
from
 MY_CASH where CASH_ID between 10000200 and 90004611

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.01 0 0 0 0
Fetch 2 1.18 3.02 417 838 0 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 1.18 3.03 417 838 0 1

9.1 SCALABLE APPLICATIONS 563
cantly higher read rates than write-read contention, it can still present
response time problems if not managed adequately. Consider the follow-
ing query:

In this query, the B-tree is traversed for each of the values specified in
the IN clause. For this particular example, the BLEVEL2 of the index is
0, meaning that it is so small that there are no root or branch blocks—
only a single leaf block. Therefore, there is one consistent read for
each of the rows, and one for the table reference (plus an extra get as a
result of a second fetch attempt by SQL*Plus). The conclusion, there-
fore, is that the B-tree must be traversed from root to leaf for every
fetch from it.

While this does not present a large problem for this particular
(small) query, it can present a problem in larger tables/indexes. For
example, if an index has a BLEVEL of 2, this means that there is a root
and a branch block above every leaf. Therefore, three blocks must be
traversed to find any given leaf. The key problem is that every access
has to go through the root block—a classic bottleneck.

Although we are reading only the root block, we need to take out a
latch on the hash chain that the dba belongs to in order to pin the
buffer. If several queries with long IN lists all hit this index at the same
time, latch contention will result on the hash chain. This shows up as

SELECT /*+ INDEX (test_tab,ti1) */ b from test_tab where a in ('AA','AB'
,'AC','AD','AE','AF','AG','AH','AI','AJ','AK','AL','AM','AN','AO','AP','AQ','AR'
,'AS','AT','AU','AV','AW','AX','AY','AZ','A[','A\','A]','A '̂,'A_','À ','Aa','Ab'
,'Ac')

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.02 0.03 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 2 0.02 0.01 0 71 0 35
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 4 0.04 0.04 0 71 0 35

2. The B-tree level, as reported in dba_indexes.

CHAPTER 9 SCALABLE TRANSACTION PROCESSING564
an increased number of misses and sleeps in v$latch and results in
response time problems as Oracle serializes on one latch:

This script pulls out all hash chain latches that have been slept on more than
10,000 times since start-up, identifying “hot” chains. Depending on the
number of hash chains configured for the instance, one or more blocks will
be reported in the output. Although it is likely that only one buffer is being
contended for, all other dbas that hash to that chain will also be affected by
the slow down. It can be seen from the output that the hash chain latch at
address A2F07930 has been slept on about twice as many times as the latch at
address 9C18A048, for the same number of gets. This indicates some kind of
burst access for this buffer, such as large IN lists in a query.

If it is a root block that is contended for, the block number will corre-
spond to the first block of the index segment after the segment header. Once
a problem of this type has been identified, action can be taken to improve it.
Such problems are discussed in Section 9.2.

Sharing SQL
One of the major changes in Oracle for release 7 was the addition of the
shared pool and shared SQL areas. Prior to this, all SQL was parsed pri-
vately for each user who executed it. Shared SQL allows far greater

select hladdr "LATCH ADDRESS",
 dbarfil "FILE#",
 dbablk "BLOCK#",
 gets,
 lc.sleeps
from x$bh bh,
 v$latch_children lc
where lc.addr=bh.hladdr
and state!=0 /* ie not FREE */
and sleeps>10000
order by sleeps desc
/

LATCH_AD RFILE# BLOCK# STAT GETS SLEEPS
-------- ---------- ---------- ---- ---------- ----------
A2F07930 311 26123 XCUR 90757897 103036
9C0A1080 157 7683 XCUR 373660716 95946
9C18A048 305 133251 XCUR 97899571 62771
9C18A048 304 476892 XCUR 97899571 62771
9C18A048 322 206671 XCUR 97899571 62771

9.1 SCALABLE APPLICATIONS 565
throughput to be achieved on the database server, as a result of the reduc-
tion in work required to interpret the request. Full implementation of
shared SQL should be considered essential for a large-scale application,
because the cost of not doing so is very high—higher than it was prior to
the introduction of the shared SQL facility.

Contrary to this need is the misuse of the dynamic SQL feature of Ora-
cle. This feature is now present in all of the Oracle tools, including
PL/SQL and Pro*C, and allows dynamic construction of SQL statements
based on the flow of the code and the variables passed to it. Unfortunately,
this very powerful facility is mostly abused as an easy way of constructing
queries, resulting in unique pieces of SQL for every request. The proper
use of dynamic SQL is to allow more structured program flow and to
implement complex requests, not to embed literals in statements and to
break the SQL sharing.

Dynamic SQL can still be employed in large-scale systems as long as
its use is carefully managed. The important thing to remember when using
dynamic SQL in a piece of code is to keep the number of potential permu-
tations as low as possible. For example, consider a module to which are
passed a variable number of parameters that are eventually needed as
predicates in the WHERE clause. Anywhere from one to 400 parameters
could be passed to this module, all of which must be supplied to the query
in the module. The temptation is to construct the WHERE clause of the state-
ment dynamically for every parameter supplied:

Although easy to do, this is about the worst thing that can be done here,
because it creates a totally unique statement for every execution. There are
basically two levels of optimization that can be performed on this state-
ment. The first simply uses the same code base as the original, but

inputs : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... 399, 400

sprintf(preds,"WHERE xyz in (");

for (i=0;i<nparams;i++) {
 sprintf(tmps, "%d,",inp[i]);
 strcat(preds,tmps);
}
sprintf(preds+strlen(preds)-1,")");

CHAPTER 9 SCALABLE TRANSACTION PROCESSING566
constructs the IN clause out of bind variables and assigns variables to those
variables at the same time. While not ideal, this cuts down on the number
of possibilities enormously, because any call with the same number of
parameters will reuse the same cached version of the SQL statement.

A better way to do this is to define a finite number of cursors. The first
cursor may allow for as many as ten parameters, the second up to 20, and
so on. If a standard increment of ten parameters were maintained, this
would result in a maximum of 40 cursors in this example, which would be
very much more manageable.

In order to do this, the number of input parameters determines which
query should be used according to the following formula:

Pro*C code for constructing a finite number of “buckets” of bind varia-
bles would look a little like this:

queryid int() inputs
increment
-------------------------- 1+=

/* This example uses Pro*C dynamic SQL method 4 to dynamically build
the WHERE clause of the SELECT statement using bind variables,

 keeping the permutation count low by always rounding the number of bind
variables submitted up to the nearest gran_size.

 i.e. if 44 parameters were passed, and gran_size equals 10, a statement will
be constructed using 50 bind variables (the 50 variable “BUCKET’). The unused
variables are bound to the NULL value. No rows can match a NULL in an equality check.

*/

/* Size of each bucket */
gran_size=10;

sprintf(preds,"SELECT * FROM SCOTT.EMP WHERE EMPNO in (");

/* Calculate which 'bucket' this statement lives in */
bucket=(int) (nparams/gran_size)+1;

/* Insert unique placeholder names into statement */
for (i=0;i<bucket*gran_size;i++) {
 sprintf(tmps, ":b%d,",i);
 strcat(preds,tmps);
}

/* Terminate SQL statement string */
sprintf(preds+strlen(preds)-1,")");

9.1 SCALABLE APPLICATIONS 567
All the detail of setting up for dynamic SQL method 4 has been omitted,
concentrating instead on the actual construction and binding of the state-
ment. The trick in this particular example is to bind the unused placehold-
ers as NULL. No value can equal NULL, even NULL (IS NULL is the only test
that will identify a NULL value). Therefore, binding the unused variables
to be NULL ensures that no data is returned for them.

The “bucket” that would be created for an input parameter count of 1
to 10 would look like this:

The Cost of Binding. Limiting the number of permutations of a given
statement is the only way that dynamic SQL can be adopted. In the very

WHERE EMPNO IN (:b0,:b1,:b2,:b3,:b4,:b5,:b6,:b7,:b8,:b9)

/* Setup cursor from string */
EXEC SQL PREPARE new_stmt from :preds;
EXEC SQL DECLARE c1 cursor for new_stmt;

/* Setup the bind descriptor */
EXEC SQL DESCRIBE BIND VARIABLES FOR wib INTO bind_des;
bind_des->N = bind_des->F;

/* Go through the list of binds found and assign values */
for (i=0;i<bind_des->N;i++) {

 bind_des->T[i]=3; /* all int */

 if (i<nparams) {
 /* Have real value, so set indicator to 0 (not null) */
 bind_des->V[i]=(char *) malloc(sizeof(int));
 *(int *)bind_des->V[i]=inp[i];
 bind_des->L[i] = sizeof(int);
 bind_des->I[i]=(short *) malloc(sizeof(short));
 *bind_des->I[i] = 0;
 } else {
 /* Don't have real value, so set indicator to -1 (null) */
 bind_des->V[i]=(char *) malloc(sizeof(int));
 *bind_des->V[i]=0;
 bind_des->L[i] = sizeof(int);
 bind_des->I[i]=(short *) malloc(sizeof(short));
 *bind_des->I[i] = -1;
 }
}
/* Open the fully bound cursor */
EXEC SQL OPEN c1 USING DESCRIPTOR bind_des;

CHAPTER 9 SCALABLE TRANSACTION PROCESSING568
dynamic case of any number of inputs discussed above, this could also
have been achieved by creating a single cursor with hundreds of bind var-
iables. The unused variables could then be bound as NULL as in the
bucket example above. However, this brings about another problem and
should also be avoided.

There is a measurable cost associated with each bind operation. Each
one results in work being performed on both the client side and the server
side, and if the number of redundant (NULL bound) variables is high, an
enormous amount of CPU can be wasted doing redundant work. To dem-
onstrate this, I wrote a Pro*C program that executes a simple SELECT
statement 500 times. The query looks like this:

Both of the bind variables were set to be NULL, and so no data was
returned by this query. I also wrote another program that behaved exactly
the same way, but bound 400 NULL variables instead of two. Table 9.1
shows the results when this program was run against a PA-8200-based
database server.

The 400-bind version of the code took 333 times as much CPU to per-
form the same net work (returning no data). Some of this CPU will be used
parsing the much larger SQL statement, and some will be spent perform-
ing the actual binding operations. At the end of the day, it doesn’t matter
where it is being spent—excessive binding should be avoided wherever
possible.

Poorly Bound SQL
When writing SQL for an application, it is easy to fall into the trap of
poorly bound SQL. This is not another reference to the use of bind varia-

SELECT one_column FROM my_table WHERE one_column IN (:b0, :b1);

Table 9.1 Cost of Binding Variables

Test Total Executions Total Number of Binds Server CPU Seconds Used

2 binds 500 1,000 0.18

400 binds 500 200,000 59.96

9.1 SCALABLE APPLICATIONS 569
bles, but to the careful definition of data sets within an SQL statement. A
single query may have a minor footprint one day and a huge footprint the
next day, all based on the data supplied to the statement. This falls into
two main categories:

• Poor date definition

• Poor input enforcement

Poor Date Definition. Most transactional systems have an abundance of
date-related rules. The dates affected by these rules can range from dates
on which transactions are made to dates that determine the eligibility of
certain records in the database. The implication of this is that there are also
an abundance of queries in the system that are constructed as follows:

As soon as such a query is written, it is guaranteed to perform a range
scan of some description on the index in the date columns. If the date ranges
are understood by the developer, and the data is protected from skew
through the application, this still does not present a huge problem. How-
ever, it is more common for date ranges to grow quickly out of control,
particularly on a new, growing system. This results in increased I/O on
the system, a polluted buffer cache, and wasted CPU.

In one such scenario, certain information is considered active only if
the supplied date lies between the start and end dates for that information,
such as seasonal types of products in a supermarket. A certain type of
chocolate Easter egg, for example, is available for order by the store man-
ager only between January and April of the current year. The query that
retrieves available products excludes items that do not have a start_date in the
past and an end_date in the future.

The problem with this type of data is that it rapidly becomes very non-
selective because of the way in which it is administrated by the users of
the system. In this example, it is likely that 99 percent of all the available
products would be made active forever, making any index that leads on the
start and end dates completely useless. The server has no choice but to
range scan most of the index, going back to the table for more information
when necessary.

SELECT xyz FROM abc WHERE SYSDATE between START_DATE and END_DATE;

CHAPTER 9 SCALABLE TRANSACTION PROCESSING570
It is important to prevent this kind of data skew if the application is to
scale well: The more data that goes into a table, the more work it takes to
retrieve data from that table. If there is another attribute of the query that
is more selective, that attribute should be made the leading edge of the
index. Otherwise, it is likely that a full table scan is a better alternative
than the huge index range scan. However, this is typically not a good solu-
tion either, and a design change needs to be investigated.

In the case of this example, it may be more practical to have a B-tree
index on an “inactive flag,” which is updated periodically by a batch rou-
tine. The flag would have a value only if the product was inactive for the
current period, therefore keeping the number of keys in the index low. More
typically, however, it is not just SYSDATE that is compared against the start
and end dates, but rather some arbitrary supplied date. In this case, the
adoption of an inactivity flag would not provide the required result.

Poor Input Enforcement. The most common problem in many large sys-
tems is the lack of enforcement of controls on user input. If user input is
not carefully controlled, the users have the power to wreak havoc on the
system with very large, unbounded queries.

The classic unbounded query is a name search. Names are typically
indexed columns and are normally quite selective apart from well-known
exceptions. In a search for a customer profile, for example, the provision of
a few last name characters and the first initial dramatically reduces the
number of keys that need to be scanned in the index. If users are allowed
to be unreasonable here, they will be unreasonable here—they simply
don’t know any better. Good practice in the name example is to require
three characters of the last name before a wildcard can be added. Names of
fewer than three characters don’t really need the wildcard functionality to
speed the user along.

I encountered an interesting case study in a furniture store one day. A
price ticket was not visible for a certain table, and so I asked an employee to
look it up on the computer. Unfortunately, the name of the table began with
an accented character, and the employee was supplied with a U.S. keyboard
that had no accented characters. I noticed that the application was Oracle,
with the familiar face of SQL*Forms showing itself on the terminal.

9.1 SCALABLE APPLICATIONS 571
The employee proceeded to input the only string he could in order
to find the item: “%bo”. Of course, while the server was grinding its way
through the entire B-tree index on the product name, the employee was
whining and complaining to me that the computer system was broken
and that he wished they would get a new one. This is a classic prob-
lem—in this instance complicated by the need for a special European
keyboard on the terminal, combined with some application field
enforcement.

9.1.3 Transaction Processing Monitors
Traditional client/server applications are known as two-tier applications.
Of the two tiers, the lower tier is the database, and the top tier is the appli-
cation program (see Figure 9.1).

In this example, Oracle8i and SQL*Forms 4.5 have been used, in a clas-
sic two-tier pairing. In the upper tier, SQL*Forms has all of the logic to dis-
play the forms to the users, to implement the business logic, and to access
the database. In the lower tier, Oracle8i consists of the database itself and a
transaction manager.

Lower Tier
(Data Layer)

Upper Tier
(Presentation Layer)

Transaction
ManagerDatabase

Oracle 8i

SQL*Forms 4.5

Business Logic

Presentation Logic

Figure 9.1 Two-tier application architecture

CHAPTER 9 SCALABLE TRANSACTION PROCESSING572
The term “transaction manager” is defined by The Open Group3 as a
piece of software that coordinates a transaction and enforces its atomicity.
In formal terms, a transaction manager coordinates the transaction across
all the involved resource managers, which is The Open Group’s name for
any shared, consistent resource. The resource manager in this case is the
actual Oracle database.

In a single-database environment, the transaction manager used is the
Oracle Server transaction manager, and the resource manager is the physi-
cal database. All the atomicity required for a two-tier transaction is man-
aged within the Oracle Server, with the application logic issuing commit
calls directly to the database.

The upper tier in this example contains the Forms application, which
in itself consists of two logically different components: business logic and
presentation logic. The same physical executable is responsible for dis-
playing the forms to the user, following the business logic, and performing
data access to the database.

This type of architecture has several problems:

• Every user of the system needs a direct database connection, wasting
valuable resources on the database server.

• The same developers are responsible for both the presentation logic
and the business logic.

• There is operational anarchy: No operational control over transaction
flow is possible, meaning that any user can execute any part of the
application at any time.

• Reuse of common business logic is difficult because of the lack of a
defined interface.

• Interfacing to any other software is difficult.

These disadvantages offset the benefits of this solution: rapid develop-
ment times, relatively uncoordinated development, and use of 4GL devel-
opment tools. These problems are also difficult to avoid within a two-tier
architecture. The way to solve them is to adopt a transaction processing mon-
itor, creating a multitier architecture.

3. The Open Group is the standards body that defined the XA specification, formerly
known as XOpen.

9.1 SCALABLE APPLICATIONS 573
What Is a Transaction Processing Monitor?
A transaction processing monitor, or TP monitor, is often described as mid-
dleware. This means that it is software that resides between other software
components. In the case of a TP monitor, this middle position lies between
the presentation logic and the business logic, as shown in Figure 9.2.

In its simplest form, a TP monitor provides the following services:

• Standard, shared interfaces between software modules

• Communication and queuing facilities

The TP monitor provides a platform on which the presentation layer of an
application can be created in complete isolation from the underlying busi-
ness logic by providing these facilities. The TP monitor effectively pro-
vides the “glue” that holds the presentation layer and the business logic
together.

In a TP monitor environment, things get renamed a little. The presen-
tation software is called the client. The business logic exists in discrete pro-
grams called servers. These servers are advertised to the client as services.

The model provided by the TP monitor is that of a service provider
and a client. The TP monitor provides all the communications and

Lower Tier
(Data Layer)

Upper Tier
(Presentation Layer)

Middle Tier
(Application Layer)

TP Monitor

Transaction
ManagerDatabase

Oracle 8i

Business Logic

Presentation Logic

Figure 9.2 Three-tier application architecture

CHAPTER 9 SCALABLE TRANSACTION PROCESSING574
interfacing between the client and the servers, and takes care of advertis-
ing services to the clients.

For example, assume that the three-tier application in Figure 9.2 is the
model used for a banking application. A Pro*C or OCI server could be cre-
ated within the middle tier that provides the account balance for a given
account number. This server is advertised by the TP monitor as an availa-
ble service, and client connections can call on this service when required.
This is achieved using a standard call from the TP monitor’s libraries,
passing the account number as a parameter for the server. The actual lan-
guage, physical location, presentation style, and other features of the client
requesting the information are totally irrelevant. The banking application
architecture may look a little like the arrangement shown in Figure 9.3.

There are two completely different types of clients in this architecture.
The first is the automated teller network, which may consist of a variety of
different presentation types and operating environments across the coun-
try. The second is the cashier within the bank, running the full suite of
banking services. There are three servers available in this example: a debit

Lower Tier

Upper Tier

Middle Tier
Balance
Server

Credit
Server

Debit
Server

ATM Cashier “Clients”

“Servers”

“Resource
Manager”

Advertised
Services R

eq
ue

st

R
es

po
ns

e
TP Monitor

Transaction
ManagerDatabase

Oracle 8i

Figure 9.3 Banking application

9.1 SCALABLE APPLICATIONS 575
server that debits an account, a credit server that credits an account, and a
balance server that returns the current balance of the account.

The clients connect to the TP monitor only; there is no direct connection
to the database. When the clients connect to the TP monitor, the advertised
services are made available to them. The clients then send requests to the
servers, in order for the server to perform the work on their behalf.

