
To access the contents, click the chapter and section titles.

Special Edition Using Oracle8
(Imprint: Que)
(Publisher: Macmillan Computer Publishing)
Author: Nathan Hughes; Willia
ISBN: 0789713454

CONTENTS
Acknowledgments
Credits
About this book

PART I - Principles of Database Management Systems

Chapter 1 - Databases, DBMS Principles, and the Relational Model
Chapter 2 - Logical Database Design and Normalization
Chapter 3 - Physical Database Design, Hardware, and Related Issues
Chapter 4 - Chapter not available

PART II - The Oracle Database Server

Chapter 5 - The Oracle Instance Architecture
Chapter 6 - The Oracle Database Architecture
Chapter 7 - Exploring the Oracle Environment

PART III - Oracle Interfaces and Utilities

Chapter 8 - SQL*Plus for Administrators
Chapter 9 - Oracle Enterprise Manager
Chapter 10 - PL/SQL Fundamentals
Chapter 11 - Using Stored Subprograms and Packages
Chapter 12 - Using Supplied Oracle Database Packages
Chapter 13 - Import/Export
Chapter 14 - SQL*Loader
Chapter 15 - Designer/2000 for Administrators

PART IV - Oracle on the Web

file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522
file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522
file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522
file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522

Chapter 16 - Oracle Web Application Server 3.0
Chapter 17 - Web Application Server Components
Chapter 18 - Installing and Configuring the OracleWeb Application Server

PART V - Oracle Networking

Chapter 19 - Oracle Networking Fundamentals
20 Chapter - Advanced Oracle Networking

PART VI - Managing the Oracle Database

Chapter 21 - Managing Database Storage
Chapter 22 - Identifying Heavy Resource Users
Chapter 23 - Security Management
Chapter 24 - Backup and Recovery
Chapter 25 - Integrity Management

PART VII - Parallel and Distributed Environments

Chapter 26 - Parallel Query Management
Chapter 27 - Parallel Server Management
Chapter 28 - Distributed Database Management

PART VIII - Performance Tuning

Chapter 29 - Performance Tuning Fundamentals
Chapter 30 - Application Tuning
Chapter 31 - Tuning Memory
Chapter 32 - Tuning I/O

APPENDIX A Oracle on UNIX
APPENDIX B Oracle on Windows NT
APPENDIX C New Features of Oracle8
APPENDIX D Oracle Certification Programs

Table of Contents | Next

Page 5

Contents

Contents at a Glance

Introduction 1

I Principles of Database Management Systems

1 Databases, DBMS Principles, and the Relational Model 9
2 Logical Database Design and Normalization 19
3 Physical Database Design, Hardware, and Related Issues 29
4 The Oracle Solution 43

II The Oracle Database Server

5 The Oracle Instance Architecture 53
6 The Oracle Database Architecture 73
7 Exploring the Oracle Environment 93

III Oracle Interfaces and Utilities

8 SQL*Plus for Administrators 119
9 Oracle Enterprise Manager 147
10 PL/SQL Fundamentals 173
11 Using Stored Subprograms and Packages 239
12 Using Supplied Oracle Database Packages 271
13 Import/Exportv 305
14 SQL*Loader 329
15 Designer/2000 for Administrators 351

IV Oracle on the Web

16 Oracle Web Application Server 3.0 393
17 Web Application Server Components 401
18 Installing and Configuring the Oracle Web Application Server 423

V Oracle Networking

19 Oracle Networking Fundamentals 445
20 Advanced Oracle Networking 467

Page 6

VI Managing the Oracle Database

21 Managing Database Storage 487
22 Identifying Heavy Resource Users 531
23 Security Management 567
24 Backup and Recovery 585
25 Integrity Management 621

VII Parallel and Distributed Environments

26 Parallel Query Management 649
27 Parallel Server Management 661
28 Distributed Database Management 703

VIII Performance Tuning

29 Performance Tuning Fundamentals 727
30 Application Tuning 749
31 Tuning Memory 773
32 Tuning I/O 795

Appendixes

A Oracle on UNIX 815
B Oracle on Windows NT 829
C New Features of Oracle8 847
D Oracle Certification Programs 863

Index 879

Page 7

Table of Contents

Introduction

Who Should Use This Book? 2

What's in This Book 2

I Principles of Database Management Systems

1 Databases, DBMS Principles, and the Relational Model 9

Understanding Databases 10

Understanding a DBMS 11

Securing Data 11
Maintaining and Enforcing Integrity 12
Understanding Transactions 12
Communicating with the Database 13

Understanding an RDBMS 13

Using the Relational Model 14
Using Codd's Twelve Rules 16

2 Logical Database Design and Normalization 19

Entity-Relationship Modeling 20

Mapping ERDs to the Relational Model 23

Understanding Normalization 23

Using a Normalization Example 24
Continuing the Normal Form 27

3 Physical Database Design, Hardware, and Related Issues 29

Understanding Application Types 30

Using Quantitative Estimates 31

Transaction Analysis 31
Sizing Analysis 32

Denormalizing 32

Understanding the Storage Hierarchy and RAID 34

Understanding RAID 35

Understanding Bottlenecks in a DBMS 36

Making Your Platform Selection 37

Operating System Integration and General Memory/CPU Recommendations 38

Physical Design Principles and General Hardware Layout Recommendations 39

4 The Oracle Solution 43

Reviewing Oracle History 44

Oracle Is a DBMS 44

Is Oracle an RDBMS? 45

Revisiting the Physical Layout 46

Sizing for Oracle 48

Oracle's Future 48

II The Oracle Database Server

5 The Oracle Instance Architecture 53

Introduction 54

Defining the Instance 54

Creating the Instance 55

Understanding the Oracle Instance 55

The System Global Area (SGA) 57
The Oracle Background Processes 60

Understanding the Anatomy of a Transaction 66

Monitoring the Instance 67

Using the Trace Files 67 Tracking Through the Operating System 67

Page 8

Using the v$ Tables to Monitor Instance Structures 68

6 The Oracle Database Architecture 73

Defining the Database 74

The SYS and SYSTEM Schemas 74

Understanding the Components of the Database 75

System Database Objects 75
User Database Objects 84

Understanding Database Segments 85

Tables 85
Indexes 86
Rollback Segments 87
Table Clusters 88

Hash Clusters 88

Using the Oracle Data Dictionary 89

Internal RDBMS (X$) Tables 89
Data Dictionary Tables 90
Dynamic Performance (V$) Views 90
Data Dictionary Views 90

Other Database Objects 90

Views 90
Sequences 91
Triggers 91
Synonyms 91
Database Links 92
Packages, Procedures and Functions 92

7 Exploring the Oracle Environment 93

Creating the Oracle Environment 94

Designing an Optimal Flexible Architecture 94

Creating Top-Level Directories 94
Using Application Directories 95
Managing Database Files 96
Naming Conventions 98
Putting It All Together 99

Configuring the Oracle Environment 101

Understanding the Oracle Software Environment 101

ORACLE_HOME Sweet Home 102
The ORACLE_HOME Directories 104
Other Important Configuration Files 105

Creating Your First Database 106

Creating the Initialization Parameter File 106
Creating the Instance 106
Creating the Database 108
Running Post-Database Creation Procedures 109
Creating the Supporting Database Objects 110
Securing the Default Accounts 111
Updating the System Configuration Files 111

Exploring the Oracle Database 111

Looking at the Database 112
Looking at the Database Segments 114
Looking at Miscellaneous Database Objects 114

Exploring an Unfamiliar Environment 115

Exploring the UNIX Environment 115
Exploring the Windows NT Environment 116

III Oracle Interfaces and Utilities

8 SQL*Plus for Administrators 119

Administering SQL*Plus 120

Using SQL*Plus Environment Variables 120
Invoking/Accessing SQL*Plus 122
Editing SQL Commands 122
Entering and Editing SQL*Plus Commands 124
Using Your Operating System Editor in SQL*Plus 125
Running SQL*Plus/SQL Commands 126

Page 9

Using the SQL*Plus COPY Command 130

Using SQL to Create SQL 132

Restricting a User's Privileges in SQL*Plus 135

Disabling a SQL Command 136
Reenabling a SQL Command 137
Disabling SET ROLE 139
Disabling Roles 139

Tracing SQL Statements 139

Understanding the Execution Plan 142
Using the AUTOTRACE Feature 143

9 Oracle Enterprise Manager 147

Understanding the Enterprise Manager Architecture 148

Getting Started 150

Using the Console Functions 152

Understanding the Integrated Console Functions 153
Surfing Databases with Navigator 154
Visualizing the Database World with Map 155
Automating Administration Tasks with Job 155
Responding to Change with Event Management 157

Using the Database Administration Tools 159

Managing Instances 160
Managing Schemas 161
Managing Security 163
Managing Storage 163
Executing SQL 165

Managing Recoverability 165
Managing Data 165
Managing Software 166

Using the Performance Pack 166

Monitoring and Tracking Performance 166
Tracing Database Activity 167
Managing Tablespaces 168
Monitoring Sessions 169
Using Oracle Expert 170

Using the Enterprise Value-Added Products 172

10 PL/SQL Fundamentals 173

Understanding PL/SQL 174
Understanding the PL/SQL Engine 175

Fitting into the Client/Server Environment 175
Fitting into the Client Environment 178
Server-Side Versus Client-Side Development 178

Adding PL/SQL to Your Toolbox 179

Energize Your SQL Scripts 180
Simplifying Database Administration 180
Getting Better Information With Less Hassle 180
Designing Better Database Applications 181

Getting Started with PL/SQL 181

Understanding the Schema of Things 182
Your Basic PL/SQL Development Environment 183
Accessing the Data Dictionary 184

Language Tutorial 185

Coding Conventions 185
Special Characters 186
PL/SQL's Block Structure 187
Declaring Variables 200

Assignment 214
Looping 214
Using Cursors 217
Handling Exceptions 224
Using Subprograms 230

11 Using Stored Subprograms and Packages 239

Defining Stored Subprograms and Packages 240

Page 10

Building and Using Stored Programs 240

Calling Stored Programs from SQL 244
Calling Stored Programs from PL/SQL 247

Debugging with Show Errors 248

Checking the State of a Stored Program or Package 255

Building and Using Packages 256

Using Package Parts 257
Comparing Public and Private Declarations 260
Knowing when To Use Packages 261
Referencing Package Elements 262

Creating a Real-World Example 263

Designing the Package Header 263
Designing the Package Body 266
Designing the Procedures 269
Wrapping Up the Package 269

12 Using Supplied Oracle Database Packages 271

About the Supplied Oracle Database Packages 272

Interaction Within the Server 272
Interaction Beyond the Server 272

Getting More Information from Your Server 272

Describing Supplied Packages 272

Getting Started with the Oracle-Supplied Packages 274

Locating the DBMS Packages 275
Making Sure the Packages Are Installed Correctly 276

Hands-On with the Oracle-Supplied Packages 277

Monitoring Programs with DBMS_APPLICATION_INFO 277
Recompiling Packages with DBMS_DDL 279
Formatting Output with DBMS_OUTPUT 282
Sharing Data with DBMS_PIPE 284
Altering the Session with DBMS_SESSION 287
Managing the Shared Pool with DBMS_SHARED_POOL 289
Obtaining Segment Space Information with DBMS_SPACE 290
Enabling Dynamic SQL with DBMS_SQL 293
Running a Trace with DBMS_SYSTEM 297
Using Miscellaneous Utilities in DBMS_UTILITY 299

13 Import/Export 305

Understanding the Purpose and Capabilities of Import/Export 306

Understanding Behavior 307

Controlling and Configuring Import and Export 309

Taking Walkthroughs of Import and Export Sessions 319

Identifying Behavior When a Table Exists 319
Reorganizing a Fragmented Tablespace 320
Moving Database Objects from One Schema to Another 323
Multiple Objects and Multiple Object Types 324
Identifying Behavior When Tablespaces Don't Match 325
Moving Database Objects from One Tablespace to Another 325

Using the SHOW and INDEXFILE Options 326

14 SQL*Loader 329

Running SQL*Loader 330

Components of SQL*Loader 331

The Control File 331
SQL*Loader Input Data 332
SQL*Loader Outputs 332
Control File Syntax 333

Page 11

Looking at SQL*Loader Examples 334

Example 1—Loading Fixed-Length Data 337
Example 2—Loading Variable-Length Data 339
Example 3—Loading with Embedded Data 341
Example 4—Loading with Conditional Checking 342
Example 5—Loading into a Table Partition 345

Conventional and Direct Path Loading 347

Using Conventional Path Load 348
Using Direct Path Load 349
Using SQL*Loader Performance Tips 350

15 Designer/2000 for Administrators 351

Designer/2000—Oracle's Popular CASE Solution 352

Systems Development Life Cycle (SDLC) 352
Upper CASE Versus Lower CASE 353

Designer/2000 Overview 353

Designer/2000 Components 354
Understanding the Repository 355
Using the Diagrammers 356
Diagramming Techniques Used by Designer/2000 357
Generators 359

Module Regeneration Strategy 362
Oracle CASE Exchange 362
Waterfall-Oriented Methodology Using Designer/2000 363

Designer/2000 Administration 365

Understanding the Repository 365
Repository Sizing 366
Protecting the Designer/2000 Repository 366
Sharing and Transferring Objects 367
Referential Integrity Using the Repository 368
Version and Change Control 369
Migrating Applications 370
Moving Primary Access Controlled (PAC) Elements 371
Placing Designer/2000 Diagrams in Documents 372
Reverse-Engineering Using Designer/2000 373
Data Administration Configuration Using Designer/2000 374

Enhancing the Performance of Designer/2000 377

Optimizing the Client Machine 377
Optimizing the Network 378
Optimizing Designer/2000 378
Optimizing the Database Server 378

Application Programming Interface 379

Using the API 379
API Views and Packages 380
API Limitations 381

Troubleshooting Designer/2000 381

Checking Common Errors 381
Using Diagnostics and Tracing 382
Tips to Efficiently Generate Developer/2000 Applications from
Designer/2000 384
Designer/2000 R 2.0 Features 387
Designer/2000 and Oracle8 388

IV Oracle on the Web

16 Oracle Web Application Server 3.0 393

Introducing the Oracle Web Application Server 394

Understanding the Network Computing Architecture (NCA) 394

Understanding the Oracle Web Application Server 395

The Web Listener 397
The Web Request Broker 397
Cartridges 397

Providing Basic Services with the Oracle Web Application Server 398

Page 12

Transaction Services 399
Inter-Cartridge Exchange Services 399
Persistent Storage Services 399
Authentication Services 399

17 Web Application Server Components 401

Examining the Web Listener 402

Getting Into More Details 402
Understanding Web Listener's Architecture 403
Memory Mapping of Files 403
Directory Mapping 403
Resolving the Domain Name 403
Web Listener Configuration Parameters 404

Examining the Web Request Broker 404

WRB Messaging 405
Third-Party Implementations 405
The WRB Dispatcher 406
IPC Support 407
The WRB Execution Engine (WRBX) 407
WRB Application Program Interface 407

Examining the Web Application Server SDK 408

The WRB Logger API 408
Understanding Cartridges and ICX 410
Using the PL/SQL Agent 421

18 Installing and Configuring the Oracle Web Application
Server 423

Installing Oracle Web Application Server for Sun Solaris 424

Hardware and Software Requirements 424

Understanding Web Application Server's Latest Installation Features 425

Relinking Your Executables After Installation 425

Identifying Product Dependencies 426

Implementing Pre-Installation Tasks 426

Setting Preliminary Environment Variables 427

Setting Permission Codes for Creating Files 428

Updating Your Environment from a Startup File 428

Designing the Directory Structure 428

Installation Notes on the Web Agent 429

Inside the OWA.CFG File 431

Using the Web Administrative Server 432

Installing the Oracle Web Application Server Option 432

Configuring Web Server 433

Installing the Web Application Server Developer's Toolkit 434

Improving Performance for Multiple Web Agent Installations 435

Using the Oracle Web Application Server Administration Utility 436

Setting Up a New Web Agent Service 436

Defining Configuration Parameters for the Web Listener 438

Troubleshooting 439

Other Helpful Notes on Installation 440

Attempting to Install Oracle Web Application Server on Windows NT 441

V Oracle Networking

19 Oracle Networking Fundamentals 445

Understanding Oracle Networking Product Features 446

Understanding the Administration and Management Components 447

Page 13

Network Naming Conventions 447
Understanding the Optional Security Extensions 448

SQL*Net and Net8 Architectures 448

Networking Protocol Stacks 449

Oracle Protocol Adapters 450
Transparent Network Substrate TNS) 450

Using the Open Systems Interconnection Reference Model 451

The Foundation 451
The Interface 452
The Protocol Stack 453
The TCP/IP Protocol Stack 453

Understanding SQL*Net Operations 456

Installing and Configuring SQL*Net 456

Planning the Network Design 456
Overview of Configuration Files 457
Preparing to Install SQL*Net 458
Installing 16-Bit SQL*Net (Non-OCSM)460
Installing 32-Bit SQL*Net 461
Using The Oracle Client Software Manager (OCSM) Component 463
Installing SQL*Net Using the Oracle Client Software Manager 464

20 Advanced Oracle Networking 467

Understanding Enterprise Networking 468

Configuring SQL*Net and Net8 468

Using the Oracle Tools to Configure Oracle Networking 469
Exploring the New Net8 Parameters 470
Administering the Oracle Listener 471
Troubleshooting the Client Configuration 472
Troubleshooting the Server 474

Understanding the Oracle Names Server 475

Names Server Configuration 475
Configuring Clients to Use the Names Server 476
Configuring the Names Server for Dynamic Discovery 477

Using the Advanced Networking Option 477

Enabling Data Encryption and Checksums 478

Understanding the Multi-Threaded Server 479

Multi-Threaded Server Architecture 480
Configuring the Multi-Threaded Server 480
Administering the Multi-Threaded Server 482

Using the Oracle Connection Manager 483

Configuring Connection Multiplexing 483
Configuring Multiple Protocol Support 484

VI Managing the Oracle Database

21 Managing Database Storage 487

Administering Database Objects 488

Managing Oracle Blocks 488

Understanding PCTFREE and PCTUSED 488

Managing Table Storage 489

Managing Indexes 491

Monitoring Temporary Tablespaces and Segments 492

Understanding Database Fragmentation 492

Understanding Fragmented Tablespaces 492

Dealing with Fragmented Tablespaces 495

Understanding Object Fragmentation 496

Page 14

Managing Rollback Segments 499

Understanding Rollback Segment Operation 500
Sizing Rollback Segments 501
Avoiding Rollback Segment Contention 503
Using the OPTIMAL Parameter 504
Performing Load Tests to Obtain Rollback Estimates 505

Identifying Storage Problems 506

Exploring Tablespaces 508
Checking on Tables 511
Optimizing Cluster Storage 512
Checking Indexes 513
Watching the Growth of Rollback Segments 513
Managing Temporary Tablespace 514

Administering a Growing Database 514

Monitoring Database Storage 515
Correcting Excessive Table Growth 518
Consolidating Clusters 518
Consolidating Indexes 519
Managing Tablespace Growth 519

Understanding Space Manager521

Knowing the Features of Space Manager 521
Using the Output of Space Manager 522
Configuring and Using Space Manager 525

22 Identifying Heavy Resource Users 531

Resources That Make the Difference 532

Resource: CPU 533

Taking a CPU Overview 533
Finding Heavy CPU Users 536

Resource: File I/O (Disk Access) 549

Taking an I/O Overview 550
Finding Heavy I/O Users 555

Resource: Memory 557

Process Memory Breakup 559
Taking a Memory Overview 560

Finding Heavy Memory Users 562

23 Security Management 567

User Authentication 568

Database Authentication 568
External Authentication 570
Enterprise Authentication 571

Database Privilege Management 572

Understanding Security Roles 578
Understanding Administration 578

Monitoring Database Assets 579

Auditing Logins 579
Auditing Database Actions 580
Auditing DML on Database Objects 581
Administering Auditing 581

Protecting Data Integrity 582

Hardware Security 582

Recovering Lost Data 583

Operating System Backup 583
Logical Backup 584

24 Backup and Recovery 585

Backup Strategy 586

Understanding Physical and Logical Data Loss 587

Using Logical Backups 590

Full Logical Backups 593
Logical Backups of Specific User Schemas 594

Logical Backups of Specific Tables 594

Using Cold Physical Backups 595

Command-Line_Driven Cold Physical Backups 595
Desktop-Driven Cold Backups 598

Using Hot Physical Backups 600

Understanding the Reasoning 600
Command-Line_Driven Hot Physical Backups 601
Desktop-Driven Hot Physical Backups 603

Restoring from Logical Backups 604

Page 15

Fully Restoring from a Logical Backup 607
Partial Restores with Logical Backups 608

Using Physical Recovery 609

Physically Re-creating a Database 609
Complete Recovery 611
Incomplete Recovery 614

Testing Strategies 618

25 Integrity Management 621

Introduction 622

Implementing Locks 622

Need for Locking 622
Locking Concepts 623

Analyzing v$lock 627

Case 1: A Table Locked Exclusively 628
Case 2: Session Updating a Row of an Exclusively Locked Table 629

Case 3: A Session Trying to Update an Updated Row by Another Session
630

Monitoring Locks on the System 631

Avoiding Locks: Possible Solutions 635

Implementing Locks with Latches 638

Functioning of Latches 638
Analyzing Views Related to Latches 639
Checking for Latch Contention 640
Tuning Some Important Latches 642

VII Parallel and Distributed Environments

26 Parallel Query Management 649

Introduction 650

Parallel Load 650
Parallel Recovery 651
Parallel Propagation (Replication) 651
Parallel SQL Execution 651

SQL Operations That Can Be Parallelized 653

Understanding the Degree of Parallelism 654

Determining the Degree of Parallelism 654
When Enough Query Slaves Are Not Available 656

Understanding the Query Server Processes 656

Analyzing Objects to Update Statistics 656

Understanding the 9,3,1 Algorithm 657

Understanding Parallel DML 657

Parallel Execution in OPS Environment 658

Tuning Parallel Query 659

27 Parallel Server Management 661

Understanding the Benefits of Parallel Server 662

Using Single Instance Versus Parallel Server Databases 663

Using Vendor Interfaces 664
Using the Parallel Cache Management Lock Process 664
Using Parallel Cache Management Lock Parameters 667
Parallel Server Initialization Parameters 675
Rollback Segment Considerations for Parallel Server 678
Redo Logs and Parallel Server Instances 679
Using Freelist Groups to Avoid Contention 680

Determining when Parallel Server Can Solve a Business Need 683

Designing a Parallel Database for Failover 684

Page 16

Designing a Parallel Database for Scalability 686

Application and Functional Partitioning 687
Department/Line of Business Partitioning 689
Physical Table Partitioning 690
Transaction Partitioning 691
Indexes and Scalability Considerations 691
Sequence Generators and Multiple Instances 692

Special Considerations for Parallel Server Creation 693

Monitoring and Tuning Parallel Server 695

Monitoring V$LOCK_ACTIVITY 696
Monitoring V$BH 698
Monitoring V$CACHE and V$PING 699
Tuning Strategy for Parallel Server 700

28 Distributed Database Management 703

Understanding Distributed Databases 704

Describing Each Type of Database 704
Naming Databases 705
Achieving Transparency 705
Using Oracle Security Server and Global Users 706
SQL*Net 707

Using a Distributed Database 707

Setting Up a Distributed System 708
Identifying Potential Problems with a Distributed System 712
Tuning a Distributed System 712

Using Distributed Transactions 713

Understanding Two-Phased Commit 713
Dealing with In-Doubt Transactions 714

Understanding Read-Only Snapshots 717

Setting Up a Snapshot 717
Using Snapshot Refresh Groups 719
Identifying Potential Problems with a Snapshot 719
Understanding Limitations of Snapshots 722
Tuning Snapshots 723
Using Initialization Parameters for Snapshots 724

VIII Performance Tuning

29 Performance Tuning Fundamentals 727

Revisiting Physical Design 728

Understanding Why You Tune 729

Knowing the Tuning Principles 730

Tuning Principle 1 730
Tuning Principle 2 731

Tuning Principle 3 732
Tuning Principle 4 732
Tuning Principle 5 733

Tuning Goals 734

Using the Return on Investment Strategy 735

Step 1: Do a Proper Logical Design 735
Step 2: Do a Proper Physical Design 735
Step 3: Redesign If Necessary 736
Step 4: Write Efficient Application Code 736
Step 5: Rewrite Code If Necessary 736
Step 6: Tune Database Memory Structures 736
Step 7: Tune OS Memory Structures If Necessary 736
Step 8: Tune Database I/O 737
Step 9: Tune OS I/O If Necessary 737
Step 10: Tune the Network If Necessary 737
Step 11: Tune the Client(s) If Necessary 738
Step 12: If All Else Fails, Consider More Exotic Solutions 738

Page 17

Revisiting Application Types 741

OLTP Issues 741
DSS Issues 742
Other Considerations for both OLTP and DSS 743

Understanding Benchmarks 743

Using Oracle Diagnostic Tools 745

Using SQL_TRACE and TKPROF 745
Using EXPLAIN PLAN 745
Using the V$ Dynamic Performance Views 745
Using the Server Manager Monitor 746
Using the Performance Pack of Enterprise Manager 746
Using utlbstat/utlestat and report.txt 746
Using Third-Party Products 747

30 Application Tuning 749

Motivation 750

Understanding the Optimizer 751

Ranking Access Paths 752
Analyzing Queries to Improve Efficiency 754
Specifying Optimizer Mode 755
Understanding Optimization Terms 758

SQL Trace and tkprof 759

Understanding EXPLAIN PLAN 762

Identifying Typical Problems 764

The Proper Use of Indexes 764
Dealing with Typical Problems in Application Tuning 766

Rewriting Queries 768

Using Set Operators 769
Using Boolean Conversions 769

Introducing New Index Features for Oracle8 770

Using Index Partitioning 770
Using Equi-Partitioned, Local Indexes 770
Using a Partition-Aware Optimizer 771
Using Index-Only Tables 771
Using Reverse Key Indexes 771

31 Tuning Memory 773

Introduction 774

UTLBSTAT/UTLESTAT 774

Interpreting Results 775
Reviewing the Report File 776

Tuning the Shared Pool 776

Guidelines for Improving the Performance of the Library Cache 778
MultiThreaded Server Issues 781

Tuning the Database Buffer Cache 782

Tuning Sorts 786

What Triggers Sorts? 787
Parameters for Sorts 788
Other Fine-Tuning Parameters for Sorts 790

Tuning the MultiThreaded Server (MTS) 791

Tuning Locks 792

Operating System Integration Revisited 793

32 Tuning I/O 795

Tuning Tablespaces and Datafiles 796

Partitioning Tablespaces 797
Clustering 798
Monitoring 801

Tuning Blocks and Extents 802

Using Preallocation 802
Using Oracle Striping 803
Avoiding Fragmentation 804

Tuning Rollback Segments 807

Tuning Redo Logs 808

Oracle8 New I/O Features 810

Partition-Extended Table Names 810
Direct Load Inserts 811

Page 18

Appendixes

A Oracle on UNIX 815

Solaris 816

A UNIX Primer for Oracle DBAs 816

Shells and Process Limits 816
Soft and Hard Links 817
Named Pipes and Compression 817
Temporary Directories 818

The SA and DBA Configuration on UNIX 818

Setting Up the dba Group and OPS$ Logins 819
Using the oratab File and dbstart/dbshut Scripts 819
Using the oraenv Scripts and Global Logins 820

Configuring Shared Memory and Semaphores 821

Understanding the OFA 822

Comparing Raw Disk and UFS 824

Using Additional UNIX Performance Tuning Tips 825

B Oracle on Windows NT 829

Why Choose Oracle on Windows NT? 830

Windows NT File Systems 831

FAT Features 831
NTFS Features 832

Understanding Windows NT Administration 833

Associated Windows NT Tools 833
Windows NT Services and Oracle Instances 835

Installing Oracle Server on the Windows NT Server 837

Before Installing 837
Installation Instructions 837
Before Upgrading 838
Upgrade Instructions 838

Creating an Instance on Windows NT 839

Creating INITsid.ora 839
Creating a Service 839

Tuning and Optimizing Oracle on Windows NT 841

Adjusting Windows NT Configurations 841
Storing Oracle Configurations 842

Learning from Oracle Windows NT 842

Knowing the Limitations 842
Installing Enterprise Manager 843
Accessing Large File Sizes on Windows NT 843
Exporting Directly to Tape on Windows NT 843
Trying Automation on Windows NT 843
The UTL_FILE Package 84

Supporting Oracle8 on Windows NT 845

C New Features of Oracle8 847

Changing from Oracle7 to Oracle8 848

Enhanced Database Datatypes 848
New Database Datatypes 849
Enhanced ROWID Format 850
Heterogeneous Services 850
Internal Changes to the Database Engine 850

Supporting Large Databases 851

Partitioned Tables and Indexes 851
Direct Load Insert and NOLOGGING 852
Enhanced Parallel Processing Support 853
Index Fast Full Scan 853

Supporting Object-Relational Features 853

Abstract Datatypes 854
Variable Arrays 855
Nested Tables 855
Object Views 856

Administering Oracle8 857

Enhancements to Password Administration 857

Page 19

Backup and Recovery Optimizations 857
shutdown transactional 858
Disconnect Session Post Transactional 858
Minimizing Database Fragmentation 858
New Replication Options 858

Developing Applications 858

External Procedures 858
Index-Only Tables 859
Reverse Key Indexes 859
Instead Of Triggers 860
Data Integrity Management 860

D Oracle Certification Programs 863

Benefiting from Technical Certification 864

The Oracle Certified Professional Program 864

Becoming an Oracle Certified Database Administrator 865

Describing the Program 865
Preparing for the Tests 866

The Certified Database Administrator Program 874

Description of the Program 874

Index 879

Page 20

Table of Contents | Next

Previous | Table of Contents | Next

Page 1

About this Book

Using
Special Edition
Using

Oracle8 ™

Page 2

Page 3

Using
Special Edition
Using

Oracle8 ™

William G. Page, Jr., and
Nathan Hughes, et al.

Page 4

Special Edition Using Oracle8 ™

Copyright© 1998 by Que® Corporation.

All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in
any form or by any means, or stored in a database or retrieval system, without prior written permission of the
publisher except in the case of brief quotations embodied in critical articles and reviews. Making copies of any
part of this book for any purpose other than your own personal use is a violation of United States copyright laws.
For information, address Que Corporation, 201 W. 103rd Street, Indianapolis, IN, 46290. You may reach Que's
direct sales line by calling 1-800-428-5331 or by faxing 1-800-882-8583.

javascript:displayWindow('images/ch00fg01.jpg',124,32)
javascript:displayWindow('images/ch00fg01.jpg',124,32)

Library of Congress Catalog No.: 97-80936

ISBN: 0-7897-1345-4

This book is sold as is, without warranty of any kind, either express or implied, respecting the contents of this
book, including but not limited to implied warranties for the book's quality, performance, merchantability, or
fitness for any particular purpose. Neither Que Corporation nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have
been caused directly or indirectly by this book.

00 99 98 6 5 4 3 2 1

Interpretation of the printing code: the rightmost double-digit number is the year of the book's printing; the
rightmost single-digit number, the number of the book's printing. For example, a printing code of 98-1 shows that
the first printing of the book occurred in 1998.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Que cannot attest to the accuracy of this information. Use of a term in this book should not be
regarded as affecting the validity of any trademark or service mark.

Screen reproductions in this book were created using Collage Plus from Inner Media, Inc., Hollis, NH.

Page 21

Credits

Publisher
Joseph B. Wikert

Executive Editor
Bryan Gambrel

Managing Editor
Patrick Kanouse

Acquisitions Editor
Tracy Dunkelberger

Development Editor
Nancy Warner

Technical Editor
Sakhr Youness

Project Editor

Rebecca M. Mounts

Copy Editors
Nancy Albright
Michael Brumitt
Patricia Kinyon
Sean Medlock

Team Coordinator
Michelle Newcomb

Cover Designer
Dan Armstrong

Book Designer
Ruth Harvey

Production Team
Carol Bowers
Mona Brown
Ayanna Lacey
Gene Redding

Indexers
Erika Millen
Christine Nelsen

Composed in Century Old Style and ITC Franklin Gothic by Que Corporation.

Page 27

Acknowledgments

Thanks to the various people at Mitretek who supported me in this effort, and, of course, special thanks to my
piglets.

—William G. Page, Jr.

I give no small amount of credit for my current success and happiness to three very special and important people
I met while working for the University of Michigan: Russell Hughes, Richard Roehl, and William Romej. I count
them among my closest and most respected friends, and would not be where I am today without their support and
advice over the years. I'd like to thank the folks at Oracle Education for their fine classes and materials, as well
as the professionals at Oracle Corp., who have put up with my badgering, pestering, and even complaining. I'd
also like to acknowledge the expertise of the folks on oracle-l and comp.databases.oracle.*, who have provided
me much valuable knowledge and even a few laughs. And finally, thanks to the wonderful folks at Que, and
especially Tracy Dunkelberger, for their understanding and patience with this first-time author. It's been a great

trip.

—Nathan Hughes

Page 28

Page 22

In memory of Y. W. G. Fong.

—William G. Page, Jr.

This book is dedicated to the amazing women who have made such a lasting impact on my life. To my beautiful wife Janet, who
fills all my days with joy and makes my life complete. To my Mom, who showed me the way but made me make the choices—and
welcomed me with open arms even when I strayed. And to my Grandma, who taught me (through example!) that since life is what
you make of it, you might as well make it something good.

—Nathan Hughes

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 7

PART I

Principles of Database Management Systems

1. Database, DBMS Principles, and the Relational Model
2. Logical Database Design and Normalization
3. Physical Database Design, Hardware, and Related Issues
4. The Oracle Solution

Page 8

Page 9

CHAPTER 1

Databases, DBMS Principles, and the Relational Model

In this chapter

● Understanding Databases 10
● Understanding a DBMS 11
● Understanding an RDBMS 13

Page 10

Understanding Databases

Over the years, there have been many definitions of database. For our purposes, a database is an
organized collection of data serving a central purpose. It is organized in the sense that it contains data
that is stored, formatted, accessed, and represented in a consistent manner. It serves a central purpose in
that it does not contain extraneous or superfluous data. A phone book is a good example of a database. It
contains relevant data (that is, names) that allow access to phone numbers. It does not contain irrelevant
data, such as the color of a person's phone. It stores only what is relevant to its purpose. Most often, a
database's purpose is business, but it may store scientific, military, or other data not normally thought of
as business data. Hence, there are business databases, scientific databases, military databases, and the list

goes on and on. In addition, data can not only be categorized as to its business, but also its format.
Modern databases contain many types of data other than text and numeric. For example, it is now
commonplace to find databases storing pictures, graphs, audio, video, or compound documents, which
include two or more of these types.

When discussing databases, and database design in particular, it is commonplace to refer to the central
purpose a database serves as its business, regardless of its more specific field, such as aerospace,
biomedical, or whatever. Furthermore, in real life a database is often found to be very, very specific to
its business.

In earlier days, programmers who wrote code to serve Automatic Data Processing (ADP) requirements
found they frequently needed to store data from run to run. This became known as the need for persistent
storage; that is, the need for data to persist, or be saved, from one run of a program to the next. This
fundamental need began the evolution of databases as we know them. A secondary need, simple data
storage, also helped give rise to databases. Online archiving and historical data are a couple of specific
examples. Although files, directories, and file systems could provide most general data storage needs,
including indexing variations, databases could do what file systems did and more.

Modern databases typically serve some processing storage need for departments or smaller
organizational units of their parent organization or enterprise. Hence, we use the terms enterprise-wide
database, referring to the scope of the whole organization's business; the department-wide database,
referring to the level of a department; and the workgroup database, usually referring to some
programming or business unit within a department. Most often, databases are found at the department-
wide and workgroup levels.

Occasionally one finds databases that serve enterprise-wide needs, such as payroll and personnel
databases, but these are far outnumbered by their smaller brethren. In fact, when several departmental
databases are brought together, or integrated, into one large database, this is the essence of building a
data warehouse (DW). The smaller databases, which act as the data sources for the larger database, are
known as operational databases. However, this is nothing new. An operational database is just one that
produces data, which we have known for years as a production database. Only in the context of building
a DW do you find production databases also referred to as operational databases, or sometimes
operational data stores. With the advent of Internet technology, databases and data warehouses now
frequently serve as back ends for Web browser front ends.

Page 11

When workgroup databases are integrated to serve a larger, departmental need, the result is typically
referred to as a data mart (DM). A DM is nothing more than a departmental-scale DW. As you can
imagine, just as with the term database, the term data warehouse has yielded a multitude of definitions.
However, when you're integrating several smaller databases into one larger database serving a broader
organizational need, the resulting database can generally be considered a DW if it stores data

historically, provides decision support, offers summarized data, serves data read-only, and acts
essentially as a data sink for all the relevant production databases that feed it.

Otherwise, if a database simply grows large because it is a historical database that's been storing data for
a long period of time (such as a census database) or because of the type of data it must store (such as an
image database) or because of the frequency with which it must store data (such as a satellite telemetry
database), it is often referred to as a very large database (VLDB).

What qualifies as a VLDB has changed over time, as is to be expected with disk storage becoming
denser and cheaper, the advent of small multiprocessing machines, the development of RAID
technologies, and database software growing, or scaling, to handle these larger databases. Currently, a
general guideline is that any database of 100GB or larger can be considered a VLDB. As little as a few
years ago, 10GB was considered the breakpoint.

Understanding a DBMS

A Database Management System (DBMS) is the software that manages a database. It acts as a repository
for all the data and is responsible for its storage, security, integrity, concurrency, recovery, and access.
The DBMS has a data dictionary, sometimes referred to as the system catalog, which stores data about
everything it holds, such as names, structures, locations, and types. This data is also referred to as
metadata, meaning data about data. The lifespan of a piece of data, from its creation to its deletion, is
recorded in the data dictionary, as is all logical and physical information about that piece of data. A
Database Administrator (DBA) should become intimate with the data dictionary of the DBMS, which
serves him or her over the life of the database.

Securing Data

Security is always a concern in a production database, and often in a development or test database too. It
is usually not a question of whether or not to have any security, but rather how much to have. A DBMS
typically offers several layers of security, in addition to the operating system (OS) and network security
facilities. Most often, a DBMS holds user accounts with passwords requiring the user to login, or be
authenticated, in order to access the database.

DBMSs also offer other mechanisms, such as groups, roles, privileges, and profiles, which all offer a
further refinement of security. These security levels not only provide for enforcement, but also for the
establishment of business security policies. For example, only an authenticated user who belongs to an
aviation group may access the aviation data. Or, only an authenticated user who has the role of operator
may back up the database.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 12

Maintaining and Enforcing Integrity

The integrity of data refers to its consistency and correctness. For data to be consistent, it must be
modeled and implemented the same way in all of its occurrences. For data to be correct, it must be right,
accurate, and meaningful.

One way a DBMS maintains integrity is by locking a data item in the process of being changed. A
database usually locks at the database page level or at the row level. Incidentally, locking also permits
concurrency, which we'll cover next.

Another way a DBMS enforces integrity is to replicate a change to a piece of data if it is stored in more
than one place. The last way a DBMS enforces integrity is by keeping an eye on the data values being
entered or changed so that they fall within required specifications (for example, a range check).

If proper modeling and implementation practices are followed, to be discussed later in Chapter 2,
"Logical Database Design and Normalization," the DBMS helps to automatically enforce this integrity
when put in place, for example, through a trigger or constraint. Without integrity, data is worthless. With
integrity, data is information. Integrity not only enhances data, but also gives data its value.

A DBMS must manage concurrency when it offers multiuser access. That is, when more than one person
at a time must access the same database, specifically the same pieces of data, the DBMS must ensure
that this concurrent access is somehow possible. Concurrent can be defined as simultaneous, in the
looser sense that two or more users access the same data in the same time period.

The methods behind how a DBMS does this are not too complex, but the actual programming behind it
is. Essentially, when two or more people want to simply look at the same data, without changing it, all is
well. But when at least one person wants to change the data and others want to look at it or change it too,
the DBMS must store multiple copies and resolve all of the changed copies back into one correct piece
of data when everyone is done.

We mentioned one aspect of concurrency management already: locking. Generally speaking, the finer-
grained (smaller) the lock, the better the concurrency (that is, more users have simultaneous access
without having to wait). Rows are typically smaller than the smallest database page or block. Hence,
row-level locks serve short, random data transactions better, and block-level locks may serve long,
sequential data transactions better.

This is how concurrency and integrity are linked. When a person wants to look at or change a piece of

data, that person is performing a transaction with the database.

Understanding Transactions

A DBMS has, as part of its code, a transaction manager whose sole purpose is to manage concurrency
and ensure integrity of transactions. The transaction manager has a tough job because it must allow
many people to access the same data at the same time, and yet it must put the data back as though it had
been accessed by one person at a time, one after the other, which ensures its correctness. Therein lies the
fundamental answer as to how a DBMS must resolve all those multiple copies of data. Transactions
occurring during the same time period

Page 13

can preserve the accuracy of the data if (and only if) they are serializable. Simply put, the DBMS must
rearrange them so that the net result of all the changes is as if they all occurred single file.

The transaction is a unit of concurrency, or a unit of work. Nothing smaller or lesser than a transaction
can occur. That is, no one can halfway change a piece of data. All transactions must be atomic in that
each individual transaction either completes or not. Until modern twentieth century physics came along,
the atom was thought to the smallest unit of matter. Likewise, the transaction is the smallest unit of
concurrency. It is all or nothing. A transaction that completes is said to be committed, and one that does
not is rolled back.

The DBMS handles recovery using transactions as units of recovery. Normal completions, manual
requests for aborts, and unexpected aborts all require the DBMS to again call upon its multiple copies of
data to either commit or roll back the data. A transaction log is kept by the DBMS for the purpose of
rolling back (undo), and also for rolling forward (redo). A rollback is an undo operation. A rollforward
is a redo operation that takes place when, for example, a committed transaction doesn't make it from
memory to disk because of a hardware or software failure. The DBMS simply redoes it. Hence, the key
to transaction recovery in a DBMS is that a transaction must be atomic and can be done, undone, or
redone when necessary.

Communicating with the Database

A DBMS is no good if you can't talk to it. How does one talk to a DBMS? Through an access or query
language. The Structured Query Language (SQL) is the predominant query language today. It works
mostly with the predominant type of DBMS that we will discuss shortly, the Relational DBMS
(RDBMS). All communication to and from the database should pass through the DBMS, and to do this,
we use SQL or something like it. DBAs use query languages to build and maintain a database, and users
use query languages to access the database and to look at or change the data.

Understanding an RDBMS

In 1970, E. F. Codd fathered the concept of the relational model. Before RDBMSs like DB2 were born,
hierarchic (IMS) and network (IDMS) models were commonplace. Before these models, databases were
built using flat files (operating system files, not necessarily flat!) and third generation language (3GL)
access routines. In fact, some customized systems are still built this way, justified or not. Many of these
legacy databases still exist on mainframes and minicomputers. CODASYL (from the COnference on
DAta SYstem Languages) was a database standard created by the Database Task Group (DBTG). This
was a COBOL-based network database standard, and IDMS was one vendor implementation. Since the
seventies, however, RDBMSs have come to dominate the marketplace, with products such as Oracle,
Sybase, Informix, and Ingres.

Recently, object-oriented (OO) DBMSs have come into the foreground and found many > niche
applications, such as CAD/CAM, engineering, multimedia, and so forth. OO DBMSs filled those niches
because their strengths are handling complex data types in an almost

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 14

non-transactional environment. To compete, RDBMS vendors have made universal servers
commercially available to offer OO/multimedia capabilities, including text, audio, image, and video data
types. Oracle's Universal Server is an example. In addition, user-defined data types, or extensible types,
have been augmented or added to the core database servers. Oracle8 offers such capability. RDBMS
products like these are considered hybrid, yet they are clearly more mainstream than ever.