A request may be synchronous or asynchronous, depending on the
requirement. If the client does not need to wait for completion of the
requested task, an asynchronous call is appropriate. The server may send
a response back to the client or may just complete the task. Again, this
depends on the function of the server; the debit server may not send back
any information, whereas the account balance server must do so.

The TP monitor also provides queuing services for the application. If
the debit function is not required to take immediate effect, for example, the
requests to that server may pass through a queue before being processed
by the actual server. This queue can be opened or closed by the application
administrator, thus controlling the throughput of the system within the
application tier.

The use of request queuing is an important attribute of the TP monitor
from the database server perspective. If the server system is capable of
only a known number of transactions per second, the flow of requests to
the database can be restricted to this number of transactions by restricting
the number of available servers, keeping outstanding requests in a serial
queue on the application server. This means that the waits are passive in
the application tier, rather than spinning in an active wait on the database
server, trying to get resource that is not available.

Further gains are made on the database server as a result of the
reduced connection count on the database server. The reason the number
of connections is reduced is that there are no longer any user connections
into the database. Only the application servers connect to the database,
thus reducing the number of required connections. The number of the
application server processes required to perform the work requested by all
the clients may be as few as one-tenth the number of clients, owing to the
amount of “think time” that occurs in OLTP applications. The reduction of
connections to the database means reductions in memory usage, schedul-
ing overhead, context switching, and file descriptors on the server.

CHAPTER 9 SCALABLE TRANSACTION PROCESSING576
When an application is distributed over a wide area, a TP monitor
becomes important for another reason: its communication model. When a
user is a long distance from the database server, latencies are induced by
the sheer distance the network covers. If the application were two-tier, and
the user were 10,000 miles from the database server, these latencies would
be very serious and certainly noticeable to the end user.

If the application were character-based, this would result in a delay
between the keystrokes typed on the user’s dumb terminal and the echo
sent back by the UNIX client in the datacenter. If the application were run-
ning nearer to the user, such as on a local PC, the delays would be incurred
through the use of Net8 over a wide area. Owing to the highly conversa-
tional nature of SQL*Net, several round trips can be required for each and
every SQL statement sent to the database, multiplying the network laten-
cies accordingly.

A TP monitor gets around these problems somewhat by shifting the
communication model into a request/response mode. This means that the
client needs only to send a single request and receive a single response for
a given function. This imposes only one set of latencies over the wide area,
as opposed to a large number if the communication were like Net8 or ter-
minal character echo.

In addition to providing these benefits, TP monitors allow seamless inte-
gration of homogeneous and heterogeneous systems. An application can
access a UNIX/Oracle system and a mainframe system within the same
transaction, transparently to the user. This capability is provided by the TP
monitor abstraction from the actual resource manager; the presentation
layer is not concerned with where the data resides. The TP monitor can also
facilitate intersystem data bridges and interfaces to third-party services such
as computer-telephone integration (CTI) through the same abstraction.

Optionally, a TP monitor can take on the role of transaction manager,
communicating with Oracle over the standard XA interface. This becomes
particularly important when multiple middleware servers are associated
with a single transaction, or when multiple resource managers (database)
are involved in the transaction. This moves the responsibility for ensuring
the atomicity of the transaction to the TP monitor, which must communi-
cate with all of the systems involved using a two-phase commit protocol.
This kind of integration comes at a price, however, and should be used
only where necessary, such as in our banking application (see Figure 9.4).

9.1 SCALABLE APPLICATIONS 577
This more closely resembles the way in which a real banking applica-
tion would need to be architected. Moving the transaction manager into
the middle tier is the only way that interaccount funds transfers, for exam-
ple, could be implemented. The two servers involved in such a transac-
tion, the debit and credit servers, are performing components of an atomic
transaction, and therefore must either both succeed or both fail.

Alternatively, a “transfer server” could be created, performing both
the debit and credit operations within a standard Oracle transaction. This
would work well also, except when multiple databases were thrown into
the mix. If, for example, there were a savings account on one database and
a checking account on another, the transfer transaction would have to be
coodinated between two servers. In this instance, there would be no alter-
native except locating the transaction management in the middle tier.

In summary, a TP monitor provides the following benefits for a large-
scale application:

• There is lower server resource usage owing to reduced database server
connections.

• The application developer can be focused on business logic or presen-
tation logic, depending on skillset and assignment.

2 x “Resource
Managers”

Lower Tier

Upper Tier

Middle Tier
Balance
Server

Credit
Server

Transaction
Manger

Debit
Server

ATM Cashier “Clients”

“Servers”

Advertised
Services R

e
q

u
e

st

R
e

sp
o

n
se

TP Monitor

Database Database

Oracle 8i Oracle 8i

Figure 9.4 Banking application with middleware transaction management

CHAPTER 9 SCALABLE TRANSACTION PROCESSING578
• The queuing facility allows “throttling” of work requests to prevent
thrashing on the server.

• Common business logic is easily reused by different modules owing to
the standard interfaces.

• Bridges and integration of other products can be developed using the
same interfaces as those used in the rest of the application.

• Distributed applications can be built across heterogeneous and
homogenous systems.

The deployment of a TP monitor also carries several disadvantages:

• An all-or-nothing approach of decoupling all users from the database
(and connecting them into the TP monitor) is required to gain the most
benefit.

• Application servers are generally developed in a language such as C,
rather than using one of the rapid development tools.

• Skills in the development of multitier applications are not as prevalent
as those used in two-tier applications.

• Software licences are required for the TP monitor software.

These negatives are easily overshadowed by the positives of using multi-
tier technology for very large applications. For UNIX systems, there are
few choices in TP monitor selection, with BEA Tuxedo being far and away
the most popular. Tuxedo offers all the functionality associated with a TP
monitor and runs on a variety of UNIX platforms.

Object Request Brokers
The latest development in multitier applications is the object request broker,
or ORB. One of the common standards for an ORB is the Common Object
Request Broker Architecture (CORBA) specification set out by The Object
Management Group (OMG). The ORB presents a combination of the con-
cepts of the TP monitor and object-oriented programming, providing a
framework for distributed objects.

Distributed objects allow fully encapsulated software modules to be
written, with the ORB acting as the glue that holds all the objects together.
If the ORB conforms to CORBA 2.0 standard or greater, it can also provide

9.1 SCALABLE APPLICATIONS 579
transaction management services and security, thus providing an
enhanced TP monitor environment. This new environment can be built on
heterogeneous systems and in virtually any language that the ORB can
interface with through the Interface Definition Language (IDL).

IDL is a language-neutral interface language, used to interface the soft-
ware components to the ORB. Using IDL, stub code can be produced to
allow for compile-time dependency checks and to allow software compo-
nents to be produced in isolation from the complexities of the ORB and the
remote procedure call (RPC) mechanisms associated with it.

Much of the actual technology supporting ORB operation is still in its
infancy, though many of the industry’s largest independent software ven-
dor (ISVs) are adopting this strategy for the future. Most notably, Oracle8i
provides significant ORB support. Of course, care should be taken when
adopting an ORB as the middleware architecture for transactionally inten-
sive systems, because the supporting software is relatively new. When
software is as new as this, it takes time before it is ready for heavy loading.

9.1.4 Purge
A database should never be confused with a data dump. In OLTP-based
systems, this means that the database must reach a level of equilibrium in
its size; data must be deleted at the same rate at which it is inserted.

In a typical transactional database, there are two main types of data:

1. Reference data

2. Transactional data

The reference data is not normally subject to purging, because it reaches a
static size early in the life of the application. The transactional data, on the
other hand, grows every day the system is used and can become unman-
ageable very quickly. A banking application, for example, inserts many
rows into each account, which are mostly read only once—when the
monthly statement is produced. In this way, transactional tables can be
viewed as insert-mostly tables.

After a period of time, this data no longer needs to reside in the pro-
duction database and should be removed in order to maintain a static
database size. The period of time and the rules for deletion have to be
defined by the business, because there are likely to be operational and

CHAPTER 9 SCALABLE TRANSACTION PROCESSING580
legal reasons driving the rules. The actual deletion of the data should be
performed as a scheduled batch process, using deletion code that has been
carefully developed.

The reasons for performing a thorough and regular purge are numer-
ous. First, there are the date-range driven queries, as described in Section
9.1.2. As the database grows larger, these queries will become more
resource-intensive as a result of the increased date range in the database
transactional tables. Often this data is scanned by badly written queries
even though the business is no longer concerned with it.

Second, there is the clear problem of available disk space on the data-
base server. Things cannot be allowed to grow unconstrained, because this
would result in an ever-increasing amount of disk connected to the sys-
tem. In addition to this, the database must be backed up on a regular basis,
and this becomes more difficult to achieve when the database is larger
than the backup subsystem can deal with in the backup window. At this
point, the backup needs to be spread out over several nights, complicating
the recovery process in the event of a failure.

Lastly, the batch window will grow in direct proportion to the data-
base size. This occurs because batch jobs that operate on transactional data
are likely to perform a full table scan of the table in question, which would
be the optimal access path for a batch job that processes a large proportion
of the table. If the table were to grow without purge, the proportion of
records that the batch job should consider would become slight in relation
to the number of old records, thus slowing down the batch routine.

Rapid Deletion Techniques
Deletion of data often comes in tandem with insertion of data elsewhere; it
is rare that data can simply be removed without storing it elsewhere first.
New features in Oracle8 and Oracle8.1 have helped in both of these areas,
making purge a good deal easier to implement today than in prior releases.

The first of these features is the use of partitioned objects. Partitioning
a table sometimes allows the easiest method of deletion of all—the ability to
drop a whole range of data from the database. This is not always available,
because it depends on whether your partition key is also your purge key
(i.e., date stamp) and also on whether all the indexes built on the table are
partition-local (that is, no index covers more than one partition).

9.1 SCALABLE APPLICATIONS 581
The ability to remove a partition can be combined with the new capa-
bility of Oracle8.1 to detach a tablespace and reattach it to another data-
base. This allows very rapid relocation of purged data into another
database for further processing. The procedure for doing this is as follows:

1. “Exchange” the designated partition with a standard table.

2. Set the tablespace to be READ ONLY.

3. Export the metadata from the catalog using

4. Copy the tablespace datafile(s) to the target database.

5. Import the tablespace into the target using

6. Check that all is OK.

7. Drop tablespace in production, including contents.

8. Manipulate imported tablespace in target database.

The impact on production response times for this method is close to zero,
because no deletes or inserts occur. Of course, this method requires the
purge criteria to be based on the same key as the partition key, because
nonpartitioned columns could be spread across many partitions.

While it is often impractical to purge by partition key, an alternative is
possible when the purge criteria are strictly timestamp-based and the parti-
tion key is a system-generated one, such as a sequence number. Transac-
tional tables often meet these criteria, because the data is inserted at one end
and is used less and less as it gets older. In this case, a correlation can be
made between the age of the row and the partition key, assuming that the
partitioning is based on the primary key. For example, although an
ORDERS table may be partitioned on its primary key of ORDER_NUM, the
value of ORDER_NUM will only ever increase over time. Therefore, a pre-
liminary query can be executed to determine the corresponding key value
for a given timestamp, and the purge can be executed against that derived
value. This allows the partition relocation method of purging to be used.

If a partition-based purge is not possible, the only alternative is to exe-
cute deletes against the table, having previously extracted that data for

exp userid=<user/pass> transport_tablespace=y tablespaces=<tablespace>

imp userid=<user/pass> transport_tablespace=y datafiles=’<tablespace datafiles>’

CHAPTER 9 SCALABLE TRANSACTION PROCESSING582
insertion into the reporting environment. This is never an easy operation,
because the delete process requires several resources:

• CPU

• Locks

• Undo allocation and CR blocks

• Block cleanout

Of these, CPU is the least problematic. The other three resources directly
affect the operation of online sessions and batch processing, and so must be
carefully managed. The first of these is the required allocation of locks to per-
form the delete. Normally, this should not be a huge problem either, because
the data to be purged should not be getting actively updated anyway. The
only legitimate activity on these rows would be reads from full table scans.
However, if there are badly written batch routines out there that lock irrele-
vant data, they will interfere with the purge routines, and vice versa.

There are two attributes to be concerned with for the undo allocation.
First, there is the requirement to have sufficient rollback segment space to
allow a rollback of the entire operation. In the case of a delete, the rollback
segment must include sufficient information to rebuild the entire row,
should a rollback be necessary. This means that large delete operations
require a large amount of rollback space with which to work.

The second attribute of undo allocation is the provision of consistent
read views to other sessions. Though the rows are deleted using row-level
locks, the block itself is managed by Oracle at a full block granularity. This
means that any access to that block must go through the CR mechanism,
regardless of whether or not the row being read is deleted. In addition,
until the commit of the delete session, all other sessions connected to the
database are able to read the data, thus requiring block reconstruction
from the rollback segment.

If other long-running queries take place on the table being purged, all
the undo information for the delete must remain for the duration of that
query, even across commits by the delete session. If there is insufficient
space for this, the long-running query will eventually get a “snapshot too
old” error and terminate. Likewise, any updates or deletes of data in the
table by online sessions must be retained in the rollback segment of the
online session until the delete has completed its transaction.

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 583
Finally, there is the unavoidable issue of block cleanout. This will need
to be done at the end of the purge session, whether explicitly by the purge
routine or implicitly by unsuspecting users. Clearly the best solution is to
perform a scan of the data explicitly after the purge, in order to perform
the block cleanout operation. If CPU is available, this can be performed in
parallel, speeding up the operation.

The actual delete process itself can be approached in three ways:

1. Serial delete session

2. Many delete sessions on the same data

3. Oracle parallel DML

If speed of delete is not an issue, the first option is best. This is the simplest
option to develop and maintain, and so should be adopted where volumes
permit. Where the volumes are too high for a serial delete, one of the paral-
lel options can be used. The first parallel option is to use multiple delete ses-
sions, each working on different portions of the same data set. This is fairly
easy to develop but requires careful planning in order to keep the sessions
in physically separate blocks. Even if the physical rows are kept distinct
between sessions, multiple sessions that delete from the same block will
result in unnecessary CR block creation, slowing down the process.

Probably the best option is to use Oracle’s parallel DML functionality,
which allows the purge code to be mostly written as the serial delete sce-
nario while Oracle takes care of parallelizing the deletes in an efficient
manner. In MPP architectures, this includes disk affinity—sending the
delete streams to the node that is physically connected to the disk. In addi-
tion, the parallel delete slaves use a modified two-phase commit protocol
to ensure that they effectively operate in the same atomic transaction.
Block cleanout is still necessary after parallel DML and should be per-
formed explicitly by the purge routines (i.e., perform a scan of the data).

9.2 Tuning Transaction Processing Systems
9.2.1 Goals for Tuning
When tuning a system, it is important to have clear goals set before you
start. Without such goals, tuning effort will be misdirected, difficult to

CHAPTER 9 SCALABLE TRANSACTION PROCESSING584
learn from, and hard to quantify. Perhaps most important is the learning
factor; there are lessons to be learned in every tuning exercise, and it’s
important to be able to understand the impact of individual changes and
come to a conclusion about how effective a specific tuning exercise can be.

The thing to do when planning a tuning exercise is to identify the
“low-hanging fruit.” Picking off the easy wins at the start allows more
time for the more complex tuning along the line. The kinds of candidates
for initial tuning are

• Code with high execution rate

• Resource-intensive code

The first of these is simple to determine, by querying the V$SQLAREA view
for statements with a high execution count. The second is more difficult, as
it is not practical to enable the timed_statistics parameter in a busy production
database. Therefore, this kind of statement must be found by indirect
means:

• High number of buffer gets per execution

• High number of disk reads per execution

• Very large statements

• Latch contention

• Lock collisions

You are looking for things that prevent the system from delivering good
response times, either directly from the query execution time or indirectly
by starving other sessions of system resources.

Once the targets have been identified, a careful evaluation of options
needs to be made—that is, where the best fix for each problem lies.

9.2.2 Where to Tune
The effectiveness of tuning varies depending on what is being tuned.
There is a hierarchy of impact (see Figure 9.5), where the item at the top of
the hierarchy makes the largest difference and the item at the bottom
makes the smallest difference (unless it is grossly wrong).

This is an important concept to grasp and to sell to others. It is a com-
mon misconception of the uninformed that application and requirement

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 585
problems can be fixed by tuning the system. This is not true, and it is
important that this be understood by all. If the system is performing badly,
all areas of the hierarchy must be checked in parallel. A good rule of
thumb, however, is that the impact of tuning increases by an order of mag-
nitude (a factor of 10) as you move up each stage of the hierarchy.

Requirement
This is the high-level definition of the system. The customer typically sub-
mits a wish list, and this list is then refined into a deliverable set of
requirements. Most of the time, some requirements slip through that are
not essential to the customer and are extremely detrimental to the per-
formance of the database.

One common example is the infamous default query-by-example
screen. In such a screen, the user is presented with several attributes that
can be either filled in or left blank. If they are left blank, all combinations
of that field will be returned. If the management of a hotel had a central-
ized front of house system, they might have a screen containing the fields

Requirement

Design

Application

Database

System

M
or

e
E

ffe
ct

iv
e

Figure 9.5 Tuning hierarchy

CHAPTER 9 SCALABLE TRANSACTION PROCESSING586
ROOM_NO, DATE, and HOTEL_NAME, for example. The customer might have
specified that any of these fields be left blank in order to return all the
combinations, thinking that they might come in useful one day. This is a
simple request but is completely unnecessary in reality. Why would a
receptionist in one hotel need to query who was staying in every room 301

for 1-APR-1998 in every hotel?
These screens need to be carefully evaluated and to be revisited after

the selectivity is assessed on real data. It is unusual for a user to prefer to
keep such functionality in preference to good response time.

Another example of requirement tuning might be where asynchronous
processing occurs automatically for user convenience, preempting the
next request. In an order entry system, for instance, there may be function-
ality that goes out and retrieves line-item descriptions and pricing for
products associated with the one last entered. The user enters “Electric
Drill,” and the system also gets the pricing and descriptions for various
types of drill bits. As there are likely to be many types of drill bits, the
majority of this preemptive processing is redundant—the customer will
not be ordering all of them. Careful analysis needs to be performed in
order to ensure that the automatic calls are commonly used by the user
rather than passed over.

Design
When the requirement is defined, an application enters the design phase.
This is the molding of all the pieces of the requirement into a cohesive
application plan. Included in this phase is the database design, covering
the logical model right through to the first draft of the physical implemen-
tation. Errors at this stage can have enormous knock on effects.

One frequent mistake is the “space-biased” normalization approach.
Database purists typically lean hard on the side of full normalization of
the data model. They have the honorable intention of reducing the data
duplication, thereby reducing the risk of logical (application level) corrup-
tion and keeping the size of the database down.

A better approach is often the “time-biased” approach to normaliza-
tion, in which normalization is pursued vigorously where it remains effi-
cient to retrieve the data but relaxed somewhat where excessive table joins
are likely to result in poor response times. Changes in the data model are

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 587
almost impossible to implement after the application has been written,
because the scope of the changes becomes too large. Therefore, it’s vital to
get this part of the design correct up front.

Application
Once the requirement has been defined, the application is written. Typi-
cally, a large application is written by many people of various program-
ming beliefs, styles, and talents. With that mixture, it is inevitable that a
proportion of poor quality SQL and logic makes its way through. Nonscal-
able SQL (as described in Section 9.1.2), unnecessary calls, and poor logi-
cal flow can result in the database server being asked to do far more work
than is necessary for the required result.

This is the easiest part of the system to identify from the database view
of the world; all the SQL statements are recorded nicely in the shared pool,
along with a selection of their execution statistics. Ordered lists produced
from the shared pool are a good way to begin this process, because this
will quickly identify the worst of the bunch. Working through this list is a
very effective way of prioritizing the work required for improving the sys-
tem response time.

Tuning of the application can typically yield 25 percent to 50 percent
of the system CPU, depending on the severity of the initial problem. This
even includes applications that are fundamentally well written: If a single
statement that accounts for 20 percent of the CPU on the server is
improved by 50 percent in a tuning exercise, then 10 percent of the system
CPU will be returned as a result (20% × 50% = 10%).

Database
The database is a service provider—it receives requests and processes
them as quickly as it is able to. If the request is unreasonable, it will take a
long time to service, and other requests will suffer as a result. This is a sim-
plistic definition of what a database does, but serves well for putting
things into perspective. The tuning that can be done at the database level
can be viewed as improving only what is already there. Unless the data-
base was very badly set up at the outset, it is unlikely that very large gains
can be made simply by tuning it.

CHAPTER 9 SCALABLE TRANSACTION PROCESSING588
This declaration does not cover database work that should occur at the
design stage—such work is undeniably effective. Nor is it saying that
magic cannot be worked from the database angle; it certainly can, in most
cases. However, it cannot make a square wheel round, and the higher-
level aspects of the system should be considered with a higher priority
than the database tuning.

System
The system is one level further removed from the database. It is so far
removed from being able to make a big tuning impact that it is often a
binary answer: Is the system configured correctly or not? If the system is not
configured correctly—for example, if it allows heavy paging or swapping to
occur—this will result in poor performance. If it is configured adequately,
probably only very small percentage improvements can be made overall.

9.2.3 Tuning Modes
Tuning can be approached in several ways. These ways, or modes, are associ-
ated with different goals but often enjoy a great deal of synergy. Reducing sys-
tem utilization, for example, frequently results in improved system response
time. There are, however, different approaches to reaching this goal.

For a transaction processing system, there are three main modes of tuning:

• Reducing the utilization of the system

• Improving response times for specific areas of the application

• Increasing the throughput of batch processing

Reducing System Utilization
Reducing the overall system utilization is a very broad goal. Depending
on the particular resource that needs to be reduced, different strategies can
be followed. For a large database system, now that memory is less of an
issue,4 the resources in question are CPU and I/O.

4. Memory used to be an issue in large systems owing to both the price of the memory and
the 32-bit address limitations of the operating system. The typical memory size of a large
UNIX system in 1994 was 2GB, compared with 32 to 64GB today.

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 589
For CPU resources, it should first be established whether the system is
also experiencing high I/O loads. Even if the I/O system is keeping up
with the load without straying into high service times, the system could
well be struggling to service all the requests and associated interrupts.
Therefore, a CPU issue may in fact be a side effect of an I/O issue.

Assuming that there is not a high I/O loading, what is the cache hit
ratio in the buffer cache? If the hit ratio is very high (>98 percent), the sys-
tem could be doing a great deal of work without the I/O system making
this evident. In this case, a more detailed analysis of the application’s use
of the system needs to be performed. This analysis should include a dis-
covery of which modules perform the highest number of buffer gets
(assuming that the application uses SET_APPLICATION_INFO in order to identify
itself to the database) as an indicator of where to look. If the application is
using a TP monitor, which server connections use the most CPU on a
minute-by-minute basis?

When the system is not overloaded by one particular module of the
application, this can mean one of many things:

• The system is undersized (requirements problem).

• The application is in need of tuning across the board (design problem).

• There is resource contention (database or design problem).

• Processing is occurring in the wrong tier (design problem).

An undersized system will almost certainly not benefit sufficiently from
any tuning of the system, database, application, or design. If the system is
simply too small for the required workload, changes need to be made in
the requirements definition, or else additional compute resource needs to
be purchased.

If all the modules of an application appear to be loading the system
heavily, this is often attributed to a design problem with the application. For
example, if many queries in the system need to incorporate a subquery or
multitable joins, it is likely that the data model will need to be looked at. If
the model looks sound, it could be that the coding standards laid down for
the application were insufficient or not followed correctly. This will result in
much of the application doing “naughty” things to the database server. In
addition, the cardinality of indexes needs to be carefully monitored as tables
grow. This is covered under “Improving Response Times.”

CHAPTER 9 SCALABLE TRANSACTION PROCESSING590
The management of resource contention can become a very CPU-inten-
sive task on a system that experiences heavy contention. Statements that run
very fast in quiet periods will run slowly while contention occurs. Specifically,
active waits on locks (i.e., latches) will use CPU just to try to acquire the latch
with the minimum of wait time. In these situations, the contended latch must
be quickly identified and action must be taken to reduce the contention. Such
action varies from latch to latch, but typically involves the following:

• Library cache latch contention. Reduce parse rate by keeping cursors
open, sharing SQL more effectively.

• Cache buffer chains. Determine why particular chains are being accessed
more than others, and remedy.

Both of these forms of contention also directly impact the response time of
the query; they will be covered in “Improving Response Times.”

Finally, multitier application architectures allow processing to occur in
several places. Often, the database is used to perform processing that is
not data-dependent, thereby consuming precious resource from the least
scalable part of the system (the single database). Examples include

• Packages with large amounts of non-data-related logic

• Use of SYS.DUAL to submit various ad-hoc requests to the database, such
as getting the date, splitting strings using SUBSTR, and so on

This kind of practice should be discouraged whenever possible. The data-
base server is often viewed by application programmers as a mysterious
powerhouse that will run their code at lightning speed. Apart from this
rarely being true, they also need to understand that they have only a very
small piece of the total capacity of the server. Therefore, as much process-
ing as possible should be performed in the application tier, saving the
database server for real, data-related requests.

Improving Response Times
This approach targets improvement in specific pieces of code in the appli-
cation. The improvement can come from changes in the SQL or some kind
of physical intervention from the database end. As this is not an SQL tun-
ing book, we will concentrate on database-centric modifications that
improve statement response time.

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 591
Indexing. The most fundamental aspect to consider when trying to improve
response time is the indexing strategy for the associated tables. Indexes are
often defined inappropriately or have become inappropriate over time as a
result of changes in the cardinality of the indexed columns. It is vital that a B-
tree index be very selective (i.e., large number of distinct keys), because an
index range scan very quickly becomes much more expensive to process than
even a full table scan. If a particular query is found to have gone bad over time,
it is almost certainly because of a change in the selectivity of the index. At this
point, aggregate count() queries should be run on the underlying data in order to
determine where the skew lies. The factor of performance speedup that can be
expected from index improvements ranges from 1.5 to 1,000.

Queries can also create, or be exposed to, database contention, slowing
down query response time as Oracle resolves the contention. The most
common contention points for very large-scale Oracle systems are the
library cache latches, the cache buffer latches, and the redo latches.

Library Cache. Library cache latch contention is normally caused by
badly written SQL in the application. Starting with version 7.2, Oracle pro-
vides multiple child library cache latches to protect the library cache. The
latch used by a given statement is determined by the hash value of the
statement. The hashing algorithm used by Oracle for SQL statements is
very effective, and so the child latch acquisitions are very well distributed
among the available latches.

With at least as many latches as CPUs, the system is now capable of
parsing SQL at full system bandwidth. However, if a large proportion of
the statements in the application are not shared, the contention on the
latches will increase for the following reasons:

• Hard parsing requires more time under the latch to complete in com-
parison with soft parsing.

• Memory management in a fragmented shared pool increases the work
performed under the library cache latch.

The contention is not caused by any inherent serialization in Oracle, but as
a result of the application consuming much of the system CPU cycles
processing parse requests. The symptoms in this case include

• Increased miss and sleep counts for library cache latches

• Rapid consumption of free memory in the shared pool

CHAPTER 9 SCALABLE TRANSACTION PROCESSING592
In addition, overallocation of shared pool memory for the library cache
results in contention for free memory by the other components of the
shared pool. Most notably, the dictionary cache becomes squeezed down
by the aggressive requirements of the library cache. The impact of this is
that the system performs a great deal more recursive SQL than if the dic-
tionary cache were allowed to grow to its optimum size.

Buffer Cache. The buffer cache is similar to the library cache in its latch
coverage (cache buffer chain latches) and is subject to similar contention on a
small handful of the many latches that cover it. The most common causes
of contention for cache buffers chain latches all relate to index reads:

• B-tree indexes built on very small tables

• Multiple blocks covered by a common latch

• Root and branch block contention resulting from common search
paths through the index

When an index is built on a very small table, it consists of a small number
of blocks (possibly only one block). In this case, it is more efficient to do a
fast full table scan because of the simpler management of such blocks in the
cache. Dropping the index is the most effective solution of this problem.

The number of child latches used by Oracle is determined by the set-
ting of _db_block_hash_buckets, which defaults to be a quarter of the configured
db_block_buffers. This means that blocks share the same chain every
db_block_buffers/4 in the default case. Access of any block in any given datafile
is preceded by a hash of its dba (data block address), which resolves which
buffer chain this block belongs to (see Figure 9.6).

_db_block_hash_buckets

Chi
ld

 L
at

ch
 1

Chi
ld

 L
at

ch
 2

Chi
ld

 L
at

ch
 3

, E
tc

.

Chi
ld

 L
at

ch
 1

Chi
ld

 L
at

ch
 2

Chi
ld

 L
at

ch
 3

, E
tc

.

Chi
ld

 L
at

ch
 1

Chi
ld

 L
at

ch
 2

Chi
ld

 L
at

ch
 3

, E
tc

.

Chi
ld

 L
at

ch
 1

Chi
ld

 L
at

ch
 2

Chi
ld

 L
at

ch
 3

, E
tc

.

Figure 9.6 Hash bucket file coverage

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 593
On page 564, we looked at a query that will pull out any particular hot
latch. If one of the child latches is being slept on a great deal more fre-
quently, this can mean that one of the following is true:

• The latch covers more than one “hot” block.

• The latch covers one extremely “hot” block.

Whether or not the latch covers more than one hot block can be deter-
mined by running the query several times in succession and determining
whether the same file and block numbers persist in the output. If so, the
system will likely benefit from a finer granularity of cache buffer chains. In
order to do this, the value of _db_block_hash_buckets simply needs to be
increased accordingly, and the instance restarted.

If a single block is causing the problem, the solution will depend on
the type of block that is contended for. The most common type of block
that undergoes this contention is an index root or branch block, as previ-
ously discussed, and has typically been the most difficult problem to
address prior to Oracle8.

In Oracle8, partitioned objects were introduced to increase the man-
ageability of very large data objects, in addition to providing several per-
formance improvements resulting from partition elimination. A less
common use of partitioned objects is to directly address a problem that
was not solvable prior to version 8—index root block contention. The the-
ory is that if the root block is heavily contended for, but blocks further
down the tree are not as highly contended for, then the index would bene-
fit from having multiple root blocks in order to distribute the load over
more blocks.

The multiple root blocks are created using standard partitioning of an
index, where the partition key must be the leading edge of the index key.
Although the index itself may well be very small (10MB, for example), it
may be reasonable to partition the index into as many as 20 partitions.
Although this somewhat increases the complexity of the database layout,
it makes the index very much more scalable that it was before.

In addition to contention for buffers because of high read activity, con-
tention can also result from contention for free buffers. A free buffer is
required to write any new block into the cache, including any changes in
an existing one. The only buffers that are classed as “free” are those that
are not currently pinned and contain no unwritten data (i.e., must not be

CHAPTER 9 SCALABLE TRANSACTION PROCESSING594
dirty). If there are no free buffers in the cache, Oracle must write dirty
buffers to disk in order to allow those buffers to be made available for use
by other sessions.

All these data block writes are performed by the database writer(s),
and so this operation involves an expensive posting of the database writer
in order to clean the dirty buffers. At this stage, the session that requires
the free buffers is waiting for the operation to complete (free buffer waits), thus
increasing the user response time.

If sessions are frequently left waiting for the database writer(s) to per-
form work, this directly impacts the response time for all users. Therefore,
it makes sense to try to keep the cache reasonably clean at all times in
order to preempt the requests for free buffers. This is achieved through the
use of the db_block_max_dirty_target parameter in the init.ora.

Setting this parameter tells Oracle to try to limit the maximum number
of dirty buffers to the specified number. Therefore, whenever the actual
number of dirty buffers rises above this number, the database writer(s)
will start to clean the cache (starting at the cold ends of their respective
LRU chains), until the number falls below the threshold again.

The number of database writers and the number of LRUs relate
directly to Oracle’s ability to keep the number below the threshold. If there
are insufficient writer processes to keep the cache clean, it will not be pos-
sible to keep it clean. In this case, the threshold should be raised or the
number of writer processes increased.

This tuning of the cache also helps to reduce the impact of a check-
point operation. If there are fewer dirty buffers in the cache at the time of
the checkpoint, there is less work to do under the checkpoint.

Redo Allocation. Oracle maintains only one significant point of seriali-
zation,—the redo allocation latch. Recall from Section 6.8.2 that the redo
allocation latch is the only latch that covers the redo buffer. Therefore, the
commit rate of the system is ultimately governed by this latch. Because a
commit is really the only operation that must wait for acknowledgment of
completion, it is very important that the redo management process is as
fast as possible.

There are several mechanisms for mitigating the impact of this serializa-
tion. First, there is the batching of multiple commits into a single “group com-

9.2 TUNING TRANSACTION PROCESSING SYSTEMS 595
mit.” This is provided by default and is not associated with any tuning.
Second, there is the existence of the redo copy latches. During tuning for a
good response time, it is vital that virtually every copy into the redo buffer
occurs under one of the redo copy latches instead of under the redo allocation
latch. Therefore, the setting of log_small_entry_max_size should be kept very low in
transactional systems to force copying under the redo copy latches.

Increasing Batch Throughput
Nearly all transactional systems have a Jeckyl and Hyde existence. During
the day they run many thousands of comparatively tiny transactions,
whereas at night they run a substantially fewer number of very heavy
transactions during the batch cycle. Both of these modes of operation are
suited to different types of tuning, and yet no system outage can be taken
in between in order to change things.

The only approach that can be taken in this situation is to tune the system
for the OLTP users and to accommodate the conflicting batch requirements in
ways that do not affect the online user. In recent Oracle releases, the number
of parameters that can be dynamically altered on the fly has increased dra-
matically. The situation in Oracle8i is that the profile of a session can be dra-
matically altered while retaining the tuning of the remainder of the system.

Of note in the list of parameters that can be changed on the session
level are

• db_file_multiblock_read_count

• sort_area_size

• sort_area_retained_size

• sort_multiblock_read_count

• hash_join_enabled

• hash_area_size

• hash_multiblock_io_count

All of these parameters can be “opened up” to allow far greater resource
consumption by the batch processes. As there are many fewer batch proc-
esses, the additional impact on the system is not as large as that of chang-
ing these parameters for all database connections.

CHAPTER 9 SCALABLE TRANSACTION PROCESSING596
In addition to tuning the batch sessions for more optimal execution,
operational factors must be considered. Perhaps one of the largest impacts
on the throughput of a given batch process is the interaction on it by other
batch processes. The actual form of interference from the other batch jobs
varies from maintaining consistent views of the data to block cleanout and
transaction locks to CPU and disk resource contention.

Keeping batch processes from disrupting each other is quite a chal-
lenge in itself, but certain measures can be taken from the programmatic
and tuning perspectives to make this job easier. The first thing to do is to
carefully analyze the use of transaction locks within the batch programs.
Batch routines should not assume exclusive access to a table unless this is
actually 100 percent true—it only takes one outstanding lock to put the
brakes on any access to a given table. Performing long select...for updates on a
table in batch can be as bad as doing so during full online use.

Related to this is the commit frequency of the program. A commit cer-
tainly has an overhead for the system, but it is very lightweight in compari-
son with the restriction of having large amounts of uncommitted data in the
database. This results in a great deal of consistent read activity for other pro-
grams and several outstanding data locks. Reasonable commit frequency for
batch jobs varies among cases, but committing every 10,000 rows or so is
reasonable for mass updates, and less for more in-depth processing.

Extending regular commits further, the job should also be designed to
be fully restartable. It is almost inevitable that a job will occasionally run
past the normal batch window and into the online processing peaks, at
which times there is no alternative but to kill the job. If the job is not
restartable, this can cause problems that range from manual cleanup to
long rollback operations, and almost always means rerunning the job from
the beginning the next evening.

Batch processing benefits greatly from the use of Oracle Parallel Query.
This extends beyond simply speeding up the individual jobs themselves,
allowing a different perspective to be taken on the organization of the
batch cycle. Without parallel query, a typical batch cycle will employ
“operator parallelism,” which means that the batch operator fires off many
batch jobs in parallel in order to get the most out of the multiple proces-
sors in the system.

9.3 CHAPTER SUMMARY 597
The effect of this disorganized use of the system and database
resources is that a great deal of overhead must be incurred to manage read
consistency. Parallel query allows a different approach to the batch cycle
wherein all the large jobs employ extensive parallel processing to use all
the available processors on the machine. While any one of these jobs is
executing, no other batch is run—the jobs are run sequentially in parallel.

Now that the jobs are running a great deal faster within themselves,
there is no need to have many other jobs running at the same time—they
will complete faster in series without the overhead of consistent read.

9.3 Chapter Summary
Scalable transaction processing is all about careful design, understanding,
and balance. The application needs to be designed to take into account the
number of users and the concurrency required as a result. The application
developer, database engineer, and system administrators need to under-
stand what is required to build a very large, concurrent system. Above all,
the overriding principle is one of balance: Many thousands of database
operations occur every second, and it is only through carefully balancing
the requests and tuning that these operations can coexist.

This chapter has presented several aspects of transaction processing
that need attention. There are plenty of others, however, most of which are
application-specific. Therefore, the important factor in making a scalable
system is to understand the concepts presented in the previous sections of
this book. Once these concepts have been established, and their applica-
tion has become more practiced, most of the problems that arise can be
resolved using logical thought processes.

9.4 Further Reading
Andrade, J. M., et al. The TUXEDO System. Reading, MA: Addison-Wesley, 1996.
Slama, D., et al. Enterprise CORBA. Upper Saddle River, NJ: Prentice Hall, 1999.
Various. Oracle8i Tuning. Oracle RDBMS Documentation.

Chapter 10

Pulling It All Together:
A Case Study

10.1 Introduction
A great deal of detail has been presented in this book about how a large
system is scaled and what knowledge is required in order to build
and operate such a system. In order to demonstrate some of these
concepts, this chapter comprises a case study of a large Oracle/UNIX
system that I have recently been involved in building.

First of all, let’s pose a question: how large is “large”? The answer
is “It depends on when you ask.” The system presented here is consid-
ered to be pretty large at the time of this writing, but it is likely that in
two to three years, this system will not seem very large or very chal-
lenging to implement. The reason for this, of course, is that things
move on, and advances in hardware and software constantly “raise
the bar.”

Luckily for the builders of large systems, customers’ requirements
have an amazing ability to track these advances in system capability
almost precisely. This is often a result of compressed timescales for the
development and implementation of a new system, rather than an actual
increase in processing requirements. The net effect is that there will always
be a requirement for very large systems.
599

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY600
The system in this case study is considered to be large by today’s
standards for the following reasons:

• It runs on the largest UNIX platform currently available, which is fully
populated.