Furthermore, Multi-Dimensional Databases (MDDs) have found some market share. These databases
offer highly indexed data for applications with many variables that must be multi-dimensionally
accessed and tabulated, such as behavioral science data. In traditional RDBMSs, this would be nearly
impossible to implement, let alone use. Again, to compete with MDDs, RDBMS vendors offer some
layered products of their own that provide super-indexed data and use special techniques such as bit-
mapped indexes. Oracle's Express is an example.

Using the Relational Model

We've already discussed the major responsibilities of a DBMS, so to understand what constitutes an
RDBMS, we must first cover the relational model. A relational model is one in which:

● The fundamental pieces of data are relations.
● The operations upon those tables yield only relations (relational closure).

What is a relation? It's a mathematical concept describing how the elements of two sets relate, or
correspond to each other. Hence, the relational model is founded in mathematics. For our purposes,
however, a relation is nothing more or less than a table with some special properties. A relational model
organizes data into tables and only tables. The customers, the database designer, the DBA, and the users
all view the data the same way: as tables. Tables, then, are the lingua franca of the relational model.

A relational table has a set of named attributes, or columns, and a set of tuples, or rows. Sometimes a
column is referred to as a field. Sometimes a row is referred to as a record. A row- and-column
intersection is usually referred to as a cell. The columns are placeholders, having domains, or data types,
such as character or integer. The rows themselves are the data. Table 1.1 has three columns and four
rows.

Table 1.1 Car Table

Make Model Cost

Toyota Camry $25K

Honda Accord $23K

Ford Taurus $20K

Volkswagen Passat $20K

Page 15

A relational table must meet some special properties to be part of the relational model:

● Data stored in cells must be atomic. Each cell can only hold one piece of data. This is also known
as the information principle. To do otherwise is a no-no, although many systems have been built
that way over the years. When a cell contains more than one piece of information, this is known
as information coding. A good example is a Vehicle Identification Number (VIN). If this were
stored as one column, it would violate the information principle because it would contain many
pieces of information, such as make, model, origin of plant, and so on. Whether practice
overrules theory is a design choice in such cases, although in most cases, this turns out to be bad
news for data integrity.

● Data stored under columns must be of the same data type.
● Each row is unique. (No duplicate rows.)
● Columns have no order to them.
● Rows have no order to them.
● Columns have a unique name.

In addition to tables and their properties, the relational model has its own special operations. Rather than
get deeper and deeper into relational mathematics, suffice it to say that these operations allow for subsets
of columns, subsets of rows, joins of tables, and other mathematical set operations such as union. What
really matters is that these operations take tables as input and produce tables as output. SQL is the
current ANSI standard language for RDBMSs, and it embodies these relational operations.

Before SQL became dominant, a competing language was QUErL, or QUEry Language, from Ingres.
Another was UDL, or Unified Data Language. ANSI, the American National Standards Institute, is a
standards body with very broad scope, one that includes computer software languages such as SQL. The
primary statements that permit data manipulation, or data access, are SELECT, INSERT, UPDATE, and
DELETE. Hence, any one of these data manipulation operations is a transaction, as we discussed earlier
in the chapter.

The primary statements that permit data definition, or structural access, are CREATE, ALTER, and
DROP. All of these statements are replete with a slew of clauses that permit many variations with which
to define and access the structure and data of the relational tables, which make up your database. Hence,
SQL is both a Data Definition Language (DDL) and a Data Manipulation Language (DML). A unified

DDL and DML is inherently more productive and useful than two different languages and interfaces.
The DBAs and the users access the database through the same overall language.

The last thing the relational model requires are two fundamental integrity rules. These are the entity
integrity rule and the referential integrity rule. First, two definitions:

A primary key is a column or set of columns that uniquely identifies rows. Sometimes,
more than one column or sets of columns can act as the primary key.
A primary key that is made up of multiple columns is called a concatenated key, a
compound key, or, more often, a composite key.

Page 16

The database designer decides which combination of columns most accurately and efficiently reflects
the business situation. This does not mean the other data isn't stored, just that one set of columns is
chosen to serve as the primary key.

The remaining possible primary keys are referred to as candidate keys, or alternate keys. A foreign key
is a column or set of columns in one table that exist as the primary key in another table. A foreign key in
one table is said to reference the primary key of another table. The entity integrity rule simply states that
the primary key cannot be totally nor partially empty, or null. The referential integrity rule simply states
that a foreign key must either be null or match a currently existing value of the primary key that it
references.

An RDBMS, then, is a DBMS that is built upon the preceding foundations of the relational model and
generally satisfies all of the requirements mentioned. However, what happened when RDBMSs were
first being sold, in the late seventies through the early eighties, was that SQL was being slapped on top
of essentially non-relational systems and being called relational. This triggered some corrective
movements; namely, Codd's Twelve Rules (1985).

Using Codd's Twelve Rules

Codd proposed twelve rules that a DBMS should follow to be classified as fully relational:

1. The information rule. Information is to be represented as data stored in cells. As we discussed
earlier, the use of VIN as a single column violates this rule.

2. The guaranteed access rule. Each data item must be accessible by combination of table name +
primary key of the row + column name. For example, if you could access a column by using
arrays or pointers, then this would violate this rule.

3. Nulls must be used in a consistent manner. If a Null is treated as a 0 for missing numeric values
and as a blank for missing character values, then this violates this rule. Nulls should simply be
missing data and have no values. If values are desired for missing data, vendors usually offer the

ability to use defaults for this purpose.
4. An active, online data dictionary should be stored as relational tables and accessible through the

regular data access language. If any part of the data dictionary were stored in operating system
files, this would violate this rule.

5. The data access language must provide all means of access and be the only means of access,
except possibly for low-level access routines (see rule 12). If you could access the file supporting
a table, through a utility other than an SQL interface, this might violate this rule. See rule 12.

6. All views that may be updatable should be updatable. If, for example, you could join three tables
as the basis for a view, but not be able to update that view, then this rule would be violated.

7. There must be set-level inserts, updates, and deletes. Currently, this is provided by most RDBMS
vendors to some degree.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 17

8. Physical data independence. An application cannot depend on physical restructuring. If a file
supporting a table was moved from one disk to another, or renamed, then this should have no
impact on the application.

9. Logical data independence. An application should not depend on logical restructuring. If a single
table must be split into two, then a view would have to be provided joining the two back together
so that there would be no impact on the application.

10. Integrity independence. Integrity rules should be stored in the data dictionary. Primary key
constraints, foreign key constraints, check constraints, triggers, and so forth should all be stored
in the data dictionary.

11. Distribution independence. A database should continue to work properly even if distributed. This
is an extension of rule 8, except rather than only being distributed on a single system (locally), a
database may also be distributed across a network of systems (remotely).

12. The nonsubversion rule. If low-level access is allowed, it must not bypass security nor integrity
rules, which would otherwise be obeyed by the regular data access language. A backup or load
utility, for example, should not be able to bypass authentication, constraints, and locks. However,
vendors often provide these abilities for the sake of speed. It is then the DBA's responsibility to
ensure that security and integrity, if momentarily compromised, are reinstated. An example is
disabling and re-enabling constraints for a VLDB load.

If a DBMS can meet all of the fundamental principles discussed in this chapter (two-part definition, six
properties, relational operations, and two integrity rules) and these twelve rules, it may be designated an
RDBMS. Codd summed up all of this with his Rule Zero: "For a system to qualify as an RDBMS, that
system must use its relational facilities exclusively to manage the database."l

Page 18

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 19

CHAPTER 2

Logical Database Design
and Normalization

In this chapter

● Entity-Relationship Modeling 20
● Mapping ERDs to the Relational Model 23
● Understanding Normalization 23

Page 20

Entity-Relationship Modeling

The best thing a DBA can do for his or her database is to start out with a proper, logical design.
Unfortunately, database design is often hurried through, done wrong, and even back-engineered after the
database has been built. A well-informed and wise DBA knows that a good design improves
performance rather than detracts from it, contrary to popular wisdom. Indeed, jumping directly into the
physical design or further simply invites trouble, not just in terms of performance, but in data integrity.
What good is a database that runs fast and houses bad data? Early on in the design phase of a database
system, a proper logical design can tolerate physical design changes later on in the production and
maintenance phases. If, however, you shortcut the logical design, not only will you likely have to
redesign your logical model, but also restructure your underlaying physical model. The indirect cost
(staff hours, downtime, and so on) can be staggering. So let's cover the principles behind logical
database design and normalization before you run off and build your database.

As the relational model came to dominate over other data models during the mid-seventies, relational
modeling techniques sprung up that permitted formal design capabilities. The most popular of these is
the Entity-Relationship Diagram (ERD), developed by P. P. Chen in 1976. This is known as semantic
data model because it attempts to capture the semantics, or proper meaning, of business elements, the
essence of the business. Because the relational model itself is mostly a syntactic model, one dealing
mostly with structure, the ERD typically supplements it. In fact, ERD modeling naturally precedes
relational modeling. Once an ERD is complete, it is mapped into the relational model more or less
directly, and later the relational model is mapped to its physical model.

An entity is a business element, such as an employee or a project. A relationship is an association
between entities, such as employees working on several projects. Attributes are the characteristics that
make up an entity, such as an employee's salary or a project's budget. Attributes are said to take on
values from domains, or value sets. The values they take will be the data used later on in the relational
model. These are all abstractions of a business or part of a business. ERDs can be drawn many ways. It
doesn't really matter as long as you choose one and remain consistent in your meaning throughout.

For our purposes, diagrams are drawn using boxes for entities, with the attribute names listed inside the
box and the entity name listed outside the box. Arrows are drawn between the boxes to represent the
relationship types. There are three kinds of relationships: one-to-one, one-to-many, and many-to-many.
A one-to-one relationship uses a single-headed arrow on one or both sides, depending on the kind of one-
to-one relationship. A one-to-many uses a double-headed arrow. A many-to-many uses a double-headed
arrow on both sides. A pure one-to-one relationship exists when every value of one entity is related to
one and only one value of another entity, and vice versa. This type of relationship is rare. Figure 2.1
shows a one-to-one relationship. A husband is married to only one wife, and a wife is married to only
one husband. (We aren't counting polygamists.)

Page 21

FIG. 2.1
A one-to-one (1:1)
relationship.

A more common kind of one-to-one relationship is the subtype relationship. This is one of the
foundations of OO analysis and design. In OO systems, this is seen as a class and a subclass (or more
simply put, a class hierarchy). Figure 2.2 shows how a one-to-one subtype relationship is modeled. This
diagram shows the classic example of a square being a subtype of a rectangle. The direction of the arrow
indicates the direction of the inheritance, another OO concept related to the class hierarchy. In other
words, attributes in the more general entity (the rectangle) donate attributes (such as length and width) to
the more specific entity (the square). Hence, the direction of inheritance flows from general to specific.

FIG. 2.2
A one-to-one (1:1)
subtype relationship.

javascript:displayWindow('images/ch02fg01.jpg',341,65)

Subtype relationships are more common than pure ones, yet both find infrequent use. As is often the
case, when a designer runs across one-to-one relationships, he or she must ask the following questions:

● Can these two entities be combined?
● Are they one and the same for our purposes?
● Must they remain separate and distinct for some compelling business reasons?

More often than not, one-to-one entities can be combined.

The dominant relationship to be used in the relational model is the one-to-many. Figure 2.3 shows a one-
to-many relationship. A state has many cities, but those same cities belong to only one state. (It is true,
however, that you will find a city's name reused by different states. This only means that, as a designer,
your choice of primary key must not be a city name. For example, it might be state name + city name.
The previous section contains a definition of the primary key concept and how to choose one.)

Finally, Figure 2.4 shows our many employees, seen earlier, working on many projects, a many-to-many
relationship. Notice that the underlined attributes are identifier attributes, representing our best current
guess about what will later be the primary key in the relational model.

Page 22

FIG. 2.3
A one-to-many (1:M)
relationship.

javascript:displayWindow('images/ch02fg02.jpg',104,139)

FIG. 2.4
A many-to-many (M:N)
relationship.

Suggestion: At this point, one of the best things you can do for yourself as a designer is to rid yourself of
all your many-to-many relationships. Not that you'd actually be getting rid of them, but you can
substitute two or more one-to-many relationships in their place. You want to do this because the
relational model can't really handle a direct implementation of many-to-many relationships. Think about
it. If we have many employees working on many projects, how do we store the foreign keys? (We can't
without storing multiple values in one column, thus violating the relational requirement that data be
atomic, that no cell may hold more than one piece of information. These two things also lead directly to,
and in fact are the same as, First Normal Form, to be discussed shortly.) Hence, to ensure data atomicity,
each many-to-many relationship will be replaced by two or more one-to-many relationships.

Hence, what you want to do is to split it so that many employees working on many projects become one
employee with many assignments, and one project belongs to many assignments, with assignments
being the new entity. Figure 2.5 shows this new relationship. Notice that identifier attributes have been
combined.

The new entity called assignment is often called an intersection table in the relational model, because it
represents the intersection of every real pairing of the two tables it relates. It is also called a join table.
The intersection table is an entity that is not necessarily always a real-life abstraction of some business
element, but it is the fundamental way to solve and implement the many-to-many relationships in the
relational model.

Previous | Table of Contents | Next

javascript:displayWindow('images/ch02fg03.jpg',104,146)
javascript:displayWindow('images/ch02fg04.jpg',365,109)

Previous | Table of Contents | Next

Page 23

FIG. 2.5
Revised many-to-many
(M:N)relationship
using two one-to-many
(1:M and 1:N)
relationships.

Mapping ERDs to the Relational Model

An ERD folds nicely into the relational model because it was created for that purpose. Essentially,
entities become tables and attributes become columns. Identifier attributes become primary keys.
Relationships don't really materialize except through intersection tables. Foreign keys are created by
always placing the primary keys from a table on a one side into the table on a many side. For example, a
relationship of one state to many cities would call for you to place the state primary key in the city table
to create a foreign key there, thus forging the relationship between the two.

Many automatic Computer Assisted Software Engineering (CASE) tools exist in the current market to
help you accomplish just this mapping. Examples include LogicWorks' ERwin and Oracle's own
Designer/2000. These tools permit you to not only draw the ERDs, but also specify primary and foreign
keys, indexes, and constraints, and even generate standard Data Definition Language (DDL) SQL code
to help you create your tables and indexes. For Oracle, you can run those scripts directly, but frequently
you need to modify them, for example, to change datatypes or add storage parameters. These tools can
also help you reverse engineer the logical model from an existing database which has none documented!
This is especially useful when attempting to integrate databases, or when you must assume DBA
responsibilities of an already built database. So, CASE tools not only help you to design and build
database systems, but they also can help you to document as well.

Understanding Normalization

Normalization is a refinement, or extension, of the relational model. Normalization is also a process that
acts upon the first draft relational model and improves upon it in certain concrete ways that we'll discuss

javascript:displayWindow('images/ch02fg05.jpg',320,248)

soon. The foundation of normalization is mathematical, like the relational model. It is based on a
concept known as functional dependency (FD).

Page 24

Although it isn't necessary to get bogged down in the mathematics of functional dependency, it is useful
and instructive to at least define it for our context, the relational model. A column or set of columns, Y,
is said to be functionally dependent on another column or set of columns, X, if a given set of values for
X determine a unique set of values for Y. To say that Y is functionally dependent on X is the same as
saying X determines Y, usually written as X -> Y. Of course, the most obvious example is the primary
key of a relational table uniquely determining the values of a row in that table. However, other
dependencies may exist that are not the result of the primary key. The main purpose of normalization is
to rid relational tables of all functional dependencies that are not the result of the primary key.

Here are the three major reasons for normalization that are usually always cited in any database analysis
and design text:

● To maintain data integrity. This reason, perhaps above all else, is enough justification for
troubling at all with normalization. Data stays correct and consistent because it's stored only
once. In other words, multiple copies of the data do not have to be maintained. Otherwise the
various copies of the same data items may fall out of synchronization, and may ultimately require
heavy application programming control because the automatic integrity mechanisms of an
RDBMS cannot be leveraged. Many legacy systems suffer this fate.

● To build a model that is as application independent as possible. In other words, normalization
simply furthers the notion that the relational model should be data-driven, not process-driven. For
the most part, this means the database design can remain stable and intact, given changing
process needs. Application programming requirements should be irrelevant in logical database
design. (However, they mean everything to physical database design, as we shall see later.)

● To reduce storage needs (and frequently lay the foundation for improved search performance,
too). Except for foreign keys, full normalization will rid your relational design of all
redundancies. Unnecessary copies of data likewise require unnecessary secondary storage needs.
In addition, the more data that exists and possibly has to be searched, the more total system time
required, and hence, worse performance.

Using a Normalization Example

In the last section, we passed quickly over how the atomic data requirement (the information principle)
is tantamount to First Normal Form (1NF). But let's reemphasize it:

First Normal Form (1NF): No repeating groups. This is the same as saying that the data stored in a cell
must be of a single, simple value and cannot hold more than one piece of information.

Table 2.1 lists states with cities whose populations increased at least five percent over the previous year.
Because all the city information is stored in a repeating group, this table is non-normal, or not 1NF. First
of all, how do we know for sure that the populations and percentages in the columns to the right of the
cities belong to those cities? We could assume an order to them, of course, but this violates the
fundamental relational rule that columns have no order. Worse, arrays would have to be used, and this
requires end-users to know about and use a physical data structure such as an array. This surely can't
make for a good user interface.

Page 25

Table 2.1 States with Cities Having >= 5% Population Increases

STATE ABBREV SPOP CITY LPOP CPOP PCTINC

North
Carolina

NC 5M Burlington, 40K 44K 10%

Raleigh 200K 222K 11%

Vermont VT 4M Burlington 60K 67.2K 12%

New
York

NY 17M Albany, 500K 540K 8%

New York
City,

14M 14.7M 5%

White
Plains

100K 106K 6%

To make it 1NF, move repeating groups from across columns to down rows. Table 2.2 shows the same
table in 1NF, with STATE as the primary key. However, this table still suffers from problems. To update
or delete state information, we must access many rows and programmatically guarantee their
consistency (the DBMS won't do it). To insert city info, we must add state info along with it. If we
delete the last city of a state, the state info goes with it, and so on. What's the problem? We'll see in a
moment.

Table 2.2 States and Cities in First Normal Form (1NF)

STATE ABBREV SPOP CITY LPOP CPOP PCTINC

North
Carolina

NC 5M Burlington 40K 44 K 10%

North
Carolina

NC 5M Raleigh 200K 222K 11%

Vermont VT 4M Burlington 60K 67.2K 12%

New
York

NY 17M Albany 500K 540K 8 %

New
York

NY 17M
New York
City

14M 14.7M 5%

New
York

NY 17M
White
Plains

100K 106K 6%

To tackle the higher normalization levels, we need a nonkey column. The strict definition of a nonkey
column is simply one, which is not part of the primary key. The broader definition of a nonkey column
is one that is not part of any candidate key. For our purposes, we'll take the strict definition. Essentially,
the set of columns of a table can be thought of as having a primary key and the remainder. Any column
that is part of the remainder is a nonkey column.

Second Normal Form (2NF): No partial dependencies. Every nonkey column depends on the full
primary key, including all of its columns if it is composite. Our Table 2.2 does not currently comply
with this criterion. City information does not depend on state information. Namely, all the city columns
(CITY, LPOP, CPOP, and PCTINC) do not depend on the state name (STATE). Hence, we break them
up into 2 tables (Tables 2.3 and 2.4). It only makes sense that states and cities are separate entities,
although related, and therefore should be separate tables.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 26

Table 2.3 States in Second Normal Form (2NF)

STATE ABBREV SPOP

North Carolina NC 5M

Vermont VT 4M

New York NY 17M

Table 2.4 Cities in Second Normal Form (2NF)

CITY ABBREV LPOP CPOP PCTINC

Burlington NC 40K 44K 10%

Raleigh NC 200K 222K 11%

Burlington VT 60K 67.2K 12%

New York City NY 14M 14.7M 5%

Albany NY 500K 540K 8%

White Plains NY 100K 106K 6%

Third Normal Form (3NF): No transitive dependencies. No nonkey column depends on another nonkey
column. A table is in 3NF if all of its nonkey columns are dependent on the key, the whole key, and
nothing but the key. If, after eliminating repeating groups, every nonkey column is dependent on the key
and the whole key, then this is 2NF. And nothing but the key is 3NF. Our city table (Table 2.4) doesn't
pass this test because the column PCTINC (percent increase) depends on CPOP (current population) and
LPOP (last year's population). In fact, it is a function of the two. This type of column is called a derived
column, because it is derived from other, existing columns. However, all of these are nonkey. The
immediate solution is to drop PCTINC and calculate it on-the-fly, preferably using a view if it is highly
accessed. Also in our state table (Table 2.3), SPOP (state population) depends on ABBREV
(abbreviation) because this is a candidate key, although not the primary one. Tables 2.5, 2.6, and 2.7
show our solution, which now gives us three tables in 3NF.

Table 2.5 States in Third Normal Form (3NF)

ABBREV SPOP

NC 5 M

VT 4 M

NY 17 M

Page 27

Table 2.6 State Names in Third Normal Form (3NF)

STATE ABBREV

North Carolina NC

Vermont VT

New York NY

Table 2.7 Cities in Third Normal Form (3NF)

CITY ABBREV LPOP CPOP PCTINC

Burlington NC 40K 44K 10%

Raleigh NC 200K 222K 11%

Burlington VT 60K 67.2K 12%

New York City NY 14M 14.7M 5%

Albany NY 500K 540K 8%

White Plains NY 100K 106K 6%

Continuing the Normal Form

The Boyce Codd Normal Form (BCNF): No inverse partial dependencies. This is also sometimes
referred to, semi-seriously, as 31/2 NF. Neither the primary key, nor any part of it, depends on a nonkey

attribute. Because we took the strict definition of nonkey, 3NF took care of our candidate key problem,
and our tables are already in BCNF.

Fourth Normal Form and higher. Normalization theory in academia has taken us many levels beyond
BCNF. Database analysis and design texts typically go as high as 5NF. 4NF deals with multivalued
dependencies (MVDs), while 5NF deals with join dependencies (JDs). Although the theory behind these
forms is a little beyond the scope of this book, you should know that a table is in 4NF if every MVD is a
FD, and a table is in 5NF if every JD is a consequence of its relation keys.

Normal forms as high as 7 and 8 have been introduced in theses and dissertations. In addition,
alternative normal forms such as Domain Key Normal Form (DKNF) have been developed that parallel
or otherwise subsume current normalization theory.

Recommendation: strive for at least BCNF, then compensate with physical database design as necessary,
which leads us to our next topic. If possible, study 4NF and 5NF and try to reach them in your
normalization efforts. Your goal as a DBA is to normalize as high as you can, yet balance that with as
few entities as possible. This is a challenge because, generally, the higher the normal form, the more
entities produced.

Page 28

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 29

CHAPTER 3

Physical Database Design, Hardware,
and Related Issues

In this chapter

● Understanding Application Types 30
● Using Quantitative Estimates 31
● Denormalizing 32
● Understanding the Storage Hierarchy and RAID 34
● Understanding RAID 35
● Understanding Bottlenecks in a DBMS 36
● Making Your Platform Selection 37
● Operating System Integration and General Memory/CPU Recommendations 38
● Physical Design Principles and General Hardware Layout Recommendations 39

Page 30

Understanding Application Types

Before we discuss physical database design, and later, performance tuning, it is important to cover the
major application types. First, let's clarify the terms transaction and query. In database theory, broadly
speaking, a transaction is a single, atomic SELECT, INSERT, UPDATE, or DELETE. However, with
regards to application types, a transaction is generally more loosely defined as a business transaction,
possibly containing multiple INSERTs, UPDATEs, or DELETEs. In addition, DML truly refers to
SELECT, INSERT, UPDATE, and DELETE. However, you will find "DML," like "transaction," in this
context often used to mean only INSERT, UPDATE, and DELETE operations. In sum, DML and
transaction usually mean write-only, or modify-only. To distinguish the SELECT operation as read only,
the term query is used.

We'll follow these latter industry conventions for the sake of common understanding, although they are
quite confusing and, in fact, at conflict with their real definitions. That said, there are three main
application types in the world of database systeqÓ applications:

OLTP: On-Line Transaction Processing. An OLTP system is an application that contains
heavy DML, transaction-oriented activity; primarily updates, but also inserts and deletes.
Classic examples are reservation systems such as those used by airlines and hotels. OLTP
systems can have high concurrency. (In this case, high concurrency typically means many
users simultaneously using a database system.)
DSS: Decision Support System. A DSS is typically a large, read-only database with
historical content, and is generally used for simple canned or ad hoc queries. Often a DSS
grows into VLDB, DM, or DW in the manner discussed in Chapter 1, "Databases, DBMS
Principles, and the Relational Model." A good example of a DSS is a database behind an
organization's intranet.
Batch: A batch system is a non-interactive, automatic application that works against a
database. It usually contains heavy DML and has low concurrency. (In this case, low
concurrency typically means few users simultaneously using a database system.) The ratio
of querying to transactions determines how to physically design it. Classic examples are
production databases and operational databases relative to DWs.

Some less common application types include:

OLAP: On-Line Analytical Processing. An OLAP system offers analytical services, as the
name implies. This means mathematics, statistics, aggregations, and high computation. An
OLAP system doesn't always fit the OLTP or DSS molds. Occasionally, it is a cross
between the two. In addition, some people simply view OLAP as an extension or an
additional functional layer on top of an OLTP system or DSS. ROLAP stands for
Relational OLAP. This term doesn't really add much in the way of classification, though.
An OLAP tool is often tightly coupled with a MDD (discussed in Chapter 1), and
sometimes it is simply layered on top of a modified RDBMS. A demographic database for
social statistics is a good example.
VCDB: Variable Cardinality Database. This type of database is frequently a back-end for
a processing system that causes the tables in that database to grow and shrink considerably
during the processing phase, which otherwise may be constant or periodic.

Page 31

Cardinality refers to the number of rows in a table at a given time. Some tables may be
static lookup tables, but most are definitely highly variable in their number of records.
Good examples are any databases that record short-lived activities, such as a security
authorization database.

Using Quantitative Estimates

Quantitative estimating of any sort is an attempt to quantify, or measure, some process or product. With
databases, the two main types of quantitative estimates are transaction analysis (sometimes referred to as

volume analysis) and sizing analysis.

Transaction Analysis

Transaction analysis is simply putting numbers on the database system. Different measures mean
different things, and apply to certain kinds of database systems. The most typical measures, or metrics,
include the minimums, averages, or maximums of the following:

● Number of concurrent users
● Response time
● Elapsed time
● Number of transactions
● Number of concurrent programs
● Number of bytes read or written

There are many more metrics, such as number of rows affected by an operation, but these will offer
some insight.

Usually, these measures have more meaning if they are expressed in the context of a given time period
or activity. For example, it is usually more useful to know the maximum number of transactions per
second than the cumulative number of transactions. The latter tells us little about the typical stress, or
load, on the database. These numbers also mean more in the context of what kind of application your
database serves.

If your application type is an OLTP system, the number of concurrent users, transactions per second, and
response time are more important, because concurrence is the prime issue with OLTP.

If you have a batch system, elapsed time and number of concurrent programs is perhaps most important.
A DSS might require you to know the bytes read per some unit of time, among other things.

You need to ask these questions as a DBA and gather your best possible answers, for this will affect
your physical design and your performance tuning. In addition, these figures are largely the same
measures that are used for benchmarking efforts. What we're trying to do here, though, is gather
estimated, prototyped, or piloted numbers before the system is actually built, in order to help build it.

Page 32

Sizing Analysis

Sizing is perhaps a more widely known activity, if not widely practiced often enough by all DBAs.
Whereas in transaction or volume analysis, we ask "How often?" and "How much?" with regards to
processes and data flow; with sizing we ask "How much?" with regard to data storage.

The fundamental thing is simply that a table with n rows of b max bytes per row will need at least n¥b
bytes of storage. Of course, we've left out overhead. And this calculation varies considerably with the
vendor of choice. Oracle, for example, offers a fairly complicated set of steps, as do other vendors, to
help size a table, an index, or other structures. The best recommendation is to place this formula into a
spreadsheet once, and you'll never have to do it again. Just pull it out and dust it off every time you need
to do sizing for another database project. Just plug in the relevant input numbers, such as block size,
block parameters, number of rows, column sizes, and so on. This way, you'll be able to subtotal by table,
by sets of tables, by indexes, by sets of indexes, and for the whole database.

Then a seasoned DBA will add a fudge factor on top of that estimate to account for any mistaken
underestimates, accidental oversights, and unanticipated future changes. Something like the final
estimate size¥120 percent is not unreasonable.

Remember, too, that the figure you size for is usually based on tables and indexes alone. As with all
RDBMS vendors, there are many more architectural considerations, to be discussed in Chapters 5 and 6,
which will add to the overall system size. And whatever final figure of bytes you come up with,
remember that this is the usable space you need, not the amount of raw disk space. Low-level hardware
and a high-level operating system can subtract from the initial unformatted (raw) size of the disk,
leaving less usable space than you'd think.

For example, formatting can consume 15 percent of a 4GB disk. This only leaves 85 percent, or 3.4GB.
If your final sizing estimate was 20 GB, and you didn't take this into account, you'd purchase 5¥4GB
disks and yet have only 5¥3.4GB, or 17GB, of usable space. You'd need another disk.

Denormalizing

Denormalization refers to dropping the level of your tables' normal forms back down a few notches for
physical design, performance tuning, or other reasons.

Recommendation: Don't do this unless you have very good reasons. A shortage of disks with no budget
for new ones may be a good reason. Expecting to have poor performance without evidence, as opposed
to actually having poor performance, is not a good reason. In fact, even poor performance itself does not
immediately indicate the need to back off on your logical design. Your first step should be performance
tuning. Denormalization should always be a last resort.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 33

That said, what to do? Suppose you have 30-odd tables that make up the logical design in your database,
all of which are 3NF or higher (not unrealistic). However, three of these tables are virtually always
joined together when they are used. Now, join operations themselves, with or without indexes, are
resource-intensive and can consume a small machine in no time. In the interest of performance, with no
other performance-tuning tricks at hand, you might want to pre-join these three tables into one table for
permanent use, thereby avoiding the join for future accesses. By placing two or more normalized tables
back into one, you are virtually guaranteed of reducing the normalization level, or even worse, becoming
fully unnormalized. Of course, if this must be done, more and more procedural and application-level
data integrity controls must be written to take the place of the DBMS's automatic features.

If, for example, you opt to keep both the original tables and the newly joined one, you are faced with the
unenviable task of keeping them synchronized. However, if updates are very frequent, (every hour or
less), and currency of the joined data is required, other methods will have to be used.

Another method is to create a denormalized view on top of the normalized base tables. However, the
performance of this option is the same or worse than simply having the original three tables. Its only
advantage is user interface simplicity. So, while denormalization may help in some static data cases, it
usually cannot solve many dynamic data problems. A method like Oracle's clustering might suffice in
this type of situation if denormalization doesn't work. However, we'll have more to say about that later.

A final, fairly common, example of denormalization is when DBAs must deal with time series. The
reason why time series often must be denormalized is because time must almost always be part of the
primary key of a table. This is true because most data stored is time-dependent.

A good example is a database storing satellite feed data. This data is timestamped, which is part of the
primary key on most of the tables in the database. For any given table which has the timestamp as the
component, all the other columns which make up the primary key, such as satellite ID, are repeated for
every different timestamp. In other words, if the database downloads 100 rows of data from a single
satellite every hour, then in 8 hours, we have 800 rows stored, with all the other satellite information
unnecessarily repeated 800 times. The wasted storage can be tremendous, especially considering you
may have multiple satellites or more frequent sample rates.

The typical solution is to denormalize by inverting the data from row-wise to column-wise. We now
have 100 timestamp columns, and we have reduced the number of rows from 800 to 8, or by a factor of
the sample interval of 100. Storage reduction, especially row reduction, almost always helps search
performance since there are fewer rows to scan through, either in a table or an index. However, this type
of denormalization, though often necessary, results in a table which is not normal by virtue of the

timestamps being stored as repeating group columns. Hence, you are then unable to use a foreign key
constraint on this former primary key com-ponent. Instead, you must resort to check constraints,
procedures, triggers, and possibly supplemental application integrity handling. If anything, the lesson
you should learn from this particular example is that if you must denormalize for performance, you will
have to pay the price in integrity management.

Page 34

Understanding the Storage Hierarchy and RAID

One of the most important things a DBA can learn about is the storage hierarchy and its associated
tradeoffs. This, more than anything, helps explain a lot about physical design and performance tuning.
One of the key ideas behind the storage hierarchy is the electromechanical disadvantage—anything that
has a motor or moving parts is inherently slower than something that is solely electronic.

Figure 3.1 shows a modern interpretation of the storage hierarchy. Clearly, memory is faster than disk.
As you go up the pyramid, speed increases (access time), cost increases (per unit), but storage decreases.

FIG. 3.1
The storage hierarchy.

The more we want to store, the more we have to pay. Especially if we want it fast. However, we can
make some tradeoffs. With a historical system, we can put the older stuff nearline on optical disks or at
least slower disks, and even older stuff on tape, either nearline or offline. If your particular storage
pyramid has everything robotically nearline, down through tape, and you have software to access it on
demand, that's a Hierarchical Storage Management (HSM) system. There are vendors who specialize in
this sort of hardware and software. So historical systems can afford to gravitate toward the bottom,
because speed is not of the essence, relative to the data currency. However, real-time systems, such as
aircraft navigation and so forth, should place most of their storage toward the faster elements at the top.
A reasonable medium for many businesses is to place important, current data on RAID or fast disk, and
everything else on slower disk.

Page 35

Understanding RAID

javascript:displayWindow('images/ch03fg01.jpg',400,294)

RAID, or Redundant Array of Inexpensive Disks, is perhaps a misnomer. Since its inception, the disks
that make up RAID have never really cost any less than regular SCSI (Small Computer Systems
Interface) disks. In addition, RAID requires special hardware, software, or both to work, at added cost.
So the I in RAID is not quite correct.

RAID is a set of disks that can work in parallel to reduce I/O time by a factor of how many disks make
up the set, an important thing for databases. RAID works in parallel through a technique known as
striping, as opposed to ordinary disk storage, which works in serial. This is simply writing a single file
using stripes, or chunks of the file, across multiple disks in parallel. The stripes are some multiple size of
a physical data block, the smallest unit of disk I/O. Typically, a data block is made up of 512 bytes. This
is true for most UNIX systems, VMS, and DOS/NT.

RAID also offers real-time disk failure recovery, another important thing for databases. RAID can offer
this level of availability through parity information, which is also written out to a disk or disks. Parity,
checksums, and error correction are handled through certain mathematical formulae and algorithms that
can reconstruct the missing data on a lost disk. And RAID can offer either small or large disks in a set,
which can help different database application types. For example, DSS often performs better with larger
disks, while OLTP does better with smaller ones. RAID comes in many flavors, known as levels.

The RAID levels most used in industry today are 0, 1, 3, and 5. All other levels are either not used or are
some variation of these four. RAID levels are offered by vendors that number 7 and higher, but these are
rarely seen in practice. RAID 0 is basic striping with no parity. That is, you get the performance
advantage but no parity. This is good when pure speed is the goal and availability isn't as important.

RAID 1 is known as mirroring, or sometimes duplexing, again with no parity. In mirroring, you
essentially have an even set of disks, half of which contain the real or primary data and half of which
contain the copies of that data, on a disk-wise basis. Actually, both disks are written to at the same time,
and sometimes this can mean a performance loss when writing. Reading, on the other hand, can actually
be sped up, if software is designed to read the multiple disks and merge the streams for use.

RAID 3 is striping again, except now with a single, dedicated parity disk. You can afford to lose one
data disk and still recover it using the parity disk. However, the parity disk is a single point of failure. If
it's lost it could be fatal, depending on the software or hardware and how it is written to handle this
event.

RAID 5 is also striping with parity, except rather than using a single, dedicated disk, it stripes the parity
along with the data across all disks. Parity information is as well protected as data, and there is no single
point of failure. RAID 5, like RAID 3, can tolerate and recover from the loss of a single disk. However,
neither 3 nor 5 can lose two disks and recover. Too much parity information is lost.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 36

RAID levels 2, 4, and 6 are rarely sold or implemented in industry. The mathematics behind the parity
information for these levels is too computationally intense to be practical.

A final word about RAID. With regards to striping, RAID does what can be done manually with
RDBMS and OS utilities and techniques. However, it usually does a better, finer-grained form of
striping, and offers more features such as partitioning volumes (stripe sets), adjustable stripe sizes, and
so forth. In addition, although the striping part of RAID can be done in a gross manner without much
difficulty, you still have to manage those stripes. RAID usually excels at this and offers a single file
interface in a virtual file system (VFS), leveraging OS file-level commands and utilities, as well as
offering other features such as files larger than physical disk size.

Lastly, while you might be able to manage some form of striping, you have no safety net other than your
standard backup and restore mechanisms. Whereas RAID will give you the tolerance to lose one disk
and recover, it would be too complex for you to attempt to write this software that already exists.

Recommendation: Use gross, manual RDBMS or OS striping when availability is not a major concern.
Otherwise, use RAID when you need the availability it offers, want even better performance through
finer-grained stripes, or need its other features such as large files.

Understanding Bottlenecks in a DBMS

Most often in the past, DBMSs have always been accused of being I/O-bound, or disk-bound. This is the
same as saying that a DBMS is bottlenecked in a system by its reading to and writing from disk.
Studying the storage hierarchy we just covered, this is hardly a revelation. A disk has a much slower
access speed than memory or CPU. And this actually has been the case for many database applications
over the years. It is especially true for DSSs, VLDBs, and DWs, because huge amounts of data (GB)
must be moved with single queries. However, this is not always the case. OLTP and OLAP (On-Line
Analytical Processing) systems can often be memory- or CPU-bound.

If a database hardware server has a low memory-to-disk ratio, meaning that the application is memory-
poor, that database will suffer considerably due to the lack of room in the memory for data and code
caching. If a database application is of the OLAP type, such as a scientific database, number-crunching
speed is of utmost importance. Hence, if that type of application runs on a server with a relatively weak
CPU, performance will surely be poor in terms of user expectations (such as response time). The lesson
here is that bottlenecks in any system, database systems included, are application-specific.

Finally, in client/server database systems, the network is the slowest component of the total system,

slower even than disk. For a client/server system to function efficiently, proper application segmentation
must occur, and the network must not be overloaded. Further, the network must be designed, like the
other resources, to minimize contention. Further the network hardware and software should be
modernized to take advantage of the current networking capabilities. We'll revisit all of these bottlenecks
in Chapter 29, "Performance Tuning Fundamentals."

Page 37

Making Your Platform Selection

When choosing what type of hardware database server and operating system is right for your
application, there are many things to consider, including:

● Application Type: As discussed, OLTP, DSS, batch, or something else.
● Quantitative Estimates: As discussed, your figures regarding transactions, volumes, and sizing.
● Current Environment: Basically, what are your predominant platforms now?
● Trends: Where is the industry headed with your current environment and what you're now

considering?
● Processing Needs: Is your need real-time, less time-critical, or periodic? Use your transaction and

volume figures to specify concurrence and load.
● Storage Needs: Use your sizing figures to specify raw disk needs. Use transaction and volume

figures to specify RAID or not.
● Staff Capabilities: Is what you're considering too far from your staff's base expertise?
● Time Constraints: Can you migrate or develop given your time window?
● Porting and Partnerships: Does the RDBMS vendor have cozy relationships with the OS and

hardware vendors?
● Integration: Similar to the preceding, but also how well do all the pieces work together,

regardless of their business relationships?

The current major RDBMS vendors are Oracle, Sybase, and Informix. CA has yet to do much with
Ingres, and Microsoft only offers SQL Server on NT. Smaller, desktop databases aren't considered here.
Now, considering only Oracle, UNIX and Windows NT are its two major platforms—for UNIX,
specifically Sun Solaris. Oracle also ports to the other flavors of UNIX, of course. And Oracle also has
some large installed bases on MVS and VMS. However, Solaris and Windows NT are its current top two
porting priorities as of this writing.

As for hardware, Sun is the only real choice for Solaris, of course, not counting Intel machines. Sun has
many available processors, but its latest is the UltraSPARC. Windows NT is predominantly found on
Compaq, but also on DEQ and HP machines. The significant thing about Windows NT on DEC is that
DEC offers both Alpha and Intel machines. Both Solaris and Windows NT can run on multiprocessing
machines. However, Windows NT can only handle a limited number of processors (14), and its ability to
scale flattens out at about 4 processors for Oracle. Solaris can scale very well past 20 processors, even

for Oracle. Disk storage options are roughly equivalent, although some larger options are more readily
available with Sun than with Compaq or HP. DEC, of course, can offer large storage like Sun.

Rather than getting further bogged down with hardware comparisons, let's make a recommendation: As
a set of general guidelines, consider all the options listed earlier when trying to pick a platform. If your
predominant environment is DEC/VMS and you're likely to stay there for a few more years, your next
platform might as well be DEC/VMS, especially if you're only planning to buy one additional machine.
If you're buying for a whole department and the risk is not critical, however, it might be time to consider
Windows NT or UNIX.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 38

And if you need only one machine for a relatively small database of <10 GB, consider NT. On the other
hand, if you only need one machine but the storage is large or high performance is required, consider
UNIX. Finally, if you don't really have a predominant environment or you're just starting up new (or can
treat your purchase in that respect), by all means consider both Windows NT and UNIX and let all the
factors come into play except the environment factor.

Operating System Integration and General
Memory/CPU Recommendations

Aside from secondary storage, disks, and RAID, which we emphasized when discussing the storage
hierarchy, we need to consider other hardware issues and operating system (OS) components, such as
memory and CPU.

NOTE

What we mean by memory is often referred to as core memory, physical memory, main
memory, or random access (RAM) memory. These are all terms for the same thing, so
we'll just use memory. n

Essentially, memory is very fast electronic storage. It stores instructions and data. For a DBMS, the most
important thing is that the OS can yield some of its memory to it. Then the DBMS can do with it what it
will. And it does. This is why a DBMS is sometimes referred to as a micro-OS, or an OS within an OS,
or an OS on top of an OS. In essence, a DBMS takes care of itself with regards to the care and feeding of
its resource needs, albeit in deference to and cooperation with the OS. This is often done through a
capability known as shared memory, especially in UNIX. (See Appendix A, "Oracle on UNIX," for
more details.)

Locking, a key component to DBMSs, is also handled through memory structures. Shared resources are
secured one at a time from competing processes. A DBMS either handles its own locking, does it
partially with the OS, or yields locking duties to the OS.

Once an OS yields some of its memory to the processes that constitute a DBMS, the DBMS takes it
from there, storing in that memory space its own instructions (code caching) and data (data buffering).
Without getting too much into Oracle's architecture, which will be discussed later, let us broadly map
what we have discussed. Oracle's memory access is based on the allocation of its System Global Area
(SGA). The SGA contains a structure known as the data block buffers (data buffering) and shared pool.

The shared pool contains the library cache (code caching), as well as the data dictionary cache. Undo
(rollback) blocks are buffered within the data block buffers, and redo is buffered in its own redo log
buffers section. These components are all configurable through Oracle's parameter file, init.ora. More on
this later.

RDBMSs have come a long way with regards to CPU utilization. As mentioned earlier, most database
systems of the past have tended to be I/O-bound. However, with VLDBs and OLAP/MDD systems,
more and more database systems are memory- or CPU-bound. With VLDBs, memory is a bottleneck
because the amount of memory is usually too small to be of use with huge amounts of data. With heavy
analytical or scientific systems, or even DW systems, CPUs can be the bottleneck due to the enormous,
concurrent computational demands.

Page 39

With the advent and evolution of multiprocessor machines within the last 10 years, many things have
changed. Very large memory is now possible (>= 10s of GBs). Also, CPU architectures and speeds have
advanced considerably. Word sizes are 32-bit and 64-bit now, with clock speeds around 200 to 300 MHz
at the time of this writing. And these CPUs have pipelined architectures, permitting multiple instructions
per clock tick (CPU step). But the important thing is that the RDBMS software has followed suit.