• Benchmark tests demonstrated a latch acquisition pathology that cer-
tain systems could not process, regardless of CPU capacity.

• It supports a large number of concurrent online users (2,400).

• It requires a large online database (450GB) and uses a total of 3.2TB of
physical disk.

In addition to providing good response time, this system must also be
highly available. This required further considerations to be made when
determining the system’s configuration.

10.2 Engagement Overview
10.2.1 The Business
The client has a combination of smaller offices and larger centers, situated
in various locations around the world. The majority of these are in North
America and the United Kingdom, with a lower number at other locations
across Europe. The system described in this chapter refers only to the
North American region of the business, because at the time of this writing,
the UK region is not yet using the new system.

There are essentially three different types of users of the system.

1. Point-of-sale agents, thinly distributed over a large geographical area
(all 50 states, plus Canada)

2. Sales agents, collected into a small number of large “sales centers”

3. Corporate users, mostly based at corporate headquarters

In total, there are more than 3,000 potential users of the system, with up to
2,400 connected at any one time. Of these connected users, most are active
at any one time, normal think times excluded. The smallest collection of
users in any one physical location is one, ranging up to several hundred in
the sales centers.

10.2 ENGAGEMENT OVERVIEW 601
The previous system used by our client was based on several IBM
mainframes and 3270-type terminals, and was deemed to be too inflexible
for business needs. The major reasons for this were the age of the applica-
tion and the complexity of making changes in it. The maintenance costs of
multiple mainframes and the impending Year 2000 problems in the appli-
cation were also factors. Therefore, our client sought a partner for the
development of a new application to support its business.

Perot Systems Corporation was successful in gaining the business, and
was contracted to develop and implement a fully customized application
for the client.

10.2.2 Perot Systems Corporation: The IT Partner
Perot Systems Corporation is a leading information technology services and
business solutions company, serving clients in various industries, including
financial services, health care, energy, and travel and transportation.

10.2.3 The Application
The client needed a fully customized application to support their business
function. The application was not developed completely from scratch,
however, and a little history is required to understand its current incarna-
tion. For clarity, I will refer to the new application as “Silverstone” and to
the previous application as “Monaco.”

History of the Application
The application began as a project for a previous client of Perot Systems.
This previous project was very large and was of vital importance to the
business of the client. The client’s company was formed as the result of
many mergers and acquisitions, resulting in as many as 30 disparate sys-
tems in nine separate countries all loosely connected using software
bridges. The tracking of data and product in this “system” was nearly
impossible, and financial management was incredibly complex and inflex-
ible. The company contracted Perot Systems in 1992 to resolve these prob-
lems, resulting in the development of Monaco.

The goal of the Monaco project was to consolidate all the systems and
business processes into a single image of the company. The development

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY602
and implementation of the system had to be complete in two years, and this
was the driving force behind the development tools and project planning.

The development process involved the production of a single applica-
tion, consisting of 5,300 modules, from scratch. The total development
time was more than 300 person-years, with 330 developers working dur-
ing the peak.

Because of the tight schedule, the analysis and development were
attempted using CASE Designer and CASE Generator to automate much of
the programming effort in the generation phase. This approach not only
saved in programming effort, it drastically improved the consistency of the
code that was produced. If something was wrong, it was wrong every-
where, and if it was correct, it was correct everywhere. This led to an online
application that existed purely as an SQL*Forms 3.0 application, with
handwritten batch programs to complement it. The entire application was
centralized and two-tier in nature, with the Forms binaries running on fat
UNIX “clients” and the database running on separate hardware.

One of the overriding design goals of the Monaco application was to
make it compatible with Oracle Parallel Server. To be precise, it was
designed to be a two-node OPS application, with sales and back office
functions executed on one node, and the point-of-sale agent functions exe-
cuted on the other. This was a conscious decision from day one, because
we knew that even the largest available Oracle database server platform
was not large enough as a single machine.

As the complete application approached reality and the sales agents
were using their part of the application in production, it was clear that
even two nodes of the chosen platform were not going to suffice. In fact,
because this was prior to any application tuning effort, the best estimates
were showing a requirement for ten nodes. Even if the application tuning
effort halved the resource requirement of the application, it would still
require more than twice the estimated hardware.

The hardware sizing estimates had been made on the basis of an exten-
sive benchmark of the platform against a mock-up of the actual applica-
tion, in parallel with the development of the real application. While a great
deal of effort was expended in making this as accurate as possible, this
example shows the difficulty of attempting to size a system accurately
before the application is written.

10.2 ENGAGEMENT OVERVIEW 603
The hardware requirements of the application meant that a new hard-
ware platform was required in order to proceed with the rollout. At this
stage, a benchmark suite was constructed using the application, in order to
simulate the workload as it actually appeared. The new platform was
proven and was implemented during a six-hour maintenance window.

The application was running on a two-node cluster at this stage, using
Oracle7 release 7.0.15. As the rollout progressed, other problems became
apparent. These problems were not gradual, but sudden, brick-wall prob-
lems, and there was rarely any warning. Many of them were bugs in the
parallel server code and the vendor lock manager, whereas others were
fundamental scaling difficulties in the base Oracle product at that time.

Most notable among these difficulties was the poor scalability of the
library cache in this release. The certification process for the replacement
platform had omitted a crucial workload attribute in its testing—parse
calls. Because the simulation was implicitly “too efficient” by virtue of the
fact that it did not close cursors but simply reexecuted the same cursors, it
did not stress this portion of the Oracle product adequately.

This omission was, of course, understandable, because it is not within
the scope of customer benchmarks to stress test the entire vendor product
set. Or is it? Lessons learned from this exercise led to the desire to test the
system in a configuration that mirrored real life. Doing this was the only
safeguard against unexpected problems.

The net effect of this testing was a great deal more benchmarking, with
a subsequent upgrade of the hardware to a three-node cluster. This marked
a departure from the application design, but it was a necessary move in
order to provide more bandwidth for the processing of the workload. This
kind of change, however, requires extensive application rewrites. These
changes were made in conjunction with extensive database reconfigura-
tion in order to reduce the ping rate between the database servers.

The database was still running on release 7.0.15, but now it was known as
7.0.15.Perot owing to the existence of a special branch of the Oracle source tree
to support this system. This branch had to be maintained by Oracle until all
the patches on the system had been rolled up into a production release. It was
only when release 7.3 went into production that all 49 of the major patches,
and countless other “minor” patches, were present in a commercial release.
This was the first upgrade of the Oracle codeset for this application.

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY604
During all this hardware testing and implementation, parallel efforts
were proceeding to produce an application with a reduced footprint, and
one that cooperated with Oracle7 a little more. Notable in this effort was
the ability of Forms 3.0 to generate dynamic SQL by default—filling up the
shared pool—and its overzealous closing of cursors that would prove use-
ful later. Extensive application rework was done to work around these
problems, resulting in most of the application being at least “retouched by
hand” after the generation process. All the major forms were rewritten
from scratch, using a significant amount of user exit code to solve the more
difficult problems. In addition, the introduction of the third parallel server
node meant that a good deal of the code had to be revisited once again to
make the appropriate access changes to reduce the ping rate on the data-
base servers.

The Monaco project was a technical triumph, but not without a great
deal of pain and hard lessons. Hopefully this book will allow you to skip
some of those lessons. As a final word on Monaco, it is worth mentioning
that the system recently underwent a further upgrade. Hardware has
become more powerful since the system was fully implemented, and now
the Monaco system can be housed on a single node, along with a single
failover node for availability. This upgrade was performed, but not with-
out significant testing first—a benchmark was run for several months
prior to the rollout of the new platform. The result of the upgrade is that
Monaco now easily fits onto a single database server, confirming that idea
of the constant redefinition of “large.”

Required Changes
The new client viewed the Monaco application as an ideal starting point
for the functionality and flexibility they required. The two clients were in
the same business (in separate markets), so some of the core functionality
was already in place. However, the business model followed by the two
companies was quite different, and several changes needed to be made to
Monaco before it was suitable for the new client. The changes were exten-
sive in some functional areas, although the fundamental design of the
application remained sound and provided a solid base to build on.

In addition to the business requirements, Silverstone had technical
requirements that were necessary in order to deliver enhanced functional-

10.2 ENGAGEMENT OVERVIEW 605
ity at higher transaction rates. As a rough estimate, the new system would
require approximately four times the throughput of the previous system.

The first of these changes was to start the migration from two-tier to
three-tier. This was necessary in order to control the volatile “spikes” in
activity observed during the operation of Monaco; these spikes were not
controllable in a two-tier configuration. All new major functional areas
were written as Tuxedo services, called by Forms using user exits. All
major commit blocks were pulled out of the forms and implemented as
Tuxedo services. However, all users still connect directly to the database
and perform the majority of their queries directly, and the transaction
management all occurs in the Oracle server.

The total effort of migrating to Silverstone was huge and far-reaching.
For example, Monaco had just over one million lines of Pro*C code in
addition to the Forms code. Silverstone also has one million lines of code,
but only 276,077 of these are original code, and more than half of these are
comments. For the Forms code, line counts are less meaningful owing to
the fact that many lines of the text source are simply defaults from Forms.
However, the old application had 438 forms, compared with 567 in Silver-
stone. Of these forms, 30% of the code is brand new—some 3,500,000
lines—performed by a large development team that peaked at 150 people
during the main coding effort.

10.2.4 The Technical Solution
Supporting Silverstone requires a special technical implementation. Bear-
ing in mind that the workload is so much greater than that of the Monaco
system, there is clearly some room for things to go wrong if precautions
are not taken. Those precautions were taken for the implementation of the
new application, including careful sizing, platform selection, availability
design, and a well-planned Oracle implementation.

Hardware
Given the size of the processing requirement, the planning and implemen-
tation of the hardware solution had to be flawless. The lessons from
Monaco were not to be revisited, and so everything associated with the
new implementation was approached with a healthy dose of paranoia.

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY606
The hardware was a prime example of where a formal process was fol-
lowed, consisting of

1. Initial design

2. Sizing

3. Benchmarking

4. Final design

5. Implementation

Initial Design. The initial design of the Silverstone hardware solution
took the best parts of the implementation for the previous client and cre-
ated deliberate solutions for the undesirable parts. High priorities
included

• Rapid platform failover

• Robust backup capability

• Low latency

• Simplicity

These elements were all incorporated into the initial design, leaving the
finer details of availability until a later date. Initial sizing was performed
prior to this stage in order to do a sanity check on the proposed architecture.

Sizing. Detailed sizing followed the initial design, where only a granular
sizing effort was undertaken. During this stage, very detailed sizing infor-
mation was derived from all the available data points, including

• Business metrics to determine transaction rates

• Known footprint of some portions of the application

• Estimated footprint of new portions of the application

The many metrics were taken together in a large spreadsheet, and a con-
ceptual machine size was produced, using the Monaco system as a base-
line. This included

• Database size

• Required disk spindles for I/O

10.2 ENGAGEMENT OVERVIEW 607
• Required I/O controllers

• CPU capacity for database servers and clients

• Memory capacity for database servers and clients

All derived results were weighted according to an error tolerance, and the
results were used in the next step.

Benchmarking. Benchmarking (or platform selection, in this case)
involved two distinct processes:

1. Paper evaluation

2. A competitive benchmark

The paper evaluation took the data from the sizing exercise and applied it
against a short list of ten potential hardware platforms. For completeness,
this list did not include only UNIX servers. Each platform was then given
a rating against each of several categories, including capacity and other
attributes such as reliability and the support capability of the vendor. The
end result of this evaluation was the selection of two platforms for a com-
petitive benchmark. A benchmark was then developed that would repre-
sent the future operation of the application.

In order to best represent the image of the client’s business, the bench-
mark required an accurate portrayal of the data in the database, in addition
to a simulation of the application. In fact, the buildout of the database took a
great deal more effort than the actual simulation of the user sessions.

The simulation of the user sessions was implemented using the Per-
formix/TTY product, heavily customized to provide the level of control
desired for the benchmark. Once the customization effort had been com-
pleted, the definition of the user simulation was fairly straightforward.

The final piece of preparation for the benchmark was the porting exercise.
In addition to porting the application to the target systems, the database also
had to be built on each native platform. In order to ensure that all was equal in
the database, it was built using the same file layout, the same block size, and
the same scripts. The net result was an identical database on each platform,
apart from the operating system dependent differences in the files.

During the building of the benchmark suite, a decision had to be made
as to which version of Oracle should be used. The testing was to begin in

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY608
earnest at the beginning of December 1997, just five months after the
launch of the initial version of release 8.0. In order to protect the progress
of the benchmark from unknown bugs in a very new release, version 7.3 of
Oracle was adopted for both platforms.

The benchmark was executed against both successful platforms from
the paper evaluation, over a period of 12 weeks. Each vendor was allowed
six weeks to complete the series of tests, strictly controlled and subject to a
previously documented tuning fairness policy. This policy sets out exactly
which changes must or must not be carried out at both sites. This policy
ensured that an apples-to-apples comparison could be made without any
unfair advantages.

The unsuccessful platform was the first to be tested.1 The testing went
very well, particularly from a reliability standpoint. Several application
scaling problems arose during this phase, as the user count approached
3,000. These problems were solved, and the tests were reexecuted.

Once the problems had been resolved, certain limitations of the hard-
ware platform became apparent at high load. Although it is possible that
the limit lay just beyond that anticipated workload, this was a definite risk
associated with choosing this platform. The problem was in the memory
latency of the system and its subsequent ability to maintain cache coher-
ency under heavy latch duress. The limit was near the 200,000 gets/s rate
on the cache buffers chains latches, where the system simply could not process
any faster. In fact, the processors were not taxed at full loading, and some
were taken out to prove this observation. If anything, the latch processing
capability improved at this stage. From reading Chapter 2, it is likely that
you will be able to determine which hardware architecture this system is
built from, given that it has memory latency challenges.

The second system to be tested was very different from the beginning. In
fact, it was so different that a full transactional audit was carried out, com-
paring every operation on both systems, in order to sanity check the per-
formance difference. This audit did in fact show a difference, but not the

1. The identity of the unsuccessful vendor is not disclosed: I do not want any derived con-
clusions of superiority of one over the other. All conclusions from this testing apply only to
the versions of the hardware and of Oracle (7.3) used in the testing. This requirement is
likely to be different from any other, and other cases could suit this platform very well.

10.2 ENGAGEMENT OVERVIEW 609
expected one: The second system had an index built on a ten-block table.
Even towing this boat anchor (it doubled the cache buffers chains latch acquisition
rate to 500,000 gets/s), the second system processed the workload with a
much more even response time and greater transactional throughput. The
second system was clearly a good deal faster than the first. On exit from sat-
isfactory fault insertion testing, and with the right commercial deal secured,
this vendor was successful in securing the business.

The successful platform was the Hewlett-Packard V2250, a point-to-
point SMP system. The system demonstrated itself to be well balanced
from a memory latency perspective and capable of very rapid cache coher-
ency operations. Despite having 16 processors, often all trying to spin on a
single latch, the system did not exhibit negative scaling tendencies under
high load. This made it eminently suitable for the latch-intensive work-
loads we were presenting to it. Large OLTP systems often exhibit this kind
of latch-intensive workload profile as a result of the concurrency require-
ments of many online users.

From a procedural perspective, the entire process was documented from
start to finish. Prior to the benchmark, an approach document was developed
and agreed on by all parties. This was a 91-page description of everything
associated with the benchmark, including rules, application descriptions,
hardware architectures, project planning, operational manuals, and so on. On
termination of the benchmark, an additional 61-page document was pro-
duced, including all pertinent results and observations from the testing. This
was made possible by keeping a daily diary of all events at both sites, in order
to recall all events correctly. In addition, the second document included a
weighting table that could be applied to all the results (see Table 10.1).

For this particular exercise, this weighting table was appropriate. The
only strange thing (for some) was that price was considered the least
important weighting factor; in this case, where choosing the wrong plat-
form could result in crippling downtime for the business, price appeared
some way down the list.

Final Design. After the selection process had been completed, the final
design phase was started. This stage determined the actual configuration of
the production systems, including all availability options and ancillary

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY610
systems. In the case of the Silverstone systems, this stage dramatically increased
the inventory from the clustered database server and three application servers.
The final production inventory includes some 15 servers and more than 3TB of
physical disk. A good deal of the additional disk (the actual size of the database
is 450GB) is used to implement several levels of fault tolerance:

• Loss of single disk

• Loss of mirrored pair

• Loss of disk cabinet

• Loss of entire cluster

• Logical loss of data (table level)

• I/O failure causing corruption

In fact, the only situation in which the production system would need tape
backups to be restored would be a full disaster that took out all the pro-
duction hardware. The logical view of the storage architecture is shown in
Figure 10.1.

Table 10.1 Silverstone Benchmark Weighting Factors

Factor Weighting Factor

Performance 5

Software stability 5

Reliability 5

Recovery time 4

Vendor responsiveness 4

Growth/scalability 4

Vendor experience in high-end clusters 3

Operating system environment 2

Systems management 2

Price 1

Platform longevity 1

10.2 ENGAGEMENT OVERVIEW 611
Each of the disk objects represents a 450GB database “copy,” thus tota-
ling 2.7TB of physical disk. Only one of these—the mirror copy—is exactly
current with the production database. The rest of the disk regions are at
various levels of physical and logical distinction from the online database.
First of these are the two BCV (EMC Timefinder snapshot technology, see
Chapter 2) copies of the database. These snapshots are taken twice every
24 hours in order to implement the reporting requirement, the backup
requirement, and the recovery requirement.

In the early hours of the morning, a snapshot of the database is taken. The
procedure is to put the tablespaces into backup mode, copy the physical disk to
one set of the BCV volumes, and then take the database out of backup mode.
The copy on the BCV volumes now just look like a restored hot backup. These

BCV 1
(Reporting)

BCV 2
(Online Disk Backup)

Offline Tape Copy

Host 1

Host 2

Host 3

Production Mirror

Hot Standby Mirror

Figure 10.1 Silverstone storage architecture

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY612
volumes are mounted on the secondary machine of the cluster and rolled for-
ward using the archive logs from the production database. The database is then
opened and several reconfiguration steps are taken, including:

• Setting a new database name

• Building rollup tables

• Building decision support indexes

• Rebuilding rollback segments

• Redefining temporary tablespaces

• Tuning initialization parameters for query-intensive work

• Making most tablespaces READ ONLY

This database is now more focused on heavy query work, although the
block size cannot be enlarged during this process. When the reconfigura-
tion is complete, the reporting database that exists on the other set of BCV
volumes is shut down, and the new one is started up in its place. There-
fore, the reporting facility is refreshed every 24 hours, with only a handful
of minutes of downtime on each refresh.

The former reporting volumes are then used as the targets for another
BCV operation from production. These volumes are copied off to tape dur-
ing the day from a small, dedicated system. The disk volumes remain for as
long as possible during the business day in order to allow rapid recovery
from a complete failure of the primary production volumes.

In addition to the backup and reporting volumes, another set of mir-
rored volumes are used for further protection against lengthy failures.
This set is refreshed from the production volumes every few weeks and is
kept current with the production database through the use of the Oracle
hot standby database functionality. As archived redo logs are produced in
production, they are automatically sent over to the standby system for
application to the standby database.