Oracle and the other major RDBMS vendors have likewise rewritten their code over time to take
advantage of these hardware advances. Aside from shared memory and very large memory,
multiprocessing is the major advancement and refinement of recent years. Two major classes of
multiprocessors exist now:

● Symmetric MultiProcessors (SMPs)
● Massively Parallel Processors (MPPs)

In SMP machines, such as those Sun offers, the CPUs use shared memory and other internal hardware
items such as buses. SMPs now have up to 64 processors. MPP machines have a shared-nothing
architecture and are like micro-LANs, or Local Area Networks in a box. MPPs can have hundreds or
thousands of processors.

RDBMS software now is either fully multithreaded or pseudo-multithreaded to take advantage of the
processing power of the multiprocessing machines. To an operating system, an RDBMS is just one or
more processes. Multithreading is a piece of software's capability to run multiple subprocesses, or
threads, within its same parent process environment. Sybase and Informix, for example, are fully
multithreaded. Oracle is pseudo-multithreaded when using the MultiThreaded Server (MTS) option;
otherwise it is single-threaded. A DBA simply needs to know his number of CPUs, and he can configure
the Oracle MTS. Other Oracle parameters are affected by the number of CPUs, such as certain locking
structures known as latches.

Physical Design Principles and General Hardware
Layout Recommendations

What are the major principles of physical database design? Well, we have alluded to the fact that
physical database design is actually pre-tuning, or nothing more than the second stage of tuning.
(Logical database design is the first stage.) It should not be surprising, therefore, to learn that the major
physical database design principles are essentially the same as the major performance tuning principles,
except that we are dealing with the database before and during its construction, rather than after. There
are many design principles, but the major ones always include the following:

● Divide and conquer. Partitioning, segmentation, and parallelization are all extensions of the
divide-and-conquer algorithm design approach. If a process time can be broken up to pieces that
can be run concurrently, it is said to be parallelizable. The main requirement for this is that each
of the pieces of the process must be data-independent; that is, one piece can start regardless of
whether or not any of the others have completed. An

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 40

example is to split a long-running query to find a sum into two pieces, run them on separate
CPUs, and then add their subtotals to get the final result. This is, in fact, what Oracle's Parallel
Query capability provides.

● Preallocate and precompile. Static allocation and fixed allocation mean the same thing as
preallocation. In other words, allocate your resources ahead of time, rather than let the software
do it for you on-the-fly, or dynamically. This typically results in additional computational and I/O
overhead, which is nearly always undesirable. Precompiled programs will save substantial time
over interpreted programs. DBMS caching handles a lot, but the DBA should be on the lookout
for what he or she can also do as a supplement. For example, write generic, reusable procedures
and pin them in memory. Oracle's KEEP operation does the latter. The KEEP operation is
discussed further in Chapter 31, "Tuning Memory."

● Be proactive. Anticipate the major problems. Follow the Pareto rule: fix the 20 percent of the
problems that might cause 80 percent of the trouble. This is also referred to as the 20/80 rule. A
statistical way of saying this is that performance problems aren't uniformly distributed among
causes. We want to try to predict the most major problems and either design them out of the
system or at least compensate and design around them. Consider a large batch system that runs
only a few major programs serially, each one inserting, updating, or deleting large amounts of
data. The potential problem here is with the transaction log, especially the undo log, growing
extremely large and perhaps running out of room. With Oracle, the undo log is the set of
available rollback segments. As a DBA, the proper design would to be have at least one very
large, non-SYSTEM rollback segment capable of handling the maximum amount of undo data
generated.

● Bulk, block, and batch. Use mass transit. Batch things together that make sense to be batched.
What this means is that for things such as disk and network I/O, often the best route to take is
mass transit—group together I/O operations with the same origins and destinations. This works
most often for DSS and batch systems. For example, users may frequently select a large number
of rows from an extremely large table. Since these selects return so many rows, they never use
any available indexing. If this is the case, and without the benefit of any parallelizing hardware or
software, the table should exist contiguously on a single, large disk. Then we increase the
database logical buffer sizes, and read many physical data blocks at once. In Oracle, for example,
we would set DB_BLOCK_SIZE to the highest amount for our platform; for example, 8K on a
Windows NT machine. We're reading as many blocks as we can with one read request. This all
stems from the simple fact that in most all-electromechanical systems, startup costs are
expensive. An analogous network situation is to send as much in one packet as possible, because
this is more cost effective.

Page 41

● Segment the application appropriately. This could be considered a subheading under divide and
conquer. But it is somewhat different in that what we are emphasizing is the entire environment
and the application, not just the database behind it (the back end). Consider the relative
performance capabilities of the client, the network, and the server before distributing the
application. Put functionality where functionality is performed logically. For example, display
and presentation duties clearly belong to the client in an interactive application, whereas database
events that act on database objects should be handled at the database (by the DBMS) and not by
some front-end piece of software. In Oracle, use triggers and stored procedures for this design.

The major objective of physical design and tuning is to eliminate, or at least minimize, con-tention.
Contention is when two or more pieces of software compete for the same resource. Common sense only
tells us that something has to wait. To combat this, practice the following layout recommendations:

● Separate tables and indexes.
● Place large tables and indexes on disks of their own.
● Place frequently joined tables on either separate disks (or cluster them).
● Place infrequently joined tables on the same disks if necessary (that is, if you're short on disks).
● Separate DBMS software from tables/indexes.
● Separate the data dictionary from tables/indexes.
● Separate the undo (rollback) logs and redo logs onto their own disks if possible.
● Use RAID 1 (mirroring) for undo or redo logs.
● Use RAID 3 or 5 (striping with parity) for table data.
● Use RAID 0 (striping without parity) for indexes.

As we discussed regarding RAID, manual striping can suffice in certain cases if RAID is not available.
However, in general it is not as flexible, safe, or fast. Also, when we say to separate something, we mean
put them on separate disks, but it can further mean to put them on separate disk controllers. The more
controllers, the more ideal the performance and safety.l

Page 42

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 43

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 44

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 45

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0046-0046.html
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0046-0046.html

Previous | Table of Contents | Next

Page 53

CHAPTER 5

The Oracle Instance Architecture

In this chapter

● Introduction 54
● Defining the Instance 54
● Creating the Instance 55
● Understanding the Oracle Instance 55
● Understanding the Anatomy of a Transaction 66
● Monitoring the Instance 67

Page 54

Introduction

When someone refers to the Oracle database, they are most likely referring to the entire Oracle data
management system. But as Oracle professionals, we must recognize the difference between the
database and the instance—a distinction often confusing to non-Oracle administrators. In this chapter we
explore the structure and configuration of the Oracle instance, and continue our exploration of the
internals of the Oracle Relational Database Management System (RDBMS) in the next chapter by
looking in-depth at the Oracle database. (To avoid confusion, the term RDBMS, is used to describe the
entire data management server consisting of the Oracle database and instance.) The creation of the
instance is automatic and behind the scenes. The details of how and when this happens are discussed.

Defining the Instance

To provide the degree of service, flexibility, and performance that Oracle clients expect, much of the
work done by the database is handled by a complex set of memory structures and operating system
processes called the instance. Every Oracle database has an instance associated with it, and unless the
Oracle Parallel Server option is implemented, a database is mounted by only one instance. The
organization of the instance allows the RDBMS to service many varied types of transactions from
multiple users simultaneously, while at the same time providing first class performance, fault tolerance,
data integrity, and security.

NOTE

This chapter defines the term process as any running task, operating without user
intervention. Your particular OS may refer to these as tasks, jobs, threads, and the like.

The instance structure is loosely styled after UNIX's implementation of the multitasking operating
system. Discrete processes perform specialized tasks within the RDBMS that work together to
accomplish the goals of the instance. Each process has a separate memory block that it uses to store
private variables, address stacks, and other runtime information. The processes use a common shared
memory area in which to do its work—a section of memory that can be written to and read from at the
same time by many different programs and processes. This memory block is called the System Global
Area (SGA).

NOTE

Because the SGA resides in a shared memory segment, it is also often referred to as the
Shared Global Area.

You might think of the background processes as the hands, eyes, ears, and mouth of the database, with
the SGA as the brain, storing and distributing information as necessary. The SGA takes part in all
information and server processing that occurs in the database.

NOTE

Single user Oracle configurations (such as Personal Oracle Lite) do not use multiple
processes to perform database functions. Instead, all database functions are contained
within one Oracle process. For this reason, single user is also known as single process
Oracle.

Page 55

Creating the Instance

Opening an Oracle database involves three steps:

1. Creating the Oracle instance (nomount stage).
2. Mounting the database by the instance (mount stage).
3. Opening the database (open stage).

The Oracle instance is created during the nomount stage of database startup. When the database passes
through the nomount phase the init.ora parameter file is read, the background processes are started, and
the SGA is initialized. The init.ora file defines the configuration of the instance, including such things as
the size of the memory structures and the number and type of background processes started. The
instance name is set according to the value of the ORACLE_SID environment variable and does not
have to be the same as the database name being opened (but for convenience, usually is). The next stage
the database passes through is called the mount stage. The value of the control file parameter of the init.
ora file determines the database the instance mounts. In the mount stage, the control file is read and
accessible, and queries and modifications to the data stored within the control file can be performed. The
final stage of the database is when it is opened. In this stage the database files whose names are stored in
the control file are locked for exclusive use by the instance, and the database is made accessible to
normal users. Open is the normal operating state of the database. Until a database is open, only the DBA
is able to access the database, and only through the Server Manager utilities.

In order to change the operating state of the database, you must be connected to the database as internal,
or with SYSDBA privileges. When going from a shutdown state to an open state you can step through
each operating state explicitly, but when shutting down the database you can only go from the current
operating state to a complete shutdown. For example, you can issue the STARTUP NOMOUNT
command in the Server Manager utility. This will put your database into the nomount stage. Next, you
can issue ALTER DATABASE MOUNT or ALTER DATABASE OPEN to step through the operating
stages. At any operating state, if you issue a SHUTDOWN command you will completely shut down the
database. For example, you cannot go from an open state to a mount state.

An instance that does not have a database mounted is referred to as idle—it uses memory, but does not
do any work. An instance can only attach to one database, and unless Parallel Server is being used, a
database only has one instance assigned to it. The instance is the brain of the data management
system—it does all the work, while the database stores all the data.

Understanding the Oracle Instance

Figure 5.1 is a visual representation of the Oracle instance. Explanations of the different components
follow.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 52

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 51

PART II

The Oracle Database Server

5. The Oracle Instance Architecture
6. The Oracle Database Architecture
7. Exploring the Oracle Environment

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0050-0050.html
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0050-0050.html

Previous | Table of Contents | Next

Page 56

FIG. 5.1
The Oracle Instance is a
complex interaction of
discrete processes.

Many parameters and techniques exist to help you configure the instance to best support your
applications and requirements. Configuring the instance objects for peak performance is, in most cases, a
trial and error procedure—you can start with likely parameter values, but only time and monitoring give
you the best possible mix of all settings and variables.

Configuring instance parameters involves changing the necessary init.ora parameter and bouncing
(stopping and starting) the database. There are numerous init.ora parameters, and many of these are
undocumented. Although you should not change or add unfamiliar initialization parameters, you can
reference the internal x$ksppi table to view all the possible initialization parameters for a database. The
ksppinm and ksppdesc columns give you the parameter name and a brief description of the parameter,
respectively.

NOTE

Manipulating initialization file parameters without a clear understanding of the possible
consequences is dangerous! There are many parameters that exist for pure diagnostic
reasons, which can leave your database in an unsynchronized or corrupted state.
Undocumented parameters are named with a leading underscore. Do not add or change
keys or values in the init.ora file unless you are confident in what you are doing!

For the most part, instance configuration is primarily concerned with the objects in the SGA, and you
find most of your database configuration and tuning time spent with these structures. However, there are
issues and configuration options with the background processes that also need to be addressed, and we
explore those parts of the instance as well.

javascript:displayWindow('images/ch05fg01.jpg',400,291)

Page 57

The System Global Area (SGA)

The SGA is the primary component of the instance. It holds all the memory structures necessary for data
manipulation, SQL statement parsing, and redo caching. The SGA is shared, meaning that multiple
processes can access and modify the data contained within it at the same time. All database operations
use structures contained in the SGA at one point or another. As mentioned in the previous section, the
SGA is when the instance is created, during the nomount stage of the database, and is deallocated when
the instance is shut down.

The SGA consists of the following:

● The Shared Pool
● The Database Buffer Cache
● The Redo Log Buffer
● Multi-Threaded Server (MTS) structures

These are each explained in the following sections.

The Shared PoolThe shared pool (see Figure 5.2) contains the library cache, the dictionary cache, and
server control structures (such as the database character set). The library cache stores the text, parsed
format, and execution plan of SQL statements that have been submitted to the RDBMS, as well as the
headers of PL/SQL packages and procedures that have been executed. The dictionary cache stores data
dictionary rows that have been used to parse SQL statements.

FIG. 5.2
The shared pool caches
information used when
parsing and executing
SQL statements.

The Oracle server uses the library cache to improve the performance of SQL statements. When a SQL
statement is submitted, the server first checks the library cache to see if an identical statement has
already been submitted and cached. If it has, Oracle uses the stored parse tree and execution path for the
statement, rather than rebuilding these structures from scratch. Although this may not affect the
performance of ad-hoc queries, applications using stored code can gain significant performance
improvements by utilizing this feature.

javascript:displayWindow('images/ch05fg02.jpg',400,145)

NOTE

For a SQL statement to use a previously cached version, it must be identical in ALL
respects to the cached version, including punctuation and letter case—upper versus
lower. Oracle identifies the statements by applying a hashing algorithm to the text of the
statement—the hash value generated must be identical for both the current and cached
statements in order for the cached version to be used.

Page 58

The library cache contains both shared and private SQL areas. The shared SQL area contains the parse
tree and execution path for SQL statements, while the private SQL area contains session-specific
information, such as bind variables, environment and session parameters, runtime stacks and buffers,
and so on. A private SQL area is created for each transaction initiated, and deallocated after the cursor
corresponding to that private area is closed. The number of private SQL areas a user session can have
open at one time is limited by the value of the OPEN_CURSORS init.ora parameter. Using these two
structures, the Oracle server can reuse the information common across all executions of a SQL
statement, while session-specific information to the execution can be retrieved from the private SQL
area.

NOTE

An application that does not close cursors as they are used continues to allocate more and
more memory for the application, in part because of the private SQL areas allocated for
each open cursor.

The private SQL area of the library cache is further divided into persistent and runtime areas. Persistent
areas contain information that is valid and applicable through multiple executions of the SQL statement,
while the runtime area contains data that is used only while the SQL statement is being executed.

The dictionary cache holds data dictionary information used by the RDBMS engine to parse SQL
statements. Information such as segment information, security and access privileges, and available free
storage space is held in this area.

The size of the shared pool is determined by the init.ora parameter SHARED_POOL_SIZE. This value
is specified in bytes. You must set this value high enough to ensure that enough space is available to
load and store PL/SQL blocks and SQL statements. The shared pool becomes fragmented over time
from the loading and unloading of data objects, and errors can occur if there is not enough contiguous
free space in the pool to load an object. You can solve this problem in the short term by issuing the SQL
command ALTER SYSTEM FLUSH SHARED_POOL, but if you are regularly encountering shared
pool errors during database operation, you have to increase the shared pool size.

The Database Buffer Cache The operation of the database buffer cache is one of the biggest factors
affecting overall database performance. The buffer cache is made up of memory blocks the same size as
the Oracle blocks. All data manipulated by Oracle is first loaded into the buffer cache before being used.
Any data updates are performed on the blocks in memory. For this reason, it is obviously very important
to size the buffer cache correctly. Memory access is hundreds of times faster than disk access, and in an
OLTP environment, most of your data operations should take place completely in memory, using
database blocks already loaded into the cache.

The Oracle RDBMS swaps data out of the buffer cache according to a Least Recently Used (LRU) list.
The LRU list keeps track of what data blocks are accessed, and how often. When a block is accessed or
retrieved into the buffer cache, it is placed on the Most Recently Used (MRU) end of the list. When the
Oracle server needs more space in the buffer cache to read a data block from disk, it accesses the LRU
list to decide which blocks to swap out. Those blocks

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 59

at the far end of the MRU side are removed first. This way, blocks that are frequently accessed are kept
in memory.

NOTE

The exception to the LRU loading rule is that data that is accessed through a full table
scan is automatically placed at the bottom of the LRU list. This behavior can be
overridden by specifying the table as CACHE.

Buffer blocks that have been modified are called dirty, and are placed on the dirty list. The dirty list
keeps track of all data modifications made to the cache that have not been flushed to disk. When Oracle
receives a request to change data, the data change is made to the blocks in the buffer cache and written
to the redo log, and the block is put on the dirty list. Subsequent access to this data reads the new value
from the changed data in the buffer cache.

The Oracle server uses deferred, multiblock writes to lessen the impact of disk I/O on database
performance. This means that an update to a piece of data does not immediately update the data in the
data files. The RDBMS waits to flush changed data to the data files until a predetermined number of
blocks have been changed, space needs to be reclaimed from the cache to load new data, a checkpoint
occurs, or DBWR times out. When DBWR is signaled to perform a buffer cache write, it moves a group
of blocks to the data files.

The key to configuring the buffer cache is to ensure that the correct amount of memory is allocated for
optimal caching of data. This doesn't necessarily mean allocating all possible memory resources to the
buffer cache; however, as in most computer applications, there is a point of diminishing returns with
increased memory allocation. You find that beyond a certain point, the increase in buffer cache hit
percentage gained with an addition of memory becomes less and less worthwhile, and that the memory
you are allocating to the buffer cache could be better used in other places, such as other Oracle memory
structures.

Two initialization parameters determine the size of the buffer cache—DB_BLOCK_SIZE and
DB_BLOCK_BUFFERS. The DB_BLOCK_SIZE parameter is used during database creation to set the
size of the Oracle block (which is explained in detail in Chapter 7, "Exploring the Oracle Environment").
The DB_BLOCK_BUFFERS parameter determines the number of blocks to allocate to the buffer cache.
Multiplying DB_BLOCK_SIZE * DB_BLOCK_BUFFERS gives you the total amount of memory (in
bytes) of the buffer cache.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0061-0063.html

The Redo Log Buffer The redo log buffer is used to store redo information in memory before it is
flushed to the online redo log files. It is a circular buffer, meaning that it fills from top to bottom and
then returns to the beginning of the buffer. As the redo log buffer fills, its contents are written to the
online redo log files.

The redo log buffer is sized by means of the LOG_BUFFER initialization parameter. The value is
specified in bytes, and determines how much space is reserved in memory to cache redo log entries. If
this value is set too low, processes contend with each other and the Log Writer (LGWR) (explained
later) process reading and writing to the buffer, possibly causing performance problems. This is,
however, a rarity in all but the most active of databases and can be monitored using the v$sysstat view.
Query v$sysstat for the "value" field with the field "name"

Page 60

equal to "redo log space requests." This indicates the time user processes spent waiting for the redo log
buffer.

To enforce the sequential nature of the redo log writes, the Oracle server controls access to the buffer
using a latch. A latch is nothing more than a lock by an Oracle process on a memory structure—similar
in concept to a file or row lock. A process must hold the redo allocation latch to be able to write to the
redo log buffer. While one process holds the allocation latch, no other process can write to the redo log
buffer using the allocation latch.

The Oracle server limits the amount of redo that can be written at one time using the value of the
initialization parameter LOG_SMALL_ENTRY_MAX_SIZE. This parameter is specified in bytes, and
the default value varies, depending on OS and hardware. For servers with multiple CPUs, the Oracle
server does allow redo entries needing space greater than the value of the
LOG_SMALL_ENTRY_MAX_SIZE parameter to be written using the redo allocation latch. Instead,
processes must hold a redo copy latch. The number of redo copy latches available is equal to the value
of the LOG_SIMULTANEOUS_COPY initialization parameter. The default for
LOG_SIMULTANEOUS_COPY is the number of CPUs in the system. Using redo copy latches,
multiple processes can simultaneously write to the redo log buffer.

You can monitor the redo allocation and copy latches using the v$latch dynamic performance view. (See
Chapter 31, "Tuning Memory," for more information on tuning the redo latches.)

The Oracle Background Processes

At any one point in time, an Oracle database can be processing thousands (or millions!) of rows of
information, handling hundreds of simultaneous user requests, and performing complex data
manipulations, all while providing the highest level of performance and data integrity. To accomplish
these tasks, the Oracle database divides the grunt work between a number of discrete programs, each of

which operates independently of one another and has a specific role to play. These programs are referred
to as the Oracle background processes, and are the key to effectively handling the many operational
stresses placed upon the database. A complete understanding of the background processes and the tasks
they perform helps you to analyze performance problems, pinpoint bottlenecks, and diagnose trouble
spots in your database.

NOTE

On Windows NT servers, the background processes are implemented as multiple threads
to the Oracle Service. This allows the Oracle process to use shared memory address
space more efficiently, and results in less context changes by the Windows NT OS to
handle Oracle operations.

The Oracle background processes are as follows:

● SMON and PMON
● DBWR
● LGWR
● ARCH
● CKPT

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0061-0063.html

Previous | Table of Contents | Next

Page 73

CHAPTER 6

The Oracle Database Architecture

In this chapter

● Defining the Database 74
● The SYS and SYSTEM Schemas 74
● Understanding the Components of the Database 75
● Understanding Database Segments 85
● Using the Oracle Data Dictionary 89
● Other Database Objects 90

Page 74

Defining the Database

The term database is used both as the name for the entire database management environment and as a
description (in Oracle terms) of the logical and physical data structures that make up the Relational
Database Management System (RDBMS). As Oracle professionals, we define the Oracle database as the
configuration files, datafiles, control files, and redo log files that make up the data processing
environment, as well as the tables, indexes, and other structures contained within these objects.

The SYS and SYSTEM Schemas

There are two default accounts installed with every Oracle database that you should know about. The
SYS schema is the owner of all of the internal database tables, structures, supplied packages, procedures,
and so on. It also owns all of the V$ and data dictionary views and creates all of the packaged database
roles (DBA, CONNECT, RESOURCE, and so on). SYS is the root or administrator ID of an Oracle
database, and because of the all-powerful nature, you should avoid doing work logged in as it. Making a
simple typo when you're logged in as SYS can be devastating.

The SYS UserID is the only one able to access certain internal data dictionary tables. Because it owns all
of the data dictionary structures, it is also the schema you must log in to in order to grant explicit rights
to data dictionary objects to other schemas. This is necessary when you're writing stored procedures or

triggers using the data dictionary views and tables. The default password for the SYS account when a
database is first installed is CHANGE_ON_INSTALL, and every DBA worth his or her salt will follow
that advice to the letter.

The SYSTEM schema is also installed upon database creation and is the default schema used for DBA
tasks. SYSTEM also has full rights to all database objects, and many third-party tools rely on the
existence and privileges of the SYSTEM schema. The default password for the SYSTEM account is
MANAGER, and like the SYS account should be changed immediately after creating a database. Many
DBAs use the SYSTEM schema to perform database administration tasks, but it's preferable to create a
specific schema just to do DBA tasks. This ensures that a specific UserID, linked to a specific person, is
responsible for any database modifications.

Because these schemas are well known and exist in every Oracle database, it is important to change their
default passwords immediately upon database installation, securing the accounts against unauthorized
access. If security is a major issue, you might also consider making it impossible to log in to these
accounts and setting valid passwords only when it is necessary
to log in to them.

NOTE

You can make it impossible to log in to an account by issuing ALTER USER xxx
IDENTIFIED BY VALUES `password';, where `password' is any lowercase string. This
sets the stored password to the actual value you give, rather than the encrypted version
Oracle would store with a normal ALTER USER xxx IDENTIFIED BY `password';
command. It is impossible for Oracle to generate a lowercase encrypted password string,
making it impossible to log in to the account.

Page 75

Understanding the Components of the Database

We can group the pieces of the database into two distinct categories: objects used internally by the
RDBMS, which we call system database objects, and objects that can be accessed by any process, which
we call user database objects.

System Database Objects

When referring to system database objects, we're looking at the database objects the RDBMS uses to
support internal database functions. These objects are configured and created by the DBA or the server
itself and are not explicitly used in end user database transactions.

The system database objects are:

● The initialization parameter file(s)
● The control file
● Online redo log files
● The archived redo logs
● The trace file(s)
● The ROWID
● Oracle blocks

An explanation of each of these objects follows.

The Initialization Parameter File(s)The initialization parameter file, or init.ora, is the primary
configuration point for the RDBMS. It is nothing more than a collection of configuration keys and
values, each of which controls or modifies one aspect of the operation of a database and instance. It is an
ASCII text file found in $ORACLE_HOME/dbs on UNIX servers and $ORACLE_HOME/database on
Windows NT servers. By default it is named initSID.ora, where SID is equal to the system identifier for
the database it controls. On a UNIX server this is the filename the Oracle server will look for (where
SID will be equal to the value of the $ORACLE_SID environment variable) when starting the database,
if an init.ora file is not explicitly provided on the command line. Each Oracle database and instance
should have its own unique init.ora file.

The init.ora file can include configuration values from other files using the IFILE parameter. It's also
quite common in UNIX environments to link the $ORACLE_HOME/dbs/init.ora file to a file in another
location, to allow better control and structure of the database environment installation. Undocumented
parameters (used primarily by Oracle Worldwide Customer Support) are named with a leading
underscore.

The init.ora is read when the database is started, before the instance is created or the control files are
read. The values in the init.ora determine database and instance characteristics such as shared pool,
buffer cache, and redo log buffer memory allocations, background processes to automatically start,
control files to read, rollback segments to automatically bring online, and so on. Changes made to
parameters in the init.ora file will not be recognized until the database is shut down and restarted.

Page 76

The default init.ora file shipped with the Oracle RDBMS, located in the $ORACLE_HOME/dbs
directory, comes preconfigured with the essential init.ora parameters and different recommended
(arbitrary) values for small, medium, and large databases. This file can be copied and renamed when
you're creating new databases and instances.

The configuration parameters set in the init.ora file can be viewed from within a database by querying

the V$PARAMETER view. This view lists all of the init.ora parameters and their values, and each one
has a flag indicating whether the parameter value is the server default or not.

Explanations of the parameters contained within the default init.ora file are given in Table 6.1. For a
more comprehensive list, consult the Oracle Server Reference Manual contained within your server
documentation set.

Table 6.1 Common init.ora Parameters

Parameter Name Use

audit_trail

Enables or disables writing
records to the audit trail.
Note that this merely allows
auditing; audit actions must
be configured separately.

background_dump_dest

Destination directory for
Oracle background process
trace files, including alert.
log.

compatible

Compatibility level of the
database. Prevents the use of
database features introduced
in versions higher than the
value of this parameter.

control_files
The control files for this
database.

db_block_buffers

Number of database blocks
contained in the buffer cache.
db_block_buffers ¥
db_block_size = size of
database buffer cache, in
bytes.

db_block_size

Size of the Oracle database
block. Cannot be changed
once the database has been
created.

db_files
Maximum number of
database files that can be
opened.

db_name

Optional name of the
database. If used, must match
the database name used in
the CREATE DATABASE
statement.

db_file_multiblock_read_count

Maximum number of
database blocks read in one I/
O. Used for sequential scans,
and important when tuning
full table scans.

dml_locks
Maximum number of DML
locks for all tables by all
users of the database.

log_archive_dest
Destination of archived redo
log files.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 72

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 68

query given below from decimal to hexadecimal, you can match the Windows NT thread ID with the
background process from the Oracle side.

SELECT spid, name FROM v$process, v$bgprocess WHERE addr = paddr;

(See Appendix B, "Oracle on Windows NT," for more information on tuning and tracking Windows NT
background threads.)

Using the v$ Tables to Monitor Instance Structures

Numerous dynamic performance views are available to the DBA to display instance information. These
views are invaluable when attempting to discover the current state of the database instance, and
troubleshoot problems related to the instance.

Monitoring Database Connections Both user and background processes that are connected to the
instance can be monitored using the v$ views. The v$process view displays information about all
processes that are connected to the database, including background and user processes. V$bgprocess
contains a list of all possible background processes, with an additional column, PADDR, that contains
the hexadecimal address of running background processes (or 00 for those that are not running).

The columns of interest to us from the v$process table are as follows:

Column Usage

ADDR Oracle Address of the Process

PID Oracle Process ID

SPID OS System Process ID

USERNAME OS Process Owner

SERIAL# Oracle Process Serial#

TERMINAL OS Terminal Identifier

PROGRAM OS Program Connection

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0066-0067.html

BACKGROUND
1 for Background Process, NULL for User
Process

The columns of interest to us from the v$bgprocess table are as follows:

Column Usage

PADDR
Oracle Process Address (Same as ADDR
column of v$process)

NAME Name of the Background Process

DESCRIPTION Description of the Background Process

ERROR Error State Code (0 for no error)

You can display the addresses and names of all running background processes by joining the v$process
and v$bgprocess table, as in the following query:

Page 69

SELECT spid, name
FROM v$process, v$bgprocess
WHERE paddr(+) = addr;

Information about user sessions that are connected to the database are stored in the v$session view. The v
$session view contains many fields, and a great deal of valuable information can be accessed from this
view.

The columns of interest from the v$session view are as follows:

Column Usage

SID Session Identifier

SERIAL# Session Serial#

PADDR Address of Parent Session

USER#
Oracle User Identifier
(from the SYS.USER$
table)

USERNAME Oracle Username

COMMAND

Current Command in
Progress for this Session.
For number to command
translations, see the sys.
audit_actions table

STATUS
Status of the Session
(ACTIVE, INACTIVE,
KILLED)

SERVER

Type of Server Connection
the Session Has
DEDICATED, SHARED,
PSEDUO, or NONE)

OSUSER
OS Username the
Connection Has Been
Made From

PROGRAM
OS Program Making the
Connection into the
Database

TERMINAL
Type of Terminal the
Connection Is Made From

TYPE
Type of Session
(BACKGROUND or
USER)

SQL_HASH_VALUE and
SQL_ADDRESS

Used to Uniquely Identify
the Currently Executing
SQL Statement

The following query displays important information on connected processes. It also demonstrates the
manner in which the process views relate to each other:

col bgproc format a6 heading `BGProc'
col action format a10 heading `DB Action'
col program format a10
col username format a8
col terminal format a10

Page 70

SELECT
 b.name bgproc, p.spid, s.sid, p.serial#, s.osuser,
 s.username, s.terminal,

 DECODE(a.name, `UNKNOWN', `-----', a.name) action
FROM
 v$process p, v$session s, v$bgprocess b,
 sys.audit_actions a
WHERE
 p.addr=s.paddr(+) AND b.paddr(+) = s.paddr AND
 a.action = NVL(s.action, 0)
ORDER BY
 sid;

By querying the v$access view, you can display information on what database objects users are
currently accessing. This is useful when trying to figure out what a third-party application or
undocumented procedure is doing, and can also be used to resolve security problems. By using a DBA
account to run an application or procedure that is giving you security problems, you can determine the
exact objects to which security should be granted.

Finally, the v$mts view contains tracking information for shared server processes. This view contains
columns for maximum connections, servers started, servers terminated, and servers highwater.

Monitoring the Shared SQL Area Often it is useful to be able to look into the RDBMS engine and see
what SQL statements are being executed. The v$sqlarea view contains information on SQL statements
in the shared SQL area, including the text of SQL statements executed, the number of users accessing
the statements, disk blocks and memory blocks accessed while executing the statement, and other
information.

NOTE

The disk_reads and buffer_gets columns that are found in v$sqlarea track the number of
blocks that are read from disk and from the buffer cache. These two columns are quick
and easy ways to find queries that are utilizing large amounts of database resources.

The v$open_cursor view is also useful to investigate cursors that have not yet been closed. The
following query displays all open cursors for a given user's SID:

SELECT b.piece, a.sql_text
FROM v$open_cursor a, v$sqltext b
WHERE
 a.sid = &SID and
 a.address = b.address and
 a.hash_value = b.hash_value
ORDER BY
 b.address, b.hash_value, b.piece asc;

The v$sqltext view can also be used to determine what SQL statements are passed to the database
engine. Unlike v$sqlarea, which only stores the first 80 characters of the SQL statement, this view holds
the entire SQL statement. The v$sqltext_with_newlines view is identical to

Page 71

NOTE

v$sqltext, except that the newline characters in the SQL statements have been left in
place.

The SQL statements stored in v$sqltext are split into pieces. To retrieve the entire statement, you have to
retrieve all the parts of the SQL statement and order by the PIECE column.

Monitoring the SGA There are two v$ views available that provide information about the operation of
the SGA. The v$sga view displays the size (in bytes) of each major component of the SGA, including
the redo log cache, the database buffer cache, and the shared pool. The v$sgastat contains much more
interesting information. Within this view you find the specific size for each individual memory structure
contained in the SGA, including the memory set aside for stack space and PL/SQL variables and stacks.
You can also query this view to find the amount of free memory available in the SGA:

SELECT bytes FROM v$sgastat WHERE name = `free memory';

Monitoring the Library and Dictionary Cache Two views exist that contain information regarding the
library and data dictionary cache. v$librarycache contains library cache performance information for
each type of object in the library cache. The v$rowcache view contains performance information for the
data dictionary cache. (See Chapter 31 for more information on these views and the information
contained in them.)

Monitoring the Parallel Query Processes The v$pq_sysstat and v$pq_tqstat views contain information
on the parallel server processes and their behavior. Query v$pq_sysstat to display current runtime
information on parallel query servers, such as the number of query servers busy and idle and dynamic
server creation and termination statistics. The v$pq_tqstat view contains information on queries that
have previously run that used parallel query servers. (See Chapter 26, "Parallel Query Management," for
more information on tracking the parallel servers.)

Monitoring the Archiver Processes Archiver activity is stored in the v$archive view. You can retrieve
information on the archived logs written by ARCH from this view. (For an explanation of the columns
in this view, see Chapter 27.)

Monitoring the Multi-Threaded Server Processes The vmts, vdispatcher, and v$shared_server
views contain information on the status of the MTS processes and memory structures. v$mts contains
tracking information on the shared server processes such as the number of servers started, terminated,
and the highwater value for running servers. v$dispatcher contains information on the dispatcher
processes running. From this view you can query the name, supported protocol, number of bytes
processed, number of messages processed, current status, and other runtime information relating to the
dispatcher processes. The v$shared_server view provides the same type of information, but for the
shared running shared server processes.

(See Chapter 19, "Oracle Networking Fundamentals," for more information on setting up and tuning the
shared server and dispatcher processes.)

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0066-0067.html

Previous | Table of Contents | Next

Page 77

Parameter Name Use

log_archive_start

Enables or disables automatic
archiving. When true, the ARCH
process will automatically start
when the instance is started.

log_buffer
Number of bytes allocated to the
redo log buffer.

log_checkpoint_interval
The number of redo log file
blocks that must be filled to
trigger a checkpoint.

max_dump_file_size
Maximum size in operating
system blocks of Oracle trace
files.

processes

Maximum number of OS
processes that can connect to the
database, including the
background processes. Important
when tuning shared memory on a
UNIX server.

remote_login_passwordfile

Specifies whether a password
file is used for remote internal
authentication, and how many
databases can use a single
password file. Can be set to
NONE, SHARED, and
EXCLUSIVE.

rollback_segments
List of rollback segments to
automatically take online at
database startup.

sequence_cache_entries

Number of sequences that can be
cached in the SGA. Should be
set to the maximum number of
sequences that will be used in the
instance at one time.

shared_pool_size Size of the shared pool, in bytes.

snapshot_refresh_processes

Number of SNP processes to
start at instance startup. SNP
processes are responsible for
refreshing snapshots and running
database jobs submitted with
DBMS_JOB.

timed_statistics

Enables or disables the collecting
of timing statistics for the
database. While setting this to
true incurs a minimal
performance overhead, it allows
much greater flexibility in
database tuning.

user_dump_dest

Destination directory for user
trace files,including those
generated by setting sql_trace to
true.

The Control FileThe control file is the heart of the database. It contains information on what datafiles
and redo log files belong to the database, what character set the data should be stored as in the database,
the status and revision of each datafile in the database, and other critical information. Most of the
parameters contained in the control file are set during database creation and are relatively static—they
do not change from day to day. The control file is in binary format and cannot be read or edited
manually.

Page 78

The control file is created when the database is created. Most databases operate with multiplexed control
files (as explained later) and are therefore usually referred to in the plural. The specific control files
created are those specified in the CONTROL_FILES init.ora parameter. The database creation
parameters specified in the CREATE DATABASE clause are stored in these files.

The database cannot be opened without the correct control files. If the control file is unavailable or
corrupted for some reason, the database cannot be started and the data contained in the database cannot
be accessed. For this reason, mirroring of the control files is internally supported by the Oracle server
and is highly recommended. To mirror control files in a new database, merely specify more than one
value for the CONTROL_FILES init.ora parameter before issuing the CREATE DATABASE
command. To mirror control files in a preexisting database, you must shut down the database, copy the
current control file to the directories where you want it to be mirrored, edit the CONTROL_FILES
parameter to specify the new control file locations, and start the database.

NOTE

A good rule of thumb is to store no fewer than three copies of the control files on three
separate physical disks.

Unfortunately, modifying control file parameters is not as easy as changing an initialization parameter
and bouncing the database. To change any of the control file parameters, you must re-create the control
files. Follow these steps to re-create your control file:

1. Back up your database. Making an error while modifying your control file can corrupt your
database beyond recovery. Never perform this activity without a valid backup of the database.

2. Issue the ALTER DATABASE BACKUP CONTROLFILE TO TRACE; command from Server
Manager or SQL*Plus. This creates a user trace file (located in USER_DUMP_DEST) with the
commands necessary to re-create your current control file.

3. Edit the trace file generated in the preceding step. Delete all of the lines in the trace file except
for the CREATE CONTROLFILE statement. Set the new parameter values.

4. Shut down your database normal, by issuing the SHUTDOWN command in Server Manager.
5. Start your database in nomount mode, by issuing the STARTUP NOMOUNT command from

Server Manager.
6. Execute ALTER DATABASE OPEN;.

You can avoid ever having to re-create your control files by setting the database parameters during
database creation to values higher than you'll ever need. The only thing wasted in setting these control
file parameters higher than needed is a negligible amount of disk space.

Page 79

CAUTION

It's important that you set the CHARACTERSET parameter correctly when you create
the database. Changing this parameter requires re-creating the entire database. It cannot
be changed by rebuilding the control file.

The configurable control file parameters are listed in Table 6.2.

Table 6.2 Modifiable Configuration Parameters Contained in the Control File

Parameter Name Description

MAXLOGFILES
Maximum number of online redo log
files

MAXLOGMEMBERS
Maximum number of members per
redo log file

MAXDATAFILES Maximum number of datafiles

MAXINSTANCES
Maximum number of instances that
can mount this database
(parallel server)

MAXLOGHISTORY
Maximum number of archived redo
log file groups to use for
instance recovery (parallel server)

NOTE

To change the database name, re-create the control file as described, but change the
REUSE DATABASE "OLD_NAME" line in the trace file to SET DATABASE
"NEW_NAME".

The V$CONTROLFILE view lists the control files that the Oracle server is currently reading from and
writing to.

Online Redo Log FilesThe log writer background process (LGWR) writes the contents of the redo log
cache to the online redo log files. The redo logs store all of the change information for the database and
are used by Oracle during database recovery.

As shown in Figure 6.1, the online redo log files are made up of at least two groups of redo log files and
are written to in a circular nature. A redo log group is active if it is currently being written to by LGWR.
A log switch occurs when the current log group fills up and LGWR stops writing to it and moves on to
the next one. When a log switch occurs and archivelog mode is enabled for the database, the redo log
group previously written to is locked by the archiver (ARCH) process and copied to disk or tape,
depending on your configuration. If LGWR catches up with the ARCH process and needs to write to the
group currently being written to by ARCH, all database activity will be suspended until ARCH finishes
writing to the log. If you see errors in your alert.log file stating that a free log group could not be latched
by LGWR, this behavior is occurring in your database, indicating that you need to add more redo log
groups or adjust the size of the groups.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 80

FIG. 6.1
Redo log groups with
multiple members.

Each log group can consist of multiple members. Each member of a log group is an exact mirror of the
others, and redo log entries are written to each member in parallel. If LGWR cannot write to a member
of the group, it does not fail. Rather, it writes an entry into the alert.log file. By using multiple members
per group, you can safeguard against database failure resulting from lost redo logs. As long as one
member of the group is accessible, the database will continue to function.

NOTE

The same functionality can be obtained by mirroring your redo log groups using RAID 1
(Mirrored) or RAID 5 volumes. This alleviates the overhead caused when LGWR has to
update multiple log group members for each database transaction.

As shown in Figure 6.2, the redo logs are written to in a circular fashion. LGWR writes to one group
until it is full. It then moves on to the next group in the sequence. Meanwhile, ARCH will copy the just-
filled online redo log to the operation system as an archived redo log. This process will continue until all
of the logs have been filled, and then LGWR will begin writing back at the first online redo log. At no
point will LGWR write to an online redo log that ARCH is still copying. If this happens, all database
activity will seem to halt until ARCH has finished its copy. This LGWR-ARCH contention can be
avoided by having online redo log groups of ample size and number available in the database.

Page 81

FIG. 6.2
Redo logs are written to
in a circular fashion.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0083-0084.html
javascript:displayWindow('images/ch06fg01.jpg',400,263)
javascript:displayWindow('images/ch06fg02.jpg',400,197)

The V$LOG and V$LOGFILE views hold information on the online redo log files. The following query
checks the status of the current logs:

SELECT member, bytes, members, a.status
FROM v$log a, v$logfile b
WHERE a.group# = b.group#
ORDER BY member;

SELECT b.member, b.bytes, b.members, a.status
FROM v$log a, v$logfile b
WHERE a.group# = b.group#
ORDER BY b.member;

The Trace File(s)All Oracle databases have at least one file where system messages, errors, and major
events are logged. This file, named sidALRT.log (where sid is the system identifier for the database), is
stored at the location specified by the init.ora parameter BACKGROUND_DUMP_DEST. It is the first
place you should look when investigating database problems. Critical failures are always logged here, as
well as database startup and shutdown messages, log switch messages, and other events.

Background and user processes also create their own trace files where problems and failures are logged.
Background process trace files are stored in the BACKGROUND_DUMP_DEST location, while user
trace files are stored in the directory pointed to by the USER_DUMP_DEST parameter setting. Setting
the USER_DUMP_DEST directory differently than that pointed to by BACKGROUND_DUMP_DEST
will allow you to keep track of the different classes of trace files. Background process trace files are
named sidPROC.trc, where sid is the system identifier for the database and PROC is the name of the
background process (DBWR, LGWR, SMON, PMON, and so on).

User session trace files are given an ora prefix, followed by a sequence of unique numbers, with a .trc
file extension. User session trace files are generated when a user session causes an unrecoverable
problem (such as a deadlock or a crashed server process) or when the user session is explicitly told to,
such as when SQL tracing is enabled or an ALTER DATABASE BACKUP CONTROLFILE TO
TRACE command is issued. To enable SQL tracing, issue ALTER SESSION

Page 82

SET SQL_TRACE=TRUE from the SQL*Plus prompt, or set the SQL_TRACE init.ora parameter to
true. Be cautious, however, because setting SQL_TRACE to true in init.ora will cause all SQL
statements that occur against the database to be written to trace files; this will generate an enormous
amount of trace information.

The current settings for the BACKGROUND_DUMP_DEST and USER_DUMP_DEST parameters can
be queried from the V$PARAMETER view.

The ROWIDFor the Oracle database to retrieve information, it must be able to uniquely identify each
row in the database. The internal structure the Oracle RDBMS uses for this task is called the ROWID, a
two-byte value that stores the physical location for a row in the database. The format of the ROWID is
as follows:

 BBBBBBBB.RRRR.FFFF

where

 BBBBBBBB is the block number (in hex) where the row resides in the
datafile,

 RRRR is the row number (in hex) in the block where the data row
exists, and

 FFFF is the file where the block exists.

For example, a row in a table might have a OWID as follows:

0000068C.0000.0001

This ROWID is in the first datafile (0001), the 68C (hex) block in that datafile, and the first row in that
block (0000).