In the case of a failure of many disks in production—even an entire
disk cabinet—the hot standby system can be brought up in a matter of
minutes. This would compare with many hours if a tape restore were
required. The protection provided by each portion of the storage architec-
ture can be matched up against the claims made at the beginning of this
section, as shown in Table 10.2.

10.2 ENGAGEMENT OVERVIEW 613
In fact, the design of the storage system remains the only point of
potential problems in the event of failure, and this exists in any database
system. If the redo logs become corrupted, the contents of the logs will be
propagated to all regions of disk, thus spreading the corruption. This does
not present a great deal of risk, because

• The hot standby instance is likely to detect the log corruption and com-
plain before it becomes a problem.

• The reporting database is available regardless and is a maximum of 24
hours old.

• The backup volumes provide a clean image prior to the corrupt logs.

Once the detailed design had been completed, the orders were placed for
the actual production system.

Hardware Implementation. On delivery of the production system, the
implementation phase could begin. In many respects, this phase was a
good deal like an extended benchmark: The systems were installed and
then extensively tested during the configuration phase. This testing was a
deliberate and planned event, classified as “extended benchmarking,” and
is highly recommended for systems that require high availability. Many
lessons were learned every day of this process, which provided a great
deal of additional confidence as the go-live date drew near; through these
lessons, a well-trained group of technicians emerged.

Table 10.2 Storage Protection

Protection Provided by

Loss of single disk Online mirror

Loss of mirrored pair On-disk BCV copy

Loss of disk cabinet Hot standby instance

Loss of entire cluster Hot standby instance

Logical loss of data (table level) Reporting database (with up to 24 hours logical
record loss)

I/O failure causing corruption Hot standby instance

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY614
Many problems were also encountered during this time. The difficulty
of installing a new, complex system should never be underestimated. Even
the configuration tasks that should have been simple were difficult
because of the scale of the operation.

During the configuration of the system, time was spent laying down
the infrastructure to control change on the system. This involved the
installation of the Concurrent Versions System2 (CVS), a public-domain
source code management system. Source control systems such as CVS are
not limited to program source management and can be used for version
control of all the configuration files on a system.

Several different areas of the system were put under CVS control:

• Oracle configuration file (init.ora)

• Operating system configuration files

• All scripts

Owing to the client/server nature of CVS, the change repository for these
files was stored on a development machine on the other side of the coun-
try. This also allowed a kind of disaster recovery capability in that all the
changed files were available at short notice from a remote site.

Oracle Implementation
The Oracle implementation was tightly coupled with the hardware imple-
mentation and was not considered a separate task. A good example of this
is the implementation of the backup and reporting function, as detailed
above. These processes were so tightly integrated into the hardware con-
figuration that skills in both areas were essential in implementing these
parts of the system.

The implementation consisted of taking the lessons learned during the
benchmarking process and merging them with operational requirements
and current sizing demands. The result was an initial plan for the physical
configuration and tuning of the production database instance.

Partitioning. The immediate problem with this system was the sheer size
of the database. At 450GB, the OLTP database would have been considered
quite a large data warehouse just a few years ago, and managing such a

2. See www.cyclic.com.

10.2 ENGAGEMENT OVERVIEW 615
large database in a 24\7 environment presents several challenges. All these
challenges revolve around the time taken to scan the data in order to

• Update statistics for the cost-based optimizer (ANALYZE)

• Build/rebuild indexes

• Purge old data

• Maintain efficient batch access (full table scans)

The answer to all these problems is to use the Oracle8 partitioning option
to effectively reduce the data set that is worked on at any one time.

One table in particular was estimated to reach a size of 80GB after one
year in production, so this was clearly a target for partitioning. The table
was divided into ten partitions, making the average size of each partition
8GB. Although still large, this made the management of this table much
more straightforward.

The table partitioning keys varied, depending on the reason for parti-
tioning. In general, it was not possible for partitioning to be based on date
range for this application. It was more practical to partition by other
means, such as the station ID for a given user. While this limited the ability
to roll old partitions out of the database as a purge mechanism, it allowed
maintenance to be carried out on a subset of the data at one time.

As detailed earlier, index partitioning can also be used to alleviate con-
tention for a given block in the buffer cache. This was found to be the case
for one of the most heaviliy used tables in the database, and so a parti-
tioned global index was created over the nonpartitioned table in order to
spread out the access pattern. This is described later in this chapter, in the
description of rates engines.

Tuning. The tuning exercise retained many of the philosophies of the
benchmark tuning exercise. The benchmark was the ideal system for tun-
ing, and much of the derived wisdom was applied directly to the produc-
tion tuning, specifically

• Large number of hash buckets for the buffer cache in order to mini-
mize hot chains in the cache. Approximately one chain for every buffer
in the cache means that it is less likely to have more than one hot block
on a single hash chain.

• Buffer cache LRU latches set to nearest prime number greater than the
number of CPUs.

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY616
• db_block_max_dirty_target kept at 5% of available buffers. Combined with suf-
ficient database writer processes and deep checkpoint batches, the
checkpoints are kept short and sweet.

• Plenty of parallel recovery capability to keep system failover times low.

• Very low log_small_entry_max_size (8) so that copying is always done under redo
copy latches rather than under the redo allocation latch. Number of redo
copy latches (log_simultaneous_copies) set to one per CPU.

• One event set: “4031 trace name errorstack.” Set to enable logging of shared
pool problems in the alert log file.

• spin_count set to maximize latch concurrency, while keeping CPU usage
to a minimum.

Overall, the tuning is kept as simple as possible. Once in production, a
database is very difficult to tune. Tuning presents risks to the operation of
the production database, potentially causing unscheduled downtime
because of emergency reversal of changes. The database is tuned only
when there is a specific problem, which is a very rare event after the initial
implementation.

SQL*Net. The exclusion of the listener.ora and tnsnames.ora files from the CVS
repository may appear strange at first. In fact, they are not required to be
version controlled, because they are never edited by a person. Instead,
these files are generated by a script (that is checked into CVS), which cre-
ates the desired listener.ora and tnsnames.ora configuration files on demand. This
eliminates the tedious configuration of these files, which can quickly
become a lengthy and error-prone process when many networks are used
to carry client/server traffic.

In addition to the generation script, an rdist3 configuration was devel-
oped that allows automatic distribution of the generated files to the correct
hosts.

3. rdist is a utility included on most UNIX variants. It can be configured to distribute multi-
ple files to many different hosts, with custom locations and treatments on each. Once set
up, rdist is a single command that takes care of all software distribution.

10.2 ENGAGEMENT OVERVIEW 617
The Rollout
Prior to actually connecting any real users to the system, the application
was driven against the production system using a modified version of the
benchmark simulator. This immediately uncovered a large number of
unintentional full table scans and other problems. With these problems
rectified, the user connections could be started.

The user rollout was deliberately staged over several weeks. In this
way, bad code and scalability challenges could be determined before
they became a problem and could be fixed before the next set of users
came online. It is estimated that the footprint of the application was
reduced by 50% during this time, and it is certain that a “big bang”
approach would have resulted in a system driven way beyond its
capacity.

Challenges
Any large implementation brings with it a variety of challenges. However
careful the preparation, a certain amount of tension remains during the
first stages of the rollout. Prime among these concerns are

• How accurate is the sizing?

• How many bugs have slipped through testing?

• How reliable are the hardware and software?

• Are the initial tuning figures in the right ballpark?

In the case of Silverstone, we came out pretty clean. This does not mean
that everything was perfect, but fortunately all the technical problems
could be classified as teething problems and understandable parts of a
new implementation.

Application Tuning. The vast majority of the teething issues can be cate-
gorized as “application tuning.” When so much code changes during
heavy production use, it is inevitable that some of it will not perform as
well as it should. In fact, a tuning team was initiated even before the appli-
cation was put into production, and this was simply stepped up in priority
when the application became live.

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY618
One part of the system that was to benefit from the tuning exercise was
the Tuxedo service known as the “rates engine,” which returned pricing infor-
mation for specific product combinations. This service is called on four times
for every sales inquiry and once when the product is actually sold. Therefore,
this service is called a great deal during the operation of the system.

The initial code for the rates engine used dynamic SQL to generate spe-
cific queries for each request. The effect of this was to deplete the 600MB of
memory in the shared pool in 15 minutes flat, along with the enormous
amounts of hard parsing that were necessary for all these requests.

The dynamic SQL was the first thing to change in this service, adopt-
ing a fixed string of bind variables that were filled in at runtime. This
helped the global system a great deal, with the shared pool never filling
up during the production day. The hard parsing was well down, and the
dictionary cache was allowed to grow about ten times larger than it previ-
ously had been. Therefore, the whole system ran a great deal more effi-
ciently than before.

Unfortunately, the performance of the rates engine itself was still not
perfect, and it was still using about 40% of the database server CPU. In
order to rectify this, the following steps were taken:

• Caching of some frequently used data on the client side

• Standard SQL tuning

• “Bucket”-based bind variable allocation as described earlier in this
book

• Partitioning of an index to create multiple root blocks and alleviate
contention on the buffer chain covering that buffer

The net result of this effort was to bring down the server-side CPU utiliza-
tion to around 10 to 15 percent, and to halve the response time of the
engine itself. In addition, the response times of the queries were now more
predictable because of the removal of several contention points.

Oracle Challenges. In addition to the application tuning process, the
management of Oracle itself presented a variety of challenges. Foremost
among them were the cost based optimizer (CBO) and the difficulties of
maintaining stable response times when data volumes and ratios were
exploding every day.

10.3 CHAPTER SUMMARY 619
When a system first goes live, it is likely that it will be fully populated
in reference data but will have very little transactional history. Therefore, as
this transactional data grows, the following implications affect the CBO
and how it approaches query plans:

• Index B-tree depths

• Table sizes

• Ratios of table sizes (reference:transactional)

• Data value skew

As a result, each day will herald new surprises in terms of queries
“going bad,” even if you stay on top of analyzing all the objects in the
database. In fact, a few weeks into the rollout, it was deemed less risky to
terminate the regular analysis procedure, and simply analyze when
things were known to change. This downside of the CBO is one that will
go away starting with release 8.1, in which optimizer plans can be frozen
once they are satisfactory. Regardless of this, it is still very good practice
for the developer to code all SQL statements with hints, because it is
likely that the developer has a good understanding of how the data will
look in production.

From a reliability standpoint, Oracle has been solid. Compared
with the experiences of 7.0.15.Perot, the implementation and operation
of Silverstone have been like a breath of fresh air. Minor problems have
been encountered, but none of them could be considered serious and
none merited an upgrade. Although this could be attributed to Oracle8
being less of a quantum leap than Oracle7, it is more likely that Oracle
learned some hard lessons from the Oracle7 days. Oracle7 could be
considered Oracle’s transition into the very large-scale database mar-
ket, and adjustments in process were sure to be required for this kind
of step forward.

10.3 Chapter Summary
The implementation of Silverstone has been a huge success. Well-placed
paranoia up front ensured that the majority of risk was removed from the
project, and good planning ensured that delivery was complete and on

CHAPTER 10 PULLING IT ALL TOGETHER: A CASE STUDY620
time. The side effect of having a complete delivery is that time and atten-
tion could be applied to observing the production rollout, thus allowing
any problems to be rectified very quickly.

The road from sales proposal to implemented product was long and
hard, and was made possible by the very best people. At the end of the
day, nothing this large can succeed without the skills of many good peo-
ple. Rather like this book, the skillsets required to complete such a project
range from the workings of the hardware right up to higher-level knowl-
edge of software products and business processes. For that kind of spread,
a good team is essential.

P A R T V I

Further
Considerations

Chapter 11

Building a
Successful Team

11.1 Introduction
In the summary of Chapter 10, mention was made of how important a
good team is to a successful system implementation. This aspect is so
important that I have devoted this chapter to a discussion of my experi-
ence regarding what makes a strong team and how to go about finding the
right kind of people to make up such a team.

The term “team” is used loosely here. Many people contribute to the
building of these systems, from hardware engineers to end users. All of
these people are vital to the construction of a world-class system. My own
experience has been mostly in the teamwork required for the technical
portions of the system—hardware through to application development.

Before getting into the guts of the team, let’s spend a few moments
talking about management.

First, let’s dispel a myth. Good management does not necessarily make
a good project. The opposite, however, is true: bad management will make
a bad project. It doesn’t matter how good a manager is if the people man-
aged are not capable of thinking for themselves and acting on their own
initiative. The best managers do not spend their days micro-managing
their people—they spend it protecting their people and guiding them
through the higher-level processes.
623

CHAPTER 11 BUILDING A SUCCESSFUL TEAM624
The best managers have the following common attributes.

• They do not believe that managers are superior to team members.

• They will listen to and respect the opinions of team members.

• They do not engage in a delivery role in addition to their management
responsibilities.

• They have backgrounds in technical delivery.

• They have an “open door” policy.

• They lead by example, especially when the going gets tough.

• They are aware that managers don’t necessarily “know best.”

• They protect team members from bureaucracy, allowing them to do
their work.

In short, the best managers often appear to be members of the team, whose
responsibilities within the team are to administrate events that are external
to the team and to suggest direction. Clearly this is not always possible,
and managers rely on the quality of the team as much as they rely on them-
selves. However, it is clear that poor managers are those who are

• Adversarial

• Arrogant

• Stupid

We’ve all worked for such managers at one time or another.

11.2 Immediate Team Attributes
The traditional view of a team is the immediate team—the people with whom
you work directly and who you are involved in recruiting. This section
describes my personal opinions on building a successful immediate team.

Members of successful teams, like successful managers, often have
similar attributes, including

• Self-motivation

• Lateral thinking

• Responsibility

11.2 IMMEDIATE TEAM ATTRIBUTES 625
• Steep learning curve

• Good communication skills

• Good work ethic

Often, this type of person is difficult to find. In fact, with the explosion of the
information technology market, the average individual on the market is of a
generally low quality. The reasons for this are numerous but can be fairly well
attributed to short periods of service at each of a succession of employers.

The net result of this low quality, combined with massive demand, is
that you typically get to choose from a selection of overpaid, underskilled
individuals. This can lead to an enormous amount of frustration and
wasted time when trying to find the right people for a new team, because
huge numbers of interviews are necessary to get the right people on board.
For this reason, it is often worth taking a different tack: Don’t look for
skills, look for attributes.

By making attributes your first priority, it is likely that there will be a
skills deficit in the successful candidate. Don’t worry about this, because a
person of the right caliber will soon be running with things that the so-
called skilled person would never be able to handle.

Let’s run through the desirable attributes in more detail.

Self-Motivation
The motivation of the individual is critical to the success of the individual,
the team, and the manager. The impact of poor motivation spreads far
beyond the individual, potentially afflicting the whole team. Poor motiva-
tion on the part of any individual increases the workload of all the other
team members for a number of reasons. First, the manager must spend an
unacceptable amount of time trying to inject some motivation into the
individual, leaving less time to perform tasks that benefit the entire team.
Second, a lack of motivation is infectious. At the very least it will lead to
resentment from the more motivated members and potentially can eat into
their own motivation.

Self-motivated individuals allow a team to run almost on auto-pilot. If
they also have the right skills, the motivated will never be idle; the
manager will not need to be involved in allocating the trivial tasks. Taken
one step further, the highly motivated individual will latch onto larger

CHAPTER 11 BUILDING A SUCCESSFUL TEAM626
projects that need work, even though they are not immediately obvious to
others. This kind of preventive medicine for the system will lead automat-
ically to a more stable system.

Lateral Thinking
Many problems persist because there is no way to solve them using stand-
ard techniques. These problems can be solved only by “thinking out of the
box”—flanking the problem from some other direction. If an individual is
not able to think this way, much of the problem solving will be left to other
individuals on the team. This can cause problems when trying to run an
on-call rota, because the nonlateral thinker will nearly always end up call-
ing another individual to solve the problem.

Lateral thinking, however, is something that can be taught to some
degree. Much of the method of lateral thinking is having an expanded rep-
ertoire of approaches that can be used in place of the norm. Some invest-
ment in mentoring with a true lateral thinker can improve the nonlateralist
a great deal.

An experienced lateral thinker will appear to have a “sixth sense” in
finding the root cause and solution to a problem.

Responsibility
Responsibility for both one’s own actions and the system in one’s care are
essential attributes. Nobody wants an individual on their team who will
walk out on a problem at five o’clock. Likewise, being available to help
one’s peers in times of trouble is good for team spirit. However, being
responsible does not mean being staid—it’s also important to have some
fun while being responsible.

Steep Learning Curve
Building and operating a large system is complicated. Therefore, even
very experienced individuals must maintain a steep learning curve if they
are to continue being useful; the day will never come that you can stop
learning. In the case of the lesser experienced individual, the learning
curve is essential. There is a magic period of about 3 months where an
individual should at least be able to get around all the systems in the net-

11.3 VIRTUAL TEAM ATTRIBUTES 627
work and understand the whole configuration to the point of asking intel-
ligent questions.

Good Communication Skills
Perhaps one of the most difficult attributes to acquire, communication is a
tricky skill. This skill is especially important when dealing with people
who are exterior to the project—support personnel, for example. Commu-
nicating all the pertinent information in a concise way is very important
when there is so much information to pass on. Compounding this is the
fact that with so much activity going on, it is easy to forget some of the
required communication. Luckily, e-mail saves the day in many cases,
because it provides the perfect method for short, FYI exchanges.

Good Work Ethic
First, what is hard work? I would assert that hard work does not necessar-
ily equate to spending a lot of hours in the office, but rather to how effi-
ciently those hours are spent. Often, of course, hard workers will spend
many hours in the office and apply themselves efficiently during that time.

Closely linked to motivation, hard work is the thing that turns ideas
into reality. When the hard work is all mental and not physical, it becomes
even more important to keep the level of effort high. I’m sure a neurologist
would laugh, but I believe the human brain to have a memory hierarchy
similar to that of a computer system. If the activity level is diluted, the
cache warmth will be poor, and the throughput will be an order of magni-
tude slower. This is evident when one is trying to write a complex pro-
gram with constant interruption. An individual who is not scared of hard
work will produce far greater results than one who is.

11.3 Virtual Team Attributes
The virtual team includes all the external personnel required to put a large
system together, such as

• Software support personnel

• Hardware support personnel

CHAPTER 11 BUILDING A SUCCESSFUL TEAM628
• Consultants

• Application developers

• Kernel engineers

When building and operating the system, all of these people could be
required to perform some tasks at your request, and vice versa. Therefore,
they form a virtual team around your immediate team.

Often there is no choice as to who is assigned from external companies.
However, if you are not happy with the attitude or skillset of an assigned
individual, it is important to say so and find somebody else. One rule of
thumb to use when assessing the skillsets of external people is to see if you
know more than they do about their areas of expertise. It is not a good sign
if you know more, although sometimes it is necessary just to get “all hands
on deck,” regardless of whether they deliver 10 percent or 100 percent of
their advertised abilities.

When good individuals are found, it is important to treat them as
members of the team. Many times, external companies will try to reassign
people for no apparent reason, and this must be resisted at all costs. Find-
ing good people at external companies is even harder than recruiting them
for the immediate team.

11.4 Chapter Summary
Forming and retaining a strong team is vital to the construction of a world-
class system. If you cannot recruit skilled people with the right attributes,
consider waiving some of the skillset requirements. Sometimes this means
doing some recruiting at colleges and just taking the smartest people,
regardless of their industry experience. It is important, however, that the
corporate salary structure be able to expand their compensation at the
same rate at which their market value grows. If this cannot be accommo-
dated, poor retention will be the result, a frequent downfall of university
recruitment efforts.