NOTE

You can match the file number from the preceding ROWID to the filename by querying
the DBA_DATA_FILES view. In Oracle7, these file numbers are fixed, while in Oracle8
they are determined at database startup.

A row is assigned a ROWID when it is first created. The ROWID remains the same until the row is
deleted or the segment the row is in is reorganized (through import/export, third party reorganization
tools, and so on). Using the ROWID is the fastest method of finding a row in the database. Every table

in the database contains a pseudocolumn named ROWID, which can be queried to show the ROWID of
each row in the table.

Because of the unique nature of the ROWID, it can be used to creatively solve many different problems.
For example, one of the most common usages of the ROWID is to identify columns with duplicate
values in the database. The following SQL script shows how this can be done:

delete from duplicate_table
where ROWID not in (select MIN (ROWID) from duplicate_table
 group by a1, a2);

You can also use the value of the actual ROWIDs in queries. The following SQL script will display the
number of database files a table has rows in:

SELECT COUNT(DISTINCT(SUBSTR(ROWID, 15, 14)))) "Files"
FROM test_table;

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0083-0084.html

Previous | Table of Contents | Next

Page 93

CHAPTER 7

Exploring the Oracle Environment

In this chapter

● Creating the Oracle Environment 94
● Designing an Optimal Flexible Architecture 94
● Configuring the Oracle Environment 101
● Understanding the Oracle Software Environment 101
● Creating Your First Database 106
● Exploring the Oracle Database 111
● Exploring an Unfamiliar Environment 115

Page 94

Creating the Oracle Environment

The Oracle database is a powerful yet complicated data storage and retrieval system, capable of
supporting enormous workloads while maintaining high levels of performance, security, and data
integrity. An integral part of a successful database is the manner in which the software is installed and
configured on the database server. This chapter examines the role the server software and configuration
plays in the database environment, and deciphers the sometimes confusing aspects of the Oracle server
installation. This chapter also explores strategies for creating your Oracle server environment, as well as
your first Oracle database. Finally, it looks at what you can do to familiarize yourself with an unfamiliar
Oracle database.

When configuring a server to house the Oracle software, you must take several key factors +into
consideration. These include the flexibility of the design, the ease of administration, and the simplicity
of the structure. If you design your environment with these points in mind, you will be rewarded with an
environment conducive to your uptime and performance goals, as well as avoid the problems and
anxiety that a poorly designed server structure can create.

Designing an Optimal Flexible Architecture

The Oracle standard for creating and configuring your Oracle environment is named the Optimal
Flexible Architecture, or OFA, Standard. It is a set of rules and guidelines that enables you to easily
create and configure a production-level Oracle server. As the name states, the OFA Standard was created
to give you the most flexible Oracle environment without sacrificing usability, ease of administration, or
simplicity of design.

Mr. Cary Millsap of Oracle Corporation wrote the OFA Standard in the early 1990s. The definitive
white paper on the structure can be found at http://www.europa.com/~orapub/index.html. Mr. Millsap's
article goes into much more detail than will be described here. His white paper deals with configuring
the entire environment, while we are concerned with the creation and configuration of the operating
system directory structures and naming conventions used to support the Oracle database. Mr. Millsap's
OFA Standard paper is required reading for any Oracle DBA or systems integrator interested in the best
practices for implementing an Oracle installation.

Mr. Millsap sums up the purpose of the OFA Standard Recommendations with his statement that "A
good standard should act as a strong floor, without becoming a ceiling that inhibits `creative magic.'"
The OFA Standard Recommendations are just those—recommendations. Your specific environment will
have requirements and specifications that are best met with methods not included in (or contrary to) the
OFA Standard. However, close study of the OFA Standard will reveal many best practice methods that
would only be obvious through difficult trial, error, and experience.

Creating Top-Level Directories

The first step in configuring your environment is to decide on the naming and creation of the OS mount
points and top-level directories of your Oracle installation. As with many

Page 95

configuration items, the implementation varies from UNIX to Windows NT, but the general concepts
remain the same. The first OFA rule relates to this topic and is

OFA Recommendation 1: Name all mount points that will hold site-specific data to match
the pattern /pm, where p is a string constant chosen not to misrepresent the contents of any
mount point, and m is a unique fixed-length key that distinguishes one mount point from
another.

In other words, create top-level mount points that are unique, but do not have meaning in and of
themselves. The character portion (p) should be short and simple—one or two characters are ideal. The
numbered portion distinguishes the mount points from each other. Each mount point should have the
same named portion, and be of the same length, for example, u01, u02, and u03 or ora01, ora02, and
ora03.

file:///E|/www.europa.com/~orapub/index.html.

On a Windows NT server, the different drives and volumes are already separated according to drive
letters. This makes the usage of mount-point names as described above unnecessary. Use a directory
named orant (the default Oracle name) on each drive to denote Oracle applications and files.

NOTE

To minimize confusion, UNIX naming conventions will be used throughout this
explanation. However, unless otherwise indicated, all of the structure and naming
conventions given are applicable to both UNIX and Windows NT environments.

Using mount points without site-specific, application-specific, or hardware-specific connotations enables
great flexibility when reconfiguring your system. Consider the following example: Bob, a novice DBA,
names mount points on his UNIX system that refer to the physical disks each mount-point volume is
attached to. This makes it very easy for Bob to balance his datafile I/O over drives. By glancing at the
pathname, he can tell that his main data tablespace is on DISK01, while his index tablespace is on
DISK05. But, as always happens, Bob's database grows, forcing him to add more disks and new
hardware. Bob wants to take advantage of his new RAID controller to stripe and mirror some volumes,
which means he must reorganize his entire drive subsystem to accomplish this goal. Unfortunately, this
also means that if he wants to keep his naming convention, he must rename his mount points and change
all of his backup scripts, applications, and so on, to point to the new paths. Bob could have avoided this
hassle by using directory names that are unique, but that by themselves have no meaning.

Using Application Directories

One of the benefits gained from implementing an OFA-compliant configuration is the ease in which
multiple applications and multiple versions of the same application can be installed, using the same
directory structure. In an OFA environment, each application has its own home directory that stores the
binaries, configuration files, and so forth that are necessary for running the application. The next two
OFA rules relate to this and are as follows:

OFA Rule 2: Name application home directories matching the pattern /pm/h/u, where pm
is a mount-point name, h is selected from a small set of standard directory names, and u is
the name of the application or application owner.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 91

information, while not showing Social Security number and salary data), and to make complicated
queries easier to understand and use. Views can also be used to hide distributed database objects by
creating views on remote database tables. Any statement that can be executed as a SQL query can be
created as a view.

NOTE

Views can be very helpful when designing applications because they can be used to hide
complicated query logic in a table format that is much easier to query. They can be
created with optimizer hints embedded in them, to ensure top query performance.

The DBA_VIEWS view holds information on views created in the database.

Sequences

Sequences are database objects that are used to generate unique numbers. A sequence is created with a
starting value, an increment, and a maximum value. Each time a number is recalled from a sequence, the
current sequence value is incremented by one. Each sequence-generated number can be up to 38 digits
long.

You use a sequence by selecting the NEXTVAL or CURRVAL pseudocolumns from it. If you have a
sequence named EMP_SEQ, for example, issuing SELECT EMP_SEQ.NEXTVAL FROM DUAL will
return the next integer value of the sequence and increment the current value of the sequence by one.
You can SELECT EMP_SEQ.CURRVAL FROM DUAL to return the current integer value of the
sequence. Note that to use CURRVAL, you must have initialized the sequence for your user session by
previously issuing a query on the NEXTVAL pseudocolumn of the sequence.

The most common usage of sequences is to provide unique numbers for primary key columns of tables.
Information on sequences is stored in the DBA_SEQUENCES view.

Triggers

Triggers are stored procedures that fire when certain actions occur against a table. Triggers can be coded
to fire for inserts, updates, or deletes against a table and can also occur for each row that is affected or
for each statement. Triggers are most often used to enforce data integrity constraints and business rules
that are too complicated for the built-in Oracle referential integrity constraints. Information on database

triggers can be found in the DBA_TRIGGERS view.

Synonyms

Synonyms are database pointers to other database tables. When you create a synonym, you specify a
synonym name and the object the synonym references. When you reference the synonym name, the
Oracle server automatically replaces the synonym name with the name
of the object for which the synonym is defined.

There are two types of synonyms: private and public. Private synonyms are created in a specific schema
and are only accessible by the schema that owns it. Public synonyms are owned by the PUBLIC schema,
and all database schemas can reference them.

Page 92

It's important to understand the order in which an object name is resolved within a SQL statement. If the
SQL statement SELECT * FROM EMP_SALARY is issued, the Oracle server attempts to resolve the
EMP_SALARY object in the following way:

1. First, the server checks to see if a table or view named EMP_SALARY exists in the issuing user's
schema.

2. If the table or view doesn't exist, Oracle checks for the existence of a private synonym named
EMP_SALARY.

3. If this private synonym exists, the object that the synonym references is substituted for
EMP_SALARY.

4. If the private synonym does not exist, the existence of a public synonym named EMP_SALARY
is checked.

5. If a public synonym does not exist, Oracle returns the message ORA-00942, table or view does
not exist.

Public synonyms should be used with care. Because all schemas can use public synonyms to resolve
object names, unpredictable results can occur.

Information on public synonyms is stored in DBA_SYNONYMS. Note that the owner of public
synonyms will be listed as PUBLIC in this view.

Database Links

Database links are stored definitions of connections to remote databases. They are used to query remote
tables in a distributed database environment. Because they are stored in the Oracle database, they fall
under the category of database object. More information on database links can be found in Chapter 28,
"Distributed Database Management."

Information on database links can be found in the DBA_DB_LINKS data dictionary view.

CAUTION

DBA_DB_LINKS is one of the views that can store passwords in clear text, if the
database link is defined with a specific UserID and password to connect to the remote
database. Care should be taken when allowing end users access to this database view.

Packages, Procedures, and Functions

Stored packages, procedures, and functions are stored in the data dictionary, along with their source
code. A stored procedure is a code unit that does work, can be passed arguments, and can return values.
A stored function is a code unit that is passed an argument and returns one value. A package is a
collection of procedures, variables, and functions, logically grouped by function. See Chapter 10, "PL/
SQL Fundamentals," for more information.

You can access information on stored packages, procedures and functions through the DBA_OBJECTS
and DBA_SOURCE views.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 88

the buffer cache. If another user session requests the same data, the before image stored in the rollback
segment is returned (this is called a consistent read). When the session that is making the change
commits, the rollback segment entry is marked invalid.

Multiple user sessions can share a single rollback segment. Each rollback segment is made up of at least
two extents. When a transaction starts, the user session gets an exclusive lock on an available extent in
an available rollback segment. Transaction information is then written to the rollback segment. If the
transaction fills the first extent, it allocates another extent. If another extent is unavailable, the rollback
segment automatically allocates another extent to itself, which the user session grabs. This is called
rollback segment extension. Because extent allocation affects performance, your goal should be to
enable all transactions to run without allocating new extents.

If the rollback segment is unable to allocate another extent (either because the maximum number of
extents has been reached for the rollback segment or there are no more free extents in the rollback
segment tablespace), an error occurs and the transaction is rolled back. This commonly occurs in large
data loads, where online rollback segments do not provide sufficient space to store all of the rollback
information for the transaction.

See Chapter 21 for more information on creating and administering rollback segments.

The DBA_ROLLBACK_SEGS view contains information on rollback segments.

Table Clusters

A table cluster is a database object that physically groups tables that are often used together within the
same data blocks. The clustering of tables is most effective when you're dealing with tables that are
often joined together in queries. A table cluster stores the cluster key (the column used to join the tables
together), as well as the values of the columns in the clustered tables. Because the tables in the cluster
are stored together in the same database blocks, I/O is reduced when working with the clusters.

Hash Clusters

Hash clusters are the final option for database storage. In a hash cluster, tables are organized based upon
a hash value derived by applying the hash function to the primary key values of the tables. To retrieve
data from the hash cluster, the hash function is applied to the key value requested. The resulting hash
value gives Oracle the block in the hash cluster where the data is stored.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0085-0087.html

Using hash clusters can significantly reduce the I/O required to retrieve rows from a table. There are
several drawbacks to using hash clusters, however. See Chapter 21 for more information on creating and
administering hash clusters.

Page 89

Using the Oracle Data Dictionary

The data dictionary is the repository of information on all of the objects stored in the database. It is used
by the Oracle RDBMS to retrieve object and security information and by the end-users and DBAs to
look up database information. It holds information on the database objects and segments in the database,
such as tables, views, indexes, packages, and procedures. The data dictionary is read only; you should
NEVER attempt to manually update or change any of the information in any of the data dictionary
tables. It consists of four parts: the internal RDBMS (X$) tables, the data dictionary tables, the dynamic
performance (V$) views, and the data dictionary views.

Internal RDBMS (X$) Tables

At the heart of the Oracle database are the so-called internal RDBMS (X$) tables—the tables used by
the Oracle RDBMS to keep track of internal database information. The X$ tables are cryptically named,
undocumented, and nearly impossible to decipher. Most of them are not designed to be used directly by
the DBAs or end users. Nonetheless, they contain valuable information. Many undocumented or internal
statistics and configurations can be found only in the X$ tables.

The easiest way to decipher what is stored in a particular X$ table is to work backward from a known
data dictionary table. The SQL*Plus autotrace feature is invaluable for this work. For example, to
determine where the information in V$SGASTAT is really stored, you can perform the following
analysis:

● Log in to SQL*Plus as SYS (or an account with explicit access to the X$ and V$ tables). If a
plan_table does not exist for the schema you are logged in to, create one by running
$ORACLE_HOME/rdbms/admin/UTLXPLAN.sql.

● Issue the following SQL*Plus command: SET AUTOTRACE ON.
● Issue a query against the table whose components you are interested in. Set the WHERE clause to

a value that will never be true, so that no rows are returned: SELECT * FROM v$sgastat
WHERE 0 =1;.

● Among other information, the autotrace will return output similar to the following: Execution
Plan

0 SELECT STATEMENT Optimizer=CHOOSE

1 0 FILTER

2 1 FIXED TABLE (FULL) OF `X$KSMSS'

From the output of the SQL trace, you can decipher the data dictionary base tables from which the
information for the view is extracted. Querying the X$ tables found in this manner often produces
surprising information.

Page 90

Data Dictionary Tables

The data dictionary tables hold information for tables, indexes, constraints, and all other database
constructs. They are owned by SYS and are created by running the SQL.BSQ script (which happens
automatically during database creation). They are easily identified by the trailing dollar sign at the end
of their names (tab$, seg$, cons$, and so on). Most of the information found in the data dictionary tables
can be found in the data dictionary views, but certain applications and queries still benefit from using the
information contained in the base tables.

The columns and tables of the data dictionary are well documented in the SQL.BSQ file. This file is
found in the $ORACLE_HOME/dbs directory. By familiarizing yourself with the contents of SQL.BSQ,
you can gain a better understanding of how the Oracle RDBMS actually stores the data dictionary and
database information.

Dynamic Performance (V$) Views

The dynamic performance (V$) views are the mainstay of the Oracle DBA. These views contain runtime
performance and statistic information on a large number of database functions. They are also fairly
readable (as opposed to the X$ tables) and are meant to be used by the DBA to diagnose and
troubleshoot problems. Documentation on most V$ views can be found in the Oracle Reference Manual,
supplied on your Oracle server media.

Note that the V$ views are actually public synonyms to the V_$ views, owned by SYS. This is
important to note when writing stored procedures or functions that read the V$ tables. It is often
necessary to reference or grant privileges to the base V_$ view rather than the V$ public synonym.

Data Dictionary Views

The data dictionary views are views created on the X$ and data dictionary tables and are meant to be
queried and used by end users and DBAs. They are divided into three categories—the DBA_, ALL_,
and USER_ views. The DBA_ views contain information on all objects in the database. For example,
DBA_TABLES contains information on all tables created. The ALL_ views contain information on all
objects to which the user querying the table has access. The USER_ views contain information on all

objects the user querying the table owns.

Other Database Objects

There are several other objects stored in the database that are not rightfully classified as segments but
should be discussed nonetheless. They include views, sequences, synonyms, triggers, database links, and
stored packages, procedures and functions. They are described in the following sections.

Views

Views are stored SQL statements that can be queried. A view is used for security reasons to hide certain
data (such as an HR view that shows only first name, last name, and address

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0085-0087.html

Previous | Table of Contents | Next

Page 96

OFA Rule 3: Store each version of Oracle server distribution software in a directory
matching the pattern h/product/v, where h is the application home directory of the Oracle
software owner and v represents the version of the software.

A sample implementation of this rule is given in the following directory template:

/[mount_point]/APP/[application_name]/PRODUCT/[version]/
application home

In this example, we see that application home directories are stored in the APP subdirectory directly
underneath our mount point. We next use a generic name to identify the directory under which the
application will be stored. The PRODUCT directory and version then follow.

A sample hierarchy using this naming convention is

/u01

 app
 finance
 [...]
 qse
 [...]

 oracle

 admin

 product

 7.1.6

 [...]

 7.3.3

 [...]

 8.0.3

 [...]

While this method may seem more complicated than necessary, the resulting flexibility and ease of
administration is well worth it. As you can see, under this mount point you have three applications
installed—finance, QSE, and Oracle. Finance and QSE are third-party or homegrown applications, and
the directory structures underneath the main directories follow the same format as shown in the Oracle
hierarchy. In the Oracle application directory, you see the product and admin subdirectories. Within the
product subdirectory are three versions of the Oracle software—7.1.6, 7.3.3, and 8.0.3. Any change or
new installation of Oracle software can be made to one version without fear of interaction with any other
version.

Separating the versions in this manner is very important when performing testing and cutover of new
Oracle versions. Obviously you need the ability to easily install a new version of the software without
impacting your production installation. After your new version is tested, cutover to the new version is a
simple matter of setting the correct environment variables to the new directory. The old version then can
be deleted at your leisure.

Managing Database Files

One of the needs that necessitated the creation of the OFA guidelines was the difficulty DBAs faced
when simultaneously administering many databases. A method to organize administrative information
and data into a manageable and predictable format was needed. The admin directory we saw earlier is
used to store files related to administering the database and goes a

Page 97

long way in improving the capability of a single person to keep track of many databases. Our next OFA
rule is related to this structure:

OFA Rule 4: For each database with db_name=d, store database administration files in
subdirectories of /h/admin/d, where h is the Oracle software owner's login home directory.

The following chart shows a sample admin directory structure:

/u01/app/oracle/admin
 PROD

 bdump
 udump
 cdump
 pfile
 sql
 create

The subdirectories in the admin directory are explained in Table 7.1.

Table 7.1 ADMIN Directories

Directory
Name

Usage

bdump
Background dump files (value of
BACKGROUND_DUMP_DEST)

udump
User dump files (value of
USER_DUMP_DEST)

cdump Core files (UNIX only)

pfile
init.ora and any other database initialization
parameters

sql Database administration SQL files

create
Scripts used to create the initial database and
database objects

init.ora files, trace and dump files, alert.log, and so forth are all stored in this central administrative
directory. This eases administering the large amounts of data produced by an Oracle database. You can
add directories to store other data as the need arises.

NOTE

On UNIX platforms, create a link of the init.ora file from the $ORACLE_HOME/dbs
directory to the admin/pfile directory. This ensures the Oracle default configuration is
intact, while allowing you to benefit from the OFA structure. On Windows NT platforms,
you will have to either specify the full pathname to the init.ora file when starting the
database and create an OFA- compliant structure or store the init.ora files in the default
$ORACLE_HOME/database directory to keep the default Oracle configuration intact.

Page 98

Naming Conventions

When managing multiple databases on one database server, a file-naming convention is important. The
OFA standard gives the following rule for naming database files:

OFA Rule 5: Name Oracle database files using the following patterns:

 /pm/q/d/control.ctl _ control files

 /pm/q/d/redon.log _ redo log files

 /pm/q/d/tn.dbf _ data files

 where:

1 pm is a mount-point name
1 q is a string denoting the separation of Oracle data from all
other files
1 d is the db_name of the database
1 n is a distinguishing key that is fixed-length for a given file
type
1 t is an Oracle tablespace name

Never store any file other than a control, redo log, or data file associated with a database d
in /pm/q/d.

Deviation from this standard depends on your personal preference, but the naming convention ideas
should not be ignored. Use a meaningful filename extension, include the tablespace name in datafile
names, and keep all datafiles in their own exclusive directories.

A template for an alternative naming standard that keeps the original naming conventions could be
tn_SID_n.ext, where tn is an abbreviation for the tablespace the datafile is for, SID is the database the
datafile belongs to, and n is the datafile number.

Try to keep the tablespace abbreviation brief and, if possible, keep it a set number of letters. This will
produce uniform reports. Also, the number portion for redo log files should indicate both the log group
and member—using a combination of numbers and characters, such as 01a (first log group, first
member) and 02c (second log group, third member), works well. Names using the alternative notation
are shown in Table 7.2.

Table 7.2 Database File Examples

File Name Explanation

syst_PROD_01.dbf
First SYSTEM tablespace datafile for
the PROD database

ctrl_TEST_02.ctl
Second controlfile for the TEST
database

redo_PPRD_01a.
log

First member of first redo log group for
database PPRD

redo_PPRD_02c.
log

Third member of second redo log group
for database PPRD

data_PROD_02.dbf
Second data tablespace datafile for the
PROD database

initTEST.ora
Initialization parameter file for the TEST
database

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 99

As you can see, investing the extra time in implementing a naming convention for your database files
results in names that have no guesswork involved. You can immediately determine their function by
glancing at the name.

The OFA rule also dictates that database datafiles, redo log files, and control files should be stored in a
dedicated directory off of the mount point. The following shows a directory structure that complies with
this recommendation, containing data for four databases:

/u01
 app
 oradata
 PROD
 [...]

 PPRD

 [...]

 DEVL

 [...]

 TEST

 [...]

All datafiles, log files, control files, and archived redo log files are stored in the directory under the
oradata subdirectory. Each database has its own directory, and ONLY database files are stored in these
directories.

Putting It All Together

A wise person once said that the great thing about standards is the variety from which to choose. This is
especially apt when describing the OFA guidelines. There is no one perfect solution for creating an

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0102-0104.html

Oracle server environment because no two environments are the same.

The following are sample OFA implementations on both UNIX and Windows NT. These are meant to
give you ideas and get you started. You may find specific points that, when reworked, serve your
particular needs better than those presented. Explanations of each section are also given.

UNIX Implementation

/ Root Directory
 u01 u01 Mount Point
 app Application Directory
 oracle Oracle
Application Directory
 admin
Administrative Directory
 PROD PROD Database Directory
 pfile Initialization
Parameter Files
 bdump Background Dump Files
 udump User Dump Files
 cdump Core Files
 create Database Creation
Scripts
 sql SQL Scripts
 PPRD PPRD Database
Directory
 [...] Same Directory
Structure as PROD
 TEST TEST Database
Directory
 [...] Same Directory
Structure as PROD
 product Application Files

 Directory

Page 100

 7.1.3 Version 7.1.3 Files
 [...] ORACLE_HOME for version
7.1.3

 8.0.3 Version 8.0.3
Files
 [...] ORACLE_HOME for version
8.0.3
 qse QSE Application Directory
 admin Administrative Directory
 [...] Directories for QSE
Administration
 product Application Files Directory
 [...] QSE Versions and Files
 oradata Oracle Database Files
Directory
 PROD PROD Database Files
 PPRD PPRD Database Files
 TEST TEST Database Files
 u02 u02 Mount Point
 oradata Oracle Database Files
Directory
 PROD PROD Database Files
 PPRD PPRD Database Files
 TEST TEST Database Files
[...]

Windows NT Implementation

C: Drive Designator
 oracle Oracle Software Directory
 home Oracle Home Directory
 [...] ORACLE_HOME Contents
 oradata Oracle Database Files
 PROD PROD Database Files Directory
 [...] PROD Database Files
 PPRD PPRD Database Files Directory
 [...] PPRD Database Files
 admin Oracle Administrative
Directories
 PROD PROD Administrative Directory
 [...] Same Structure as UNIX
 PPRD PPRD Administrative Directory
 [...] Same Structure as UNIX
D: Drive Designator

 oracle Oracle Software Directory
 oradata Oracle Database Files
 PROD PROD Database Files Directory
 [...] PROD Database Files
 PPRD PPRD Database Files Directory
 [...] PPRD Database Files
[...]

One of the crucial factors in making the OFA standards work is the separation of application and
database files. The admin and oradata directories are created in order to keep all database- specific files
separate from the Oracle software. This is necessary to fulfill one of the promises discussed earlier; the
simple and transparent cutover to new software versions.

The final OFA rule from Mr. Millsap's paper we are going to discuss follows:

OFA Rule 6: Refer to explicit path names only in files designed specifically to store them,
such as the UNIX /etc/passwd file and the Oracle oratab file; refer to group memberships
only in /etc/group.

Page 101

If followed, this rule will help you avoid a common pitfall we all step into: creating an application "on
the fly" that becomes a common tool used everyday, which breaks as soon as any system reconfiguration
is performed. Avoid using hard-coded directory names in a shell script, batch file, or application
program. When working with the Oracle tools, this is easier than it sounds—any directory or value you
might need to work with is probably already implemented as an environment variable or registry key.

Configuring the Environment

The Oracle server is a complex set of interacting programs and processes. The software environment
involved is likewise complicated and often difficult to understand. Various parameters exist to control
the behavior of the Oracle programs, set the locations for configuration or shared files, define the
language and character set to use, and a myriad other traits. On a UNIX machine, these parameters are
stored as environment variables, which are usually loaded from the supplied coraenv or oraenv files
called from the user's login script. On a 16-bit Windows computer, the parameters are stored in the
oracle.ini file. On 32-bit Windows computers (Windows 95, Windows NT, and so on), these
configuration parameters are stored in the Registry.

The environment variable files or Registry keys are created the first time an Oracle product is installed
on a machine. Subsequent software installations add to and update these configurations. Systems
programmers or DBAs also modify these configurations by hand to tune, troubleshoot, and customize

the Oracle environment. A full description of the software configuration parameters can be found in
your operating system-specific Oracle documentation. You should take a few minutes to familiarize
yourself with the various parameters for your operating system— many problems can be solved with
careful tweaking of these parameters.

NOTE

Don't confuse the Oracle configuration parameters with the initialization parameters of a
database. The Oracle configuration parameters apply to the Oracle software installed on a
computer, while the initialization parameters configure a single database.

There are several environment variables with which you should be immediately familiar, as they play an
important role in the operation of the Oracle server. ORACLE_HOME defines the base path for the
Oracle software. It is explained in detail later in this chapter. ORACLE_SID is set to the default
database SID (System Identifier) for your session. Many tools use the ORACLE_SID to determine what
database to connect to. It is important you always know what values these variables are set to—having
wrong values for either of these can result in performing operations on the wrong database or using the
wrong version of the Oracle tools.

Understanding the Oracle Software Environment

When you install the Oracle software on a server or client computer, an Oracle directory structure is
created to store the binary executables, shared libraries, configuration files, trace files, and so on used by
the Oracle programs. This directory tree is semi-standard across different server platforms and versions
of Oracle software. Both server and client software is stored in the same directory.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0102-0104.html

Previous | Table of Contents | Next

Page 119

CHAPTER 8

SQL*Plus for Administrators

In this chapter

● Administering SQL*Plus 120
● Using the SQL*Plus COPY Command 130
● Using SQL to Create SQL 132
● Restricting a User's Privileges in SQL*Plus 135
● Tracing SQL Statements 139

Page 120

This chapter discusses SQL*Plus, Oracle's implementation of the Structured Query Language (SQL).
SQL*Plus is an interactive program used to access an Oracle database. It is also the database
administrator's best friend and an indispensable tool.

In addition to SQL*Plus, a database administrator (DBA) can interface with the database and use
SQL*Plus commands (but only a subset of the commands) in two other tools:

● Server Manager
● Worksheet utility in the Enterprise Manager

Note that Server Manager replaces, beginning with Oracle7 7.3, the SQL*DBA utility that was used in
Oracle version 6 and Oracle7 releases prior to 7.3.

Because SQL*Plus is such a vast subject, which cannot be dealt with in a single chapter, I will
concentrate mainly on features of interest to DBAs, new features (EXECUTE and AUTOTRACE), and
lesser-known and lesser-used features (COPY command, disabling commands).

Administering SQL*Plus

There are two files, glogin.sql and login.sql, that are used to administer SQL*Plus. The glogin.sql file is
the global setup file, and login.sql is intended for individual use. These two files contain SQL*Plus

commands and/or SQL statements that are executed every time an Oracle user invokes SQL*Plus. The
glogin.sql file is read and executed first, followed by the user's login.sql file.

The glogin.sql file is located in the $ORACLE_HOME/sqlplus/admin directory. The Oracle DBA may
customize this file to include SQL*Plus commands, SQL statements, and PL/SQL blocks that will be
executed by every SQL*Plus user at the beginning of his or her SQL*Plus session. The glogin.sql file is
also known as a Site Profile.

NOTE

Under Windows 95/NT 4.0, the glogin.sql file is located in the directory %
ORACLE_HOME%\PLUSnn, where nn represents the version of SQL*Plus installed on
your machine. For example, if SQL*Plus 3.2 is installed, the directory name will be %
ORACLE_HOME%\PLUS32.

Using SQL*Plus Environment Variables

There are two environment variables that are used by SQL*Plus:

● SQLPATH
● _editor

SQL*Plus uses the environment variable SQLPATH to identify the directory where the login.sql file is
located. In other words, SQL*Plus will look in every directory defined in SQLPATH for login.sql,
starting with the local directory—the directory you were in when you started SQL*Plus.

Page 121

For example, if you want SQL*Plus to look for login.sql first in the local directory, then in your home
directory, and then in another directory, set SQLPATH as follows:

$ SQLPATH=".:$HOME:<other_directory>"; export SQLPATH --(Bourne/
Korn shell)
$ set SQLPATH=(. $HOME <other_directory>) -- C shell

Under Windows 95/NT 4.0, SQLPATH is defined in the Registry. The default value is
$ORACLE_HOME\DBS (set during installation). The value for ORACLE_HOME is C:\ORAWIN95
for Windows 95 and C:\ORANT for Windows NT 4.0 (replace C: with the name of the disk drive where
you installed Oracle, if you did not install it on your C: drive).

NOTE

Under Windows 95/NT 4.0, the login.sql file is located in directory %ORACLE_HOME
%\DBS, the default value for SQLPATH.

To set or change the value of SQLPATH under Windows 95/NT 4.0, follow these steps:

1. Select Run from the Start menu.
2. Enter regedit.exe/regedit32.exe (for Windows 95/NT, respectively).
3. Click OK.
4. Double-click HKEY_LOCAL_MACHINE.
5. Double-click SOFTWARE.
6. Double-click ORACLE.
7. Double-click SQLPATH.
8. The Edit String dialog box appears. In the Value Data field, enter the new value for SQLPATH.
9. Click OK.

10. From the Registry menu, select Exit.
11. Reboot your machine for the new value to take effect (or log out and log back in

Windows NT 4.0).

NOTE

SQLPATH is also used by SQL*Plus to identify the location of SQL scripts that you run
from SQL*Plus.

There is another environment variable that can be set in glogin.sql or login.sql. This environment
variable is called _editor. It defines the editor you can use to edit SQL*Plus commands.

To set the value of _editor to the vi text editor, enter the following line in glogin.sql or login.sql:

define _editor=vi

If you use any other text editor, replace vi with the appropriate name. For more information on using
different editors, see the section "Using Your Operating System Editor in SQL*Plus," later in this
chapter.

Page 122

Invoking/Accessing SQL*Plus

To invoke SQL*Plus from the operating system prompt, use the following command:

$ sqlplus [[-S[ILENT]] [logon] [start]]|-?

The -S[ILENT]] parameter is used when running SQL*Plus from a shell script, because it suppresses all
the information that SQL*Plus displays when invoked, such as the SQL*Plus banner, prompt messages,
and the command prompt.

The [logon] section requires the following syntax:

username[/password] [@connect_string]|/|/NOLOG

The [start]] clause enables you to start SQL*Plus and run a command file containing any combination of
SQL*Plus commands, SQL statements, and/or PL/SQL blocks. In addition, you can pass arguments to
the command file. The start clause requires the following syntax:

@file_name[.ext] [arg...]

If you do not enter the username or the password, SQL*Plus prompts you to enter them.

After you successfully access SQL*Plus, you can enter three type of commands at the SQL*Plus prompt
(SQL >):

● SQL commands/statements for working with database objects and manipulating the data stored in
the database

● PL/SQL (Procedural Language/SQL) blocks for working with database objects and manipulating
the data stored in the database

● SQL*Plus commands for setting options, editing, storing, and retrieving SQL commands and PL/
SQL blocks, and for formatting the output of queries

To submit a SQL command to SQL*Plus, enter a semicolon (;) at the end of the command and press
Enter. SQL*Plus executes the command, displays the results of the query, and returns you to the prompt.

To end a PL/SQL block, enter a period (.) on a line by itself. To submit a PL/SQL block for execution,
terminate it with a slash (/) on a line by itself and press Enter.

Editing SQL Commands

If you make a mistake when entering a SQL command and want to correct it, or if you want to run the
last command with only a minor change, you are lucky! SQL*Plus stores the most recently entered SQL
statement in a buffer, appropriately called the SQL buffer. SQL*Plus provides a set of commands to
retrieve and edit SQL statements and PL/SQL blocks stored
in the buffer.

Note that SQL*Plus commands are not saved in the buffer. Therefore, they cannot be retrieved and
modified. However, there is a way to store SQL*Plus commands in the buffer. This method is discussed
in the section "Entering and Editing SQL*Plus Commands," later in this chapter.

Table 8.1 lists the commands used to view, edit, and run the contents of the SQL*Plus buffer.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 117

PART III

Oracle Interfaces and Utilities

8. SQL*Plus for Administrators
9. Oracle Enterprise Manager

10. PL/SQL Fundamentals
11. Using Stored Subprograms and Packages
12. Using Supplied Oracle Database Packages
13. Import/Export
14. SQL*Loader
15. Designer/2000 for Administrators

Page 118

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 114

v$bgprocess can be used to quickly list the running background processes. The following query will
help:

SELECT name FROM v$bgprocess WHERE paddr <> `00';

The dba_jobs table holds information on pending jobs scheduled through the DBMS_JOBS package.
You can list the scheduled database jobs with the following query:

SELECT log_user, job, what, to_char(last_date, `DD-MON-YY') l1,
last_sec l2,
 to_char(next_date, `DD-MON-YY') n1, next_sec n2, failures
FROM dba_jobs
ORDER BY next_date DESC, next_sec DESC;

User information is stored in dba_users. Information on granted privileges is stored in the dba_tab_privs,
dba_sys_privs, and dba_role_privs tables. You can also query role_tab_privs, role_sys_privs, and
role_role_privs to display information on privileges granted to roles. More information on monitoring
security information can be found in Chapter 23, "Security Management."

Looking at the Database Segments

Now that we know where database configuration information is stored, let's look at the user data objects
information. Database segments we are interested in include tables, indexes, views, clusters, and other
data storing objects.

The DBA_TABLES, DBA_INDEXES, DBA_SEGMENTS, DBA_SEQUENCES, and DBA_OBJECTS
data dictionary views listed in Table 7.6 provide information on the various database segments stored in
the database.

The format and information in the views are fairly self explanatory. Dba_objects is interesting because it
stores creation and last modification (timestamp) information on all objects stored in the database, and
DBA_SEGMENTS is useful because it stores the size and number of extents used by each database
segment.

Looking at Miscellaneous Database Objects

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0111-0113.html

Our exploration of the database is not complete without looking at several other structures, including the
stored PL/SQL objects, triggers, synonyms, and database links.

Sources for the packages, procedures, and functions are stored in the sys.source$ table. When you create
the object, all of the blank lines are stripped and each line is stored as a separate record in this table. You
can query dba_source to easily retrieve the text of stored packages, procedures, and functions. The
following query will produce the source code for an indicated stored object:

SELECT text
FROM dba_source
WHERE name = upper(`&Object_Name')
ORDER BY line;

Page 115

Information on triggers is stored in the dba_triggers table. Because the trigger body is stored as a long
value, you'll need to set your longsize to an adequate value when querying on this column from
SQL*Plus. In this view, the TRIGGER_TYPE column is either row or statement, and
TRIGGERING_EVENT stores the type of trigger—before insert, after update, and so on.

DBA_synonyms lists information on the synonyms in the database. Note that public synonyms will have
PUBLIC as their owner. Query dba_db_links for information on the defined database links. One word of
caution on dba_db_links—if the link is defined with a user and password to connect to, the password is
stored in clear text.

Exploring an Unfamiliar Environment

Let's put some of the information covered in this chapter into a familiar frame of reference. Suppose you
are a contract DBA and have just arrived at a new site. The previous DBA has already departed the
scene and, amazingly enough, has left no supporting documentation of his system configuration. What
can you do?

The following two sections explore possible courses of action—one on a UNIX server, and one on a
Windows NT server. They should give you ideas and reinforce the information presented earlier in the
chapter.

Exploring the UNIX Environment

Your primary interest is to determine how the Oracle software has been installed and configured, and
what databases are on the system. The first step is obtaining access to the OS account used to install the
Oracle software. Next, you'll need to locate possible ORACLE_HOME directories. If there is only one
ORACLE_HOME on the system, this should already be set by your login sequence. Check the

ORACLE_HOME environment variable for this value. Also, find and check the oratab file to determine
if database and ORACLE_HOME information is contained within. This is not a guaranteed
comprehensive list. However, the oratab file is manually updated, and up-to-date information is not a
requirement to operate the database. Another alternative is to search for the Oracle server executable
(oracle), or the rdbms and dbs directories. These are standard in all Oracle server installations. Make a
careful list of all possible Oracle directories.

Next, you'll want to determine what databases are on the server. In each of the Oracle home directories
you found, check the dbs directory. All of the configured databases should have an initSID.ora file in
this directory. The file may be linked to a different administrative directory, but the listing of these files
will show you all of the databases that are configured. Again, this does not necessarily mean that all of
these databases exist. The creation as well as the deletion of the init.ora files is, for the most part,
manually done by the DBA. It is also no guarantee that the init.ora files will be in the dbs directory. As
this is where these files are looked for by default by Oracle programs, it is likely you'll find them here.

Check your user and system login script and determine whether custom modifications have been made
to the Oracle environment. Check to see whether coraenv or oraenv are being

Page 116

called from the login script and whether these files have been modified in any way. If coraenv or oraenv
is not being called, determine where the Oracle environment variables are being set. Check the system
startup scripts (rc files and the like) to see what programs or daemons are automatically started upon
system boot. Don't forget to check the crontab file or system scheduler for the Oracle owner and
administrator to determine what automated jobs are scheduled and running. Finally, examine your UNIX
kernel parameters to see how the memory and kernel has been configured for your Oracle install. The
location and method of setting these parameters vary between UNIX vendors. Check your OS-specific
documentation for more details.

Exploring the Windows NT Environment

On a Windows NT server, figuring out the specific configuration of the Oracle environment is a little
more straightforward than on a UNIX server. This is because fewer aspects of the configuration are left
completely to the DBA's whimsy. Your first step in deciphering a Windows NT environment is to look
at the Oracle Registry values. Using regedit, look at the HKEY_LOCAL_MACHINE\Software\Oracle
key. The string values will tell you the ORACLE_HOME location, among other useful information.
Next, open up the Services applet in the Control Panel and look for any Oracle services. There will be
one Oracle service for each database on the system. There may be an Oracle Start for each database, as
well. Also, look for any other Oracle services that may be installed—the TNS Listener, Web Server, and
so on.

All configuration values of interest will be stored in the Oracle Registry key. The init.ora parameter files

for the database are in $ORACLE_HOME/database. This is also the default directory to store database
datafiles. You may or may not find them here. Be sure to check the Windows NT job scheduler to see
what jobs may be or have been running.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0111-0113.html

Previous | Table of Contents | Next

Page 123

Table 8.1 SQL*Plus Commands Used with the SQL Buffer

Command Abbreviation Action

APPEND text A text
Adds text to the end of a
line

CHANGE old/
new

C old/new
Changes old text with new
in a line

CHANGE /text C /text Deletes text from a line

CLEAR BUFFER CL BUFF Deletes all lines

DEL (NONE)
Deletes current line in
buffer

INPUT I
Adds one or more lines to
the buffer

INPUT text I text
Adds a line consisting of
text

LIST L
Lists the contents of the
SQL*Plus buffer

LIST n L n or n Lists line n

LIST * L * Lists the current line

LIST m n L m n Lists lines m to n

LIST LAST L LAST Lists the last line in buffer

With the exception of the LIST command, all other editing commands affect only a single line in the
buffer. This line is called the current line. It is marked with an asterisk when you list the SQL command
or PL/SQL block. When you run the LIST command, the current line will always be the last line in the
buffer. Also note that the semicolon (;) that ends a SQL command is not saved in the buffer, as shown in
Listing 8.1.

Listing 8.1 SQL Statement Stored in Buffer

SQL> LIST

 1 SELECT empno, ename, deptno, job, sal, comm

 2 FROM emp
 3* WHERE comm IS NOT NULL

If you get an error message, the line containing the error becomes the current line so that you can edit it
right away to correct the error(s). Listing 8.2 shows a listing with an error.

Listing 8.2 Line with Error Becomes Current Line

SQL> SELECT empno, empname, deptno, job, sal, comm
 2 FROM emp
 3 WHERE comm IS NOT NULL;
SELECT empno, empname, deptno, job, sal, comm
 *
ERROR at line 1:
ORA-00904: invalid column name

Page 124

Entering and Editing SQL*Plus Commands

SQL*Plus commands, such as DESCRIBE, entered directly at the SQL*Plus prompt, are not saved in
the SQL buffer. Therefore, you cannot retrieve the last SQL*Plus command entered to edit and/or rerun
it. The result of trying to list an SQL*Plus command from the buffer is shown in Listing 8.3.

Listing 8.3 SQL*Plus Commands Are Not Buffered

SQL> DESCRIBE EMP
 Name Null? Type
 -------------- -------- ------
 EMPNO NOT NULL NUMBER(4)
 ENAME VARCHAR2(10)
 JOB VARCHAR2(9)
 MGR NUMBER(4)
 HIREDATE DATE
 SAL NUMBER(7,2)
 COMM NUMBER(7,2)
 DEPTNO NOT NULL NUMBER(2)
SQL> LIST
No lines in SQL buffer.

To store SQL*Plus commands in the buffer, enter INPUT with no text and press Enter. SQL*Plus

prompts you with a line number where you can enter the commands. When you are finished entering the
commands, enter a blank line by pressing the Return key. Listing 8.4 shows an example.

Listing 8.4 Storing SQL*Plus Commands in the Buffer

SQL> INPUT
 1 DESCRIBE EMP
 2
SQL> L
 1* DESCRIBE EMP

NOTE

See Table 8.1 for the abbreviation "L," which stands for
"List."

You cannot execute the command from the buffer, but you can save it in a file, which you can retrieve
and run later in SQL*Plus. A failed attempt at running an SQL*Plus command from the buffer but then
successfully saving it to a file is shown in Listing 8.5.

Page 125

Listing 8.5 Save SQL*Plus Commands to Files

SQL> RUN
 1* DESCRIBE EMP
DESCRIBE EMP
*
ERROR at line 1:
ORA-00900: invalid SQL statement
SQL> SAVE test
Created file test
SQL> GET test
 1* DESCRIBE EMP

The newly created file is saved in the directory pointed to by the SQLPATH environment variable.

Using Your Operating System Editor in SQL*Plus

The editing capabilities offered by SQL*Plus are poor and not intuitive compared to other text editors.
(For instance, you cannot use the arrow, Home or End keys.) Therefore, many users prefer to create their

command files using editors they feel comfortable with, then run these files in SQL*Plus using the
START or @ command.

If you would rather work with your operating system editor than use the editing capabilities of
SQL*Plus, you can do that in SQL*Plus by using the EDIT command. The syntax of the EDIT
command is

EDIT [file_name[.ext]]

This will open file_name with the editor defined by the variable _editor in the glogin.sql or login.sql file.
If you want to use a different editor in your SQL*Plus session, you can redefine the _editor variable with
the SQL*Plus command DEFINE:

DEFINE _editor=emacs

If the _editor variable is not defined, the EDIT command tries to use the default operating system editor
(for example, Notepad in Windows 95).

When you issue the EDIT command, you invoke an editor from within SQL*Plus without leaving it,
which is convenient.

If you do not supply a filename when running the EDIT command, SQL*Plus will save the contents of
the SQL buffer in a file and open that file with the editor. By default, the name of the file is afiedt.buf,
and it is created in the current directory or the directory defined in the SQLPATH environment variable.
When opening the editor, you can use the full pathname for the file you want to edit, for example: EDIT
C:\MYDIR\MYFILE.SQL.

SQL> EDIT
Wrote file afiedt.buf

Page 126

You can change the name of the file where SQL*Plus saves the contents of the buffer by setting the
appropriate value in the editfile variable, as shown in Listing 8.6.

Listing 8.6 Edited Files Have a Default Name

SQL> SHOW editfile
editfile "afiedt.buf"
SQL> SET editfile "buffer.txt"
SQL> SHOW editfile
editfile "buffer.txt"

If you do not enter a filename when running the EDIT command and the SQL buffer is empty,
SQL*Plus returns a notification message, like the one shown in Listing 8.7.

Listing 8.7 Empty Buffers Have Nothing to Save

SQL> CLEAR BUFFER
buffer cleared
SQL> EDIT
Nothing to save.

The default extension for the filename is .sql. So, if you do not specify a file extension, SQL*Plus will
look for a file named file_name.sql. If you want to edit a file with an extension other than .sql, you have
to explicitly specify the extension. You can also change the default value for the file extension through
the SUFFIX variable, as shown in Listing 8.8.

Listing 8.8 Changing the Default Suffix

SQL> SHOW SUFFIX
suffix "SQL"
SQL> SET SUFFIX sh
SQL> SHOW SUFFIX
suffix "sh"

NOTE

The SUFFIX variable applies only to command files, not to spool (output) files.
Depending on the operating system, the default extension for spool files is .lst or .lis.

Running SQL*Plus/SQL Commands

You can run SQL commands and PL/SQL blocks three ways:

● From the command line
● From the SQL buffer
● From a command file (informally known as a SQL script)

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 127

To execute a SQL command or a PL/SQL block from the buffer, SQL*Plus provides the RUN command
and the / (forward slash) command. The syntax of the RUN command is

R[UN]

The RUN command lists and executes the SQL command or PL/SQL block currently stored in the
buffer.

Let's assume that the buffer contains this query:

SELECT empno, ename FROM emp

If you ran the query using the RUN command, it would look like Listing 8.8.

Listing 8.8 Running a Query with the RUN Command

SQL> RUN
 1* SELECT empno, ename FROM emp
EMPNO ENAME
---------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD
 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER
14 rows selected.

RUN displays the command from the buffer and returns the results of the query. In addition, RUN

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0131-0133.html

makes the last line in the buffer the current line.

The / command is similar to the RUN command. It executes the SQL command or PL/SQL block stored
in the buffer, but it does not display the contents of the buffer, as shown in
Listing 8.9.

Listing 8.9 Running a Query with the / Command

SQL> /
EMPNO ENAME
---------- ----------
 7369 SMITH
 7499 ALLEN
 7521 WARD

Page 128

Listing 8.9 Continued

 7566 JONES
 7654 MARTIN
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7844 TURNER
 7876 ADAMS
 7900 JAMES
 7902 FORD
 7934 MILLER
14 rows selected.

NOTE

Unlike the RUN command, the / command does not make the last line in the buffer the
current line.

To run a SQL command, a SQL*Plus command, or a PL/SQL block from a command line, there are two

commands:

● START
● @("at")

The syntax of the START command is

START file_name[.ext] [arg1 arg2...]

The file_name[.ext] represents the command file you wish to run. If you omit the extension, SQL*Plus
assumes the default command-file extension (usually .sql).

SQL*Plus searches in the current directory for a file with the filename and extension that you specify in
your START command. If no such file is found, SQL*Plus will search the directory or directories
specified in the SQLPATH environment variable for the file. You could also include the full pathname
for the file, for example: C:\MYDYR\MYFILE.SQL.

You can include any SQL command, SQL*Plus command, or PL/SQL block that you would normally
enter interactively into a command file. An EXIT or QUIT command used in a command file exits
SQL*Plus.

The arguments section ([arg1 arg2...]) represents values you want to pass to parameters in the command
file. The parameters in the command file must be specified in the following format: &1, &2, ...(or &&1,
&&2, ...). If you enter one or more arguments, SQL*Plus substitutes the values into the parameters in
the command file. The first argument replaces each occurrence of &1, the second replaces each
occurrence of &2, and so on.

Page 129

The START command defines the parameters with the values of the arguments. If you run the command
file again in the same SQL*Plus session, you can enter new arguments or omit the arguments to use the
current values of the parameters. To run a command file named DELTBL.SQL, you enter the following:

SQL> START DELTBL

The @ ("at") command functions very much like the START command. The only difference is that the
@ command can be run both from inside a SQL*Plus session and at the command-line level when
starting SQL*Plus, whereas a START command can be run only from within a SQL*Plus session. To
start a SQL*Plus session and execute the commands from a command file, enter

$ sqlplus [username/password] @file_name[.ext] [arg1 arg2...]

If the START command is disabled, this will also disable the @ command. The section "Restricting a
User's Privileges in SQL*Plus," later in this chapter, contains more information on disabling SQL*Plus
commands.

Using the EXECUTE CommandStarting with SQL*Plus 3.2, there is a new command, EXECUTE, that
enables the execution of a single PL/SQL statement directly at the SQL*Plus prompt, rather than from
the buffer or a command file. EXECUTE's main usage is for running a PL/SQL statement that references
a function or a stored procedure, as shown in Listing 8.10.

Listing 8.10 Use EXECUTE with Stored Procedures

SQL> VARIABLE id NUMBER -- Define a bind variable
SQL> EXECUTE :id := ADD_CASES(10);
PL/SQL procedure successfully completed.
SQL> PRINT id
 ID

 10
SQL> EXECUTE :id := ADD_CASES(3);
PL/SQL procedure successfully completed.
SQL> PRINT id
 ID

 0

The value returned by the stored procedure ADD_CASES is stored in the bind variable :id.

Saving SQL*Plus/SQL CommandsYou can save the SQL*Plus or SQL command stored in the buffer in
an operating system file (called command file), using the SAVE command. The syntax of the SAVE
command is

SAV[E] file_name[.ext] [CRE[ATE] | [REP[LACE] | APP[END]]

Page 130

The file_name[.ext] is the name of the operating system file where you want to store the contents of the
SQL buffer. To name the file, use the file-naming conventions of the operating system where SQL*Plus
is running. If you do not provide an extension for the file, SQL*Plus uses the default extension, .sql.
You could also specify a path as part of the file name. If you do not specify a path, the SAVE command
will use the directory named in the SQLPATH environment variable as the path for the file.

The CRE[ATE] parameter creates the file. If the file already exists, you will receive an error message.

The REP[LACE] parameter replaces an existing file with the contents of the SQL buffer. If the file does
not exist, SAVE...REPLACE creates it.

The APP[END] parameter appends the contents of the SQL buffer at the end of the file. If the file does
not exist, SAVE...APPEND creates it.

Retrieving SQL*Plus/SQL CommandsTo retrieve SQL*Plus or SQL commands, use the GET
command. The syntax of the command is

GET file_name[.ext] [LIS[T] | NOL[IST]]

The GET command loads an operating system file—file_name—that contains SQL*Plus or SQL
commands, into the SQL buffer, so that you can edit the commands in the file or run them. The default
extension for the file is .sql.

The LIS[T] parameter lists the contents of the file as SQL*Plus loads the file in the buffer. LIST is the
default. The NOL[IST] parameter does not list the contents of the file.

If you do not specify the full path for the filename in the GET command, SQL*Plus searches for it first
in the current directory, then in the directories listed in the environment variable SQLPATH.

TIP

If you use Windows 95/NT, you can have SQL*Plus look in a specific directory for your
command files by starting the application in that directory. To do this, change the
Windows shortcut Start In property to the directory that contains the files. Files that you
open, create, or save without specifying
a directory path will be opened, created, or saved in the directory in which you start
SQL*Plus.

Using the SQL*Plus COPY Command

Although its effectiveness has been somewhat reduced when Oracle introduced the CREATE TABLE...
UNRECOVERABLE AS SELECT... in version 7.2, the COPY command is still one of the most useful
SQL*Plus commands; yet it is not understood very well and therefore is not used very often. The COPY
command can be used for several functions:

● Copying one or more tables, or an entire schema, from a local database to a remote database or to
another local database. This can be used to move an entire schema from one database to another
without using Export/Import utilities and is especially helpful when the export file is larger than

the operating system file limit.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0131-0133.html

Previous | Table of Contents | Next

Page 147

CHAPTER 9

Oracle Enterprise Manager

In this chapter

● Understanding the Enterprise Manager Architecture 148
● Getting Started 150
● Using the Console Functions 152
● Using the Database Administration Tools 159
● Using the Performance Pack 166
● Using the Enterprise Value-Added Products 172

Page 148

Understanding the Enterprise Manager Architecture

Enterprise Manager is much more than just a set of database administration tools. This product provides
a framework for an enterprise-wide distributed system management solution. For example, a database
administrator can physically reside in Los Angeles and manage databases in New York, London, and
Tokyo from the same integrated console. A set of centrally located Oracle tables forms a repository to
store information necessary to support the activities of each administrator. This repository may reside
anywhere on the network or on the local Windows 95 or Windows NT workstation supporting the
Enterprise Manager client.

Enterprise Manager is open and extendible. Tool Command Language (Tcl), pronounced "tickle," is a
nonproprietary and widely used scripting language characterized by ease of use and extensibility. Tcl is
used to submit commands to remote operating systems and databases for execution. The implementation
of Tcl used by Enterprise Manager, known as OraTcl, includes extensions that enable functions you
need to fully manage an Oracle database environment:

● Start and stop Oracle databases.
● Execute SQL.
● Access operating system resources and functions.
● Access Simple Network Management Protocol (SNMP) Management Information Base (MIB)

variables describing Oracle databases.

● Access non-Oracle SNMP-enabled devices and services.

NOTE

To become familiar with Tcl, review the Enterprise Manager Tcl scripts found in
<ORACLE_HOME>\SYSMAN\SCRIPTS\TCL.

SNMP is an open standard used by remote intelligent agents to communicate with non-Oracle software
and hardware. Originally, SNMP was designed to communicate with network devices, but it is now used
to communicate with applications as well. Use of the SNMP standard enables integration of a variety of
third-party software and hardware with Enterprise Manager. Application developers integrate
applications within the console using Object Linking and Embedding (OLE) or calls to one of the
published Application Program Interfaces (APIs) specific to Enterprise Manager. To top it off, when
information moves over the network between the console and the remote intelligent agents, it can be
secured with Oracle Secure Network Services using the Net8 Advanced Networking Option (ANO).
This level of security makes it possible to administer remote databases over the Internet.

All of these components and technologies are tied together with an architecture that makes use of a
graphics-oriented console client linked to remote intelligent agents that communicate with the databases
(see Figure 9.1). In addition to the messages between the communication daemon and the intelligent
agents, the application components such as the Database Administration Tools communicate directly
with remote databases by using SQL over Net8. Tasks performed by the application components directly
on remote databases in real time do not use the

Page 149

communications daemon. The communications daemon uses either native TCP/IP or Net8 Transparent
Network Substrate (TNS) connections to communicate with remote intelligent agents to perform core
console functions such as job scheduling and event management.

FIG. 9.1
The Enterprise Manager
architecture provides
centralized database
management.

javascript:displayWindow('images/ch09fg01.jpg',400,359)

The discovery cache is a large buffer that is used to store metadata describing the services and nodes
managed by the console. Metadata is collected the first time an object is accessed, and the data is stored
in the discovery cache for the remainder of the session. When metadata in the discovery cache is
accessed, there is no need to repeat queries to determine the structure of remote databases. As a result,
response time improves and unnecessary resource utilization is avoided. At the end of a session, the data
is stored in the repository so that it will be available for the next session. Custom applications can also
access the discovery cache.

The intelligent agents autonomously execute and manage remote activities. After the communications
daemon instructs a remote agent to execute a particular script at a given time, the script executes
independently from the console. If the console is unavailable when it is time for a remote job to run, the
agent manages the execution and buffers up to 500 returned messages. The agent passes this information
back to the console when it becomes available and reestablishes communication. Similarly, intelligent
agents handle remote event monitoring and responses independent of the console.

Page 150

Most installations of Enterprise Manager do not take full advantage of the architecture. In some ways,
this is a tribute to the flexibility of the product to support real-time database administration using
components such as Schema Manager without depending on the entire architecture. Sites that already
use robust third-party systems management tools such as BMC Patrol, CA-Unicenter, Compuware
EcoTools, or Platinum ProVision duplicate existing functions while increasing administrative overhead
and system workload if the entire framework is implemented. Sites that are not using such tools might
find Enterprise Manager, which is bundled with Oracle8 Server at no extra cost, a suitable substitute
(value-added products such as the Performance Pack are available at an additional charge).

Due to the limited scope of Enterprise Manager and currently available add-on tools to extend its
capabilities, it is not a substitute for a robust systems management product whose scope extends well
beyond database management. Particularly in large enterprises where the operations staff benefits from
the efficiencies of a common user interface and approach to tasks across many platforms, database
technologies, and other managed technology, a more comprehensive solution might add value. In any
case, it is likely that there is a place for at least some of the components of Enterprise Manager in any
Oracle database environment.

Getting Started

Enterprise Manager has a robust architecture, but it is easy to start using it. After the software is
installed, tools such as Schema Manager, which does not require a repository or remote intelligent agent,
are immediately functional. The repository enables some functions such as data accumulation for
performance analysis and capacity planning. This repository makes some activities easier, such as
logging into the console, by storing preferred credentials between sessions. Because stored information
varies from one administrator to the next, each administrator should have a separate repository. Only one

instantiation of Enterprise Manager can connect to a repository at any given time.

The best place to start exploring and gain immediate benefit from Enterprise Manager is using the
following Database Administration Tools:

● Instance Manager
● Schema Manager
● SQL Worksheet
● Security Manager
● Storage Manager

These five tools can be accessed in five ways. The first is directly from the Windows task bar. For
example, from the Start menu on the task bar, choose Programs, Oracle Enterprise Manager, Instance
Manager to start the Instance Manager. Second, the default configuration of the

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 146

Listing 8.19 Continued

 0 redo size
 726 bytes sent via SQL*Net to client
 376 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 14 rows processed

TIP

The TRACEONLY option is particularly useful when you are tuning a query that returns
a large number of rows.

The client referred to in the execution statistics is SQL*Plus. SQL*Net refers to the generic interprocess
communication between the client (SQL*Plus) and the server (Oracle RDBMS), whether SQL*Net is
installed and used or not.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 142

After these steps are performed, the user can get a report on the execution path used by the optimizer
and the execution statistics after the successful running of any DML statement
(SELECT, INSERT, DELETE, UPDATE). The output of the report is controlled by the AUTOTRACE
system variable.

The allowed settings for the AUTOTRACE system variable and the results of using them are listed in
Table 8.5.

Table 8.5 AUTOTRACE Values

Value Result

SET AUTOTRACE OFF
The default. No report is
generated.

SET AUTOTRACE ON
EXPLAIN

The trace report shows only
the execution path; no
execution statistics.

SET AUTOTRACE ON
STATISTICS

The trace report shows only
the execution statistics; no
execution path.

SET AUTOTRACE ON
The trace report shows both
the execution path and the
execution statistics.

SET AUTOTRACE
TRACEONLY

Same as SET AUTOTRACE
ON; however, the result of the
query is not shown.

Understanding the Execution Plan

The execution plan shows the access paths the optimizer is using when executing a query. The execution
plan output is generated using the EXPLAIN PLAN command. Each line displayed in the execution plan
has a sequential line number. The line number of the parent operation is also displayed. The execution
plan consists of four columns (for standard queries, only three columns are displayed; the fourth column
is displayed only in the case of distributed queries or queries run using the Parallel Query Option
(PQO)).

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0138-0141.html

The name of the columns, the order in which they're displayed, and their description are shown in Table
8.6.

Table 8.6 Execution Plan Column Descriptions

Column Name Description

ID_PLUS_EXP
Displays the line number of each
execution step

PARENT_
ID_PLUS_EXP

Displays the relationship between
a step and its parent

PLAN_ PLUS_EXP
Displays each step of the report;
for example, TABLE ACCESS
(FULL) OF `DEPT'

Page 143

Column Name Description

OBJECT_NODE
_PLUS_EXP

Displays the database link(s)
or parallel query servers used
(only when running
distributed queries or queries
using the Parallel Query
Option (PQO)

The default column formats are usually set in the Site Profile (the glogin.sql file).

The format of the columns can be altered using the SQL*Plus command COLUMN. You can change the
width of a column, rename it, or stop it from being displayed. For example, to prevent the
ID_PLUS_EXP column from being displayed, enter

SQL> COLUMN ID_PLUS_EXP NOPRINT

The second part of the statement-tracing report displays the statement-execution statistics. They show
the system resources required to execute the query and their usage. Unlike the execution path, the
default format of the statistics report cannot be changed.

Using the AUTOTRACE Feature

This section shows in detail the steps required to enable user SCOTT to use the AUTOTRACE facility
in SQL*Plus.

First, user SYSTEM logs on to SQL*Plus and grants user SCOTT the PLUSTRACE role (SYS has
previously run the $ORACLE_HOME/sqlplus/admin/plustrce.sql script that creates the PLUSTRACE
role in the database). Listing 8.16 shows this being done.

Listing 8.16 Granting the PLUSTRACE Role

$ sqlplus system
SQL*Plus: Release 3.3.3.0.0 - Production on Thu Oct 02 16:14:51 1997
Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.
Connected to:
Oracle7 Server Release 7.3.3.0.0 - Production Release
With the distributed, replication and parallel query options
PL/SQL Release 2.3.3.0.0 - Production
Enter password: *******
SQL>
SQL> GRANT plustrace TO scott;
Grant succeeded.

Next, user SCOTT logs on to SQL*Plus and creates the PLAN_TABLE (required by the EXPLAIN
PLAN command) into his schema by running the script $ORACLE_HOME/rdbms73/admin/utlxplan.
sql, as shown in Listing 8.17.

Page 144

Listing 8.17 Creating PLAN_TABLE

SQL> CONNECT scott
Enter password: *****
Connected.
SQL> @$ORACLE_HOME/rdbms73/admin/utlxplan
Table created.
SQL> L
 1 create table PLAN_TABLE (
 2 statement_id varchar2(30),
 3 timestamp date,
 4 remarks varchar2(80),
 5 operation varchar2(30),
 6 options varchar2(30),
 7 object_node varchar2(128),

 8 object_owner varchar2(30),
 9 object_name varchar2(30),
 10 object_instance numeric,
 11 object_type varchar2(30),
 12 optimizer varchar2(255),
 13 search_columns numeric,
 14 id numeric,
 15 parent_id numeric,
 16 position numeric,
 17 cost numeric,
 18 cardinality numeric,
 19 bytes numeric,
 20 other_tag varchar2(255),
 21* other long)

The L[IST] command lists the contents of the SQL buffer, which contains the last SQL command
executed by the CREATE TABLE plan_table statement from the ORACLE_HOME/rdbms73/admin/
utlxplan.sql script.

Next, SCOTT enters and executes the query he wants to trace. Listing 8.18 shows an example.

Listing 8.18 Tracing a Query

SQL> SELECT t1.dname, t2.ename, t2.sal, t2.job
 2 FROM dept t1, emp t2
 3 WHERE t1.deptno = t2.deptno;
DNAME ENAME SAL JOB
-------------- ---------- -------- --------
RESEARCH SMITH 800 CLERK
SALES ALLEN 1600 SALESMAN
SALES WARD 1250 SALESMAN
RESEARCH JONES 2975 MANAGER
SALES MARTIN 1250 SALESMAN
SALES BLAKE 2850 MANAGER
ACCOUNTING CLARK 2450 MANAGER
RESEARCH SCOTT 3000 ANALYST
ACCOUNTING KING 5000 PRESIDENT
SALES TURNER 1500 SALESMAN

Page 145

RESEARCH ADAMS 1100 CLERK
SALES JAMES 950 CLERK
RESEARCH FORD 3000 ANALYST
ACCOUNTING MILLER 1300 CLERK
14 rows selected.

To get information on both the execution path and the execution statistics, SCOTT has to set the
AUTOTRACE variable appropriately. Listing 8.19 shows the commands used to set AUTOTRACE on
and run the previous query from the buffer.

Listing 8.19 Tracing the Query in the Buffer

SQL> SET AUTOTRACE ON
SQL> /
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 NESTED LOOPS
 2 1 TABLE ACCESS (FULL) OF `EMP'
 3 1 TABLE ACCESS (BY ROWID) OF `DEPT'
 4 3 INDEX (UNIQUE SCAN) OF `DEPT_PRIMARY_KEY' (UNIQUE)
Statistics
--
 0 recursive calls
 2 db block gets
 43 consistent gets
 0 physical reads
 0 redo size
 726 bytes sent via SQL*Net to client
 376 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 14 rows processed
To trace the same statement without displaying the query data:
SQL> SET AUTOTRACE TRACEONLY
SQL> / -- slash command: doesn't display query text
14 rows selected.
Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 NESTED LOOPS

 2 1 TABLE ACCESS (FULL) OF `EMP'
 3 1 TABLE ACCESS (BY ROWID) OF `DEPT'
 4 3 INDEX (UNIQUE SCAN) OF `DEPT_PRIMARY_KEY' (UNIQUE)
Statistics
--
 0 recursive calls
 2 db block gets
 43 consistent gets
 0 physical reads

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0138-0141.html

Previous | Table of Contents | Next

Page 151

Oracle Administrator toolbar includes these five applications and the Net8 Assistant. To start the Oracle
Administrator toolbar, from the Start menu on the task bar, choose Programs, Oracle Enterprise
Manager, Administrator Toolbar. The Administrator toolbar functions much like the Windows task bar
and the Microsoft Office shortcut bar.

The third way to access the database administration applications is from the Enterprise Manager console
application launch palette. But before you can use the console, it is necessary to build a repository.
Unlike earlier releases of Enterprise Manager, the process of repository construction is performed
automatically. The first time the console starts with a given user ID, the Repository Manager describes
the sub-components that are necessary to start the console. When you respond OK to the prompt,
Repository Manager creates a repository for itself, Enterprise Manager, and Software Manager, and
starts the Discover New Services Wizard. If there are nodes on the network that already have Oracle
Intelligent Agent configured, this wizard will communicate with the remote nodes to populate the
navigation tree on the console. Because this function can be performed at any time, you can skip it for a
fast start.

CAUTION

Because a repository is built automatically during the first login, you must be careful to
avoid creating a repository for a system user, such as SYSTEM, in the SYSTEM
tablespace. A repository in the SYSTEM tablespace might cause fragmentation and space
constraints that adversely affect performance and manageability.

After the Enterprise Manager console opens, use the Database Administration Tools from the
Applications toolbar to explore the Instance Manager, the Schema Manager, and other Database
Administration Tools. The remaining tools—Backup Manager, Data Manager, and Software
Manager—can only be accessed from here in the console.

The fourth way to access the Database Administration Tools is also from within the console on the menu
bar by selecting Tools, Applications.

Enterprise Manager is now ready to use, but there are no databases or listeners known to Enterprise
Manager unless the Discover New Services Wizard took advantage of remote intelligent agents to
automatically discover and define them. To add databases and nodes representing systems, from the
menu bar choose Navigator, Service Discovery, Manually Define Services to start the Service Definition
Wizard. The wizard guides database administrators through the process of defining listeners and

databases to Enterprise Manager. Database Administration Tools are now accessible in the fifth and final
way by right-clicking one of the newly added databases in the upper-left Navigator window. From the
mouse menu, select Related Tools to see a context-sensitive list of tools available to access the selected
database (see Figure 9.2).

Page 152

FIG. 9.2
Context-sensitive menus
enable Schema
Manager access to
ORCL through the
console.

Using the Console Functions

When database administrators become familiar with Enterprise Manager, console functions are not
usually the attraction of the product. Most database administrators become interested in the product
because of the Database Administration Tools and the Performance Pack. However, a significant portion
of these components are crippled or do not function at all without the Event Management and Job
Scheduling components working with remote intelligent agents:

● The Backup Manager cannot perform backups or recoveries without Job Scheduling.
● Data Manager cannot perform imports, exports, or loads without Job Scheduling.
● Software Manager cannot distribute software without Job Scheduling.
● Trace Manager cannot collect performance data for analysis without Job Scheduling.
● The defragmentation and coalescence functions of Tablespace Manager require Job Scheduling.
● The advanced events that come with the Performance Pack depend on Event Management.

Use the information in this section to implement the full architecture so that the promise of Enterprise
Manager is fulfilled. The focus on implementation and configuration of the integrated console functions
found in this book is intended to enable database administrators to take full advantage of all the other
useful functions that depend on the console components.

The Enterprise Manager console centralizes control of the database environment. Whether managing a
single database or a global enterprise, the console provides consolidated

javascript:displayWindow('images/ch09fg02.jpg',800,600)

Page 153

management. There are four primary console functions, each of which is represented in a pane in the
console window:

● Navigator
● Map
● Event Management
● Job Scheduling

The Navigator provides a tree structure representing all databases, servers, Net8 listeners, Web servers,
and groups of these components. Context-sensitive access to the Database Administration Tools is only
a few mouse clicks away. Map provides a way to geographically track the status of systems and drill
down into systems to examine listeners and databases. In conjunction with the event functionality, Map
shows system status at a glance.

Event management and job scheduling are dependent on the availability of remote intelligent agents.
The Event Management component communicates with remote intelligent agents to track activities and
conditions on remote systems. Using this capability, Enterprise Manager sends mail, pages people, or
runs a job to correct a fault or capture diagnostic information for later analysis. If a job runs to resolve or
prevent a fault, the Job Scheduler component handles the task. In addition, the Job Scheduler can launch,
monitor, and report completion of a series of activities on remote systems.

Understanding the Integrated Console Functions

Some console functions apply to all of the other components of Enterprise Manager to enforce security,
make applications available, manage the four panes of the console window, and manage the
communications daemon.

SecuritySecurity functionality for Enterprise Manager is managed from the console and is accessible
from the menu by selecting File, Preferences. The database administrator can store the passwords
necessary to access the services managed by Enterprise Manager. When many user IDs with different
passwords are required to administer a large environment, you often resort to writing them down on slips
of paper or in notebooks. It is impossible to remember 20 user IDs and the associated continually
changing passwords. The user preferences at least enable database administrators to store passwords in a
secured environment where they will not accidentally fall into the wrong hands.

Launch PalettesLaunch palettes are small toolbars that can float as independent windows or as toolbars
at the top or bottom of the console. The Launch palettes are accessed and managed, from the menu bar
by selecting View, Launch Palettes. The default installation of Enterprise Manager without value added
or custom products provides only the Application palette.

You can activate the Enterprise Manager toolbar by choosing View, Toolbar from the menu bar. The
toolbar consists of five sections of buttons for related tasks (see Figure 9.3). These tasks manage which
application panes are visible, provide drag-and-drop help, manage map images, create and remove
events, and create and remove jobs.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 154

FIG. 9.3
The Enterprise Manager
toolbar provides tools
for the Map, Event, and
Job console panes.

Communications Daemon The database administrator uses the console to provide management of the
communications daemon by selecting Tools, Daemon Manager. Daemon Manager enables the database
administrator to manage and monitor the interaction of the local communications daemon and the
remote intelligent agents by configuring items such as the TCP/IP port, polling intervals, and maximum
connection counts. In addition, the database administrator can observe which applications and nodes
have pending events and jobs.

Surfing Databases with Navigator

Navigator is the most widely used part of the Enterprise Manager console. It behaves much like the
Windows Explorer, so the interface is intuitive and immediately usable. Right-clicking any object
reveals a mouse menu to create new tree views, access Navigator functions, or use related Database
Administration Tools.

From the mouse menu, select Split View to create a reference point for the top of a tree in a new view
easily accessible using tabs at the top of the Navigator window. In a complex database or operating
environment, the tree views make accessing the parts of the environment of interest more efficient (see
Figure 9.4). Filters provide an alternative method of limiting branches of the tree to objects of interest.
For example, if all general ledger objects begin with "GL_," a filter value of GL_% will limit objects
below the filter in the tree structure to those that belong to the general ledger system.

The same menu enables the database administrator to create new objects of the same type or delete
existing objects. Some object changes are possible directly from Navigator using Quick Edit, while more
complex changes may require accessing one of the Database Administration Tools that operate on the
selected object by selecting Related Tools.

NOTE

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0158-0160.html
javascript:displayWindow('images/ch09fg03.jpg',640,75)

Because the mouse menu is context sensitive, the operations available vary widely across
different objects.

Navigator is also the source of components for Map. To add an object to a map, simply drag the object
from Navigator to Map and drop it where you want it on the map.

Using Navigator, a single administrator can access every object in every database, create new objects,
and delete existing objects without writing a single SQL statement. Navigator easily becomes the
database administrator's primary interface to manually query and alter databases and their objects.

Page 155

FIG. 9.4
Navigator provides
a way to get to and
manipulate any object
in any database.

Visualizing the Database World with Map

Map provides a geographically oriented means to monitor the status and basic information concerning
databases, nodes, listeners, and Web servers, as well as groups of these four objects. Maps of Asia,
Europe, Japan, the United States (refer to Figure 9.2), and the world are provided with the product, but
any bitmap file (*.BMP) is a valid map. The map doesn't even have to be geographical. Consider
organizational charts, business process flows, and network diagrams as alternative maps. The capability
to switch quickly between maps from the Console toolbar enables many views of the enterprise.

Used in conjunction with remote intelligent agents, Map indicates the status of each object on the map
with a small signal flag. Green signal flags mean all is well. Yellow flags indicate that some condition
requires attention, and red indicates a serious problem. The Event Management component of Enterprise
Manager enables the database administrator to define conditions and thresholds necessary to trigger
changes in status indicated by the signal flags. Double-clicking a Map object starts a view-only Quick
Edit of the object. Database Administration tools, usually started from the Console, can be started
directly, specific to an object if the object is selected on the map.

Automating Administration Tasks with Job

javascript:displayWindow('images/ch09fg04.jpg',800,600)

The Enterprise Manager Job Scheduling component, known as Job, provides a way for database
administrators to automate tasks at specific times or based on events in the operating environment.
Scheduling is especially valuable in complex environments with many systems.

Page 156

Job can perform any tasks requiring operating systems commands or SQL. The remote agent handles
actual execution independently of the Enterprise Manager console.

NOTE

Job is not usable if Oracle Intelligent Agent is not installed and
configured.

Job comes with a variety of predefined tasks ready to configure and schedule. The process for creating a
job is best explained using an example. To schedule an export of a remote database, start by selecting J
ob | Create Job from the Enterprise Manager menu bar. The resulting window contains four tabs:
General, Tasks, Parameters, and Schedule.

Starting with General, give the job a name and description. Then, select the destination type and a
destination. To perform a database export, the destination type should be "Database." Next, move to the
Tasks tab. There are over a dozen database and system building block tasks available to configure a job.
Select the Export task from the Available Tasks list and move it to the Selected Tasks list. More
complex jobs are composed of multiple tasks arranged in the required order.

Next, select the Parameters tab, where configuration information for each task in a job is managed. For a
simple export, select the Select Export Objects button and determine whether you will export the entire
database or specified users and tables. Select the Advanced Export Options button to select the
parameters to pass to export when it runs (see Figure 9.5).

FIG. 9.5
Many task building
blocks are available to
create a job, each with
its own parameters.

javascript:displayWindow('images/ch09fg05.jpg',800,600)

Page 157

TIP

If there are no objects in the Available Tasks list, go to Navigator and create a database
group in the Database Groups folder. The database groups make up the Available Tasks
list.

The export job is now ready to schedule. Select the Schedule tab and define when the job should run.
Pressing the Submit button saves the job; it is ready to run at the specified time. The job name and
description are displayed in the Jobs console window when the Job Library tab is selected. Information
on active and complete jobs is available from other tabs.

Job is an easy-to-use and well-organized job scheduling system that gives database administrators the
ability to automate tasks on diverse systems directly from the Enterprise Manager console. However, it
is no substitute for the more robust job scheduling components of the comprehensive systems
management packages that provide features such as job restart and job triggers based on the existence of
a file on remote systems. The key to using Job to its full potential is to understand your job scheduling
requirements. If you are currently using cron to schedule all your UNIX-based jobs, Job is a huge
improvement. If you are thinking about implementing a more robust job scheduling process for your
entire operation as part of an enterprise-wide systems management strategy, you may find other products
more suitable.

Responding to Change with Event Management

The Event Management System (EMS) is the Enterprise Manager component that monitors the health
and welfare of remote databases and the services that make them available to applications. Unlike Job,
which triggers tasks on a specific schedule, EMS works with remote intelligent agents to constantly
monitor for unusual conditions, known as events, and then manage the events based on specifications
defined by the database administrator. Events can trigger a job to take preventative or corrective action
to keep a system available and to collect information for later analysis. If events are serious enough,
Map is notified to change the visual signal flags on the graphical display. EMS can even send mail or
use pagers to notify individuals of events.

Like Job, EMS uses the communications daemon on the local client and remote intelligent agents on
each system to monitor and respond to events. The intelligent agents actually monitor system resources,
so the events are managed 24 hours a day without the direct participation of the Enterprise Manager
console. Without Oracle Intelligent Agent installed and configured, Job is not usable.

To begin monitoring a remote resource for a particular event, the event must be registered in EMS. A
variety of predefined events come ready to configure and register. The process to begin monitoring is

best explained using a simple example. To monitor the availability of a remote listener, start by selecting
Event, Create Event Set from the Enterprise Manager menu bar. The resulting window contains three
tabs: General, Events, and Parameters.

Starting with General, give the event a name and description and select the service. To monitor a
listener, the service type should be Listener. Next, move to the Events tab. For other service types such
as Database, there are many events available to create an event set if the Performance Pack is
implemented (see Figure 9.6), but for a listener, EMS only monitors whether

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0158-0160.html

Previous | Table of Contents | Next

Page 173

CHAPTER 10

PL/SQL Fundamentals

In this chapter

● Understanding PL/SQL 174
● Understanding the PL/SQL Engine 175
● Adding PL/SQL to Your Toolbox 179
● Getting Started with PL/SQL 181
● Language Tutorial 185

Page 174

Understanding PL/SQL

PL/SQL is a Procedural Language extension to Oracle's version of ANSI standard SQL. SQL is a non-
procedural language; the programmer only describes what work to perform. How to perform the work is
left to the Oracle Server's SQL optimizer. In contrast, PL/SQL, like any third-generation (3GL)
procedural language, requires step-by-step instructions defining what to do next.

Like other industry-standard languages, PL/SQL provides language elements for variable declaration,
value assignment, conditional test and branch, and iteration. Like C or Pascal, it is heavily block-
oriented. It follows strict scoping rules, provides parameterized subroutine construction, and like Ada,
has a container-like feature called a package to hide or reveal data and functionality at the programmer's
discretion. It is a strongly typed language; data type mismatch errors are caught at compile and runtime.
Implicit and explicit data type conversions can also be performed. Complex user-defined data structures
are supported. Subroutines can be overloaded to create a flexible application programming environment.

Additionally, because it is a procedural wrapper for SQL, the language is well integrated with SQL.
Certain language features enable it to interact with the Oracle RDBMS, performing set and individual
row operations. The more you know about writing SQL, the better designed your PL/SQL programs will
be.

PL/SQL provides a feature called Exception Handling to synchronously handle errors and similar events
that may occur during processing. You'll learn how to embed exception handlers in your PL/SQL code

to deal with error conditions gracefully.

PL/SQL is not an objected-oriented language. It does have some features found in languages such as
Pascal and Ada. If you're familiar with the syntax of Pascal, you will have no trouble learning PL/SQL.
Unlike languages such as C and Pascal, pointers are not supported. PL/SQL is primarily a back-end
development tool, where it interacts strictly with database tables and other database objects. Interaction
with the operating system and external software components is handled through the supplied database
packages.

PL/SQL is highly portable; it is standardized across all Oracle platforms. Because its data types are
based on the database server's, the language is completely machine independent. You do not need to
learn various flavors for UNIX, Windows NT, NetWare, and so on. A PL/SQL program will compile
and run on any Oracle Server with no modifications required.

CAUTION

The Oracle Server imposes limitations on the size of a PL/SQL module, depending on
the operating system. On NetWare 3.x it is limited to 32KB. For most flavors of UNIX
and Windows NT, the module size is restricted to 64KB. Violating this limit can crash
your database server or the server machine itself.

This portability also extends to 3GL programming languages. PL/SQL provides a standardized interface
to various languages such as C and COBOL, via the Oracle-supplied precompilers. The precompilers
support the ANSI standard for embedded SQL.

Page 175

Understanding the PL/SQL Engine

Before you look at PL/SQL as a language, you need to understand it in the executing environment.

Fitting into the Client/Server Environment

In a client/server configuration, the real bottleneck is typically the network. Connect a couple hundred
users to the Oracle server via your compiled C, C++, Delphi, or COBOL program, and you'll have a very
sluggish network system. The solution is to combine complex program segments, especially those
performing reiterative or related SQL statements, into PL/SQL blocks. These blocks can be embedded in
an OCI (Oracle Call Interface) program, or executed even more efficiently by moving them into the
database itself as stored functions, procedures, and packages. Figure 10.1 shows the typical interaction
between client applications with the Oracle server.

FIG. 10.1
A typical client/server
environment.

PL/SQL is executed by the PL/SQL engine. This engine is part of the database server. Figure 10.2
illustrates internally how a PL/SQL block is handled.

Whatever tool you use, such as Oracle SQL*Plus, the tool must submit the PL/SQL source text to the
Oracle Server. The PL/SQL engine scans, parses, and compiles the code. The compiled code is then
ready to be executed. During execution, any SQL statements are passed to the SQL Statement Executor
component for execution. The SQL Statement Executor performs the SQL or DML statement. The data
set retrieved by the query is then available to the PL/SQL engine for further processing.

One advantage of using a PL/SQL block to perform a set of SQL statements, versus sending them
individually, is the reduction in network traffic. Figure 10.3 illustrates this idea.

This alone can substantially improve an application's performance. Additionally, the SQL/DML
statements can be treated as a single transaction. If the entire transaction succeeds, then all the

Page 176

modifications to the database can be committed. If any part fails, the entire transaction can be rolled
back. Because complex logic can be included in the PL/SQL block, and thereby executed on the server,
client program size and complexity is reduced.

FIG. 10.2
The PL/SQL engine is a
component of the
Oracle database server.

FIG. 10.3

javascript:displayWindow('images/ch10fg01.jpg',367,225)
javascript:displayWindow('images/ch10fg02.jpg',314,252)

Grouping several SQL
statements into one PL/
SQL block reduces network
traffic.

Executing Stored SubprogramsA further refinement involves storing compiled, named PL/SQL blocks
in the database. PL/SQL blocks will be referred to collectively in this chapter as stored subprograms or
just subprograms. "Named" simply means the name of the subprogram that is included with its code, just
like any C function or Pascal subroutine. Figure 10.4 illustrates how the PL/SQL engine calls stored
subprograms.

Page 177

FIG. 10.4
The PL/SQL engine
runs stored subpro-
grams.

These subprograms can perform complex logic and error handling. A simple anonymous or unnamed
block (a block of PL/SQL code that isn't labeled with a name), embedded in a client application, can
invoke these subprograms. This capability is generally referred to as a Remote Procedure Call (RPC).
Subprograms can also call other subprograms. Because these subprograms are already compiled, and
hopefully well tuned by the developer, they offer a significant performance improvement, as well as
reduce application development by providing reusable building blocks for other applications or modules.

Shared SQL Areas Within the System Global AreaThe System Global Area (SGA) is a large chunk of
memory allocated by the operating system to the Oracle Server. Within this memory, the Server
maintains local copies of table data, cursors, user's local variables, and other sundry items.

When you compile any PL/SQL program, whether a named or unnamed block of code, the source and
object code are cached in a shared SQL area. The space allocated to each PL/SQL block is called a
cursor. The server keeps the cached program in the shared SQL area until it gets aged out, using a Least
Recently Used algorithm. Any SQL statements inside the PL/SQL block are also given their own shared

javascript:displayWindow('images/ch10fg03.jpg',400,252)
javascript:displayWindow('images/ch10fg04.jpg',400,215)

SQL area.

When a named subprogram is compiled, its source code is also stored in the data dictionary.

The code contained in a subprogram is reentrant; that is, it is shareable among connected users. When an
unnamed PL/SQL block is submitted to the server for execution, the server determines whether it has the
block in cache by comparing the source text. If the text is exactly identical, character for character,
including case, the cached, compiled code is executed. The same is true for SQL statements; if the query
text is identical, the cached, parsed code can simply be executed. Otherwise, the new statement must be
parsed first. By sharing executable code, a server-based application can achieve substantial memory
savings, especially when hundreds of clients are connected.

Private SQL AreasIf several users are executing the same block of code, how does the server keep their
data separated? Each user's session gets a private SQL area. This hunk of

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 171

system is defined based on the type of workload (OLTP, DSS, or Batch), downtime tolerance, peak
logical write rates, and application information. After the scope is defined, choose the Collect tab to
define what data and how much data to collect for analysis. When the collection parameters are defined
at the minimum level necessary to meet the tuning session scope, click the Collect button to acquire the
required data. Before applying this process to a production database, practice in a test environment until
the impact of the various options is understood and the amount of time consumed performing the
specified activities is quantified.

Next, select the View/Edit tab to provide more detailed specification for the tuning session. This is
where the specific tuning rules and thresholds are defined. Experienced tuners may want to alter some of
the hundreds of rules based on the profile of the target database and personal knowledge and experience.
For inexperienced tuners, it is an opportunity to see what Expert believes is good and bad.

From the Analyze tab, click the Perform Analysis button to begin the analysis process. After analysis is
complete, select the Review Recommendations tab to get advice from Expert (see Figure 9.14). If
recommendations are deemed reasonable, use the Implement tab to generate implementation scripts and
new parameter files. Run the scripts and implement the new parameters to put Expert advice to work. If
the advice does not seem correct, this can often be traced back to a rule that might require modification
for the target database environment. Recollecting data is not required to develop new recommendations
based on rule changes. Simply alter the rules to better reflect the environment of the target database and
rerun the analysis.

FIG. 9.14
These recommenda-
tions are from an
Oracle sample file that
comes with Expert.

Page 172

Expert provides the opportunity to aggregate the collected wisdom at Oracle Corporation and add the
experience and knowledge of the local database administration team to a structured methodology for

javascript:displayWindow('images/ch09fg14.jpg',800,600)

performance management. Although most installations do not use this component of Enterprise
Manager, it is probably most useful where it is least used—in small organizations with limited database
tuning experience. Progressive database administrators in such environments should find a friend in
Expert after even a short period of time using the tool.

Using the Enterprise Value-Added Products

Oracle provides several other value-added products that integrate with Enterprise Manager. Each meets
specialized requirements for areas such as Web server management and processing of biometrics
information such as fingerprints.

Replication Manager is useful for environments that make heavy use of Oracle8 replication features.
Oracle Rdb for Windows NT provides tools to manage the Rdb database that Oracle acquired from
Digital Equipment Corporation (DEC) several years ago. Oracle Fail Safe manages high availability
environments implemented on Windows NT clusters. Oracle Biometrics works with specialized
hardware to administer fingerprint identification used with the Advanced Networking Option (ANO).
Oracle also integrates Web Server Manager and Security Server Manager with Enterprise Manager as
value-added applications.