Chapter 12

Pitfalls

12.1 Introduction
Oracle and the underlying operating system are extremely complex. Man-
agement of high load and high concurrency expose the software to many
race conditions and other problems. When this situation is combined with
the constant drive to implement new functionality into the products, it is
inevitable that pitfalls—bugs—will arise from time to time.

The purpose of this chapter is to provide advice on how to avoid bugs,
how to identify and fix them when they occur, and how to communicate
with the respective vendors.

12.2 Avoiding Bugs
The best way to deal with bugs is to avoid them. This simple fact is often
overlooked, and a few precautions can go a long way.

12.2.1 Initial Releases
Some people say “never go with dot-0 releases.” Other people go one step
further and try to associate patterns with the minor release numbers. This
is clearly bogus, but the dot-0 philosophy is basically sound to varying
degrees.
629

CHAPTER 12 PITFALLS630
With large software engineering projects, code has to be frozen from
change in order to produce the release. In order to do this, various tech-
niques are used by the code management teams, ranging from conceptual
freeze dates to complete shutdown of the code management system.
Whatever the technique, a freeze is achieved.

When a hard freeze is set like this, it is almost inevitable that some of
the changes will be checked in only partially complete, or rushed through
with inadequate testing. It should not be this way, but human nature
demands it. The net result of this is that bugs creep into the product.

The more experienced the development team, the less likely that nasty
bugs will make it through. The reality for massive projects such as an
RDBMS or an operating system is that even a small turnover of people
results in a large number of fresh faces for each release.

One way around these problems is to avoid new feature code, because
this code is the most likely to contain the bugs. Unfortunately, it is difficult
to tell which pieces of the code have been changed the most, because some
“old features” may well have been overhauled for this release in order to
improve scalability, for example. If one wants to avoid the new features of
a dot-0 release altogether, then one should look instead at the most recent
release of the prior version.

12.2.2 Known Problems
Shortly after any release, be it a dot-0 or otherwise, problems will start to
be reported to support. Therefore, it is always worth waiting at least a few
weeks after a release before using it. Before upgrading, check with support
and get the list of known bugs in that release. If the bugs are in areas of the
product that you use heavily, this is probably not a good release to move
to for the present.

12.3 Bug Diagnosis and Resolution
The ultimate treatment of a bug involves both a diagnosis and a resolution
of the problem. The ultimate resolution may involve a software patch, but
an interim solution can sometimes be used to work around the problem.

12.3 BUG DIAGNOSIS AND RESOLUTION 631
This is something that Oracle often tries to offer as a band-aid solution to
the real problem.

Within Oracle development exists a team dedicated to repairing
any problems that arise in the product. This team is known as the
Defect Diagnosis and Resolution (DDR) group and in many ways offers
more capability than a core developer of the product can provide.
These people have a much broader knowledge of the software than a
typical kernel developer has and are very experienced in sniffing out
the root cause of a problem. When a problem is determined to be in a
certain portion of the software, the DDR individual will either fix the
problem personally or involve the kernel developer who developed
that portion of code.

The DDR gorup is the kernel group interface to support, which
itself is divided into several levels of escalation. The final line of sup-
port is known as Bug Diagnostics and Escalation (BDE), which is the
equivalent of DDR on the support side. Once again, BDE personnel are
typically versed in the source code of the product and have enormous
experience in diagnosing problems. Much of the information below is
derived from discussions with BDE. In front of BDE are the usual levels
of support, depending on the support tier adopted in your contract.

12.3.1 Finding and Fixing Bugs
Finding bugs is often not as straightforward as it may appear. Sometimes a
genuine user error can appear to be a bug, or a bug can appear to be a user
or code problem. Finding a genuine bug can often require a good deal of
research and testing on the part of the database administrator before it is
accepted as such by support.

There are several possible bug scenarios in Oracle:

• ORA-0600 errors

• ORA-7445 errors

• Functionality-related problems

• Performance-related problems

• Memory leaks

• Oracle Parallel Server problems

CHAPTER 12 PITFALLS632
For all of these scenarios, support personnel will need the following
information:

• Full Oracle version (e.g., 8.0.4.2.1)

• Any ad hoc patches installed

• Operating system version (possibly including patch information, but
support will ask if this is required)

• Hardware platform

• Background of the problem

The first scenario—the ORA-0600 error—is an Oracle internal error. This
means that Oracle has encountered an unexpected condition within the
kernel and that the developer has included a check for this in the code. An
ORA-0600 error can be considered a “process panic” and normally arises
as the result of a race condition. These errors are reported to the session
that encounters the error and within the alert file, and so they are quite
easy to spot.

Despite a popular misconception, not all internal errors are desperate
cases. Unless the internal error is encountered in one of the background
processes, it will not cause an instance failure. However, there is little
diagnosis that can be done by the administrator for this type of problem,
because it is by nature a wildcard. The good news is that an ORA-0600 is
definitely a bug rather than a problem attributed to user error, and the fol-
lowing procedure should be followed when an internal error occurs.

1. Call it in to support. There is a good chance that there is already a fix for
the problem. Support will need the arguments (the values in square
brackets on the error line) in order to locate the source of the problem.

2. While support personnel are looking up the bug, get a good trace
dump of the error, ready to send off.

3. If the problem has not already been fixed, try to produce a test case, if
possible.

When sending off tracefiles to Oracle, whether for an internal error or
otherwise, check that the tracefiles are not all of the same size. If they are,
it is likely that they have all been truncated as a result of exceeding
max_dump_file_size and will not be of much use to support. If a process is still

12.3 BUG DIAGNOSIS AND RESOLUTION 633
writing out a tracefile, you can get to it quickly with the svrmgrl oradebug

facility and unlimit the trace in order to ensure a full dump. Otherwise, you
will need to set the global limit higher in order to produce good trace-
files.

The second type of problem you may encounter is an ORA-7445 error.
This type of error results in a core dump of the process that encountered
the error and normally a tracefile that contains a stack trace of the prob-
lem. These errors are essentially the same as ORA-0600 errors but do not
have traps encoded by the developer. The net result is that this error is
somewhat less expected than an ORA-0600. In the case of an ORA-7445,
the procedure should be the same as for an ORA-0600, but it might be less
likely that you will get an immediate fix. However, ORA-7445 errors are
still bugs and will be accepted by support without question.

Functionality-related problems are frequently subject to debate and
can be harder to log as bugs than other problems. Before calling support,
you should be sure that you have read the relevant documentation thor-
oughly and really understand what is going on. Sometimes, a perceived
functionality bug is little more than an incorrect assumption on the part of
a user who has not read the manual. If you are sure that it is a bug, it is
normally fairly straightforward to create a test case for the problem and to
supply this test case at the time of opening the call. This will allow support
to work on the problem without repeatedly coming back for further infor-
mation.

Performance-related problems are more difficult. There can be so
many factors that affect performance that you need to have a good case in
hand to clearly demonstrate your problem to support. There are several
specific types of problems that fall into the area of performance:

• SQL-related problems (e.g., CBO errors)

• Scalability problems

• General performance problems

• Complete hangs

For SQL-related problems, the minimum information that support will
need is the output of tkprof, preferably with the explain option enabled. If this
is not sufficient to demonstrate the bug, further information will be

CHAPTER 12 PITFALLS634
required. If the query has gone bad because of an event such as an
upgrade, a “before” tracefile will be most useful.

Scalability problems are very difficult to demonstrate and often
require extensive investigation before making a determination. As scala-
bility has been covered in some detail in this book, it should be clear that
poor scalability can arise for many reasons. Proving it to be an Oracle
problem is often difficult. However, if you are observing a problem such as
severe latch contention and cannot determine why this should be the case,
it is worth talking to support.

General performance problems always require a utlbstat/utlestat
1 this report

to be sent to support. Even if you have checked this yourself, support per-
sonnel will not be happy to look any further unless you send the request in
first. They will also need to know how you have determined that perform-
ance has deteriorated. Does this problem seem to be related to workload,
to an upgrade, to a new machine, etc. The more evidence you can gather
that an Oracle problem is causing the performance problem, the faster you
will receive answers back from Oracle.

If you experience a total freeze of the instance, do not shut down the
instance until you have gathered some diagnostic information for support. Spe-
cifically, before looking at a total hang, support will need a systemstate dump:

1. $ORACLE_HOME/rdbms/admin/utlbstat.sql.

$ svrmgrl

Oracle Server Manager Release 3.0.4.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8 Enterprise Edition Release 8.0.4.2.1 - Production
With the Partitioning option
PL/SQL Release 8.0.4.2.1 - Production

SVRMGR> connect internal
Connected.
SVRMGR> oradebug setmypid
Statement processed.
SVRMGR> oradebug unlimit
Statement processed.
SVRMGR> oradebug dump systemstate 1
Statement processed.
SVRMGR>

12.3 BUG DIAGNOSIS AND RESOLUTION 635
Try a level 1 dump (SYSTEMSTATE 1) to begin with, and then reconnect (to
get a fresh tracefile) and try a level 2 dump. Send support anything that
you get from this, which will appear as a standard tracefile in the
user_dump_dest location.

Thankfully, memory leaks within the Oracle Server are rare. However,
if you suspect a memory leak in the Oracle processes, support will be look-
ing for the following information, at a minimum:

• The session pga memory and session pga memory max statistics from v$sesstat

• A heapdump of the PGA:

This information may be only the beginning of a lengthy debugging ses-
sion, but it will at least get support on the right track.

12.3.2 Oracle Parallel Server Problems
If the problem involves Oracle Parallel Server, different information will
probably be required. In the case of an OPS hang, the following informa-
tion will be required:

• DLM logfiles (lmon*, lmd* in background_dump_dest) from each node

• DLM tracefiles from each node

$ svrmgrl

Oracle Server Manager Release 3.0.4.0.0 - Production

(c) Copyright 1997, Oracle Corporation. All Rights Reserved.

Oracle8 Enterprise Edition Release 8.0.4.2.1 - Production
With the Partitioning option
PL/SQL Release 8.0.4.2.1 - Production

SVRMGR> connect internal
Connected.
SVRMGR> oradebug setospid 17087
Oracle pid: 22, Unix process pid: 17087, image: oraclePRD1
SVRMGR> oradebug unlimit
Statement processed.
SVRMGR> oradebug dump heapdump 1
Statement processed.
SVRMGR>

CHAPTER 12 PITFALLS636
• alert files from each node

• init.ora from each node

The important theme to note here is that the same files are required
from every node that has an OPS instance on it, because it only takes one
node to misbehave, and the entire synchronization of Parallel Server could
be disabled. Therefore, missing one node could mean that the required
information is not present, even if that node still appears to be running
normally.

In the case of a crash, the requirement is similar to that for a single-
instance system, except that the tracefiles are required from each node. All
tracefiles mentioned in the alert file on every node are required.

If you are still running OPS with Oracle7, the lock manager software is
the responsibility of the hardware vendor. Things can get very difficult to
diagnose in this instance, because the problem could lie anywhere in the
Oracle or clusters code. When calling problems of this nature in to sup-
port, be sure to have the DLM version and the clusters version available.

OPS is particularly prone to hardware problems. Owing to its reliance
on shared disk devices and the cluster interconnect, any errors in this area
can cause OPS to have a problem. Therefore, if you experience a problem
on an OPS system (or on a single-instance system, for that matter), make
sure that you check the syslog.log for any hardware problems prior to calling
Oracle support.

12.4 Chapter Summary
In an ideal world, you would not encounter any bugs. Reality, unfortu-
nately, is very different, and bugs are a fact of life. The general trend has
been toward fewer bugs, but as products get more and more complex,
there is plenty of scope for bugs to be present.

Using the information in this chapter, you should be able to shortcut
some of the burden of chasing down bugs by being ready with the
answers before questions are asked.

637
Chapter 13

Internet Applications
and the Future

13.1 E-Commerce Systems
The release of Oracle8i (or 8.1, if we dispense with the marketing terms)
marks Oracle’s biggest plunge into the world of the Internet. The standard
RDBMS product has been supplemented with a variety of new features to
allow it to integrate tightly with users of the Internet in addition to provid-
ing it with a significant boost in uptime through the online maintenance
options. Combined, these changes make Oracle a powerful tool for deploy-
ing flexible Internet-based applications to millions of potential users.

Luckily, although the Internet has millions of potential users, only a
small subset of these users access Internet applications at any one time. This
means that the capacity requirements for Internet application are not as
large as they may initially appear, although they are frequently very high.

This chapter will explain how Oracle fits into the Internet and e-commerce
world and what this might mean for the evolution of the Oracle product.

13.1.1 The Implications
The widespread adoption of the Internet is now well underway. Although
there are already many millions of Internet users, the user base is still
growing at an enormous rate. Emerging services, such as free Internet
service, are set to increase the Internet user base even more. Permanent
connections are also on the horizon, through the adoption of home net-
work services such as Digital Subscriber Line (DSL).

CHAPTER 13 INTERNET APPLICATIONS AND THE FUTURE638
With a large base of potential customers, the Internet provides busi-
nesses with several advantages over traditional methods of trading:

• Increased exposure

• Reduced infrastructure costs

• Reduced head count

Along with these advantages, the Internet also presents the following
challenges that must be overcome for project success:

• Increased user base

• Increased data volumes

• Network scalability issues

Increased Exposure
The size of the Internet population allows businesses to reach a large
number of potential customers. Although the Internet is not yet a part of
everybody’s life, it has probably achieved significant penetration of the
target market of many companies: Many people who regularly use the
Internet are professionals with above-average disposable income. There-
fore, traders of goods such as electronics, sports equipment, and computer
equipment are already reaping the benefits of trading on the Internet.

Reduced Infrastructure Costs
The Internet is only a virtual shopping mall. It is not necessary to have
store frontage in order to trade on the Web; it all takes place online. There-
fore, tremendous cost savings are possible through having only office and
machine room space instead of multiple, premium-priced shopfronts. In
addition, the datacenter can be located anywhere in the country, not just
where the target consumer is located.

Reduced Head Count
A reduction in locations also means that there is significantly reduced
head count when transactions are performed directly between consumer
and computer. While it is imperative to retain a strong customer service

13.1 E-COMMERCE SYSTEMS 639
capability, the number of direct sales representatives need only be a token
offering. This means that the idea of the large “call center” is shortly to
become a thing of the past for many retailers.

Increased User Base
With increased exposure comes, arguably, a larger user base. Although the
number of customers may not be a great deal more than that of a leading
direct-mail catalog, the fact that all these customers also equate to users of
the system means that there could be many more users working concur-
rently. This is particularly true during evenings, when many people have
the time to go shopping on the Internet.

Increased Data Volumes
Alhough the number of customers does not necessarily imply that there is
more data, the trend of e-commerce seems to be just that. One thing that
online customers have grown accustomed to is a full order history, com-
plete with tracking numbers and payment details. In addition, customers
expect a very comprehensive inventory from an online retailer, along with
distributed warehouses and probably some kind of customized look and
feel to the site. The implication of all this is that the typical online retailer
quickly amasses enormous amounts of data.

Network Scalability Issues
The biggest problem of the Internet is also its greatest strength—it is a glo-
bally shared network. This means that online retailers must factor this into
their designs, and mitigate the problems of variable bandwidth and latency
with good application design. The bottom line is that the application must

• Be compact (for fast downloads)

• Operate locally as much as possible

The first item clearly relates to the problem of low bandwidth. The second
deals with both the scalability of the datacenter systems and, more impor-
tantly, reduction of the number of network round trips. This is done so
that the network latency does not aggravate the user too much.

CHAPTER 13 INTERNET APPLICATIONS AND THE FUTURE640
13.1.2 The Implication for Business Computing
As a result of all these issues, the industry had to overcome a variety of
hurdles before e-commerce could become a viable option. Great progress
has been made on these problems, and the Internet now works quite well
as a trading platform. The side effect of this is that these problems all
needed to be solved for internal applications too, and the online trading
requirement has helped to accelerate the resolution of a variety of business
computing problems. The same technology used for Internet applications
is also very suitable for intranet (internal) applications and provides solu-
tions for the following key problem areas:

• Wide-area rollouts

• Large user populations

• Customized content/presentation

Oracle8i and supporting application development tools incorporate sev-
eral features that help to address these issues, improving both the Internet
application and the more traditional multiuser business application.

13.2 Oracle8i Technology
Previous releases of Oracle already provided strong, scalable database
services that made it an excellent platform for business applications. With
the introduction of Oracle8i, Oracle has taken the next step in providing
core support for emerging Internet technologies, and the emerging appli-
cation development practices.

These additions can be grouped into two distinct areas: Java integra-
tion and new data services.

13.2.1 Java Integration
Perhaps the most crucial of the new features is the complete adoption of
Java, including a fully integrated Java Virtual Machine (JVM) into the
actual database server engine, known as JServer. For the first time, Oracle
can execute the same code in any tier of the application, using Java. This

13.2 ORACLE8I TECHNOLOGY 641
has not been possible with any prior release or programming language;
even PL/SQL has suffered from version mismatches between the client
and the server implementations.

Java integration brings two important strengths to the Oracle product.
First, it is the de facto standard for Internet application development. This
makes the Oracle product more accessible to the Internet community, with
no need to learn PL/SQL, OCI, and so on before useful application code
can be constructed.

Second, it is a robust, portable, and diverse object-oriented program-
ming language, taking many of the best practices from other OO languages
and circumventing many of the common problems. Being object-based and
multiplatform, Java is the ideal vehicle for multitier development, because
the core logic can be insulated from the detail of the execution environment.

In order to allow simple relocation of Java code between tiers, Oracle
has maintained the standard Java Database Connectivity (JDBC) method
for accessing the database for every tier in the application. Whether the
code runs on the end user’s terminal, in the middle tier, or within an Ora-
cle server process, it will always access the database through JDBC. The
difference between the tiers is in the footprint of the JDBC interface and
the subsequent performance.

There are now three different JDBC interfaces: Thin (pure Java), OCI,
and Server. The Thin interface is used for distribution to the user’s termi-
nal/PC. It is small in size and consists of 100 percent portable binary code,
but it is comparatively low in performance. The OCI driver is designed to be
run in the middle tier, having a nonportable native binary, larger size, but
significantly better performance. Finally there is the Server JDBC interface,
which is simply a proxy straight into the RDBMS SQL layers. This interface
is by far the fastest, but obviously can exist only in the server tier.

As JDBC is a standards-based database interface designed for all types
of database access, it is subsequently a little cranky in usage. For this rea-
son, Oracle supplies SQL, which is to JDBC what Pro*C is to C. It allows
more simplistic embedding of Oracle SQL into Java programs, which are
then preprocessed into standard JDBC code for compilation.

Starting with release 8.1.6, Oracle will be shipping the JServer Acceler-
ator. This proves to be a very valuable addition to the product, addressing

CHAPTER 13 INTERNET APPLICATIONS AND THE FUTURE642
the single biggest problem with Java—performance. The accelerator does
this by taking the Java byte code binaries and generating standard C code
from them. This code is then compiled using the standard optimizing C
compiler and made available for use. This promises to provide a signifi-
cant performance uplift, although it is still unlikely to be as fast as native C
code because of the language abstraction.