Using the Oracle Enterprise Manager Software Developer's Kit (SDK), developers build their own
application integrated with Enterprise Manager to meet the specific needs of their environment. Several
third-party applications are integrated with the Oracle Enterprise Manager. The functionality of these
applications ranges from systems management functions such as transaction processing management
connected through Oracle XA to specialized vertical market applications including a computerized
medical record system. More third-party applications are under development.l

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 168

Job configured, the Trace and Expert repositories on the client, remote intelligent agents on the node
where Trace-enabled programs reside, Trace Collection Services on remote nodes (usually linked with
the remote application), and Trace Formatter tables on remote nodes. Each application might require
configuration as well. For example, at a minimum, Oracle8 must have the ORACLE_TRACE_ENABLE
parameter set to TRUE before it will produce trace data. The setup is not trivial and should not be taken
lightly. However, Trace is the key to providing the data necessary to take full advantage of the
Enterprise Manager Performance Pack.

Managing Tablespaces

Tablespace Manager provides detailed information on storage utilization in tablespaces, data files, and
rollback segments. A color-coded map of each piece of storage enables the database administrator to
visualize the storage used by every database object, how many extents are used, and where the extents
are placed in both the tablespace and data files (see Figure 9.12). This information is invaluable when
tracking down I/O contention or tracking the progress of large database loads and index builds.

FIG. 9.12
Selecting an extent in
the graphical display
highlights other extents
in the same object.

In addition to the graphical display, there are two other tabs in the right application pane. The Space
Usage tab displays the space utilization statistics, such as the row count and the average row length. The
Extent Information tab shows information such as the extent count for the selected object and the data
file where the selected extent resides.

Page 169

CAUTION

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0164-0167.html
javascript:displayWindow('images/ch09fg12.jpg',800,600)

Most of the information under the Space Usage tab is produced by the ANALYZE SQL
command. For objects with no statistics, generate statistics using ANALYZE or the
Tablespace Analyzer Wizard. If the database is tuned for rules-based optimization and
the CHOOSE optimization mode is employed, generating statistics may have an adverse
performance impact. Likewise, if cost-based optimization is implemented and statistics
are not available, performance might severely suffer.

Using Job, Tablespace Manager employs four wizards to change and analyze storage configurations. All
four wizards submit jobs to the Enterprise Manager Job Scheduling component to perform the requested
tasks. The Tablespace Analyzer Wizard analyzes selected tables, partitions, clusters, and indexes using
the ANALYZE SQL command. The Tablespace Organizer Wizard defragments tables, partitions, and
clusters using export and import utilities and rebuilds the indexes. It can also detect space that has not
been used at the end of segments. The Defragmentation Wizard duplicates Tablespace Organizer
defragmentation capabilities, but it is easier and quicker to use because it uses default options. The
Coalesce Wizard combines adjacent free space into a single block. This is a particularly important
technique for active operational databases where object sizes change frequently and temporary objects
are routinely created and dropped. Unless a selected object contains adjacent free blocks, this wizard is
disabled.

Monitoring Sessions

TopSessions enables database administrators to monitor database sessions and kill them if necessary due
to inactivity or over-utilization of resources. This tool monitors all sessions or only the most active based
on consumption of specified resources such as memory or I/O. Filtering provides a means to narrow the
focus on sessions of interest when analyzing activity.

TIP

Before running TopSessions for Oracle8, run <ORACLE_HOME>/SYSMAN/
SMPTSI80.SQL to ensure that tables required to perform all the functions are in place
with appropriate permissions. Be aware that this script may not run "as is" and requires
some editing to alter the ORACLE_HOME drive and name. It is still necessary to log in
as SYS to explain access plans.

TopSessions can drill down into sessions to display exhaustive session statistics on redo, enqueue,
cacheing, the operating system, parallel server, SQL, and other miscellaneous information. Examining
active or open cursors (see Figure 9.13) reveals the SQL executed by each cursor and the access plan the
SQL is using for execution. Locking information, including identification of blocking locks held by the
session, is also available.

TIP

TopSessions can identify locks for a particular session, but for in-depth analysis of the
entire locking picture, the tool to use is Lock Manager. Lock Manager displays either all
locks held on the database or only blocking or waiting locks. Offending sessions can be
killed directly from Lock Manager.

Page 170

FIG. 9.13
By drilling down into
a session's open cursors,
detailed access plans,
are available.

Using Oracle Expert

Like Oracle Trace, Oracle Expert is an elaborate product with its own user's guide, consisting of 160
pages in the current release. Expert is more than just a product; it is the implementation of a performance
management methodology. While other Performance Pack components provide information for database
administrators to analyze, Expert applies a set of rules to the data to develop conclusions and make
recommendations to improve performance. Expert considers trends that develop over time as well as
current system conditions. As new database releases become available, the rules are updated to make
recommendations on how to take advantage of new advanced features. As a result, Expert doubles as a
mentor to help database administrators learn more about performance management and Oracle8.

Unfortunately, performance tuning is often neglected in favor of day-to-day requirements until serious
performance problems affect the production database environment. Expert provides a means to
automatically sift through performance data that might consume a large percentage of even a skilled
database administrator's time. Expert doesn't replace the database administrator as a performance tuner.
It does free the database administrator from the mundane task of screening mountains of data to find
potential problems. With Expert, the performance tuning focus becomes how to deal with what Expert
finds and enhancing Expert with more rules based on the experience and knowledge of the database
administrator. Performance tuning becomes more efficient, effective, and rewarding.

To start an Expert Tuning session, from the menu, select File, New and start telling Expert about the
areas it should analyze. The scope of the tuning session is defined based on requirements for instance

javascript:displayWindow('images/ch09fg13.jpg',800,600)

tuning, application tuning, and storage structure tuning. The profile of the

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0164-0167.html

Previous | Table of Contents | Next

Page 178

memory contains a private copy of the variable data included in the subprogram. A private SQL area is
also allocated for any SQL statements within the PL/SQL block. Figure 10.5 represents the scheme.

FIG. 10.5
Shared and private SQL
areas within the SGA.

The first time a stored subprogram is referenced, it must be loaded from the database into the SGA.
Once loaded, it is available to every user. As long as it continues to be referenced by any user (not
necessarily the one who first called it), the subprogram will remain in memory. Packages work the same
way, except that a whole set of subprograms may be included in the package. The initial load may take
longer, but now all these subprograms are available; there is no further disk hit. When a set of
subprograms are expected to be invoked, you're better off having them all load at once. Packages offer
this mechanism.

Fitting into the Client Environment

The PL/SQL engine may also be embedded in certain Oracle tools, such as SQL*Forms 4.5 and other
Developer/2000 development tools. The main advantage here is programming in a familiar language.
The client program can perform the computations contained in the local PL/SQL block, and send the
SQL to the server or invoke stored PL/SQL portions. Again, this supports code reuse and simplifies the
client program by handling portions of complex logic directly on the database server.

Server-Side Versus Client-Side Development

The developer must consciously decide how much complexity to hide on the server versus how much to
keep in the client program. After years of developing client/server applications, the author suggests
some guiding principles to follow:

● Reduce network traffic. Push some functionality on to the server. The network is typically the
bottleneck in any client/server application.

javascript:displayWindow('images/ch10fg05.jpg',383,240)

Page 179

● Develop standard code. Standard code can be reused on new applications or when adding on to
existing applications. This leverages past development effort.

● Strive for low coupling and high cohesiveness. Coupling occurs when one module is dependent
on the specific contents of another module, such as when you use global variables instead of
passing in parameters. Cohesiveness means putting like elements in the same place, such as
bundling all math functions into one math library.

● Hide implementation details. This reduces client program complexity and decouples functionality
from implementation. Decoupling is removing or avoiding module dependencies. When
implementing top-down design, for example, defer the actual "how-to" by pushing
implementation details down to the lower levels.

● Write modules in a generic manner. The more specific a module is, the less reusable it is. Look
for patterns and common traits. This does not mean cram several different activities into a single
module.

● Handle business rules in a consistent, centralized manner. This makes them more visible and
reusable on future projects. If your business rules are ever-changing and spread out over many
client program modules, you will have to locate and revise them all over the place—a process
that is neither efficient nor maintainable.

NOTE

Clamage's Rule of Maintainability: A highly maintainable program module is one that
requires little or no changes when the requirements for that module changes. An
unmaintainable program is one that requires substantial modifications in order to
incorporate new requirements. The above principles will help guide you toward the goal
of building highly maintainable software.

Use stored subprograms to implement these principles. By providing standard libraries of stored
subprograms, multiple and future client applications can take advantage of earlier, completed
development. For example, business rules can be implemented as stored subprograms. If a rule changes,
for example, how to compute a sales commission, just modify and recompile the appropriate stored
program. Any dependent client programs need not change or even be recompiled, provided the stored
subprogram's interface remains unchanged.

Packages are a good way to increase a subprogram's generality by allowing the subprogram name to be
overloaded. Overloading simply means giving the same subprogram name to a set of code, usually with
different data types or different numbers of arguments in the parameter list. For example, the addition
operator is overloaded in nearly all computer languages to handle both integer and floating point
arithmetic.

Adding PL/SQL to Your Toolbox

Stop for a minute and think about how you can use PL/SQL in your everyday tasks. You may not be
involved in application development. As a DBA, you have to perform steady maintenance on the
database. You can use PL/SQL to make your life easier.

Page 180

Energize Your SQL Scripts

Some SQL*Plus scripts can actually generate another script, such as listing the number of rows for every
table in a tablespace. However, the scripts could be rewritten in PL/SQL, compiled, and stored in the
database; thereby running much faster, without writing the intermediate script to a file.

Writing these kinds of scripts is also somewhat difficult; a PL/SQL script is more straightforward and
easier to document and maintain. Additionally, a compiled PL/SQL program is readily shared among
DBAs (especially if you're in a "24 x 7" shop). Instead of searching the hard drive for scripts, everyone
will always know where they are and how to run them.

Stored subprograms can take parameters, which makes them extremely flexible. You can even write
SQL*Plus front ends for them, collect user input and pass these values in, without having to know the
order and types of the parameters.

Simplifying Database Administration

You probably have a good set of SQL scripts that give you information about your database in action.
But after you understand PL/SQL, you'll envision a whole new set of programs that give you additional
information on database performance, storage, user load, locks, and so on. PL/SQL eliminates the
restrictions and limitations of plain SQL scripts.

You can automate many tasks, running them at set intervals by using the supplied packages. You can
send system or application data to external performance monitors—written, perhaps, in C++ or
Delphi—and use their powerful reporting and graphing features to display this information in real-time.

Some tools, such as Visual Basic, are easy to use. With the additional capabilities of PL/SQL, you can
develop visual tools to simplify tasks such as running EXPLAIN PLAN and graphically viewing indexes
and constraints on tables. Several upscale third-party tools were developed this way.

Getting Better Information with Less Hassle

You can write PL/SQL programs that use the data dictionary, for example, to show detailed index
information for any particular table, even if it's in another schema. This is great if you're not logged on

as SYS or SYSTEM and you need some data dictionary information, and you don't want to have to
reconnect. This is especially helpful to developers, who always need to access that kind of information.
You can reverse-engineer any database object using PL/SQL, rebuilding a syntactically correct
statement to re-create the object. This will save you the trouble of manually updating your scripts every
time you alter a table or grant a new privilege.

If composing a large, complex SQL statement is difficult, you can break it up into smaller parts and run
them together in a PL/SQL script. This is preferable to trying to join more than seven tables, after which
the SQL Executor seems to bog down. Multi-table joins can be improved dramatically by doing the
Master table lookups separately. Plus, it's easier to validate the output of a script when you know the
reusable code in it is already working correctly.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 181

Designing Better Database Applications

You can use PL/SQL in stored procedures and packages to build better applications. A concerted effort
to design and build reusable PL/SQL modules will reap long term benefits. With some thoughtful design
and planning, you can:

● Leverage the effort in one application when building the next one.
● Spread the cost of building several related applications across all of them.
● Provide consistent interfaces to underlying tables and other objects.
● Simplify and optimize data access.
● Reduce application maintenance and deployment costs.
● Enforce coding standards.

Using PL/SQL is easy and fun. It has a relatively short learning curve as languages go. Experiment to
determine what works well or at all. If you follow the steps detailed in this section, you should become
productive in just a few days and, after only a few months, master PL/SQL sufficiently enough to
achieve some sophisticated results.

Getting Started with PL/SQL

This section details some things the DBA must do before you can do much with PL/SQL. The
architecture of the application environment in which you'll be working will also be explored.

Before you can really get into writing PL/SQL programs, you or your DBA must first do the following:

● Grant you (that is, your Oracle account name) the CREATE PROCEDURE privilege so you can
create subprograms in your own schema. For new applications, you might want to create a
special user name and schema (a particular tablespace).

● Grant you directly (not via a Role) SELECT, INSERT, UPDATE, or DELETE privileges on any
database objects (for example, tables and sequences) in whatever schema for which you may be
writing PL/SQL programs. A stored subprogram or package can only reference objects that the
owner of the subprogram (you) has access rights to directly (not via a role).

● Make sure the appropriate Oracle-supplied packages have been compiled, and you have
EXECUTE privilege on them. You will find them in the directory <ORACLE_HOME>/
rdbms<version>/admin/ where <ORACLE_HOME> is the Oracle home directory (shown either
in the UNIX shell variable of the same name or in the Windows Registry) and <version> is the
database version. The names of the package scripts have the general form of dbms*.sql. For

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0184-0186.html

example, on the author's Win95 machine, dbmssql.sql is in d:\orawin95\rdbms72\admin.
● Make sure there is sufficient storage available for your stored subprograms and packages. These

objects make additional data dictionary entries in the SYSTEM tablespace. The DBA may create
a default tablespace for your own local copies of tables and indexes, so you aren't mucking with
Production objects.

Page 182

● Make sure the shared and private SQL areas in the System Global Area (SGA) are sufficiently
large to handle the anticipated load from running PL/SQL scripts and subprograms.

● Make sure you have access to the SQL*Plus application or a suitable third-party tool.

Once these things are in place, you're ready to start developing PL/SQL programs!

Understanding the Schema of Things

In abstract terms, a schema is a logical collection of related database objects, such as tables, indexes, and
views. A schema is a developer's-eye view of the database objects of interest, such as are shown on an
Entity-Relationship Diagram (or ERD).

In an Oracle database, a schema is a logical collection of objects stored within one or more tablespaces.
Because it is a logical collection, several applications can share schemas, or cross schema boundaries
into other schemas. The relational organization of schema objects is strictly as the DBA and developers
see it, which is why a "roadmap," such as an ER diagram, is critical to the success of any database-
related software development. A tablespace, in turn, is a logical storage area that maps to one or more
physical files out on disk. Figure 10.6 illustrates this organization.

FIG. 10.6
Applications, schemas,
tablespaces, and
database files are
organized hierarchically.

Typically, a schema has exactly one owner (that is, an Oracle user account) responsible for creating,
altering, and dropping these objects. This owner then grants access privileges to other users, either
directly or via roles. If you're not the owner of these objects, you qualify references to the objects by
specifying which tablespace they are in using dot notation, as with SELECT CUST_NAME FROM
MKG.LEADS.

javascript:displayWindow('images/ch10fg06.jpg',400,195)

Managing Your PL/SQL Code After they have been thoroughly tested and validated in your own
development schema, your stored PL/SQL programs are likely to become objects managed by the
schema owner. In a complex development environment with many developers, it becomes critical to
determine who is the owner of

Page 183

the source code and where it is kept. When a module is being worked on, it is in a state of flux. The
developer can make significant changes to a private copy, some of which may be backed out later. It's
strongly recommended that you use a Code Management System (CMS) to control the one official
version of the source code. When the module has been thoroughly tested and accepted for Production,
the new version is placed in the CMS, and the schema owner can compile the new version. The quickest
way to shoot yourself in the foot is to lose track of which copy is the one known good version. In the
long run, just keeping different subdirectories for different versions is a poor code management strategy.

There is no correspondence between schemas and tablespaces; one or more schemas may be stored in a
single tablespace, or one schema may be broken up into separate tablespaces. In practice, it is generally
a good idea to store a schema in its own set of tablespaces, along with a good set of documentation. For
example, tables may be stored in one tablespace and indexes in another. Conceptually, both tablespaces
are included in the same schema.

TIP

PL/SQL developers should have their own default tablespaces to play around in,
preferably on a non-Production database. You can create your own private tables and
indexes with which to experiment. This way, if you inadvertently corrupt a temporary,
local copy of a Production table, who cares? Whereas the alternative could result in an
abrupt end in your career (at least as far as your current workplace goes). Additionally,
any stored programs or packages you compile are strictly local to within your schema
(stored in the data dictionary alongside subprograms belonging to other schemas), so you
can make experimental changes to Production code in a safe development environment.

CAUTION

The caveat to this scheme is to take care with object references. If it's in your default
tablespace, you don't need to qualify the reference with the tablespace name; otherwise,
you must qualify it in order for it to be properly found. If an object by the same name is
in more than one tablespace, qualify the reference. You can use synonyms for
unqualified objects in PL/SQL code to provide the qualifier.

As a pragmatic consideration, some applications may easily cross schema boundaries, whereas core
applications might focus on one schema. For example, a marketing application may have been
developed to automate this one department. Later, upper management may request a high-level view of
the entire enterprise, requiring a new application to obtain data from several schemas. The work you do
in one application may be reused in another, so always keep an eye toward making PL/SQL modules
generic enough to be used in multiple contexts.

Your Basic PL/SQL Development Environment

PL/SQL code is developed using your favorite text editor and the Oracle-supplied SQL*Plus
application, or one of the several fine third-party development toolkits. If you're in a UNIX environment,
it's a good idea to have a couple of sessions up—one running a text editor such as vi or emacs, and
another session running SQL*Plus. If you're running Windows, you can use Notepad (or a real
programmer's editor) and have a SQL*Plus session up.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0184-0186.html

Previous | Table of Contents | Next

Page 239

CHAPTER 11

Using Stored Subprograms
and Packages

In this chapter

● Defining Stored Subprograms and Packages 240
● Building and Using Stored Programs 240
● Debugging with Show Errors 248
● Checking the State of a Stored Program or Package 255
● Building and Using Packages 256
● Creating a Real-World Example 263

Page 240

Defining Stored Subprograms and Packages

The real application development begins when you start building stored subprograms and packages,
which are persistent code modules that are compiled and stored in the database. They are shareable,
reentrant, and reusable software that you design. They are callable from other PL/SQL modules, SQL
statements, and client-side applications in languages that support remote procedure calls.

Whenever you compile a stored subprogram or package, the source code, compiled code, compilation
statistics, and any compilation errors are stored in the data dictionary. Various data dictionary views help
you visualize these entities. You can get information about modules you compile with the USER_
views; you can get some restricted information about modules other folks compiled and granted you
access to with the ALL_ views; and you can get all information anyone compiled with the DBA_ views,
provided you have DBA rights. These views are listed in Table 11.1 (for simplicity, listed as DBA_
views).

Table 11.1 Data Dictionary Views for Stored Subprograms and Packages

View Description

DBA_SOURCE
Textual source code for all
compiled modules.

DBA_ERRORS
Textual listing of any compilation
errors for all modules.

DBA_OBJECT_SIZE
Statistics for compiled modules,
such as validity, source, and object
sizes.

DBA_OBJECTS
Catalog of compiled modules
(stored procedures, functions,
packages, package bodies).

DBA_DEPENDENCIES
List of object dependencies, such as
tables referenced in packages.

No views exist to expose the object code because you don't need to see it. All you need to know is that
it's in there and whether it's valid. A compiled module becomes invalid when a dependent object is
changed or removed, such as when a column is added or a table dropped. If a stored module becomes
invalid, it first must be recompiled, either automatically by the server or manually by the owner.

Building and Using Stored Programs

The syntax for creating stored subprograms is very similar to that for defining subprograms in
anonymous PL/SQL blocks. Stored subprograms have all the same features of the sub-programs you
learned to write in the previous chapter, plus some additional ones. Let's make a stored function out of
that bool_to_char function you saw earlier (see Listing 11.1).

Page 241

Listing 11.1 bool2chr.sql—Stored Subprograms Make for Reusable Code

CREATE OR REPLACE FUNCTION bool_to_char(Pbool IN BOOLEAN)
RETURN VARCHAR2 IS
 str VARCHAR2(5); -- capture string to return
BEGIN
 IF (Pbool) THEN -- test Boolean value for TRUE
 str := `TRUE';
 ELSIF (NOT Pbool) THEN -- FALSE
 str := `FALSE';
 ELSE -- must be NULL
 str := `NULL';
 END IF; -- test Boolean value
 RETURN (str);

END bool_to_char;
/

The server replies:

Function created.

That's all you get. The server doesn't execute the program; it compiles the program so that you can
execute it later when called from other PL/SQL blocks.

NOTE

The CREATE OR REPLACE syntax creates a new function or replaces an existing one.
This means you don't make incremental recompilations or source changes to stored code;
you totally replace them with new versions.

CAUTION

Good source code management is required when using CREATE OR REPLACE. Once
you replace a subprogram, the old source is gone forever from the data dictionary. It also
means you can only have one object of this name in your schema.

Now let's run this newly created stored function using an unnamed PL/SQL block, as shown in Listing
11.2.

Listing 11.2 testbool.sql—Executing a Stored Subprogram

SET SERVEROUTPUT ON
BEGIN
 DBMS_OUTPUT.enable;
 DBMS_OUTPUT.put_line(bool_to_char(TRUE));
 DBMS_OUTPUT.put_line(bool_to_char(FALSE));
 DBMS_OUTPUT.put_line(bool_to_char(NULL));
END;
/

Page 242

This example pretty much exhausts the possibilities for all possible values returned by the stored
function. It is called a Unit Test. For each input, verify the output. The input values should test all

boundary conditions (values at and near the limits defined for the inputs, as well as some random values
in between). You should always have a Unit Test file for your stored subprograms like this one so you
can verify and validate the correct functioning of your code. Keep the Unit Test program with the stored
subprogram, so that when you modify the subprogram you can test it again.

After running Listing 11.2, the server sends back the following:

TRUE
FALSE
NULL
PL/SQL procedure successfully completed.

What happens if you try to pass in something other than a Boolean? Let's try it and see:

BEGIN
 DBMS_OUTPUT.put_line(bool_to_char(0));
END;
/

The server responds with:

ERROR at line 1:
ORA-06550: line 2, column 24:
PLS-00306: wrong number or types of arguments in call to
`BOOL_TO_CHAR'
ORA-06550: line 2, column 3:
PL/SQL: Statement ignored

This error message indicates a compilation error. The PL/SQL engine's strong type checking caught the
problem and responded with a pretty decent message.

Let's look at another, slightly long-winded example of a stored procedure, shown in Listing 11.3.

Listing 11.3 showindx.sql—A Stored Procedure to Display Index Information for Tables

CREATE OR REPLACE PROCEDURE show_index(Ptable IN
all_indexes.table_name%TYPE ÂDEFAULT NULL) IS
 -- local cursors
 CURSOR show_index_cur(Ctable all_indexes.table_name%TYPE) IS
 SELECT
 table_owner, table_name, tablespace_name, index_name,
uniqueness, status

 FROM all_indexes
 WHERE
 (Ctable IS NULL OR table_name = Ctable) -- one table or all
 ORDER BY
 table_owner, table_name, index_name;
 -- local constants
 TB CONSTANT VARCHAR2(1) := CHR(9); -- tab character

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 237

 binary_search(numarr, 100, isfound, rowout);
 DBMS_OUTPUT.put_line(`FOUND=' || bool_to_char(isfound) ||
 `, ROW=' || TO_CHAR(rowout) || ` SB=1');
 binary_search(numarr, 145, isfound, rowout);
 DBMS_OUTPUT.put_line(`FOUND=' || bool_to_char(isfound) ||
 `, ROW=' || TO_CHAR(rowout) || ` SB=11');
 binary_search(numarr, 108, isfound, rowout);
 DBMS_OUTPUT.put_line(`FOUND=' || bool_to_char(isfound) ||
 `, ROW=' || TO_CHAR(rowout) || ` SB=4');
 binary_search(numarr, 105, isfound, rowout);
 DBMS_OUTPUT.put_line(`FOUND=' || bool_to_char(isfound) ||
 `, ROW=' || TO_CHAR(rowout) || ` SB=4');
END; -- bintest
/

The output from the server is

FOUND=FALSE, ROW=1 SB=1
FOUND=FALSE, ROW=13 SB=13
FOUND=TRUE, ROW=1 SB=1
FOUND=TRUE, ROW=11 SB=11
FOUND=TRUE, ROW=4 SB=4
FOUND=FALSE, ROW=4 SB=4
PL/SQL procedure successfully completed.

Note the OUT parameter mode, which means output only. This means inside the procedure, this variable
can only be written to. If you need to read and write from a parameter variable, declare it as IN OUT.

Does that binary to char conversion routine look familiar? Wouldn't it be nice not to have to paste into
every PL/SQL program that needs it?

Default Parameter ValuesParameters can receive default values, to be used when the parameter is not
provided in the actual call to the subprogram. This makes the subprogram appear as if it can have a
variable list of parameters.

DECLARE
 ... -- types, constants, variables

 FUNCTION get_data (Pkey IN CHAR,
 Pflag IN BOOLEAN DEFAULT FALSE,
 Psort IN CHAR DEFAULT ` `)
 RETURN VARCHAR2 IS
 ... -- function implementation
BEGIN -- executable code
 IF get_data(key1) THEN -- valid call (Pflag, Psort defaulted)
 ...
 ELSIF get_data(key2, TRUE) -- valid call (Psort defaulted)
 ...
 ELSIF get_data(key3, , `ASCENDING') THEN -- invalid!

Note the use of the keyword DEFAULT. You could also use the assignment operator (:=). As a coding
convention, only DEFAULT is used in this context, to distinguish this semantically unusual construction
from the more straightforward assignment upon declaration.

Page 238

Both default parameters can be left off intentionally, so in the first call to get_data the flag parameter is
defaulted to FALSE, and the sort parameter is defaulted to spaces. This makes for a very clean coding
style where you only specify the parameters of interest to you. Note, however, that you cannot skip a
default parameter and provide the next one because this notation for specifying parameters is positional.
The positions of the parameters is significant. You cannot try to use a placeholder, such as the extra
comma above.

Positional and Named NotationYou can use an alternate notation, however, called named notation to
specify parameters in any order. You provide the name of the parameter along with the value.

ELSIF get_data(key3,
 Psort => `ASCENDING') THEN -- valid (Pflag defaulted)

You can start off left to right using positional notation, then switch to named notation, which is known
as mixed notation. Once you use named notation, you must then stick with it for subsequent parameters.
Named notation can be used for any parameter, not just any that were defaulted.

ELSIF get_data(key3, Psort => `ASCENDING',
 Pflag => TRUE) THEN -- right
 ...
ELSIF get_data(Pkey => key3, `ASCENDING',
 Pflag => TRUE) THEN -- wrong!

Although this seems convenient and unusual among programming languages, I've never needed it. But if

you had a bunch of parameters and nearly every parameter was defaulted and you wanted to have
maximum flexibility calling the subroutine, this is practically indispensable.

Built-in FunctionsNearly all the built-in functions and operators you use in SQL can also be used in PL/
SQL expressions and procedural statements. There are only a few exceptions to this rule.

You cannot use `= ANY (…)' in an expression. Instead, use the IN operator, as in:

IF (key IN (`A', `B', `C')) THEN -- acts like an OR conditional

You can still use operators such as BETWEEN, IS NULL, IS NOT NULL, LIKE, and so on.

You cannot use DECODE in procedural statements. Also, none of the SQL group functions are allowed
in procedural statements. They don't make much sense in this context, either. Of course, there are no
such restrictions for SQL statements embedded in PL/SQL.

You have seen how to use SQLCODE to trap the numeric exception error value. SQLERRM (sqlcode) is
used to convert the SQLCODE value to the error message string associated with the exception. All the
other built-in functions are fair game.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 233

evaluated. An OUT parameter may only appear on the left side of an assignment statement. An IN OUT
parameter can appear anywhere.

In general, use the most restrictive mode as needed for the subprogram. This provides the greatest
protection from programming errors where variables are inadvertently trashed during a subprogram
execution.

Try coding all your single row lookup routines as procedures. Follow the same coding style for single-
row lookups. Pass in the key values, a return row type record variable, and a status indicator. This style
has the advantage of encapsulating the SQL statement or cursor in order to handle exceptions inline, as
well as making for reusable code fragments. It is also an easily maintainable style. Listing 10.27 shows
an example of this style:

Listing 10.27 table.sql—A Standardized Coding Style Lends Itself to Maintainable Code

DECLARE
 -- constants
 TB CONSTANT VARCHAR2(1) := CHR(9); -- TAB
 -- variables
 status NUMERIC;
 table_rec all_tables%TYPE;
 -- routines
 PROCEDURE get_table(Powner IN all_tables.owner%TYPE,
 Ptable IN all_tables.table_name%TYPE,
 Prec OUT all_tables%TYPE,
 Pstatus IN OUT NUMERIC) IS
 -- local cursors
 CURSOR table_cur(Cowner all_tables.owner%TYPE,
 Ctable all_tables.table_name%TYPE) IS
 SELECT *
 FROM all_tables
 WHERE owner = Cowner AND table_name = Ctable;
 -- local variables
 Lowner all_tables.owner%TYPE;
 Ltable all_tables.table_name%TYPE;
 BEGIN
 Pstatus := 0; -- OK

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0230-0232.html

 Lowner := UPPER(Powner);
 Ltable := UPPER(Ptable);
 OPEN table_cur(Lowner, Ltable);
 FETCH table_cur INTO Prec;
 IF (table_cur%NOTFOUND) THEN
 RAISE NO_DATA_FOUND;
 END IF;
 CLOSE table_cur;
 EXCEPTION
 WHEN OTHERS THEN
 BEGIN
 Pstatus := SQLCODE; -- capture error code
 IF (table_cur%ISOPEN) THEN -- close the open cursor

 continues

Page 234

Listing 10.27 Continued

 CLOSE table_cur;
 END IF;
 Prec := NULL; -- clear return values and display input values
 DBMS_OUTPUT.put_line(`get_table: ` || SQLERRM(Pstatus));
 DBMS_OUTPUT.put_line(`OWNER = ` || `<` || Lowner || `>');
 DBMS_OUTPUT.put_line(`TABLE = ` || `<` || Ltable || `>');
 EXCEPTION
 WHEN OTHERS THEN
 NULL; -- don't care (avoid infinite loop)
 END;
 END get_table;
BEGIN -- display storage parameters for a given table
 DBMS_OUTPUT.enable;
 DBMS_OUTPUT.put_line(`TABLE' || TB || `TABLESPACE' || TB ||
 `INITIAL' || TB || `NEXT' || TB || `MAX');
 DBMS_OUTPUT.put_line(RPAD(`-', 43, `-')); -- just an underline
 get_table(`scott', `dept', table_rec, status);
 IF (status = 0) THEN
 DBMS_OUTPUT.put_line(
 table_rec.table_name || TB ||
 table_rec.tablespace_name || TB ||
 table_rec.initial_extent || TB ||

 table_rec.next_extent || TB ||
 table_rec.max_extents);
 END IF;
 get_table(`scott', `garbage', table_rec, status);
 IF (status = 0) THEN
 DBMS_OUTPUT.put_line(
 table_rec.table_name || TB ||
 table_rec.tablespace_name || TB ||
 table_rec.initial_extent || TB ||
 table_rec.next_extent || TB ||
 table_rec.max_extents);
 END IF;
END;
/

The server returns the following:

TABLE TABLESPACE INITIAL NEXT MAX

DEPT USER_DATA 10240 10240 121
get_table: ORA-01403: no data found
OWNER = <SCOTT>
TABLE = <GARBAGE>
PL/SQL procedure successfully completed.

If you anticipate an exact match using a unique key, manage the cursor yourself and perform exactly one
fetch. When detecting no rows, close the cursor in the exception handler, rather than inside the
conditional block (it has to be closed in the exception block anyway, so why code it three times?). Note
that you must raise the predefined exception NO_DATA_FOUND,

Page 235

because the fetch does not generate one automatically. The input values are converted to uppercase
using local variables because the converted values are used in more than one place.

Also take note of the additional information displayed by the exception handler. Why not take the
opportunity to show the key values that the exception occurred on? This would be especially valuable
when processing a large number of rows. This information could also have been dumped to an error
table for post mortem analysis.

You might be thinking, "I can get the same information with a simple SELECT statement. What does all
this buy me?" In the larger scheme of things, canned queries are more efficient because they can be

found in the shared SQL area and reused. The manual control of the cursor with its single fetch is
certainly more efficient, especially when it is run thousands of times over and over. Remember, your
goal is to write efficient applications. After you have the row that was found, you can programmatically
do anything you want with it. You have total flexibility and control, yet the underlying procedure is
coded once and reused.

Listing 10.28 shows another example that implements a binary search on a PL/SQL table containing
numeric values.

Listing 10.28 bintest.sql—A Binary Search Routine Made Easy to Use with a Procedure

SET SERVEROUTPUT ON
DECLARE
 -- constants
 FIXED_TOP CONSTANT NUMBER := 12; -- fixed # of elements
 -- data types
 TYPE NUMARR_TYPE IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 -- global variables
 numarr NUMARR_TYPE;
 isfound BOOLEAN;
 rowout NUMBER;

 -- routines
 PROCEDURE binary_search(-- binary search on sorted array
 Parr IN NUMARR_TYPE,
 Pnum IN NUMBER,
 Pfound OUT BOOLEAN,
 Prow OUT NUMBER) IS
 local_found BOOLEAN := NULL;
 top BINARY_INTEGER := FIXED_TOP;
 bottom BINARY_INTEGER := 1;
 middle BINARY_INTEGER := NULL;
 BEGIN
 local_found := FALSE;
 LOOP -- binary search
 middle := ROUND((top + bottom) / 2); -- find middle
 IF (Parr(middle) = Pnum) THEN -- exact match
 local_found := TRUE; -- match succeeded
 EXIT; -- break

 continues

Page 236

Listing 10.28 Continued

 ELSIF (Parr(middle) < Pnum) THEN -- GO UP
 bottom := middle + 1;
 ELSE -- GO DOWN
 top := middle - 1;
 END IF; -- test for match
 IF (bottom > top) THEN -- search failed
 IF (Pnum > Parr(middle)) THEN
 middle := middle + 1; -- MAY BE OUTSIDE ARRAY!
 END IF; -- insert after
 EXIT;
 END IF; -- failed
 END LOOP; -- search
 Pfound := local_found;
 Prow := middle;
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE(SQLERRM(SQLCODE));
 DBMS_OUTPUT.PUT_LINE(TO_CHAR(middle));
 END binary_search;

 FUNCTION bool_to_char(Pbool IN BOOLEAN) -- convert Boolean to char
 RETURN VARCHAR2 IS
 str VARCHAR2(5); -- capture string to return
 BEGIN
 IF (Pbool) THEN -- test Boolean value for TRUE
 str := `TRUE';
 ELSIF (NOT Pbool) THEN -- FALSE
 str := `FALSE';
 ELSE -- must be NULL
 str := `NULL';
 END IF; -- test Boolean value
 RETURN (str);
 END bool_to_char;
BEGIN -- bintest executable code
 DBMS_OUTPUT.enable;
 numarr(1) := 100; -- fill array with numbers in order
 numarr(2) := 103;
 numarr(3) := 104;
 numarr(4) := 108;

 numarr(5) := 110;
 numarr(6) := 120;
 numarr(7) := 121;
 numarr(8) := 122;
 numarr(9) := 130;
 numarr(10) := 140;
 numarr(11) := 145;
 numarr(12) := 149;
 binary_search(numarr, 90, isfound, rowout);
 DBMS_OUTPUT.put_line(`FOUND=' || bool_to_char(isfound) ||
 `, ROW=' || TO_CHAR(rowout) || ` SB=1');
 binary_search(numarr, 150, isfound, rowout);
 DBMS_OUTPUT.put_line(`FOUND=' || bool_to_char(isfound) ||
 `, ROW=' || TO_CHAR(rowout) || ` SB=13');

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0230-0232.html

Previous | Table of Contents | Next

Page 243

 -- local record variables
 show_index_rec show_index_cur%ROWTYPE; -- based on cursor
 old_index_info show_index_cur%ROWTYPE; -- used to detect control
break
 -- local variables
 status NUMERIC;
 local_table all_indexes.table_name%TYPE;
BEGIN
 status := 0;
 local_table := UPPER(Ptable); -- make upper case
 old_index_info.table_owner := `GARBAGE_OWNER'; -- initialize
 old_index_info.table_name := `GARBAGE_TABLE';
 IF (local_table IS NULL) THEN -- one table or all?
 DBMS_OUTPUT.put_line(`User ` || USER || `: Index Information for
All ÂTables');
 ELSE

 DBMS_OUTPUT.put_line(`User ` || USER || `: Index Information for
Table `
|| Âlocal_table);
 END IF; -- one table or all?
 OPEN show_index_cur(local_table);
 LOOP -- get index information
 FETCH show_index_cur INTO show_index_rec;
 EXIT WHEN show_index_cur%NOTFOUND;
 IF (old_index_info.table_owner != show_index_rec.table_owner OR
 old_index_info.table_name != show_index_rec.table_name) THEN
-- Âcontrol break
 DBMS_OUTPUT.put_line(TB); -- double spacing between tables
 END IF;
 DBMS_OUTPUT.put_line(`Table Owner: ` || show_index_rec.
table_owner || TB ||
 `Table: ` || show_index_rec.table_name);

 DBMS_OUTPUT.put_line(`Index: ` || show_index_rec.index_name

Â|| TB || ` in ` ||
 show_index_rec.tablespace_name || TB ||

 show_index_rec.uniqueness || TB
|| show_index_rec.status);
 old_index_info := show_index_rec; -- copy new values to old
 END LOOP; -- get index information
 CLOSE show_index_cur;
EXCEPTION
WHEN OTHERS THEN
 BEGIN
 status := SQLCODE;
 DBMS_OUTPUT.put_line(`show_index: ` || SQLERRM(status)); --
display
error message
 IF (show_index_cur%ISOPEN) THEN -- close any open cursors
 CLOSE show_index_cur;
 END IF;

 EXCEPTION
 WHEN OTHERS THEN
 NULL; -- don't care
 END;
END show_index;
/

This time, the server responds with:

Procedure created.

Page 244

To execute this procedure, you can call it from an anonymous PL/SQL block, or you can use the
EXECUTE command for one-liners.

NOTE

The EXECUTE command can only be used to run one-line statements. If your statement
spans two or more lines, you must use an anonymous PL/SQL block (using BEGIN ..
END). If you can cram two or more statements onto a single line, you can still use
EXECUTE. In fact, EXECUTE expands to a BEGIN .. END block on one line. It's just a
shorthand.

EXECUTE show_index(`DEPT');

On my system I get:

User SYSTEM: Index Information for Table DEPT

Table Owner: SYSTEM Table: DEPT
Index: DEPT_PRIMARY_KEY in USER_DATA UNIQUE VALID

PL/SQL procedure successfully completed.

The first time I run this stored procedure, I have to wait for the server to load it into memory. On
subsequent calls, running it is much faster because it's already loaded.

This particular example shows some fine features you'll want in your own stored procedures. I always
try to be consistent with the organization of local variable declarations, always putting them in the same
order. Also, notice the block inside the exception handler to close the cursor in case an error leaves it
open. If you don't do this and you do have an exception, the next time you run the stored procedure you
will immediately bomb with a CURSOR_ALREADY_OPEN exception. Your users would have to
reconnect in order to clear the open cursor because the cursor remains open for the duration of a session
until either the cursor is closed or the session is terminated.

If the user wants all tables and their indexes that are visible, simply drop the single input parameter (and
parentheses in this case), as with:

EXECUTE get_index;

You have to put yourself in your users' (in this case, developers') shoes to anticipate the various ways in
which they might want to use this tool. Better yet, go ask them. You'll be surprised at the answers you'll
get.

Calling Stored Programs from SQL

Suppose you aren't satisfied with the Oracle-supplied TO_NUMBER() built-in function. Your complaint
with it might be that when a character-to-number conversion fails because the string doesn't represent a
valid number, the SQL fails and terminates abruptly. What you'd prefer is that, at the very least, the error
is handled gracefully so that processing can continue with the rest of the data set. Let's try to cure this
problem with a stored function, as shown in Listing 11.4.

Page 245

Listing 11.4 char2num.sql—Character-to-Number Conversion

CREATE OR REPLACE FUNCTION char_to_number(Pstr IN VARCHAR2, Pformat IN
VARCHAR2 DEFAULT NULL)
RETURN NUMBER IS
BEGIN
 IF Pformat IS NULL THEN -- optional format not supplied
 RETURN (TO_NUMBER(Pstr));
 ELSE
 RETURN (TO_NUMBER(Pstr, Pformat)); -- format supplied
 END IF; -- test for optional format
EXCEPTION
WHEN OTHERS THEN -- unknown value
 RETURN (NULL);
END char_to_number;
/

You can run this stored function in two ways:

● From a PL/SQL block
● Within an SQL statement

First, try it from a PL/SQL block, as shown in Listing 11.5.

Listing 11.5 testc2n1.sql—Testing char_to_number() from a PL/SQL Block

DECLARE
 v VARCHAR2(1) := 0;
 w VARCHAR2(10) := `999.999'; -- try a floating point number
 x VARCHAR2(11) := `+4294967295'; -- try a big positive number
 y CHAR(11) := `-4294967296'; -- try a big negative number
 z VARCHAR2(10) := `garbage'; -- this is NOT a number!
BEGIN
 -- stored function returns NULL on error, so convert NULL to error
message
 DBMS_OUTPUT.put_line(v || ` is ` || NVL(TO_CHAR(char_to_number(v)),
`NOT
A ÂNUMBER!'));
 DBMS_OUTPUT.put_line(w || ` is ` || NVL(TO_CHAR(char_to_number(w)),
`NOT
A ÂNUMBER!'));
 DBMS_OUTPUT.put_line(x || ` is ` || NVL(TO_CHAR(char_to_number(x)),
`NOT
A ÂNUMBER!'));

 DBMS_OUTPUT.put_line(y || ` is ` || NVL(TO_CHAR(char_to_number(y)),
`NOT
A ÂNUMBER!'));
 DBMS_OUTPUT.put_line(z || ` is ` || NVL(TO_CHAR(char_to_number(z)),
`NOT
A ÂNUMBER!'));
END;
/

The server responds:

0 is 0
999.999 is 999.999
+4294967295 is 4294967295
-4294967296 is -4294967296
garbage is NOT A NUMBER!

Page 246

PL/SQL procedure successfully completed.

Okay, now let's try it in a SQL statement, as shown in Listing 11.6.

Listing 11.6 testc2n2.sql—Running char_to_number() from SQL

SELECT `0' str,
 NVL(TO_CHAR(char_to_number(`0')), ` IS NOT A NUMBER!') num
FROM DUAL;
SELECT `999.999' str,
 NVL(TO_CHAR(char_to_number(`999.999')), ` IS NOT A NUMBER!')
num
FROM ÂDUAL;
SELECT `+4294967295' str,
 NVL(TO_CHAR(char_to_number(`+4294967295')), ` IS NOT A
NUMBER!') num
FROM ÂDUAL;
SELECT `-4294967296' str,
 NVL(TO_CHAR(char_to_number(`-4294967296')), ` IS NOT A
NUMBER!') num
FROM ÂDUAL;
SELECT `garbage' str,
 NVL(TO_CHAR(char_to_number(`garbage')), ` IS NOT A NUMBER!')

num
FROM ÂDUAL;

And you get the same answers as above. It looks kind of goofy converting back to a string when you just
got through converting from a string to number, but still it verifies the operation of the stored function,
particularly in the last query shown.

Just for fun, let's write the converse of bool_to_char(), called appropriately char_to_bool() (see Listing
11.7).

Listing 11.7 chr2bool.sql—Converting a String to Boolean

CREATE OR REPLACE FUNCTION char_to_bool(Pstr IN VARCHAR2) RETURN
BOOLEAN IS
 Lstr VARCHAR2(32767); -- max string length
 Lbool BOOLEAN := NULL; -- local Boolean value (default)
BEGIN
 Lstr := UPPER(LTRIM(RTRIM(Pstr))); -- remove leading/trailing
spaces,

Âuppercase
 IF (Lstr = `TRUE') THEN
 Lbool := TRUE;
 ELSIF (Lstr = `FALSE') THEN
 Lbool := FALSE;
 END IF;
 RETURN(Lbool);
END char_to_bool;
/

Now, let's test it with the PL/SQL statement shown in Listing 11.8.

Listing 11.8 testc2b1.sql—Testing char_to_bool() in a PL/SQL Block

BEGIN
 IF (char_to_bool(` true `)) THEN
 DBMS_OUTPUT.put_line(`''Tis True!');

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 247

 END IF;
 IF (NOT char_to_bool(` False')) THEN
 DBMS_OUTPUT.put_line(`''Tis Untrue!');
 END IF;
 IF (char_to_bool(`NULL `) IS NULL) THEN
 DBMS_OUTPUT.put_line(`Don''t Care!');
 END IF;
END;
/

The server responds:

'Tis True!
'Tis Untrue!
Don't Care!
PL/SQL procedure successfully completed.

Now try it in a SQL statement.

SELECT char_to_bool(`true') FROM DUAL;

But this time, the server responds:

ERROR:
ORA-06550: line 1, column 12:
PLS-00382: expression is of wrong type
ORA-06550: line 1, column 7:
PL/SQL: Statement ignored

no rows selected

What happened? There's no Boolean data type in SQL. The return value of the function is an unknown
SQL data type. The PL/SQL engine has determined that the data type is inappropriate within the context
of a SQL statement. The SQL engine subsequently returns no rows.

Calling Stored Programs from PL/SQL

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0250-0253.html

You've already seen how to invoke a stored subprogram from a PL/SQL block. What's a high value use
for them? Have you ever tried to compose a query that has a 14-table join? Instead, create a bunch of
single-row lookup routines for each master table whose key you would have used in a join. Then, in a
PL/SQL block, code just the minimal tables required to drive a cursor loop. Inside the loop, perform the
single-row lookups for the attendant data values. Using this technique, I've seen speed improvements of
4,000%. Queries that used to run in 20 minutes can be run in 30 seconds or faster, using this technique.
If you're using some sort of report writer to format the output, you can write the data to a temporary
table, which can then be scanned by the reporting tool. Obviously, this slows things down somewhat, but
it's still faster than bogging down the Oracle Server with a huge, complex query. Plus, it's easier to
verify the correctness of the output. If you rigorously test the single-row lookup routines, the only facet
you'll have to validate is the substantially smaller query.

Page 248

Now think about how many times you had to code an outer join in a complex query. In a PL/SQL block,
it's a piece of cake to test the single-row lookup for no data found, and skip to the end of the loop or
carry on, as needed. For example, a Claims Processing program might have a loop in it that looks
something like this:

LOOP -- process all claims for the period selected
 FETCH claims_cur INTO claims_rec;
 EXIT WHEN claims_cur%NOTFOUND;
 -- get related table info
 get_claimant_info(claims_rec.claimant_ssn, status);
 get_provider_info(claims_rec.provider_id, status);
 get_approval_info(claims_rec.approvedby, status);
 IF (status != 0) THEN -- no approval on file!
 GOTO SKIPIT; -- skip processing claim
 END IF;
 ... -- more single row lookups, claims processing
 <<SKIPIT>> -- continue with next claim
END LOOP; -- process all claims for the period selected

where status is passed back the SQLCODE result value of the single-row lookup. To make this example
really useful, you need to dump information about why the claim wasn't processed (no approval) to some
sort of application error table. Even better, inside the lookup routine you could dump the lookup key and
error code to an errors table of your design. Then you could later determine the subroutine and key
values that caused a claim to go unprocessed. The calling program could then dump additional data
(such as context information) to make troubleshooting easier.

Another use for stored procedures is to implement business rules. Then, the rule can be invoked from a
trigger, a client program, or another PL/SQL program. For example:

CREATE OR REPLACE TRIGGER check_approval_status
 BEFORE INSERT ON claim_disbursal
 DECLARE
 status NUMERIC;
 BEGIN -- check for approval
 get_approval_info(:new.approvedby, status);
 IF (status != 0) THEN -- no approval on file!
 RAISE_APPLICATION_ERROR(-20100, `No approval on file!');
 END IF;
 END; -- check for approval
END check_approval_status;

Here, the application-defined exception causes an INSERT to be rolled back. The business rule is
defined by a single stored procedure, which can now be used in many places. Should the rule require
modification, it can be changed within the body of the stored procedure. The dependent PL/SQL code
would then only need to be recompiled.

Debugging with Show Errors

Up to now, your stored procedures have compiled flawlessly. Unfortunately, you can expect to make
mistakes leading to compilation errors (I know I do). Fortunately, the information to debug them is at
hand. However, the feature provided by Oracle to observe them has some limitations, given its relative
simplicity, but there is a better solution.

Page 249

When your unnamed PL/SQL blocks failed to compile, the server dumped the error information straight
back to SQL*Plus. With stored subroutines, the procedure is a little different. Immediately after the
failed compilation, you type:

SHOW ERRORS

Then, all the errors and the line numbers on which they occurred are displayed for your perusal.

NOTE

SHOW ERRORS only shows the errors for the last stored subprogram or package
submitted for compilation. If you submit two in a row, and the first has errors, SHOW
ERRORS will only show errors for the second one (if any occurred). However, the error
information for both is still available in USER_ERRORS.

Consider the bug-infested code shown in Listing 11.9.

Listing 11.9 showerr1.sql—Show errors Procedure, First Pass

CREATE OR REPLACE PROCEDURE showerr1(
 Pname IN user_errors.name%TYPE,
 Ptype IN user_errors.type%TYPE) IS
 CURSOR get_errors(Cname IN user_errors.name%TYPE,
 Ctype IN user_errors.type%TYPE) IS
 SELECT * FROM USER_ERRORS
 WHERE name = Cname AND type = Ctype
 ORDER BY SEQUENCE;
 get_errors_rec get_errors%TYPE;
 status NUMERIC := 0;
 Lname user_errors.name%TYPE;
 Ltype user_errors.type%TYPE;
BEGIN
 Lname := UPPER(Pname);
 Ltype := UPPER(Ptype);
 DBMS_OUTPUT.put_line(`Compilation errors for ` || Lname);
 OPEN get_errors(Lname, Ltype);
 LOOP -- display all errors for this object
 FETCH get_errors INTO get_errors_rec;
 EXIT WHEN get_errors%NOTFOUND
 DBMS_OUTPUT.put_line(`At Line/Col: ` || get_errors_rec.line ||
 `/' || get_errors_rec.position);
 DBMS_OUTPUT.put_line(get_errors_rec.text);
 END LOOP; -- display all errors
 CLOSE get_errors;
 DBMS_OUTPUT.put_line(`Errors Found: ` || TO_CHAR(errs));
EXCEPTION
WHEN OTHERS THEN
 BEGIN
 status := SQLCODE;
 IF (get_errors%ISOPEN) THEN -- cursor still open
 CLOSE get_errors;
 END IF;
 END;
END showerr1;
/.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0250-0253.html

Previous | Table of Contents | Next

Page 271

Chapter 12

Using Supplied Oracle Database
Packages

In this chapter

● About the Supplied Oracle Database Packages 272
● Describing Supplied Packages 272
● Getting Started with the Oracle-Supplied 274 Packages
● Hands-On with the Oracle-Supplied Packages 277

Page 272

About the Supplied Oracle Database Packages

Aside from the STANDARD package that gives the Oracle Server its basic functionality, such as your
basic subtype declarations and data type conversion routines, there is a set of packages intended for use
by DBAs and developers. These packages are distinguished by their names, which begin with DBMS_
or UTL_, meaning they interact with the database or provide general- purpose utilities. First, we'll take a
quick look at these packages and afterwards examine them more closely.

Interaction Within the Server

Most of the Oracle-supplied packages work on data within the server environment: data dictionary
items, user database objects, or objects found solely within the System Global Area, like the shared
memory pool. With them, you can manage snapshots, recompile program units, generate asynchronous
alerts when database entries change, run jobs, and so on.

Many of these packages interface with functionality built into the database application or extends the
database environment with calls to loadable external modules, such as DLLs. It's
not expected or necessary that you understand or use these module entry points. I'd go so far as to say
you're definitely not supposed to try to use them directly, but rather, through the
PL/SQL programmatic interface provided.

Interaction Beyond the Server

Some packages give feedback to the calling context or otherwise provide an interface to
an external process. The Oracle pipe feature, for example, is intended as a method for intersession
communication that is strictly memory only—no database objects are used for intermediate storage. As
another example, the DBMS_OUTPUT package allows the display of print statements when running PL/
SQL programs in SQL*Plus.

Getting More Information from Your Server

Several packaged routines enable you to obtain additional tuning information about your database
server, such as shared memory pool usage, segment space information, running traces, getting general
database information, and so on. Once you get used to using them, they'll become a standard part of your
toolbox.

Describing Supplied Packages

Table 12.1 is a handy, quick reference of each Oracle-supplied package and a brief description of what it
contains.

Page 273

Table 12.1 Summary of Supplied Packages

Package Name
Package
Header
File

Description

DBMS_ALERT
dbmsalrt.
sql

Asynchronous
handling of
database events.

DBMS_APPLICATION_INFO
dbmsutil.
sql

Register the name
of the application
that's currently
running (for
performance
monitoring).

DBMS_DDL
dbmsutil.
sql

Recompile stored
subprograms and
packages, analyze
database objects.

DBMS_DESCRIBE
dbmsdesc.
sql

Describe
parameters for a
stored
subprogram.

DBMS_JOB
dbmsjob.
sql

Run user-defined
jobs at a specified
time or interval.

DBMS_LOCK
dbmslock.
sql

Manage database
locks.

DBMS_OUTPUT
dbmsotpt.
sql

Write text lines to
a buffer for later
retrieval and
display.

DBMS_PIPE
dbmspipe.
sqlz

Send and receive
data between
sessions via a
memory "pipe."

DBMS_REFRESH
dbmssnap.
sql

Manage groups of
snapshots that can
be refreshed
together.

DBMS_SESSION
dbmsutil.
sql

Perform Alter
Session
statements
programmatically.

DBMS_SHARED_POOL
dbmspool.
sql

View and manage
the contents.

DBMS_SNAPSHOT
dbmssnap.
sql

Refresh, manage
snapshots, and
purge snapshot
logs.

DBMS_SPACE
dbmsutil.
sql

Get segment
space
information.

DBMS_SQL
dbmssql.
sql

Perform dynamic
SQL and PL/
SQL.

DBMS_SYSTEM
dbmsutil.
sql

Turn on/off SQL
trace for the given
session.

DBMS_TRANSACTION
dbmsutil.
sql

Manage SQL
transactions.

 continues

Page 274

Table 12.1 Continued

Package Name
Package Header
File

Description

DBMS_UTILITY dbmsutil.sql

Various Utilities: For a
given schema,
recompile stored
subprograms and
packages, analyze
database objects, format
error and call stacks for
display, display whether
instance is running in
parallel server mode,
get the current time in
10ms increments,
resolve the full name of
a database object,
convert a PL/SQL table
to a comma-delimited
string or vv., get a
database version/
operating system string.

UTL_RAW utlraw.sql
String functions for
RAW data type.

UTL_FILE# utlfile.sql
Read/write ASCII-based
operating system files.

UTL_HTTP+ utlhttp.sql
Get an HTML-
formatted page from a
given URL.

DBMS_LOB+ dbmslob.sql Manage large objects.

Oracle7.3 and later

+ Oracle8.0 and later

Getting Started with the Oracle-Supplied Packages

Before you can use the routines contained in the Oracle-supplied packages, you should first check that
they've been installed and are valid. The DBA can run the following query:

SELECT object_name, object_type, status
FROM dba_objects
WHERE owner='SYS' AND object_type LIKE `PACKAGE%'
ORDER BY object_name, object_type;

This should give you a list similar to the following:

OBJECT_NAME OBJECT_TYPE STATUS
------------------------------ ------------ ------
DBMS_ALERT PACKAGE VALID
DBMS_ALERT PACKAGE BODY VALID
DBMS_APPLICATION_INFO PACKAGE VALID
DBMS_APPLICATION_INFO PACKAGE BODY VALID

Page 275

DBMS_DDL PACKAGE VALID
DBMS_DDL PACKAGE BODY VALID
DBMS_DESCRIBE PACKAGE VALID
DBMS_DESCRIBE PACKAGE BODY VALID
DBMS_JOB PACKAGE VALID
DBMS_JOB PACKAGE BODY VALID
DBMS_LOCK PACKAGE VALID
DBMS_LOCK PACKAGE BODY VALID
DBMS_OUTPUT PACKAGE VALID
DBMS_OUTPUT PACKAGE BODY VALID
DBMS_PIPE PACKAGE VALID
DBMS_PIPE PACKAGE BODY VALID
DBMS_REFRESH PACKAGE VALID
DBMS_REFRESH PACKAGE BODY VALID
DBMS_SESSION PACKAGE VALID
DBMS_SESSION PACKAGE BODY VALID

DBMS_SHARED_POOL PACKAGE VALID
DBMS_SHARED_POOL PACKAGE BODY VALID
DBMS_SNAPSHOT PACKAGE VALID
DBMS_SNAPSHOT PACKAGE BODY VALID
DBMS_SPACE PACKAGE VALID
DBMS_SPACE PACKAGE BODY VALID
DBMS_SQL PACKAGE VALID
DBMS_SQL PACKAGE BODY VALID
DBMS_SYSTEM PACKAGE VALID
DBMS_SYSTEM PACKAGE BODY VALID
DBMS_TRANSACTION PACKAGE VALID
DBMS_TRANSACTION PACKAGE BODY VALID
DBMS_UTILITY PACKAGE VALID
DBMS_UTILITY PACKAGE BODY VALID

There will be some other packages not shown here, but we won't be concerning ourselves with them.
Most of these additional packages are not intended to be called by user applications, but rather are for
internal use only.

Locating the DBMS Packages

The Oracle-supplied packages are located in <ORACLE_HOME>\RDBMS<version>\ADMIN where
ORACLE_HOME is the path to the Oracle Home directory (you can check the system variable of the
same name in UNIX or check the Registry entry under Windows 95/NT). version is the database version
you are running. You can examine the package header files listed in Table 12.1 for each of these
packages to see what routines and global variables are available.

You may also note the existence of files of the form prvt*.sql and prvt*.plb (for example, prvtpipe.sql
and prvtpipe.plb). The former are the package bodies for the supplied packages, in ASCII format. The
latter are binary compiled versions of the package body. The PLB files are recognizable by the PL/SQL
engine and result in a valid and executable package
body when submitted to the Oracle Server. These represent the "release" form of the package bodies.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 270

At the time I wrote this, I really had a weak understanding of the data dictionary views. After analyzing
and playing around with them, creating objects and then seeing what the different results were, I really
gained an appreciation for them. My enthusiasm level was very high after completing this project. It
really made me think. The DDL syntax for many of these database objects is very rich and complex. In
order to understand how constraints work, and how the rev_pkeys, rev_ukeys, rev_fkeys, and
rev_checks procedures work, create these constraints and see what data is stored in dba_constraints (the
constraint name and type), dba_cons_columns (the constraint columns), and dba_indexes (for the index
and storage parameters).

Some issues not implemented are how to handle disabled constraints (the storage parameters for the
related index are blank, which is really a syntax error— you have to add them manually), clusters (not
done), tablespaces (not done), users (not done), and so on.

I've found this a very handy utility, especially for old legacy applications whose DDL files have long
been deleted or outdated. I encourage you to examine it, try it, and hopefully take something from it to
use in your own PL/SQL masterpieces.

The last item I feel I need to point out is actually not part of the package proper, but rather follows it.
The grant and synonym created for it make the package available to all.

GRANT EXECUTE ON rev_eng TO PUBLIC;
CREATE PUBLIC SYNONYM REV_ENG FOR REV_ENG;

It's a very good idea to include these items here, so that you document for whom the package is intended
and manage privileges locally to the module. This will save you and all following DBAs that much
trouble later on.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 267

when I wish to default the parameter to NULL in order to specify a "don't care" value for this column. If
the parameter value is supplied, the WHERE clause will match on it; otherwise, the column is
effectively ignored, for the purpose of matching.

The cursor get_constraints is actually used by all the constraint routines that need to check for the
constraint type, so I gained some coding efficiency here. I generalized the cursor just enough to avoid
having to declare various flavors of what's essentially the same cursor. Cursors are probably one of your
bigger memory hogs. The cursor get_index_params also falls into the reuse bin. I broke out this
information into a separate cursor, even though I could have shoved it messily into another, because it
was cleaner this way. In general, I think I avoided joins because the underlying data dictionary tables are
difficult to decipher. Try looking at the Explain Plans for some of the dba_* views. Besides, they're
potentially more flexible as separate objects, which enables me to combine them as needed in nested
loops.

Below the cursor declarations are the global, private variables. The known_indexes PL/SQL table stores
the names of all indexes you have already processed. The known_indexes array can be cleared using the
clear_indexes array by simply assigning clear_indexes to known_indexes.

known_indexes := clear_indexes; -- clear table (7.2)
known_indexes.DELETE; -- clear table (7.3)

You never assign values to the elements of clear_indexes. It is always left empty. This is the standard
method of clearing a PL/SQL table in Oracle7.2. In Oracle7.3, you can use the PL/SQL table attribute
DELETE to clear all elements.

In order to simplify existence checks for the index presently being examined, I wrote the function
idx_already_rev. Since the only way to check the array for an index name is to loop through all its
entries, this function hides this implementation detail in an easy-to-use manner, as with:

 IF (idx_already_rev(get_indexes_rec.index_name)) THEN
 GOTO SKIPIT; -- index was already reverse engineered
 END IF;

which is pretty readable.

Due to a bug between SQL*Plus and DBMS_OUTPUT in Oracle7.2 that causes leading whitespace to
be trimmed, I use tabs heavily for indentation. A variety of character constants help me in this endeavor.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0264-0266.html

NOTE

In Oracle7.3 and later, use set serveroutput on format wrapped to prevent leading
whitespace from being trimmed.

I created a date-formatting string because I write out the date everywhere, and this was a decent code
reducer. If you wanted to change the date format, you only need to do it in one place.

-- declare global constant data
 CR CONSTANT VARCHAR2(1) := CHR(13); -- carriage return character
...
 DFORMAT CONSTANT VARCHAR2(20) := `DD-MON-YYYY HH:MI:SS'; -- date
format

Page 268

 -- declare global data
 status NUMERIC;
...
-- record variables
 get_tables_rec get_tables%ROWTYPE;
...

These global private variables were added here instead of within procedures because, again, I never
knew where I'd actually use them, and some I use in more than one subprogram. Also, it was a helpful
organizational aid; I could see how far along I'd gotten with the implementation by checking these,
especially the cursor record variables. I only defined them as I went along, instead of trying to
enumerate them all up front.

The private local routine get_parent_table is a "helping" routine used further down. It's up here and not
inside the one procedure that calls it because, again, I didn't know beforehand where it might be used.
The most annoying thing is to overly restrict yourself and then be forced to move chunks of code around
the module. This routine uses an implicit cursor so I can detect the TOO_MANY_ROWS exception.

Note that all the exception handler sections have similar coding constructs. I always follow the same
general method for writing exception handlers. I trap the error, display or store it, clean up potentially
open cursors, and set any return values to default values.

EXCEPTION

 WHEN OTHERS THEN
 BEGIN
 status := SQLCODE;
 DBMS_OUTPUT.put_line(`-- rev_indexes ERROR: ` || SQLERRM
(status));
 IF (get_index_cols%ISOPEN) THEN
 CLOSE get_index_cols;
 END IF;
 IF (get_indexes%ISOPEN) THEN
 CLOSE get_indexes;
 END IF;
 EXCEPTION
 WHEN OTHERS THEN
 NULL; -- don't care
 END;
 END rev_indexes;

The displayed error message is printed as a comment because I intended the programs' output to be
spooled to a file and I didn't want to muck it up with stuff the user might have to cut out to get the
resulting SQL file to run. Each exception handler tells you what its name is for easier debugging. Return
values, if any, are set to NULL. Any cursors that might be open are closed. The entire exception handler
is placed in its own block to avoid a potential infinite loop on any operation done inside the exception
handler.

I wound up having to write put_long_line because of a line length limitation with DBMS_OUTPUT,
particularly when printing the long text for views. It seemed like such a generally useful thing, so I made
it public. This routine looks for suitable places to break long lines. I think I must have coded it five times
over before I handled every situation correctly. And lest you think me

Page 269

less than analytical, I wrote out all the cases and logic on paper (also five times)! Sometimes, it's easy to
miss things. Actually, the cases became more refined and the logic more concise with repetition.

TIP

For complex, difficult code pieces, it's a good idea to write out on paper beforehand all
the cases and logic goals before attempting a coding solution. Then exercise the
algorithm on paper to see if you missed anything.

Designing the Procedures

Turns out most of the main routines have similar elements suitable for a cut and paste operation,
especially with things like converting strings to uppercase and storing in local variables.

 Lowner dba_tables.owner%TYPE;
 Ltspace dba_tables.tablespace_name%TYPE;
 Ltable dba_tables.table_name%TYPE;
 BEGIN
 status := 0;
 Lowner := UPPER(Powner);
 Ltspace := UPPER(Ptspace);
 Ltable := UPPER(Ptable);

Note that status is a global private variable and thus it must be initialized in each routine. I've found
from other projects that I might want to test certain variables in places other than in the most obvious,
inside the procedures using them, so historically I've always defined status this way. Old habits die hard.
When I start fleshing out a new package, I add in early the common elements I know I'll need. That's
why they wind up being global private items. This way, I can test the value of status outside of any of
the procedures that modify it. It's guaranteed to be available to all routines without having to remember
to declare it everywhere.

The comment headers for each subprogram, and therefore each DDL statement generated, are printed
with the following code:

 IF (Ltable IS NULL) THEN -- parameter comments
 DBMS_OUTPUT.put(`-- ALL TABLES');
 ELSE
 DBMS_OUTPUT.put(`-- TABLE ` || Ltable);
 END IF;
 DBMS_OUTPUT.put_line(` FOR OWNER ` || Lowner ||
 `, TABLESPACE ` || Ltspace);
 DBMS_OUTPUT.put_line(`-- PERFORMED ` || TO_CHAR(SYSDATE,
DFORMAT));

This stuff was added late in the game, and required modification of every procedure, but it was really a
no-brainer after setting up the pattern.

Wrapping Up the Package

This package makes heavy use of the DBA data dictionary views for tables, indexes, constraints, views,
etc. I chose the DBA views so that users could reverse-engineer any schema, not just their own or ones
they have privileges on. This was especially important because an index, foreign key reference, or grant

might be made by a user other than the schema owner.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0264-0266.html

Previous | Table of Contents | Next

Page 276

CAUTION

Do not attempt to modify the package body of any of the Oracle-supplied packages for
recompilation.
You're liable to break something.

Making Sure the Packages Are Installed Correctly

You'll want to verify two things:

● The packages exist and are valid (as shown by the previous query).
● Users have EXECUTE privilege on them or the ones they intend to use.

A user can check to see if they have EXECUTE privilege on the Oracle supplied packages with the following query:

SELECT table_name, grantee
FROM all_tab_privs
WHERE grantor='SYS' and privilege='EXECUTE'
ORDER BY table_name;

A typical response might be

TABLE_NAME GRANTEE
------------------------------ ------------------------------
DBMS_APPLICATION_INFO PUBLIC
DBMS_DDL PUBLIC
DBMS_DESCRIBE PUBLIC
DBMS_JOB PUBLIC
DBMS_OUTPUT PUBLIC
DBMS_PIPE PUBLIC
DBMS_SESSION PUBLIC
DBMS_SNAPSHOT PUBLIC
DBMS_SPACE PUBLIC
DBMS_SQL PUBLIC
DBMS_STANDARD PUBLIC
DBMS_TRANSACTION PUBLIC
DBMS_UTILITY PUBLIC
DBMS_REFRESH PUBLIC
UTL_FILE PUBLIC

All of the Oracle-supplied packages should have been granted with EXECUTE to PUBLIC. I used the all_flavor of the
data dictionary view to verify this. If any are missing that you intend to use, the DBA can run the appropriate script as

SYS. If a package exists but is invalid, the DBA can recompile it with:

ALTER PACKAGE SYS.<name> COMPILE PACKAGE;

Where name is the name of the invalid package. The clause COMPILE PACKAGE tells Oracle to recompile the
package specification and body. If just the body needs to be recompiled,
instead run:

ALTER PACKAGE SYS.<name> COMPILE BODY;

Page 277

CAUTION

Some supplied packages may have dependencies on other packages. If you have to recompile a package
header, this invalidates any dependent packages. Check again that other packages are still valid after
recompiling. If only the body is recompiled, dependent packages are not invalidated. Any user-written
stored subprograms and packages may also likely be affected in this manner.

Hands-On with the Oracle-Supplied Packages

Now for the fun part! I'll illustrate some of the more interesting contents of each supplied
package with some reasonably simple and useful examples.

Monitoring Programs with DBMS_APPLICATION_INFO

This package enables developers to add application tracking information in the views v$sqlarea and v$session. The
kind of data that can be tracked is

● A module name (such as the name of the currently running application), a VARCHAR2 string up to 48 bytes,
stored in v$sqlarea.module and v$session.module.

● The current action (for example, "Update Customer Info," "Verify Credit Limit"), a VARCHAR2 string up to
32 bytes, stored in v$sqlarea.action and v$session.action.

● Any client-specific information, a VARCHAR2 string up to 64 bytes, stored in v$session.client_info.

Oracle doesn't do anything with this information; it's provided for the use of the DBA so he or she can run statistics
against each application and component operations. Strings longer than what's supported are truncated. Listing 12.1
shows a simple example.

Listing 12.1 appinfo.sql—Setting and Reading Application Information

DECLARE
 module VARCHAR2(48); -- application info
 action VARCHAR2(32);
 client VARCHAR2(64);
 ldate VARCHAR2(30); -- to capture system date
BEGIN

 DBMS_OUTPUT.enable;
 module := `CLAIM TRACKING';
 action := `VERIFY ELIGIBILITY';
 DBMS_APPLICATION_INFO.set_module(module, action);
 DBMS_APPLICATION_INFO.set_client_info(USER);
 DBMS_APPLICATION_INFO.read_module(module, action);
 DBMS_APPLICATION_INFO.read_client_info(client);
 DBMS_OUTPUT.put_line(client || ` is running ` || module || `: ` || action);

 continues

Page 278

Listing 12.1 Continued

 SELECT TO_CHAR(SYSDATE, `YYYY-MON-DD HH:MI:SS') INTO ldate
 FROM DUAL;
END;
/

The response I get is

SCOTT is running CLAIM TRACKING: VERIFY ELIGIBILITY

While this session is still up, the DBA can check who is doing what with:

COLUMN module FORMAT A20
COLUMN action FORMAT A20
COLUMN client_info FORMAT A20
SELECT client_info, module, action
FROM v$session
WHERE client_info IS NOT NULL;

To get:

CLIENT_INFO MODULE ACTION
-------------------- -------------------- --------------------
SCOTT CLAIM TRACKING VERIFY ELIGIBILITY

The DBA can then see the effects of everyone running this module and action
with:

SELECT
 sql_text, SUM(sharable_mem) smem, SUM(persistent_mem) pmem,
 SUM(runtime_mem) rmem, SUM(sorts) sorts, SUM(loads) loads,
 SUM(disk_reads) rdisk, SUM(buffer_gets) bget,
 SUM(rows_processed) prows
FROM v$sqlarea
WHERE module = `CLAIM TRACKING' AND action = `VERIFY ELIGIBILITY'

GROUP BY sql_text;

The results are pretty interesting:

SQL_TEXT
--
 SMEM PMEM RMEM SORTS LOADS RDISK BGET PROWS
-------- -------- -------- -------- -------- -------- -------- --------
SELECT TO_CHAR(SYSDATE,'YYYY-MON-DD HH:MI:SS') FROM DUAL
 4267 508 792 0 1 0 4 2

SELECT USER FROM SYS.DUAL
 3596 508 688 0 1 0 4 1

begin dbms_output.get_lines(:lines, :numlines); end;
 4317 592 420 0 1 0 0 1

The only query I explicitly made was the first one, but SQL*Plus apparently does some work behind the scenes.

Page 279

As a module performs different actions, the developers should make the appropriate calls to set_action() to reflect this.
In this manner, you can collect some interesting statistics on how badly an application is battering the server by query,
by action, by module, by user, or by groups of users.

NOTE

Even after a user disconnects, entries still exist in v$sqlarea until the related SQL gets aged out of the
SGA.

Recompiling Packages with DBMS_DDL

There are precisely two things you can do with this package:

● Recompile stored subprograms and packages with alter_compile().
● Analyze a table, index, or cluster with analyze_object().

A simple use for alter_compile() would be to find what stored program objects are invalid and then recompile them.
Listing 12.2 illustrates this.

Listing 12.2 recompil.sql—Recompile Invalid Program Objects Only

-- recompile invalid stored program objects
-- CAVEAT: does not take package dependencies
-- into account!
DECLARE
 CURSOR invalid_prog_obj IS

 SELECT object_name, object_type
 FROM user_objects
 WHERE status = `INVALID';
 rec invalid_prog_obj%ROWTYPE;
 status NUMERIC;
BEGIN
 DBMS_OUTPUT.enable;
 OPEN invalid_prog_obj;
 LOOP -- recompile each stored program object
 FETCH invalid_prog_obj INTO rec;
 EXIT WHEN invalid_prog_obj%NOTFOUND;
 DBMS_OUTPUT.put(`Recompile ` || rec.object_type ||
 ` ` || rec.object_name);
 DBMS_DDL.alter_compile(rec.object_type, NULL, rec.object_name);
 DBMS_OUTPUT.put_line(` SUCCESSFUL'); -- recompile succeeded
 END LOOP; -- invalid program objects
 CLOSE invalid_prog_obj;
EXCEPTION
WHEN OTHERS THEN
 BEGIN
 status := SQLCODE;
 DBMS_OUTPUT.put_line(` FAILED with ` || SQLERRM(status));
 IF (invalid_prog_obj%ISOPEN) THEN
 CLOSE invalid_prog_obj;
 END IF;

 continues

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 280

Listing 12.2 Continued

 EXCEPTION WHEN OTHERS THEN
 NULL; -- do nothing
 END;
END;
/

This might return something similar to the following:

Recompile FUNCTION TABLE_EXISTS SUCCESSFUL
1 Program Objects Recompiled
PL/SQL procedure successfully completed.

CAUTION

If a program object fails to recompile successfully, alter_compile will not tell you! After
running alter_compile, you should check the status of the package to make sure it
compiled successfully.

If you provide a program object name that doesn't exist, or you have the type wrong, you get:

ORA-20000: Unable to compile PACKAGE "BLICK", insufficient privileges
or does
not exist

You can programmatically analyze (generate statistics) for tables, indexes, and clusters. For example,
you could analyze all or selected objects in your schema, as shown in Listing 12.3.

Listing 12.3 runstats.sql—Running Statistics Programmatically

-- analyze all tables, indexes and clusters in your own schema
-- computes exact statistics
SET ECHO OFF
ACCEPT method PROMPT ` ANALYZE Method ([COMPUTE]|ESTIMATE|DELETE): `
ACCEPT estrow PROMPT ` IF ANALYZE Method is ESTIMATE, #Rows (0-n)

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0284-0286.html

[100]: `
ACCEPT estpct PROMPT ` IF ANALYZE Method is ESTIMATE, %Rows (0-99)
[20]: `
DECLARE
 -- application-defined exceptions
 bad_method EXCEPTION; -- user entered an invalid method
 bad_estrow EXCEPTION; -- user entered an invalid est. #rows
 bad_estpct EXCEPTION; -- user entered an invalid est. %rows
 -- cursors
 CURSOR analyze_obj IS
 SELECT object_name, object_type
 FROM user_objects
 WHERE object_type = ANY (`TABLE', `INDEX', `CLUSTER');
 -- constants
 METHOD CONSTANT VARCHAR2(30) := NVL(UPPER(`&&method'), `COMPUTE');
 -- variables
 estrow NUMBER := NVL(`&&estrow', `100'); -- user input est. #rows
 estpct NUMBER := NVL(`&&estpct', `20'); -- user input est. pct

Page 281

 rec analyze_obj%ROWTYPE;
 status NUMERIC := 0;
 cnt NUMERIC := 0;
BEGIN
 DBMS_OUTPUT.enable;
 -- validate user input
 IF (METHOD NOT IN (`COMPUTE', `ESTIMATE', `DELETE')) THEN
 RAISE bad_method;
 ELSIF (METHOD IN (`COMPUTE', `DELETE')) THEN -- ignore est. #/%row
 estrow := NULL;
 estpct := NULL;
 ELSE -- picked ESTIMATE; must provide either est. #rows or %rows
 IF (estrow < 1 AND estpct = 0) THEN
 RAISE bad_estrow;
 ELSIF (estpct NOT BETWEEN 1 AND 99) THEN
 RAISE bad_estpct;
 END IF;
 END IF; -- validate input

 OPEN analyze_obj;
 LOOP -- analyze schema objects
 FETCH analyze_obj INTO rec;

 EXIT WHEN analyze_obj%NOTFOUND;
 -- COMPUTE STATISTICS for this schema only
 DBMS_OUTPUT.put(`Analyze ` || METHOD || ` ` ||
 rec.object_type || ` ` || rec.object_name);
 DBMS_DDL.analyze_object(rec.object_type, NULL, rec.object_name,
`COMPUTE');
 DBMS_OUTPUT.put_line(` SUCCESSFUL');
 cnt := cnt + 1;
 END LOOP; -- analyze schema objects
 CLOSE analyze_obj;
 DBMS_OUTPUT.put_line(TO_CHAR(cnt) || ` objects analyzed');

EXCEPTION
WHEN bad_method THEN
 DBMS_OUTPUT.put_line(`Invalid Method! Must be COMPUTE, ESTIMATE or
DELETE only');
WHEN bad_estrow THEN
 DBMS_OUTPUT.put_line(`Invalid Est. #Rows! Must be >= 1');
WHEN bad_estpct THEN
 DBMS_OUTPUT.put_line(`Invalid Est. %Rows! Must be between 1 and
99');
WHEN OTHERS THEN
 BEGIN
 status := SQLCODE;
 DBMS_OUTPUT.put_line(` FAILED with ` || SQLERRM(status));
 IF (analyze_obj%ISOPEN) THEN
 CLOSE analyze_obj;
 END IF;
 EXCEPTION WHEN OTHERS THEN
 NULL;
 END;
END;
/

Page 282

Note all the input validation we have to do. Partly, this is because analyze_object does very little of its
own. If you provided a row estimate along with the COMPUTE method, for instance, you'll get:

Analyze TABLE <table> FAILED with ORA-01490: invalid ANALYZE command.

When I compute statistics by picking all the defaults, my run looks like this:

ANALYZE Method ([COMPUTE]|ESTIMATE|DELETE):
 IF ANALYZE Method is ESTIMATE, #Rows (1-n) [1]:
 IF ANALYZE Method is ESTIMATE, %Rows (1-99) [20]:
old 12: METHOD CONSTANT VARCHAR2(30) := NVL(UPPER(`&&method'),
`COMPUTE');
new 12: METHOD CONSTANT VARCHAR2(30) := NVL(UPPER(`'), `COMPUTE');
old 14: estrow NUMBER := NVL(`&&estrow', `1'); -- user input est.
#rows
new 14: estrow NUMBER := NVL(`', `1'); -- user input est.
#rows
old 15: estpct NUMBER := NVL(TRUNC(`&&estpct'), `20'); -- user
input est. pct
new 15: estpct NUMBER := NVL(TRUNC(`'), `20'); -- user input est.
pct
Analyze COMPUTE TABLE BONUS SUCCESSFUL
Analyze COMPUTE TABLE DEPT SUCCESSFUL
Analyze COMPUTE TABLE EMP SUCCESSFUL
Analyze COMPUTE INDEX PK_DEPT SUCCESSFUL
Analyze COMPUTE INDEX PK_EMP SUCCESSFUL
Analyze COMPUTE TABLE SALGRADE SUCCESSFUL
6 objects analyzed
PL/SQL procedure successfully completed.

If you enter in an invalid method, it complains with:

Invalid Method! Must be COMPUTE, ESTIMATE or DELETE only

as we desired. Play around with it and see how you like it.

This implementation of the ANALYZE command doesn't do VALID STRUCTURE or LIST CHAINED
ROWS. In this respect, it's an incomplete implementation, but it's still pretty useful.

Formatting Output with DBMS_OUTPUT

If you've been following along since the tutorial, you're already familiar with the put_line procedure in
this package. Here are some details regarding the implementation of the package:

● Each line is terminated with a newline character.
● Each line may only be up to 255 bytes, including the newline character.
● Each line is stored in a private PL/SQL table.
● Nothing is stored unless DBMS_OUTPUT.ENABLE is first called.
● The buffer size specified must be in the range 2,000 to 1,000,000.

You use the procedure enable to turn on the output feature. put_line calls are ignored if output hasn't first
been enabled. When you enable output, you can also specify a buffer size, as with:

DBMS_OUTPUT.enable(1000000); -- 1 million bytes is the max

Page 283

Conversely, you can turn output back off with disable:

DBMS_OUTPUT.disable; -- turn off output

You can store a line of text with put_line. It's overloaded to take a DATE, NUMBER or VARCHAR2.
You can also store a line of text without terminating it by using the put procedure (which is overloaded
in like manner). This is useful if the line you're building requires some logic:

-- excerpt taken from Package rev_eng
IF (Ltable IS NULL) THEN -- parameter comments

 DBMS_OUTPUT.put(`-- ALL TABLES');
ELSE
 DBMS_OUTPUT.put(`-- TABLE ` || Ltable);
END IF;
DBMS_OUTPUT.put_line(` FOR OWNER ` || Lowner ||
 `, TABLESPACE ` || Ltspace);

You can terminate text submitted with put by using the new_line procedure. This signals the end of the
current line of text with a marker, and also stores the length of the text line along with the text (this is
completely transparent to the user). Note that if you try to double or triple space output lines by sending
new lines without first using put, it doesn't work:

BEGIN
 DBMS_OUTPUT.put(`Hey, `);
 DBMS_OUTPUT.put(`Dan!');
 DBMS_OUTPUT.new_line;
 DBMS_OUTPUT.new_line;
 DBMS_OUTPUT.put_line(`Time to go Hot Tubbing!');
end;

Gives you:

Hey, Dan!

Time to go Hot Tubbing!
PL/SQL procedure successfully completed.

It didn't double space. Oh well.

You'll get an exception if you attempt to output a string longer than the acceptable 255 bytes before
ending it with new_line:

ORA-20000: ORU-10028: line length overflow, limit of 255 bytes per
line.

Why did the folks at Oracle limit the string length to 255? Look back to the example where a PL/SQL
table of VARCHAR2 (32767) quickly exhausted available memory (see Chapter 10, "PL/SQL
Fundamentals," Listing 4.10). So they picked what they considered a reasonable limit.

Strings are returned with get_line. This is what SQL*Plus does to return the strings written with
put_line. Unseen, it calls get_line until no more lines are available. You really only need concern
yourself with get_line (and its multiple line version, get_lines) if you're writing a 3GL program to
receive lines stored with put_line. You can use it in a PL/SQL program if you wish, such as to buffer
lines and then access them in FIFO manner, perhaps to insert them into a table.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0284-0286.html

Previous | Table of Contents | Next

Page 305

Chapter 13

Import/Export

In this chapter

● Understanding the Purpose and Capabilities of Import/Export 306
● Understanding Behavior 307
● Controlling and Configuring Import and Export 309
● Taking Walkthroughs of Import and Export Sessions 319
● Using the SHOW and INDEXFILE Options 326

Page 306

Understanding the Purpose and Capabilities of
Import/Export

The Oracle8 Server comes with two important utilities: Import and Export. These two utilities are useful
for many important database functions such as backing up data, copying objects among different
schemas and databases, and generating object creation scripts. They are also useful in migrating from
one version of Oracle to another, and may be used to upgrade your database to Oracle8.

The Import and Export utilities provide a wide range of capabilities. The main purpose is to back up and
recover data and objects. The objects and data are stored in a binary form that may be read only by
Oracle databases. Export and Import can perform the following tasks:

● Back up and recover your databases.
Export and Import are frequently used as part of a backup plan. Typically, full or hot backups are
used to back up the entire database in the event of a disk or computer failure. However, if just
one table in the entire database needs to be recovered, the entire database would have to be
recovered on another machine, and the one table would be copied over. This is incredibly time
and resource consuming. Import and Export can save you this hassle by providing the capability
to export the entire database and import just the tables you need recovered. They may also serve
as a backup and recovery mechanism for the entire database, because Point-in-time Recovery is
also an option.

● Move data and objects among schemas.

You can use Import and Export to copy tables, indexes, grants, procedures, and views, among all
other object types from one schema to another. This helps save time and effort because you can
just specify those objects you desire to move. Also, moving data may be used as a form of data
replication among different Oracle databases.

● Migrate databases from one Oracle version to another.
You can upgrade (or downgrade) the version of Oracle by using the Import and Export utilities.
You can export an entire Oracle7 database, for example. Then, providing you have the Oracle8
Server installed, the database can be imported, making the data and application function in an
Oracle8 environment. This process is called migration.

● Defragment a tablespace or the entire database.
Fragmentation occurs when objects such as tables and indexes are created, deleted, enlarged, and
reduced in size over time. Fragmentation also occurs when object storage parameters are poorly
defined. By exporting a tablespace, coalescing space, and importing objects again, you can
defragment tablespaces.

● Generate CREATE scripts.
You can also use Import and Export to generate CREATE scripts for tables, partitions, views,
grants, indexes, constraints, and tablespaces, among all other objects in the database. This proves
quite useful for modifying objects and safeguarding the structure of your objects in the event one
gets corrupted or deleted.

Page 307

NOTE

The export file is in a binary format that may only be used with Oracle databases. You
cannot export from Oracle and import into a non-Oracle database. Similarly, you cannot
import from a non-Oracle database. If you wish to copy data to Oracle from another
database product such as Microsoft Access, you should use SQL*Loader on a delimited
file format of the data, such as CSV (comma-separated values). To transfer data from
Oracle to a non-Oracle database, you must make a delimited file manually by spooling
from within PL/SQL or SQL*Plus.

Understanding Behavior

There are three types of exports:

● FULL export: Exports all objects, structures, and data within the database.
● OWNER export: Exports only those objects owned by a particular user account.
● TABLE export: Exports only the specified tables and partitions.

With dozens of types of structures that may be exported, it is important to distinguish what gets exported
with each of the three export categories. Table 13.1 shows which structures are exported with each

export option (in the order that Export exports). The following section then describes the syntax of
running exp80 and imp80, executables for export and import with Oracle8.

NOTE

In a Windows NT environment, exp80 and imp80 are the commands for the Export and
Import utilities. On UNIX and other operating systems, exp and imp are the commands
for the Export and Import utilities. For simplicity, this book provides all examples with
the xp80 and imp80 commands.

Table 13.1What Objects Get Exported with Each of the Three Export Options

Type of
Object

with FULL=Y
option

with OWNER
option

with TABLE
option

Tablespace
definitions

All objects

Profiles All objects

User
definitions

All objects

Roles All objects

Resource
costs

All objects

 continues

Page 308

Table 13.1Continued

Type of Object with FULL=Y option with OWNER option with TABLE
option Rollback
segment
definitions All objects Database links All objects Just for owner Sequence numbers All objects Just for
owner
Directory aliases All objects
Foreign
function
library names All objects Just for owner Object type
definitions All objects Just for owner
Cluster definitions All objects Just for owner Just for table

and owner Tables All objects Just for owner Just for table and
owner Indexes All objects Just for owner Just for table and
owner Referential
integrity
constraints All objects Just for owner Just for table
and owner
Postable actions All objects Just for owner Synonyms All objects Just for owner Just for table and
owner Views All objects Just for owner Stored procedures All objects Just for owner
Triggers All objects Just for owner Just for table and
owner Snapshots All objects Just for owner Snapshot logs All objects Just for owner Job queues All
objects Just for owner

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 304

Moving right along, let's find out what platform we're running:

EXECUTE DBMS_OUTPUT.put_line(DBMS_UTILITY.port_string);

I get:

IBMPC/WIN_NT-7.3.3

What do you get?