The final advantage of integrated Java is the ease of integration of ORB
models into the application. In fact, Oracle has integrated an ORB with the
product, written using JServer. Using this ORB, database-resident Java
code can be invoked remotely with standard Internet Inter-ORB Protocol
(IIOP) invocation.

The new suite of application development tools, JDeveloper 2.0, pro-
vides the development environment for the new language and moves Ora-
cle out of the old days of SQL*Forms. JDeveloper allows the development
of Enterprise Java Beans (EJB), client Java applications, Java stored proce-
dures, and Java Servlet code, using a GUI Integrated Development Envi-
ronment.

13.2.2 New Data Services
In addition to the Java integration, improvements in Oracle8i data services
support large user populations and Internet programming practices.

For content handling, Oracle provides interMedia, a set of multimedia
mangement services for various types of data. The services available
immediately are those of audio, video, text (ConText), and GIS informa-
tion (Spatial). The ConText and Spatial services were first introduced in
releases of Oracle7.

These services allow for more intelligent handling of content, ena-
bling the database to provide more dynamic content for the application.
Standard services include intelligent searching within the data types and
content-specific manipulation, such as cropping.

Other Internet additions include the iFS, or Internet File System. This
is a more flexible way of accessing the content in the database, allowing
access through ftp, SMB (Windows Networking), NFS, and standard Net8.

Perhaps of more interest to the large system builder are the improve-
ments in how Oracle manages data. These changes include

13.2 ORACLE8I TECHNOLOGY 643
• Online index maintenance

• Secondary indexes on index-organized tables (IOTs)

• Local space management

• Optimizer plan stability

Although some of these features are not strictly data services, they all relate
to how data can be managed in a large database, and so are treated together.

Online Index Maintenance
First is the welcome arrival of online B-tree index rebuilds. When the
ONLINE keyword is specified, an index can be rebuilt without taking a table
lock (lock type TM). This means that the table can continue to be used for
read and write while the index is built; any changes during this period are
logged for later addition to the new index. Because IOTs constitute an
extended B-tree index, this also means that an IOT can be rebuilt online.

Secondary Indexes on Index-Organized Tables
The provision for secondary indexes on an IOT means that an IOT can
now be used in place of many standard tables. The advantage of this is
that the indexes on the table and the table itself can all be rebuilt online,
allowing online performance and space maintenance to take place.

The impact of this provision is a huge advance in system availability.
Although it probably still makes sense to carry out these maintenance
operations during quiet (and therefore unsociable) hours, the system does
not need to be taken down in order to perform these changes. Most sched-
uled maintenance periods can therefore be carried out online, allowing the
system to remain operational to the user for months at a time. In fact, it is
likely that the UNIX operating system will need attention (with patches
and other, similar measures) more often than Oracle will.

Local Space Management
Local space management addresses a different issue—the inefficiency of
the dictionary cache at managing free and used extents in the database. In
previous releases, Oracle used the SYS.FET$ and SYS.UET$ dictionary tables to

CHAPTER 13 INTERNET APPLICATIONS AND THE FUTURE644
store the free and used extent maps, respectively. In large databases, there
could be many thousands of entries in each of these tables (and subse-
quently in the dictionary cache), making any operation on them a labori-
ous exercise. This, in fact, is the reason that “database fragmentation”
through many extents has been seen as a bad thing.

In Oracle8i, there is the option of having locally managed tablespaces.
When locally managed, Oracle stores the extent information for a file in
bitmap form in the file itself. Any time Oracle needs to work on the extents
in a locally managed tablespace, it need only consult the series of on/off
bits in the file-local extent map. Therefore, it is considerably faster than the
previous method and is more scalable because there are many of these bit-
maps in the database.

The impact of local space management is that yet another reason for
database maintenance has been all but removed. Using the bitmaps for
space management, the ST enqueue is no longer required, and it becomes
far less important to keep the extent sizes optimized for performance.

Optimizer Plan Stability
Although the CBO has been around for some time, the process of ensuring
that it is working from good statistics has been problematic. Where a database
is growing dynamically, the danger of plans changing overnight presents an
unacceptable level of risk for large systems. With 8i, Oracle has provided sev-
eral facilities that make the management of the optimizer more predictable.
All these changes relate to the same aspect—better control of statistics.

The most fundamental of these changes is the ability to freeze plans, ensuring
that the CBO will not take a different approach to a given query once the plan
has been frozen. This ensures that queries will respond in the same order of
time, even if the data distributions were to change in the tables. Without frozen
plans, query response times could change by many orders of magnitude.

Additionally, production CBO statistics can now be applied to devel-
opment databases in a supported way, allowing developers to use EXPLAIN

PLAN in a worthwhile way.
These features may not seem to be enhancements in data services, but

the prior hit-or-miss CBO tuning could break as many things as it fixed.
With this more controllable method, the execution profiles of the queries
are repeatable, therefore ensuring reliable operation of the database.

13.3 FUTURE ORACLE RELEASES 645
13.3 Future Oracle Releases
Unlike release 8.0, it is likely that release 8.1 will have additional features
released during its lifespan. A great many of these features will probably
be associated with the JServer component, because this is the most radical
addition and is such a dynamically changing landscape anyway.

In addition to this, however, is the roadmap for the database server
itself, going toward release 8.2 and even Oracle9.

Oracle has been chasing Microsoft for some time, specifically seeking
dominance in the Windows NT database market. One side effect of this
effort is that Oracle has had to simplify the interfaces and management of
the database in order to provide users with the kind of “wizard” interfaces
they are used to on the Windows platform.

This simplification of mundane tasks has become one of Oracle’s strategic
goals, including better installers, wizards to help with database creation and
configuration, and so on. In addition, Oracle is making the operation of the
database server itself a more automatic task, starting with 8.1, where a whole
range of sort parameters (SORT_READ_FAC, SORT_WRITE_BUFFERS, and
so on) have been obsoleted in favor of automatic management.

It is likely that this trend will continue in the future. One potential tar-
get could be the management of rollback segments, allowing Oracle to
self-manage a common pool of space for undo information. Other
enhancements will include the removal of some initialization parameters,
making their configuration automatic. Taking this one step further, Oracle
is likely to adopt some kind of self-healing tuning, allowing the instance to
reconfigure itself where necessary for better operation.

Of more interest to builders of very large systems, Oracle is certain to
keep improving the scalability and performance of its product. As we dis-
cussed in Chapter 1, improving scalability and performance is a continu-
ous task, and the product will continue to improve in this area from
release to release.

Perhaps the most crucial part of this improvement will be the architec-
tural “tweaks” that Oracle is starting to incorporate, in order to better sup-
port emerging hardware architectures such as NUMA. Through continued
coengineering with hardware suppliers, Oracle is actively working at stay-
ing ahead of other database products in terms of performance.

CHAPTER 13 INTERNET APPLICATIONS AND THE FUTURE646
Finally, Oracle has nearly cracked the availability nut. While Oracle has
been successful in deposing mainframes from many sectors of the market-
place, most banks and financial institutions still have no alternative to the
mainframe. Oracle and UNIX simply cannot provide the same degree of
availability that a modern mainframe or fault-tolerant system can. How-
ever, the Oracle Server is rapidly getting to the point where this is no longer
the case, and it will soon be viable as a true mainframe alternative.

The final hurdle is a tough one: Oracle and its hardware partners need
to work together to provide seamless availability. It is no good pointing
fingers—the system simply has to work, all the time, with no excuses.
When this has been achieved, however, Oracle will be able to shift up
another gear and enter into a whole new world of massively scalable and
highly available applications.

13.4 Chapter Summary
While application architectures shift and the Internet grows in strength,
Oracle covers all bases. By embracing the emerging technologies and con-
tinuing to develop and improve its core product, Oracle is keeping its flag-
ship product—the Oracle Server—on top.

Oracle is quickly becoming the database platform of choice for large
commercial Internet companies, providing the technology and scalability
that will make their businesses work. At the same time, more traditional
business applications are using the new features of Oracle to provide
higher availability and greater performance.

The highly available application system is the real challenge, and
when Oracle and the hardware vendors finally get all the pieces together,
Oracle will become even more prevalent in the high-end marketplace. This
means that highly scalable Oracle systems will be in demand more than
ever, and those skilled in building them become yet more marketable by
implication. Welcome aboard!

dcxlvii

A
Algorithmic Enhancements 161

C
concurrency 148
control file

datafile information 349
CPU Cache Basics 176

H
hash buckets 168

I
init.ora

concatenating values 352
limits of 353
using a maintenance instance 359

J
job partitioning 148

P
parallel query 148

R
race condition 152

S
serialization 150
synchronization 150

	Scaling Oracle8i™
	Introduction (to a Great Book)
	Welcome!
	Scaling Oracle8i™
	Building Highly Scalable OLTP System Architectures

	Contents
	PART I� Concepts and Architecture 1
	Chapter 1 Scaling Concepts 3
	Chapter 2 Hardware Architectures and I/O Subsystems 41
	PART II� Building Support Software 117

	Chapter 3 Benchmark Concepts and Design 119
	Chapter 4 System/Database Monitoring 167
	PART III� How Oracle Works 195

	Chapter 5 Physical Oracle 197
	Chapter 6 Oracle8 in Operation 253
	PART IV� How UNIX Works 319

	Chapter 7 Introduction to UNIX 321
	Chapter 8 Oracle User’s Guide to UNIX 383
	PART V� Implementing Oracle 399

	Chapter 9 Scalable Transaction Processing 401
	Chapter 10 Pulling It All Together: A Case Study 447
	PART VI� Further Considerations 469

	Chapter 11 Building a Successful Team 471
	Chapter 12 Pitfalls 477
	Chapter 13 Internet Applications and the Future 485
	Index�495

	Figure List
	Preface
	Who Should Read This Book
	Credits
	Feedback

	Introduction
	1. Unscalable applications are the default product.
	2. Reliable systems are difficult to obtain.
	1. A return to some of the ground rules introduced by the mainframe, particularly multitier archi...
	2. A much greater level of technical knowledge within the teams
	How To Read This Book
	Part I: Concepts and Architecture
	Chapter 1: Scaling Concepts
	Chapter 2: Hardware Architectures and I/O Subsystems

	Part II: Building Support Software
	Chapter 3: Benchmark Concepts and Design
	Chapter 4: System/Database Monitoring

	Part III: How Oracle Works
	Chapter 5: Physical Oracle
	Chapter 6: Oracle8 in Operation

	Part IV: How UNIX Works
	Chapter 7: Introduction to UNIX
	Chapter 8: Oracle User’s Guide to UNIX

	Part V: Implementing Oracle
	Chapter 9: Scalable Transaction Processing
	Chapter 10: Pulling It All Together: A Case Study

	Part VI: Further Considerations
	Chapter 11: Building a Successful Team
	Chapter 12: Pitfalls
	Chapter 13: Internet Applications and the Future

	Part I
	Concepts and Architecture
	Chapter 1
	Scaling Concepts
	1.1� What Is Scaling?
	Good Scaling
	Figure 1.1� Good scaling

	Poor Scaling
	Figure 1.2� Poor scaling

	1.1.1� Speedup
	Example
	Figure 1.3� Nonparallel query
	Figure 1.4� Parallel query

	1.1.2� Concurrency (Scaleup)
	Digression

	1.2� Latches and Locks
	1.2.1� Why Lock?
	Example: Memory Protection Using Latches
	Figure 1.5� Multiuser memory buffer
	Table 1.1� Race Condition Caused by Nonatomic Memory Updates Without Latch Protection
	Table 1.2� Prevention of Race Conditions Using Latches

	Data Protection Using Locks
	1.2.2� Things That Need Locking/Latching
	Table 1.3� Latching and Locking Examples
	Table 1.3� Continued

	1.2.3� Waiting on Latches and Locks
	1.2.4� Design Considerations to Reduce Lock Contention
	Locking Degrees
	Fine-Grained Locking
	Algorithmic Enhancements

	1.3� Linked Lists
	1.3.1� What Is a Linked List?
	1.3.2� What Are Linked Lists Used For?
	“Cold” End
	“Hot” End
	Figure 1.6� Inserting an entry into the hot end of a linked list
	1. Take out the latch that protects the list. Go to the cold end of the list (element one) and se...
	2. Step along one entry to the second-coldest entry (element two).
	3. Update the “previous” item pointer here to be NULL, indicating that there are no more entries ...
	4. Go to the item in the list that was previously hottest (element four) and change the “next” it...
	5. Update the master references to reflect the address of the new cold and hot ends, if applicable.
	6. Release the latch.

	1.3.3� Optimizing Chain Lengths
	db_block_buffers

	1.4� Hashing
	1.4.1� What Is Hashing?
	Hashing Algorithms
	Table 1.4� Hash Buckets Based on Module 7

	Hashing Example: CPU Direct Mapped Cache
	Figure 1.7� Hashing to obtain a cache line identifier

	Hashing Example: Oracle Shared SQL

	1.5� Caching
	1.5.1� Cache Fundamentals
	1.5.2� Memory Hierarchies
	Figure 1.8� The Memory Hierarchy
	Table 1.5� Access Times for Key System Components

	1.5.3� Cache Reference Patterns
	1.5.4� I/O Caching
	LRU Algorithms
	Figure 1.9� Least Recently Used List

	LRU Managed I/O Caching
	Table 1.6� Effect of I/O Caching on Response Time

	1.5.5� CPU Cache Concepts
	The Bad News About MHz
	CPU Cache Basics
	Figure 1.10� Memory Hierarchy Closeup

	Lines and Tags
	Figure 1.11� CPU Cache Organization
	Figure 1.12� Obtaining the Line ID Through Hashing
	Figure 1.13� Cache Line Sharing
	Figure 1.14� Different Addresses That Share the Same Cache Line

	CPU Caching in an Oracle Environment

	1.6� Chapter Summary
	1.7� Further Reading

	Chapter 2
	Hardware Architectures and I/O Subsystems
	2.1� Introduction to Hardware Architectures
	1. Single-processor architectures
	2. Symmetric multiprocessors, including shared-bus and crossbar switch systems
	3. Clustered Symmetric Multiprocessors
	4. Massively Parallel Architectures
	5. NonUniform Memory Architectures
	6. Hybrid Systems
	2.1.1� System Interconnects
	1. Connecting components within the system
	2. Connecting systems together

	2.1.2� Bus Architecture
	Figure 2.1� Simplistic Bus View
	Figure 2.2� Multiple Device Bus View

	Test and Set
	2.1.3� Direct Memory Access (DMA)
	Figure 2.3� Non-DMA I/O Operation
	Figure 2.4� DMA I/O Operation

	2.1.4� Cache Coherency
	Table 2.1� Inconsistent Caches
	Figure 2.5� “Snoopy” Bus
	Figure 2.6� Directory Protocol

	2.2� Single Processor Architectures (Uniprocessors)
	Figure 2.7� Uniprocessor Architecture
	2.2.1� Advantages
	2.2.2� Oracle on Uniprocessors
	2.2.3� Other Disadvantages
	2.2.4� Summary

	2.3� Symmetric Multiprocessors (SMPs)
	Figure 2.8� Shared Global Bus SMP Architecture
	2.3.1� SMP Advantages
	2.3.2� Kernel Challenges
	2.3.3� Oracle on SMP Architectures
	2.3.4� Shared-Bus Limitations
	2.3.5� Summary

	2.4� Point-to-Point SMP
	Figure 2.9� Crossbar Switch Interconnect SMP Architecture
	Figure 2.10� Crossbar Switch
	2.4.1� Cache Coherency
	2.4.2� Summary

	2.5� Clustered SMP
	Figure 2.11� Clustered SMP Systems
	2.5.1� Clustering Types
	2.5.2� Summary

	2.6� Massively Parallel Processors (MPPs)
	2.6.1� Definition
	Figure 2.12� Massively Parallel Processors
	Figure 2.13� Last Name Partitioning
	Table 2.2� MPP Data Skew

	2.6.2� Oracle on MPP Systems
	2.6.3� Summary

	2.7� Cache Coherent Nonuniform Memory Access (ccNUMA)
	2.7.1� Definition
	Figure 2.14� Nonuniform Memory Access Building Block: Sequent NUMA
	Table 2.3� NUMA Building Block Names by Manufacturer

	2.7.2� Sequent NUMA-Q 2000
	Figure 2.15� Nonuniform Memory Access System
	Figure 2.16� Sequent NUMA-Q Memory Hierarchy
	Figure 2.17� Sequent IQ-Link

	2.7.3� SGI Origin 2000
	Figure 2.18� SGI Origin 2000 Schematic

	2.7.4� Oracle on NUMA Systems
	1. It is more expensive to miss if you need to do a remote reference to get the buffer.
	2. It is important to increase the statistical chance of the buffer being in local memory, not re...
	1. Get the latch.
	2. Do some manipulation within shared memory.
	3. Release the latch.

	2.7.5� Summary

	2.8� Storage Systems
	2.8.1� I/O Busses
	2.8.2� Controllers
	SCSI Controllers
	SCSI Throughput
	Fibre Channel
	Figure 2.19� Fibre Channel Arbitrated Loop
	Figure 2.20� Switched Fibre Channel Fabric

	2.8.3� Disk Drives
	Figure 2.21� Disk Drive Organization

	Seek Times
	Figure 2.22� Zone Bit Recording Format

	Rotational Delay
	2.8.4� Disk Drive Sizing
	Table 2.4� Disk Drive Performance Evaluation
	Table 2.5� Disk Drive Evaluation Summary

	2.8.5� Redundancy
	2.8.6� RAID Levels
	RAID-0
	Figure 2.23� RAID-0 Physical Organization

	RAID-1
	Figure 2.24� Host-Based RAID-1 Implementation
	Figure 2.25� RAID-1 Write Penalty
	Figure 2.26� RAID-1 Hardware Implementation

	RAID-0+1
	Figure 2.27� RAID-0+1 Implementation
	Figure 2.28� Stripe-centric Versus Disk-centric RAID-10

	2.8.7� RAID-5
	Figure 2.29� RAID-5 Organization

	2.8.8� Cached Disk Arrays: EMC Symmetrix
	Figure 2.30� EMC Symmetrix Architecture
	1. Writes will be significantly faster.
	2. The Oracle buffer cache will already have taken care of a good deal of the locality gains in t...

	2.9� Chapter Summary
	2.10� Further Reading

	Part II
	Building Support Software
	Chapter 3
	Benchmark Concepts and Design
	3.1� Why Develop a Benchmark?
	3.1.1� Capacity Planning
	Initial Platform Sizing
	Increased User Count or Increased Transaction Rate
	Proposed Application/Data Changes
	3.1.2� Upgrades
	3.1.3� Platform Changes

	3.2� What Are We Simulating?
	3.2.1� Defining Application Areas
	3.2.2� Defining the Application Split
	Figure 3.1� Transaction Scenario Development Process

	3.2.3� Careful with Those Assumptions, Eugene

	3.3� Selecting a Development Approach
	1. Remote Terminal Emulation (RTE) software
	2. Completely custom development
	3.3.1� Using Remote Terminal Emulation Software
	3.3.2� Custom Simulation Development

	3.4� Building a Simulator Using RTE Software
	3.5� Building a Custom Benchmark Suite
	3.5.1� Programming Environment
	1. You need to know the steps involved in SQL processing from the server perspective.
	2. You need massive parameter lists for each function that are mostly unused in C.

	3.5.2� When the Application Has Not Been Written
	3.5.3� If the Application Exists: Trap and Emulate All SQL Calls
	Tracing Sessions by Setting Events
	Table 3.1� 10046 Trace Detail Switches
	1. alter session set events "10046 trace name context forever, level x" (personal user session le...
	2. event="10046 trace name context forever, level x" in the init.ora (instance level)
	3. On a process-by-process basis using svrmgrl oradebug (other user session level)
	ORADEBUG
	Table 3.2� “PARSING IN” Section
	Table 3.2� continued
	Table 3.3� General Operation Statistics
	Table 3.4� WAIT Section Detail

	The Oracle Call Interface (OCI) Fast Track
	Figure 3.2� OCI Call Flow

	3.5.4� Using Tracefiles to Generate a Simulation: An Introduction to dbaman
	Figure 3.3� dbaman processing hierarchy

	Introducing dbaman
	Table 3.5� Tcl Extensions provided by dbaman
	Table 3.5� continued

	Preprocessing and Executing the Tracefile
	3.5.5� Validate Server-Side System Utilization
	Table 3.6� Statistical Differences Between Original and Simulated Session
	Table 3.6� continued

	3.5.6� Building a Multiuser Framework

	3.6� Scale the Simulator
	3.6.1� Data Problems
	3.6.2� User Control Problems
	Figure 3.4� Simulation control and data supply

	3.6.3� Simpler Methods for Use with dbaman
	User Control
	Data Supply

	3.7� Make It Easy to Run
	3.7.1� Portability
	3.7.2� Packaging
	3.7.3� Start-Up Scripts
	3.7.4� Automating Information Retrieval at Closedown

	3.8� Define Limitations in Advance
	3.8.1� A Benchmark Is Never Perfect
	3.8.2� Measure the Impact of the Inaccuracies

	3.9� Chapter Summary
	3.10� Further Reading

	Chapter 4
	System/Database Monitoring
	4.1� Why Monitor?
	4.1.1� Proactive Fault Detection
	4.1.2� Rapid Fault Diagnosis
	4.1.3� Historical Performance Records

	4.2� Low-Intrusion Techniques
	4.2.1� Go Easy on the System
	4.2.2� Avoiding Single-Threaded Resources

	4.3� Introduction to V$ Views
	4.3.1� What Are the V$ Views ?
	Figure 4.1� Data sources for V$ Views

	4.3.2� Accessing the V$ Views
	4.3.3� Structure of the V$ Views
	4.3.4� Overhead of Using V$ Views

	4.4� Minimizing Overhead
	4.5� Using dbaman to Optimize Data Collection
	4.5.1� Defining the Cursors
	4.5.2� Parsing and Executing the SQL
	4.5.3� Process the Result Sets
	4.5.4� Pulling it Together with a Main Loop

	4.6� Processing Statistics
	4.6.1� Data Transports
	Figure 4.2� Running dbaman in Client/Server Configuration

	4.6.2� Alarm Propagation

	4.7� Defining the “Flight Envelope”
	4.7.1� What Is a “Flight Envelope”?
	4.7.2� How Do I Define a Flight Envelope for the System?
	Figure 4.3� Latch Gets Versus Idle CPU Flight Envelope

	4.8� Using Excel Spreadsheets for Data Visualization
	Figure 4.4� Using pivot tables with ODBC connections

	4.9� Chapter Summary

	Part III
	How Oracle Works
	Chapter 5
	Physical Oracle
	5.1� Introduction
	5.2� Overview
	Figure 5.1� The Physical Oracle

	5.3� Control Files
	5.3.1� Datafile Information
	5.3.2� Operating Information
	5.3.3� Redo Log Information
	5.3.4� Log History
	5.3.5� Backup Information

	5.4� The INIT.ORA File
	5.4.1� Rules for init.ora Creation
	Value Overrides
	Value Concatenation
	init.ora File Sizes/Limits
	Table 5.1� Parsing Limits for init.ora File

	Layout Recommendations
	Change Control Header

	Common, Database-Wide, and Parallel Server Parameters
	Event Specification
	Other Groupings
	Table 5.2� Parameter Grouping Suggestions

	Further Tips
	Setting Up a Maintenance Instance
	1. Shutdown the production instance cleanly.
	2. Ensure that all processes related to the production instance are cleaned up. This can take a f...
	3. Ensure that the shared memory segment used to accommodate the SGA has been removed. If it has ...
	4. Reset ORACLE_SID to point to your new instance definition (i.e., ORACLE_SID=MNT).
	5. Start Oracle, and perform maintenance tasks.
	6. When complete, shut down the instance and switch back to the production instance. It is vital ...

	5.5� Data Storage
	5.5.1� Overview: The Physical Picture
	Figure 5.2� Oracle Physical Storage Hierarchy

	5.5.2� Blocks: An Introduction
	Figure 5.3� Oracle Datafile

	Data Blocks
	Figure 5.4� Oracle Data Block Format
	Block Header
	Row Directory
	Free Space
	Row Data
	Data Block Dump

	Header Blocks
	File Headers
	Figure 5.5� Hot Backup Recovery Principle

	Segment Headers
	Segment Header Block Dump
	Figure 5.6� “Free” Definition in Oracle Freelist Management
	Figure 5.7� Freelist Allocation Algorithm

	5.5.3� Block Cleanout

	5.6� Redo Logfiles
	Figure 5.8� Optimal Redo Log Placement

	5.7� Key Database Objects
	5.7.1� Rollback Segments
	User Rollback Segments
	System Rollback Segment
	Deferred Rollback Segments
	5.7.2� Read-Only Tablespaces
	5.7.3� Temporary Tablespaces and Temporary Segments
	5.7.4� Tables
	Standard Tables
	Partitioned Tables
	Figure 5.9� Partitioned table “Bookings”
	1. Manageability
	2. Performance
	3. Scalability

	Hash Clusters
	Figure 5.10� Hash Cluster Access Method

	5.7.5� Indexes
	Structure of B-Tree
	Figure 5.11� B-Tree structure

	Reverse Key Indexes
	Figure 5.12� Reverse Key Indexes

	Bitmapped Indexes
	Partitioned Indexes
	Figure 5.13� Nonpartitioned Global Index on a Partitioned Table
	Figure 5.14� Partitioned Global Index on a Partitioned Table
	Figure 5.15� Local Index Partitions

	Index-Organized Tables (IOTs)
	Figure 5.16� Index-Organized Tables

	5.7.6� Other Database Objects
	Sequences
	Table 5.3� Sequence Caching Process

	Packages, Procedures, and Functions
	Triggers
	Security Roles

	5.8� The Data Dictionary
	1. The objects in the SYS schema
	2. The dictionary cache (a.k.a. the rowcache)
	Table 5.4� Selected SYS Schema Tables

	5.9� Chapter Summary
	5.10� Further Reading

	Chapter 6
	Oracle8 in Operation
	6.1� Introduction
	6.1.1� The Oracle Kernel

	6.2� Process Architecture
	6.2.1� Shadow Processes
	Dedicated Server
	Multithreaded Server (MTS)
	Figure 6.1� MTS operation

	6.3� Net8
	6.4� The SGA Components
	6.4.1� High-Level View
	Figure 6.2� SGA components
	1. Fixed region
	2. Variable region
	3. Buffer cache
	4. Redo buffer

	6.4.2� Fixed Region
	Anatomy of an Oracle Latch
	Figure 6.3� Conceptual view of a latch structure

	6.4.3� Variable Region
	6.4.4� Buffer Cache
	Figure 6.4� Organization of buffer pools

	RECYCLE Buffer Pool
	KEEP Pool

	6.5� Operation of the Buffer Cache
	6.5.1� Introduction
	6.5.2� Hash Chains
	Figure 6.5� Hash chains

	6.5.3� LRU Chains
	1. Heating the buffer when it is located successfully in the hash chains
	2. Finding a buffer to use when a block is not present in the cache, or when one is needed to cre...

	Oracle 8.1 Buffer Cache LRU
	6.5.4� Latch Coverage
	6.5.5� CR Versions
	6.5.6� DBWR Operation
	6.5.7� Flowchart Summary of Buffer Cache Operation
	Figure 6.6� Buffer cache flowchart

	6.6� Shared Pool Structure
	6.7� Shared Pool: The Library Cache
	Figure 6.7� Shared pool composition
	6.7.1� Introduction
	6.7.2� Cursors
	6.7.3� The Parsing Mechanism
	Hard Parse
	Cursor Representation in the Library Cache
	1. Cursor head
	2. Cursor body

	Soft Parse
	Soft Parse Type 1
	Soft Parse Type 2
	Soft Parse Type 3: Session Cached Cursors

	Parse Hit Ratio
	6.7.4� Latch Coverage

	6.8� Other Memory Structures
	6.8.1� Dictionary Cache
	6.8.2� Log Buffer
	Figure 6.8� Circular redo buffer

	Latch Coverage

	6.9� Oracle Parallel Server Concepts
	6.9.1� Introduction
	Figure 6.9� High-level view of OPS

	6.9.2� Distributed Lock Manager (DLM)
	1. PCM locks
	2. Global enqueues (non-PCM lock)
	3. Global locks (non-PCM lock)
	4. Local enqueues (non-PCM lock)
	5. Local latches (non-PCM lock)

	6.9.3� Parallel Cache Management
	What Is a Parallel Cache?
	Figure 6.10� OPS ping for READ

	CR Server
	Types of Locks
	1. Fixed PCM locks
	2. Releasable PCM locks

	Fixed PCM Locks
	Figure 6.11� Hashed PCM locks distribution

	Releasable PCM Locks
	6.9.4� Design Considerations for OPS
	Application Design
	Step 1
	Step 2
	Step 3
	1. Sequence number caching
	2. Reverse key indexes

	Step 4

	Database Design
	Removing Contention for Blocks
	Table 6.1� PCM Lock Approaches

	Removing Contention for Non-PCM Locks
	6.9.5� Summary
	6.9.6� Further Reading for OPS

	6.10� V$ Views Exposed
	6.10.1� Session-Level Information
	Figure 6.12� Session information

	V$SESSION
	Table 6.2� V$SESSION Detail
	Table 6.2� continued
	Table 6.2� continued
	Table 6.3� V$PROCESS Detail
	Table 6.4� V$TRANSACTION Detail
	Table 6.4� continued

	V$SESSION_WAIT
	Table 6.5� V$SESSION_WAIT Detail
	Table 6.6� Parameter Descriptions for “db file sequential read”

	6.10.2� V$SESSION_EVENT
	Table 6.7� V$SESSION_EVENT Detail

	V$SESSTAT
	Table 6.8� V$SESSTAT Detail
	Table 6.9� V$STATNAME Class Types

	6.10.3� System-Level Information
	V$SYSSTAT, V$SYSTEM_EVENT
	V$FILESTAT
	V$SGASTAT
	V$LIBRARYCACHE
	V$ROWCACHE
	V$DB_OBJECT_CACHE
	V$BH
	V$LATCH_CHILDREN
	V$LATCH
	V$LOCK
	V$WAITSTAT
	V$BACKUP
	V$SORT_SEGMENT, V$SORT_USAGE

	6.11� Chapter Summary
	6.12� Further Reading

	PART IV
	How UNIX Works
	Chapter 7
	Introduction to UNIX
	7.1� What Is a Kernel?
	7.1.1� “That Picture”
	Figure 7.1� UNIX hierarchy

	7.1.2� Execution Modes
	7.1.3� Explicit Kernel Processing (Process Context Kernel Mode)
	Figure 7.2� Process memory map
	1. Text (the program itself)
	2. Data (initialized variables)
	3. BSS (uninitialized variables), including heap memory allocated by the malloc() family
	4. Shared libraries (can include all items above for each library)
	5. Shared locations (shared memory, memory mapped files)

	7.1.4� Implicit Kernel Processing (System Context Kernel Mode)
	The Hardware Clock
	Time Sharing

	7.2� Processes
	7.2.1� The Process “Table”
	7.2.2� Process Scheduling
	Process Scheduling Primer: Uniprocessor Platforms
	Advanced Scheduling: Multiprocessor Process Scheduling
	SMP
	NUMA

	7.2.3� Signals
	Figure 7.3� Signal bitmask in proc structure
	Table 7.1� Signal Names
	Table 7.1� continued

	7.2.4� Process Lifecycle
	Figure 7.4� Listener application

	7.3� Memory Management: The Virtual Memory System
	7.3.1� Introduction
	1. The system cannot support multitasking.
	2. Software development is complex and machine-dependent.

	7.3.2� Virtual Memory Introduction
	Address Translation
	Figure 7.5� Address translation
	Figure 7.6� Process page table
	Figure 7.7� Physically mapped cache
	Figure 7.8� Virtual mapped cache

	Context Switch
	Further MMU Considerations

	7.4� Virtual Memory Hierarchy
	7.4.1� The Memory/Disk Hierarchy
	Figure 7.9� Memory/disk hierarchy

	7.4.2� Implementing the Hierarchy
	Demand Paging
	Virtual Memory Cache Analogy
	Pager Objects
	Figure 7.10� Memory objects
	Figure 7.11� Paging interfaces

	Paging Mechanics
	Figure 7.12� Paging thresholds
	Figure 7.13� Two-handed clock algorithm

	7.4.3� Implications of fork() and exec()
	7.4.4� Summary

	7.5� I/O System
	7.5.1� Everything Is a File
	7.5.2� Filesystems
	Figure 7.14� Filesystem hierarchy
	Figure 7.15� Filesystem layers
	Figure 7.16� s5 Filesystem organization

	Modern Filesystems
	7.5.3� Raw Disk
	Entire File Allocations
	Use of Standard File Manipulation Commands
	Backup
	Space Management
	7.5.4� Filesystems Versus Raw Disk
	Filesystems
	Raw Disk
	7.5.5� Logical Volume Managers
	Figure 7.17� Volume group
	Figure 7.18� Logical volumes

	7.6� Interprocess Communication (IPC)
	7.6.1� Pipe Communication
	7.6.2� System V IPC
	Shared Memory
	Semaphores
	Message Queues

	7.7� More on System Calls
	Table 7.2� Common System Calls
	Table 7.2� continued
	Table 7.2� continued

	7.8� Chapter Summary
	7.9� Further Reading

	Chapter 8
	Oracle User’s Guide to UNIX
	8.1� Coengineering the Oracle Kernel
	8.1.1� VOS Responsibilities
	Figure 8.1� Software layers prior to Oracle8
	Figure 8.2� Oracle8+ software layers

	Datatype Specification
	I/O Interfaces
	Process Management and Threads
	IPC
	Memory Management
	Stack Management Facilities/Other Utilities
	8.1.2� Vendor Coengineering
	Case Study: Sequent NUMA-Q 2000
	Extended Buffer Cache
	SGA Memory Placement
	Rapid SGA Creation
	Quad-Local Buffer Preference (QLBP)

	8.2� UNIX Tools
	8.2.1� top
	8.2.2� Tcl and expect
	8.2.3� Korn Shell
	8.2.4� awk

	8.3� Further Reading

	Part V
	Implementing Oracle
	Chapter 9
	Scalable Transaction Processing
	9.1� Scalable Applications
	9.1.1� Application Design
	Maintaining Concurrency
	9.1.2� Scalable SQL
	Poor Efficiency
	Avoiding High-Contention SQL
	1. Write-read contention: reading sessions affected by writers
	2. Read-read contention: sessions competing to pin the same physical block

	Sharing SQL
	The Cost of Binding
	Table 9.1� Cost of Binding Variables

	Poorly Bound SQL
	Poor Date Definition
	Poor Input Enforcement

	9.1.3� Transaction Processing Monitors
	Figure 9.1� Two-tier application architecture

	What Is a Transaction Processing Monitor?
	Figure 9.2� Three-tier application architecture
	Figure 9.3� Banking application
	Figure 9.4� Banking application with middleware transaction management

	Object Request Brokers
	9.1.4� Purge
	1. Reference data
	2. Transactional data

	Rapid Deletion Techniques
	1. “Exchange” the designated partition with a standard table.
	2. Set the tablespace to be READ ONLY.
	3. Export the metadata from the catalog using
	4. Copy the tablespace datafile(s) to the target database.
	5. Import the tablespace into the target using
	6. Check that all is OK.
	7. Drop tablespace in production, including contents.
	8. Manipulate imported tablespace in target database.
	1. Serial delete session
	2. Many delete sessions on the same data
	3. Oracle parallel DML

	9.2� Tuning Transaction Processing Systems
	9.2.1� Goals for Tuning
	9.2.2� Where to Tune
	Figure 9.5� Tuning hierarchy

	Requirement
	Design
	Application
	Database
	System
	9.2.3� Tuning Modes
	Reducing System Utilization
	Improving Response Times
	Indexing
	Library Cache
	Buffer Cache
	Figure 9.6� Hash Bucket File Coverage

	Redo Allocation

	Increasing Batch Throughput

	9.3� Chapter Summary
	9.4� Further Reading

	Chapter 10
	Pulling It All Together: A Case Study
	10.1� Introduction
	10.2� Engagement Overview
	10.2.1� The Business
	1. Point-of-sale agents, thinly distributed over a large geographical area (all 50 states, plus C...
	2. Sales agents, collected into a small number of large “sales centers”
	3. Corporate users, mostly based at corporate headquarters

	10.2.2� Perot Systems Corporation: The IT Partner
	10.2.3� The Application
	History of the Application
	Required Changes
	10.2.4� The Technical Solution
	Hardware
	1. Initial design
	2. Sizing
	3. Benchmarking
	4. Final design
	5. Implementation
	Initial Design
	Sizing
	Benchmarking
	1. Paper evaluation
	2. A competitive benchmark
	Table 10.1� Silverstone Benchmark Weighting Factors

	Final Design
	Figure 10.1� Silverstone storage architecture
	Table 10.2� Storage Protection

	Hardware Implementation

	Oracle Implementation
	Partitioning
	Tuning
	SQL*Net

	The Rollout
	Challenges
	Application Tuning
	Oracle Challenges

	10.3� Chapter Summary

	Part vi
	Further Considerations
	Chapter 11
	Building a Successful Team
	11.1� Introduction
	11.2� Immediate Team Attributes
	Self-Motivation
	Lateral Thinking
	Responsibility
	Steep Learning Curve
	Good Communication Skills
	Good Work Ethic

	11.3� Virtual Team Attributes
	11.4� Chapter Summary

	Chapter 12
	Pitfalls
	12.1� Introduction
	12.2� Avoiding Bugs
	12.2.1� Initial Releases
	12.2.2� Known Problems

	12.3� Bug Diagnosis and Resolution
	12.3.1� Finding and Fixing Bugs
	1. Call it in to support. There is a good chance that there is already a fix for the problem. Sup...
	2. While support personnel are looking up the bug, get a good trace dump of the error, ready to s...
	3. If the problem has not already been fixed, try to produce a test case, if possible.

	12.3.2� Oracle Parallel Server Problems

	12.4� Chapter Summary

	Chapter 13
	Internet Applications and the Future
	13.1� E-Commerce Systems
	13.1.1� The Implications
	Increased Exposure
	Reduced Infrastructure Costs
	Reduced Head Count
	Increased User Base
	Increased Data Volumes
	Network Scalability Issues
	13.1.2� The Implication for Business Computing

	13.2� Oracle8i Technology
	13.2.1� Java Integration
	13.2.2� New Data Services
	Online Index Maintenance
	Secondary Indexes on Index-Organized Tables
	Local Space Management
	Optimizer Plan Stability

	13.3� Future Oracle Releases
	13.4� Chapter Summary