I've touched upon the most readily usable packaged subprograms provided by Oracle. By using these
routines, you can accomplish quite a bit more programmatically than you may have been used to. I
encourage you to try them on your own, and to also examine some of the others (like DBMS_ALERT)
not delved into in this section. Your ability to tune the database and applications should improve with
their use.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 299

Here's a sample run:

Enter Username: scott
Turn Trace ON/OFF: on
old 8: OWNER CONSTANT VARCHAR2(30) := UPPER(`&&owner');
new 8: OWNER CONSTANT VARCHAR2(30) := UPPER(`scott');
old 9: SETTRACE CONSTANT VARCHAR2(3) := RTRIM(UPPER(`&&trace'));
new 9: SETTRACE CONSTANT VARCHAR2(3) := RTRIM(UPPER(`on'));
TRACE FOR USER SCOTT is now ON
PL/SQL procedure successfully completed.

Once turned on, the trace remains active until you or the user turns trace back off, or the user
disconnects.

Using Miscellaneous Utilities in DBMS_UTILITY

This package contains a bunch of useful routines, some of which I'll illustrate. A brief description of
them is given in Table 12.3.

Table 12.3 Miscellaneous Utility Routines Found in DBMS_UTILITY

Subprogram Description

PROCEDURE compile_schema
(Powner VARCHAR2);

Recompiles all stored
subprograms and
packages in a given
schema.

PROCEDURE analyze_schema
(Powner VARCHAR2, Pmethod
VARCHAR2, Pest_rows
NUMBER DEFAULT NULL,
Pest_pct NUMBER DEFAULT
NULL);

Performs ANALYZE on
all tables, indexes, and
clusters for the given
schema.

FUNCTION format_error_stack
RETURN VARCHAR2;

Returns a string
containing the first 2,000
bytes of the error stack.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0295-0298.html

FUNCTION format_call_stack
RETURN VARCHAR2;

Returns a string
containing the first 2,000
bytes of the program call
stack.

FUNCTION is_parallel_server
RETURN BOOLEAN;

Returns TRUE/FALSE
indicating whether
parallel option for this
server is turned on.

FUNCTION get_time RETURN
NUMBER;

Returns the time in
hundredths of a second
since the epoch (good for
timing applications).

 continues

Page 300

Table 12.3 Continued

Subprogram Description

PROCEDURE name_resolve(Pname
IN VARCHAR2, Pcontext IN
NUMBER, Powner OUT VARCHAR2,
Ppart1 OUT VARCHAR2, Ppart2 OUT
VARCHAR2, Plink OUT
VARCHAR2, Ppart1_type OUT
NUMBER, Pobj_number OUT
NUMBER);

Resolves a given
object name,
expanding
synonyms and
following remote
database links as
necessary; also does
authorization
checking.

PROCEDURE name_tokenize(Pname
IN VARCHAR2, Powner OUT
VARCHAR2, Ptable OUT
VARCHAR2, Pcol OUT VARCHAR2,
Plink OUT VARCHAR2, Pnext OUT
BINARY_INTEGER);

Given a string
containing an object
reference in dot
notation, breaks it
up into its
component parts:
owner, table,
column, database
link.

PROCEDURE comma_to_table(Plist
IN VARCHAR2, Ptabn OUT
BINARY_INTEGER, Ptab OUT
uncl_array);

Given a string
containing tokens
separated by
commas, loads the
tokens into a PL/
SQL table, starting
with table element
1.

PROCEDURE table_to_comma(Ptab
IN uncl_array, Ptabn OUT
BINARY_INTEGER, Plist OUT
VARCHAR2);

Given a PL/SQL
table, builds a
comma-delimited
string consisting of
the values from the
table. The first table
element must be 1
and the last table
entry must be
NULL.

FUNCTION port_string RETURN
VARCHAR2;

Returns a string
containing the
version of Oracle
and the operating
system.

FUNCTION make_data_block_address
(Pfile NUMBER, Pblock NUMBER)
RETURN NUMBER;

Given a file and
block number,
returns the data
block address; used
for accessing fixed
tables containing
data block
addresses.

FUNCTION data_block_address_file
(Pdba NUMBER) RETURN
NUMBER;

Given a data block
address, returns the
file portion of it.

Page 301

Subprogram Description

FUNCTION data_block_address_block
(Pdba NUMBER) RETURN NUMBER;

Given a data block
address, returns
the data block
portion of it.

You can use format_error_stack in exception handlers to display the error stack right at the point where
it's most useful, perhaps storing the string in an error log table, or sending it to another session via a
pipe. Here's a very simple example:

DECLARE
 x VARCHAR2(1);
BEGIN
 x := `bust!';
EXCEPTION
WHEN OTHERS THEN
 DBMS_OUTPUT.put_line(DBMS_UTILITY.format_error_stack);
END;
/

which returns:

ORA-06502: PL/SQL: numeric or value error
PL/SQL procedure successfully completed.

In a similar vein, you can use format_call_stack to view the calling stack. This is useful when you're
nested down several levels through various subprograms. Here is a modest example (see Listing 12.13).

Listing 12.13 callstk.sql—What's on the Call Stack?

CREATE TABLE call_log (
 log_date DATE,
 log_level NUMBER,
 log_msg VARCHAR2(2000))
/

DECLARE
 x NUMBER;
 PROCEDURE nest(Plevel IN OUT NUMBER, Pstopat IN NUMBER) IS
 msg VARCHAR2(2000);
 BEGIN
 IF (Plevel < Pstopat) THEN
 Plevel := Plevel + 1; -- increment nesting depth

 nest(Plevel, Pstopat);
 ELSE
 msg := DBMS_UTILITY.format_call_stack;
 INSERT INTO call_log
 VALUES (SYSDATE, Plevel, msg);
 END IF;
 END nest;

 continues

Page 302

Listing 12.13 Continued

BEGIN
 x := 1; -- always start with 1
 nest(x, 4);
END;
/

SELECT * FROM call_log ORDER BY log_date
/

DROP TABLE call_log
/

I get:

Table created.
PL/SQL procedure successfully completed.
LOG_DATE LOG_LEVEL
-------- --------
LOG_MSG
--
27-NOV-97 4
---- PL/SQL Call Stack ----
 object line object
 handle number name
 12770c8 10 anonymous block
 12770c8 8 anonymous block
 12770c8 8 anonymous block
 12770c8 8 anonymous block

 12770c8 17 anonymous block
Table dropped. ?

Okay, so this isn't the most useful thing in an anonymous block. If you used it in a stored procedure with
some sort of trace mechanism (like the one we built earlier), you could unwind the stack during a
debugging session to see where your program is going.

Moving right along, let's see whether our server is running Parallel Query Mode by using Listing 12.14.

Listing 12.14 pqm.sql—Check to See if We're Running Parallel Query Mode

BEGIN
 DBMS_OUTPUT.enable;
 IF (DBMS_UTILITY.is_parallel_server) THEN
 DBMS_OUTPUT.put_line(`database is running in parallel server
mode');
 ELSE
 DBMS_OUTPUT.put_line(`database is NOT running in parallel server
mode');
 END IF;
END;
/

Page 303

I think I wrote this in 30 seconds, a new world record! Running it I get:

database is NOT running in parallel server mode
PL/SQL procedure successfully completed.

We're on a roll. Now let's do a timing example, as shown below in Listing 12.15.

Listing 12.15 timetest.sql—Loop Index Timing Test: NUMBER versus PLS_INTEGER, Which Is
Faster?

-- Loop Indexing Test: NUMBER vs. PLS_INTEGER
DECLARE
 maxnum CONSTANT NUMBER := 100000; -- number of loops to do
 maxbin CONSTANT PLS_INTEGER := 100000; -- number of loops to do
 time_start NUMBER; -- time we started (in 10ms)
 time_stop NUMBER; -- time we stopped (in 10ms)
 numloops NUMBER := 0; -- loop index

 binloops PLS_INTEGER := 0; -- loop index
BEGIN
 DBMS_OUTPUT.enable;

 time_start := DBMS_UTILITY.get_time;
 WHILE (numloops < maxnum) LOOP -- spin our wheels
 numloops := numloops + 1;
 END LOOP; -- spinning
 time_stop := DBMS_UTILITY.get_time;
 DBMS_OUTPUT.put_line(`Looping with NUMBER index ` ||
 TO_CHAR(maxnum) ||
 `x takes ` ||
 TO_CHAR(time_stop - time_start) ||
 ` hundredths of a sec');

 time_start := DBMS_UTILITY.get_time;
 WHILE (binloops < maxbin) LOOP -- spin our wheels
 binloops := binloops + 1;
 END LOOP; -- spinning
 time_stop := DBMS_UTILITY.get_time;
 DBMS_OUTPUT.put_line(`Looping with PLS_BINARY index ` ||
 TO_CHAR(maxbin) ||
 `x takes ` ||
 TO_CHAR(time_stop - time_start) ||
 ` hundredths of a sec');

END;
/

And I get:

Looping with NUMBER index 100000x takes 140 hundredths of a sec
Looping with PLS_BINARY index 100000x takes 54 hundredths of a sec
PL/SQL procedure successfully completed.

Wow! PLS_INTEGER math is a lot quicker.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0295-0298.html

Previous | Table of Contents | Next

Page 309

Type of
Object

with FULL=Y
option

with OWNER
option

with TABLE
option

Refresh
groups
and children

All objects Just for owner

User history
table

All objects

Default and
system
auditing
options

All objects

CAUTION

ROWIDs are re-assigned during an import. If a table has a column with ROWID
information, the data will become obsolete. Also, ROWID snapshots become obsolete
after an import and must be refreshed with the COMPLETE option before they can be
automatically refreshed again. In addition, some REF attributes may contain ROWID
information, so the REFs may become obsolete during an Import session. To re-create
the REF information with proper ROWIDs after importing the data, issue the ANALYZE
TABLE owner.table_name VALIDATE REF UPDATE; command.

Controlling and Configuring Import and Export

The Import and Export utilities—with the availability of dozens of parameters that can be passed—are
extremely flexible. Also, there are two methods of running Import and Export: Interactive mode and
Non-interactive mode. With the Interactive mode, you are stepped through a series of prompts to enter
the basic information for an import and export session. This method is less flexible; you are prompted
for only a few of the dozens of available parameters.

To export with the Interactive mode, just enter exp80 at the command line. You are then prompted for a
username and password.

CAUTION

To export the entire database, the user account that you export with must have been
granted the EXP_FULL_DATABASE system privilege. For accounts with DBA
privileges, such as SYSTEM, this privilege is implicitly granted to the user. Otherwise,
the export will fail.

Next, you receive a prompt for the array fetch buffer size. This is the size of the memory buffer through
which rows are exported. This should be larger than the size of the largest record multiplied by the
number of rows that you wish to fit within the buffer, and is operating-system dependent.

Page 310

You then receive a prompt for the name of the export file. By default, it is expdat.dmp. Next, a small
menu with three options appears: (1)E(ntire database), (2)U(sers), or (3)T(ables).

If you select option 1, you receive a prompt to enter values for grants (Y/N), table data (Y/
N), and compress extents (Y/N).

If you select option 2, you receive a prompt to enter values for grants (Y/N), table data (Y/
N), compress extents (Y/N), and user(s) to be exported (keep entering until done, and then
enter a single period on the line to finish).

If you select option 3, you receive a prompt to enter values for export table data (Y/N),
compress extents (Y/N), and Table (T) or Partition (T:P) to be exported (keep entering
until done, and then enter a single period on the line to finish).

To export in Non-interactive mode, you can either pass all parameters at the command line or through a
parameter file. For all possible parameters of the export command, type exp80 help=y in Windows NT,
as shown in Figure 13.1.

FIG. 13.1
Sample result of exp80
help=y, in a Windows NT
environment.

You can use 23 parameters during an export session. You can either specify them in the command line
or any parameter file that is specified. Table 13.2 describes all the export parameters.

javascript:displayWindow('images/ch13fg01.jpg',668,451)

Table 13.2Description of Parameters for the Export Utility

Parameter Default Value Description BUFFER

OS-
Dependent

The size of BUFFER
(in bytes) determines
the memory buffer
through which rows
are exported. This
should be larger than
the size of the largest
record multiplied by
the number of rows
that you wish to fit
within the buffer.

Page 311

Parameter
Default
Value

Description

COMPRESS Y

If COMPRESS=Y, the
INITIAL storage parameter
will be set to the total size of
all extents allocated for the
object. The change takes
effect only when the object is
imported.

CONSISTENT N

Setting CONSISTENT=Y
exports all tables and
references in a consistent
state. This slows the export
because rollback space is
used. If CONSISTENT=N,
which is the default, and a
record is modified during the
export, the data becomes
inconsistent.

CONSTRAINTS N
Specifies whether table
constraints are exported.

DIRECT N

If DIRECT=Y, Oracle
bypasses the SQL command
processing layer, improving
the speed of the export.
Unfortunately, the new object
types endemic to Oracle8,
such as LOBs, will not get
exported.

FEEDBACK 0

Oracle displays a period for
each group of records inserted.
The size of the group is
defined by FEEDBACK. By
setting FEEDBACK=1000,
for example, a period displays
for every 1000 records
imported. This parameter is
useful for tracking the
progress of large imports.

FILE expdat.dmp

By default, expdat.dmp
(stands for EXPort DATa.
DuMP) will be the name of
the file. For a more
meaningful file name, change
the FILE parameter.

FULL N

The entire database will be
exported if FULL=Y,
including tablespace
definitions.

GRANTS Y
Specifies whether all grant
definitions will be exported
for the objects being exported.

HELP N

No other parameters are
needed if you specify
HELP=Y. A basic help screen
is displayed.

 continues

Page 312

Table 13.2Continued

Parameter
Default
Value

Description

INCTYPE

The valid options
for the INCTYPE
parameter are
COMPLETE,
CUMULATIVE,
and
INCREMENTAL.
A COMPLETE
export lays down a
full export for
which the other two
options rely on for
restores of the
database.
CUMULATIVE
exports all tables
and other objects
that have changed
since the last
CUMULATIVE or
COMPLETE
export was taken. If
one record in a
table has been
altered, the entire
table is exported.
INCREMENTAL
exports all tables
and objects that
have changed since
the last
INCREMENTAL,
CUMULATIVE, or
COMPLETE
export.

INDEXES Y

Specifies whether
user-defined
indexes are
exported. System
indexes created
with constraints
(primary key,
unique key) and
OID indexes are
automatically
exported, regardless
of the value of the
INDEXES
parameter.

LOG

The LOG
parameter specifies
the name of the file
to spool the
feedback from the
export session.
Unless otherwise
specified, Oracle
appends a .LOG
extension to the
file.

PARFILE

Instead of entering
all parameters on
the command line,
some or all may be
kept in a parameter
file. The PARFILE
parameter specifies
which file to use, if
desired. This
parameter is
especially useful
for non-interactive
import sessions.

POINT_IN_TIME_RECOVER N

Exports
information for a
Point-in-time
Recovery for the
tablespace listed
with the
TABLESPACES
parameter.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 313

Parameter
Default
Value

Description

RECORD Y

If using the INCTYPE
parameter with RECORD=Y,
the SYS data dictionary tables
INCEXP, INCFIL, and INCVID
are populated with export data
such as owner, type of export,
and the time of export.

RECORD_LENGTH
OS-
Dependent

The RECORD_LENGTH
parameter is used only when
you will import on a machine
with a different byte count of
the file than on the machine
where the export occurs. In
most import sessions, the
default should be used.

RECOVERY_TABLESPACES

The
RECOVERY_TABLESPACES,
used in conjunction with the
POINT_IN_TIME_RECOVER
parameter, specifies which
tablespaces may be recovered
using Point-in-time Recovery.
This is important because
imports could not otherwise
recover transactions past the
time of export.

ROWS Y

Specifies whether table and
object data will be exported. If
ROWS=N, only object
definitions are exported.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

STATISTICS ESTIMATE

Specifies whether table and
index statistics are to be
analyzed with COMPUTE or
ESTIMATE when imported.
Note that only those objects that
already have statistics on them
will be analyzed during import.
Specify NONE if no objects
should be analyzed.

TABLES

Specifies a comma-separated
list of all tables to be exported.
This parameter should be used
in conjunction with the
FROMUSER parameter. In a
non-UNIX environment, such
as Windows NT, you must
enclose the table list within
parentheses.

Page 314

Table 13.2Continued

Parameter Default Value Description TABLESPACES List of tablespaces to be exported with the
POINT_IN_TIME_RECOVER parameter. USERID Specifies the username and password for the user
conducting the import. The format for the command is username/password. You may also use Net8's
@connect_string format if desired.

To use Import with the Interactive mode, just enter imp80 at the command line. You then receive a
prompt for a username and password.

CAUTION

To use Import from a DBA-invoked export, the user account that you import with must
have been granted the IMP_FULL_DATABASE system privilege. For accounts with
DBA privileges such as SYSTEM, this privilege is implicitly granted to the user.
Otherwise, the import will fail.

You then receive a prompt for the name of the export file from which to import. By default, it is expdat.
dmp. Next, you receive a prompt for the array fetch buffer size. This is the size of the memory buffer
through which rows are exported. This should be larger than the size of the largest record multiplied by

the number of rows that you wish to fit within the buffer and is operating-system dependent.

Next, you are asked whether you want to list the contents of the import file only (Yes/No). The results if
you select Yes are described later in this chapter in the section titled "Using the SHOW and
INDEXFILE Options." If you select No, you are asked whether to ignore all create errors that may occur
due to object existence (Yes/No). Then you are asked whether to import grants, table data, and the entire
export file.

If you select No to import the entire export file, you receive a prompt for the username corresponding to
the owner of the objects. This is followed by a repeating prompt to enter all tables and partitions. If you
leave the line blank, all objects for the username are assumed. To stop the repeating prompt, enter a
single period at the prompt.

To use Import in Non-interactive mode, you can either pass all parameters at the command line or
through a parameter file. For all possible parameters of the import command, type imp80 help=y, as
shown in Figure 13.2.

Page 315

FIG. 13.2
Sample output from
imp80 help=y on a
Windows NT platform.

You can use 24 parameters during an import session. You can specify them in either the command line
or any parameter file that is specified. Table 13.3 describes all the import parameters.

Table 13.3Description of Parameters for the Import Utility

Parameter
Default
Value

Description

javascript:displayWindow('images/ch13fg02.jpg',668,511)

ANALYZE Y

Tables that are imported will have
their statistics analyzed if
ANALYZE is set to Y. Note that
only those tables that already had
statistics on them during the
export will be computed. The
tables will be ESTIMATEd by
default, unless the export was
performed with the
STATISTICS=COMPUTE
parameter configuration.

BUFFER
OS-
Dependent

The size of BUFFER (in bytes)
determines the memory buffer
through which rows are imported.
This should be larger than the size
of the largest record multiplied by
the number of rows that you wish
to fit within the buffer.

 continues

Page 316

Table 13.3Continued

Parameter
Default
Value

Description

CHARSET

The CHARSET is an obsolete
Oracle6 parameter, indicating
whether the export was done in
ASCII or EBCDIC. In Oracle7
and Oracle8, this information is
processed automatically.

COMMIT N

By default, a commit occurs after
each table, nested table, and
partition. If you are importing a
large table, the rollback segments
may grow large. To improve
performance while loading large
tables, you should set
COMMIT=Y.

DESTROY N

If you set DESTROY=Y and do
a full import, Oracle overwrites
any datafiles that exist. If you
use raw devices for your
datafiles, they will be
overwritten during a full import
because DESTROY=N will not
prevent the overwriting of
datafiles! It is always a good
practice to back up the database
before such an import. Do not
use this option unless you know
what you are doing.

FEEDBACK 0

Oracle displays a period for each
group of records inserted. The
size of the group is defined by
FEEDBACK. By setting
FEEDBACK=1000, for example,
a period displays for every 1000
records imported. This parameter
is useful for tracking the progress
of large imports.

FILE expdat.dmp

By default, expdat.dmp (stands
for EXPort DATa.DuMP) is the
name of the file that Import will
import from. If the file is
something other than expdat.
dmp, specify it with the FILE
parameter.

FROMUSER

Specifying this parameter
imports only those objects
owned by the FROMUSER user
account.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

Previous | Table of Contents | Next

Page 329

CHAPTER 14

SQL*Loader

In this chapter

● Running SQL*Loader 330
● Components of SQL*Loader 331
● Looking at SQL*Loader Examples 333
● Conventional and Direct Path Loading 347

Page 330

Running SQL*Loader

Databases today are ever increasing in complexity and size. Gigabyte-sized databases are common and
data warehouses are often reaching the terabyte-sized range. With the growth of these databases, the
need to populate them with external data quickly and efficiently is of paramount importance. To handle
this challenge, Oracle provides a tool called SQL*Loader to load data from external data files into an
Oracle database.

SQL*Loader has many functions that include the following capabilities:

● Data can be loaded from multiple input datafiles of differing file types.
● Input records can be of fixed and variable lengths.
● Multiple tables can be loaded in the same run. It can also logically load selected records into each

respective table.
● SQL functions can be used against input data before loading into tables.
● Multiple physical records can be combined into a single logical record. Likewise, SQL can take a

single physical record and load it as multiple logical records.

SQL*Loader can be invoked by typing in sqlload, sqlldr, or sqlldr80 at the command line. The exact
command may differ, depending on your operating system. Refer to your Oracle operating system-
specific manual for the exact syntax. Please note that all listings and server responses in this chapter may
differ with your results based on the operating system that you are using. The sqlldr command accepts
numerous command-line parameters. Invoking SQL*Loader without any parameters displays help

information on all the valid parameters (see Listing 14.1).

Listing 14.1SQL*Loader Help Information

Invoking SQL*Loader without parameters:
$ sqlldr
The server responds with help information because SQL*Loader was
invoked
without parameters:

SQL*Loader: Release 8.0.3.0.0 - Production on Mon Nov 17 9:38:19 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Usage: SQLLOAD keyword=value [,keyword=value,...]

Valid Keywords:

 userid -- ORACLE username/password
 control -- Control file name
 log -- Log file name
 bad -- Bad file name
 data -- Data file name
 discard -- Discard file name
discardmax -- Number of discards to allow (Default all)

Page 331

 skip -- Number of logical records to skip (Default 0)
 load -- Number of logical records to load (Default all)
 errors -- Number of errors to allow (Default 50)
 rows -- Number of rows in conventional path bind array or
between
 direct path data saves
 (Default: Conventional path 64, Direct path all)
 bindsize -- Size of conventional path bind array in bytes (Default
 65536)
 silent -- Suppress messages during run
 (header,feedback,errors,discards,partitions)
 direct -- use direct path (Default FALSE)
 parfile -- parameter file: name of file that contains parameter
 specifications
 parallel -- do parallel load (Default FALSE)

 file -- File to allocate extents from
skip_unusable_indexes -- disallow/allow unusable indexes or index
 partitions (Default FALSE)
skip_index_maintenance -- do not maintain indexes, mark affected
indexes
 as unusable (Default FALSE)
commit_discontinued -- commit loaded rows when load is discontinued
 (Default FALSE)

PLEASE NOTE: Command-line parameters may be specified either by
position or by keywords. An example of the former case is `sqlload
scott/tiger foo'; an example of the latter is `sqlload control=foo
userid=scott/tiger'. One may specify parameters by position before
but not after parameters specified by keywords. For example,
`sqlload scott/tiger control=foo logfile=log' is allowed, but
`sqlload scott/tiger control=foo log' is not, even though the
position of the parameter `log' is correct.

Components of SQL*Loader

SQL*Loader is an Oracle utility that loads data into the database from external data files. Figure 14.1
shows the different components of SQL*Loader.

The Control File

The control file is the nerve center of SQL*Loader. This is the file that controls how data in the external
data file is to be mapped into Oracle tables and columns. It should be noted that SQL*Loader input
datatypes are totally independent from the database column datatypes into which they are being loaded.
Implicit datatype conversions will be done as necessary and errors will be trapped if the conversion fails.
The language used in the control file is the SQL*Loader Data Definition Language (DDL). The control
file consists of multiple sections with many parameters, too many to cover in depth for the scope of this
chapter. Refer to the Oracle Server Utilities manual for full documentation on all valid syntax and
parameters of the control file. Basic syntax is covered in a later section when examples are given to
demonstrate the different uses of SQL*Loader.

Page 332

FIG. 14.1
SQL*Loader Components.

SQL*Loader Input Data

SQL*Loader can accept input data files in many different formats. Files can be stored on disk, tape, or
the records themselves can be embedded into the control file. Record formats can be of fixed or variable
lengths. Fixed-length records are records in which every record is the same fixed length and the data
fields in each record have the same fixed length, datatype, and position. For example, the PART_NBR
data item in a record would always occupy columns 10 to 19, regardless of the actual length of the data.
If the part number were 12345, the remaining space in columns 15 to 19 would be blank. With variable-
length records, the data item would only take up as much space as necessary on each record.

In the PART_NBR example, the data item would need only five bytes with no trailing blanks. Each
record in a variable length formatted file may have different space usage for PART_NBR based on its
actual length. It is important to note that even though variable-length records may use less space in the
data file, data items on each record have to have a delimiter to separate the data items.

SQL*Loader Outputs

Oracle Tables and IndexesSQL*Loader can load multiple tables and indexes in an Oracle database in the
same loader session. SQL*Loader's behavior in inserting the data and building the indexes will be
discussed later in the section covering conventional and direct path loading.

Previous | Table of Contents | Next

javascript:displayWindow('images/ch14fg01.jpg',358,333)

Previous | Table of Contents | Next

Page 326

tablespace of the user. Before Oracle can import the data into TABLESPACE_B, you
must give a large enough quota on the tablespace to the USER_A user. This is shown in
the following step.

6. Issue "ALTER USER USER_A QUOTA UNLIMITED ON TABLESPACE_B;". By giving an
unlimited quota, the import will succeed, providing that TABLESPACE_B is large enough to
handle all the database objects being imported.

7. Import the database objects that were exported. By default, the Import utility attempts to import
them into TABLESPACE_A. Because the user does not have a quota on that tablespace,
however, the objects will be created in USER_A's default tablespace TABLESPACE_B.

The preceding steps show how you can use the Import and Export utilities, along with knowledge of
SQL, to do powerful operations on data with relative ease. One of the most useful
capabilities of the Import and Export utilities is the use of the SHOW and INDEXFILE options,
as described in the following section.

Using the SHOW and INDEXFILE Options

You can use the SHOW parameter to generate all SQL statements used to create the database structure
and all objects. This includes creating comments, tablespaces, users, privilege grants, roles and their
assignments, quota definitions, rollback segments, sequences, tables, constraints, indexes, packages,
procedures, partitions, user-defined datatypes, and so on.

One powerful use of the SHOW parameter is to create a script file that can re-create part or all of the
database. The statements are listed in the proper order of dependencies—that is, a table is created before
an index, a foreign key that references a primary key is created after the
primary key, and so on. Listing 13.3 shows a sample portion of the output from specifying SHOW=Y.

Listing 13.3CHP13_3.lst—Sample Portion of Importing with the SHOW=Y Specification

 "ALTER SCHEMA = "QUE""
 "CREATE UNIQUE INDEX "I_PRICE" ON "PRICE" ("PRODUCT_ID" ,
"START_DATE") PC"
 "TFREE 10 INITRANS 2 MAXTRANS 255 STORAGE (INITIAL 10240 NEXT 10240
MINEXTEN"
 "TS 1 MAXEXTENTS 121 PCTINCREASE 50 FREELISTS 1) TABLESPACE
"USER_DATA" LOGG"

 "ING"
 "ALTER TABLE "PRICE" ADD CHECK (PRODUCT_ID IS NOT NULL) ENABLE"
 "ALTER TABLE "PRICE" ADD CHECK (START_DATE IS NOT NULL) ENABLE"
 "ALTER TABLE "PRICE" ADD CHECK (LIST_PRICE IS NULL OR MIN_PRICE IS
NULL OR "
 "MIN_PRICE <= LIST_PRICE) ENABLE"
 "ALTER TABLE "PRICE" ADD CHECK (END_DATE IS NULL OR START_DATE <=
END_DATE)"
 " ENABLE"
 "ALTER TABLE "PRICE" ADD PRIMARY KEY ("PRODUCT_ID","START_DATE")
ENABLE"
 "GRANT SELECT ON "PRICE" TO PUBLIC"
 "ALTER SCHEMA = "QUE""
 "COMMENT ON TABLE "PRICE" IS `Prices (both standard and minimum) of
product"
 "s. Database tracks both effective dates and expiration dates for
prices.'"

Page 327

 "COMMENT ON COLUMN "PRICE"."PRODUCT_ID" IS `Product number to which
price a"
 "pplies. Product name found in table PRICE.'"
 "COMMENT ON COLUMN "PRICE"."LIST_PRICE" IS `Undiscounted price (in
U.S.dol"
 "lars).'"
"ALTER TABLE "PRICE" ADD FOREIGN KEY ("PRODUCT_ID") REFERENCES
"PRODUCT" ("P"
 "RODUCT_ID") ENABLE"

To make a file from the results, specify the LOG=filename parameter specification. This file may be
modified to change almost any aspect of the database. Each line begins and ends with a quotation mark.
Be sure to string these quotation marks from the beginning and ending of each line. Additionally, Oracle
does not word-wrap lines in the output. This results in having statements with the likelihood of words
and numbers being cut in two. To remedy this, you must manually join the lines in each statement. The
sample listing, shown in the preceding listing, could be cleaned up to look like Listing 13.4.

Listing 13.4CHP13_4.lst—SQL Statements Resulting from Cleaning Up the Import File Created with
the SHOW=Y Specification

ALTER SCHEMA = "QUE";
CREATE UNIQUE INDEX "I_PRICE" ON "PRICE" ("PRODUCT_ID" ,

"START_DATE")
 PCTFREE 10 INITRANS 2 MAXTRANS 255
 STORAGE (INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121
 PCTINCREASE 50 FREELISTS 1)
 TABLESPACE "USER_DATA" LOGGING;
ALTER TABLE "PRICE" ADD CHECK (PRODUCT_ID IS NOT NULL) ENABLE;
ALTER TABLE "PRICE" ADD CHECK (START_DATE IS NOT NULL) ENABLE;
ALTER TABLE "PRICE" ADD CHECK (LIST_PRICE IS NULL OR MIN_PRICE IS
NULL
 OR MIN_PRICE <= LIST_PRICE) ENABLE;
ALTER TABLE "PRICE" ADD CHECK (END_DATE IS NULL OR START_DATE <=
END_DATE)
 ENABLE;
ALTER TABLE "PRICE" ADD PRIMARY KEY (PRODUCT_ID,START_DATE) ENABLE;
GRANT SELECT ON "PRICE" TO PUBLIC;
COMMENT ON TABLE "PRICE" IS
 `Prices (both standard and minimum) of products. Database tracks
both
 effective dates and expiration dates for prices.';
COMMENT ON COLUMN "PRICE"."PRODUCT_ID" IS `Product number to which
price applies.
 Product name found in table PRICE.';
COMMENT ON COLUMN "PRICE"."LIST_PRICE" IS `Undiscounted price (in U.
S.
dollars).';
ALTER TABLE "PRICE" ADD FOREIGN KEY (PRODUCT_ID) REFERENCES PRODUCT
(PRODUCT_ID) ENABLE;

You can use the INDEXFILE parameter to generate CREATE INDEX statements. The value of the
INDEXFILE parameter specifies the name of the file to be created. By default, Oracle appends a .SQL
extension unless otherwise specified. Generic table creation statements are shown, commented out so
that they will not execute if the script is run. The INDEXFILE parameter does not generate CREATE
primary key or unique key clauses. Listing 13.5 is a portion of the output file X.LOG from an import
with INDEXFILE=X.LOG specified. Notice how Oracle word-wraps all lines

Page 328

appropriately and does not add quotation marks before and after each line. This allows for immediate
use of the indexfile with no further modifications.

Listing 13.5X.LOG—Sample Portion of the X.LOG File Created from
Importing with the INDEXFILE=X.LOG Specification

REM CREATE TABLE "QUE"."PRICE" ("PRODUCT_ID" NUMBER(6, 0),
"LIST_PRICE"
REM NUMBER(8, 2), "MIN_PRICE" NUMBER(8, 2), "START_DATE" DATE,
"END_DATE"
REM DATE) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 LOGGING
REM STORAGE(INITIAL 10240 NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121
REM PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1) TABLESPACE
"USER_DATA" ;
REM ... 58 rows
CONNECT QUE;
CREATE UNIQUE INDEX "QUE"."I_PRICE" ON "PRICE" ("PRODUCT_ID" ,
"START_DATE") PCTFREE 10 INITRANS 2 MAXTRANS 255 STORAGE (INITIAL
10240
NEXT 10240 MINEXTENTS 1 MAXEXTENTS 121 PCTINCREASE 50 FREELISTS 1)
TABLESPACE "USER_DATA" LOGGING ;

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 322

There should be one record for each distinct FILE_NAME. If there is not, your tablespace is fragmented.
The tables contained in the tablespaces will be made unavailable to the users during the export and
import process. Before you rely on the export and import tablespace to defragment the tablespace, you
should enter the command ALTER TABLESPACE tablespace_name COALESCE and run CHP13_1.
SQL again. If two chunks of free space are adjacent to each other, this command makes them into one
bigger chunk. If the command does not help, you must use Export and Import to defragment the
tablespace.

Another reason to defragment a tablespace is if an object within the tablespace contains multiple extents.
In most cases, you should be concerned if the object has more than five extents, after which point
performance starts to get noticeably affected. By exporting the tables with COMPRESS=Y specified,
Oracle calculates the size of the INITIAL extent so that it encompasses all the data into one extent. This
helps to defragment the database as well. Run CHP13_2.SQL to determine which objects have more
than five extents, as shown in Listing 13.2.

Listing 13.2CHP13_2.sql Lists All Objects in the Database with More than Five Extents

SQL> START CHP13_2.SQL
SQL> COLUMN SEGMENT_NAME FORMAT A25
SQL> SELECT OWNER, SEGMENT_NAME, EXTENTS
 2 FROM ALL_SEGMENTS
 3 WHERE EXTENTS > 5 AND
 4 OWNER NOT IN (`SYS','SYSTEM')
 5 ORDER BY EXTENTS
After running the script, the server returns all objects with more
than
five extents:
OWNER SEGMENT_NAME EXTENTS
---------------- ---------------------- --------
DEMO EMPLOYEE 6
DEMO JOB 9
DEMO DEPARTMENT 12

SQL>

Before you defragment, make sure that the people will be affected are
notified because

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

the tables within the tablespace will become unavailable for use
during this process. If
possible, schedule the process during a time when few people are
using the tables.

To use Export and Import to defragment a tablespace, follow these
steps:

1. Export all the tables contained within the tablespace.
Be sure to set the
COMPRESS=Y option of Export. This changes the
INITIAL storage parameter of the tables, if
necessary, to fit within one extent each.

2. Manually drop all tables from the tablespace.

Page 323

3. Coalesce the free space in the tablespace. This is
done with the
ALTER TABLESPACE tablespace_name COALESCE command. All free
space should be coalesced into one
big chunk, or as many chunks as there are datafiles for the
tablespace. This is due to
having no objects within the tablespace.

4. Import all tables that were contained within the
tablespace. Oracle allocates the
proper space for each object because COMPRESS=Y was specified
during the export.
When finished, you have a clean, unfragmented tablespace.

CAUTION

If you export with COMPRESS=Y, any LOB data that is
exported will not be compressed; its original INITIAL and
NEXT storage parameters remain unchanged.

The preceding method requires the knowledge of all objects contained
within a tablespace. In
a more time-consuming approach, you may defragment the entire
database. This is done
by exporting the entire database, dropping and re-creating the
database with the
CREATE

DATABASE command, and then importing the entire export file.

Moving Database Objects from One Schema to Another

Many times, it is important to move objects among schemas. This would
be the case for
a developer who wishes to have a set of tables to test with, but does
not want to affect data in
the original schema. This is also useful to copy tables among
instances.

First, export all objects for a given user account. Do this by
specifying the
OWNER parameter of the Export utility. In the example here, you will
be copying the DEMO schema into the
QUE schema, as shown in Figure 13.6.

FIG. 13.6

Exporting all objects of

the DEMO user

account.

javascript:displayWindow('images/ch13fg06.jpg',668,559)

Page 324

Next, create the user account that will be the new owner, if that
account does not already
exist. At this point, you can import into the new schema by
specifying the
FROMUSER and TOUSER

parameters with the Import utility, as shown in Figure 13.7.

FIG. 13.7

Importing all objects of

the DEMO user account

into the QUE user

account.

javascript:displayWindow('images/ch13fg07.jpg',668,343)

If any objects being imported are in conflict with existing objects,
only the conflicting
objects are skipped.

TIP

If you have BFILE datatypes, Oracle stores only pointers to
the files themselves. The actual data is external to the
database. If you are exporting from one database and
importing into another on a different server, be sure to
copy all needed external files and place them in the same
directory path. Otherwise, Oracle cannot access the BFILE's
associated files.

Multiple Objects and Multiple Object Types

If you want to move a subset of tables from one schema to another, or
for backup purposes,
you need to specify the list of objects in the
TABLES parameter specification during the export.
This must be used in conjunction with the FROMUSER and
TOUSER for the import.

To export a table, specify the owner, followed by a period and the
table name, such
as Owner.Table_Name. To export a partition, specify the owner,
followed by a period and the
table name, followed by a colon, followed by the partition name, such
as Owner.Table_Name:Partition_Name.

Figure 13.8 shows an example of exporting multiple objects and
multiple object types:
the PRICE table, along with two of five partitions for the EMP table
(LOW_SALARY
and MEDIUM_SALARY).

To import the multiple objects and object types into a different user
account, import
specifying the FROMUSER and TOUSER clauses. If you wish to import
into the same user, use either
the FULL=Y or OWNER parameter specification.

Page 325

FIG. 13.8

Sample of exporting

 multiple objects and

 multiple object types.

Identifying Behavior When Tablespaces Don't Match

When an object is imported, Oracle attempts to create it within the
same tablespace
from which it was exported. Sometimes, when an export is performed on
one database, and
imported into another database, the tablespaces do not always match.
An object from the
exported database was stored in the DBA_TOOLS tablespace, for
example. In the database
to which the object is being imported, there is no DBA_TOOLS
tablespace.

In such a scenario, during the Import process, the Import utility
attempts to create the
object in the DBA_TOOLS but fails because there is no such tablespace
in the target database.
Import then tries to create the table into the default tablespace for

javascript:displayWindow('images/ch13fg08.jpg',668,319)

the owner of the object. If there
is enough space, and the owner has an appropriate quota on the
tablespace, the object is
imported. Otherwise an error occurs and the object is not imported.

Moving Database Objects from One Tablespace to Another

By default, Import attempts to create objects into the same
tablespace from which they
were exported. If the user does not have permission to that
tablespace, or that tablespace no
longer exists, Oracle creates the database objects into the default
tablespace for that user
account. These properties may be utilized to move database objects
from one tablespace to
another using Export and Import. To move all objects from
TABLESPACE_A to TABLESPACE_B for USER_A, follow these steps:

1. Export all objects in the
TABLESPACE_A for USER_A.

2. Issue "REVOKE UNLIMITED TABLESPACE ON
TABLESPACE_A FROM USER_A;" to revoke any unlimited tablespace
privileges granted to the user account.

3. Issue "ALTER USER USER_A QUOTA 0
on tablespace_a;" to allow no objects to be created in
TABLESPACE_A by the USER_A user account.

4. Drop all objects owned by USER_A in
TABLESPACE_A.

5. Issue "ALTER USER USER_A DEFAULT TABLESPACE
TABLESPACE_B;" to make TABLESPACE_B the default tablespace for
the
USER_A user account. Oracle will try to import the objects into
TABLESPACE_A, where they were exported from. Notice
that the user does not have a quota on
TABLESPACE_A, and then look to the default

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

Previous | Table of Contents | Next

Page 333

The Bad FileSQL*Loader goes through a two-stage process in validating data for insertion into the
database. The first stage is validating the format of the data according to the specifications in the control
file. If the data format or length is inconsistent with the specifications, SQL*Loader writes that record to
the bad file. When records pass the first stage of validation, it is passed to the database for insertion.

The second stage of validation then takes place in the database. The database may reject the record for
many reasons, some of which could be database check constraints and datatype conversion errors.
Second stage validation rejections are also written to the bad file. If the number of rejections reaches a
certain threshold (default = 50), the SQL*Loader session is aborted. This threshold can be set at the
command line with the errors parameter. The bad file is written in the same format as the original input
data file, which enables the bad file records to be loaded using the same control file after the necessary
corrections are made.

The Discard FileSQL*Loader writes records to the discard file if there are conditions present in the
control file and the record fails all of the conditions. For example, a condition in the control file states
that records must have an "X" in column one. Records that do not have an X will not be inserted into the
database and will be written to the discard file. Unlike the bad file, the default threshold of discard
records is to allow all discards. This threshold can be set lower at the command line with the discardmax
parameter.

The Log FileWhen SQL*Loader begins execution, it creates a log file. Any situations that prevent this
log file from being successfully created terminate the loader session. The default filename for the log file
is the control filename with the .log extension. It is important to note that if you do not give it a new
name at the command line using the log parameter, the loader session automatically overwrites the last
log with the same name. The log file has multiple sections showing the environment at which the loader
session ran with results and summary statistics. Samples of log files are included in the Examples
section.

Control File Syntax

Most control files begin with the keywords:

LOAD DATA

Other keywords that may precede these are --, which are comments, and options, which enable
command-line options previously discussed to be included in the control file.

This is followed by the definition to indicate the source external data file to use for the load:

INFILE `mydata.dat'

Multiple data files can be loaded in the same session by specifying multiple INFILE statements:

INFILE `mydata1.dat'
INFILE `mydata2.dat'

If the file extension is not specified, SQL*Loader defaults the extension to .dat. Although it is not
required to enclose the data file in single quotes, it is highly recommended to avoid incorrect special
character translations when specifying full data paths.

Page 334

This is then followed by the loading method (see Table 14.1) to be used for all tables in the loading
session.

Table 14.1Table Loading Methods

Method Description

INSERT
This is the default method. It assumes that the
table is empty before loading. If there are still
rows within the table, SQL*Loader will abort.

APPEND
This method allows rows to be added to the
table without affecting existing rows.

REPLACE

This method deletes existing rows in the table
first and then starts loading the new rows. Note
that any delete triggers on the table fire when
the old rows are deleted.

TRUNCATE

This method uses the SQL command
TRUNCATE to remove the old rows before
loading. This is much quicker than REPLACE
because delete triggers fire and no rollback is
generated. TRUNCATE is not a recoverable
command. In order to use this method, the
table's referential integrity constraints must be
disabled.

This is followed by the table definition:

INTO TABLE tablename method

in which method is the same as above, but this method only applies to the table specified on this INTO
TABLE line.

What follows after the INTO TABLE keywords are the field and datatype specifications. Instead of
reviewing all the different options, it is simpler to look at the different examples in the following section.

Looking at SQL*Loader Examples

All examples use the following schema consisting of four tables (see Listing 14.2). This schema
simulates a banking schema with customer, account, and transaction tables. For the purposes of
demonstrating loading into a partitioned table, the partition_xact table is a duplicate of the transaction
table, with the data partitioned based on the quarter in which the transaction took place.

Listing 14.2LIST1.1—Sample Schema

create table customer (
 cust_nbr number(7) not null,
 cust_name varchar2(100) not null,
 cust_addr1 varchar2(50),
 cust_addr2 varchar2(50),
 cust_city varchar2(30),

Page 335

 cust_state varchar2(2),
 cust_zip varchar2(10),
 cust_phone varchar2(20),
 cust_birthday date)
/
create table account (
 cust_nbr number(7) not null,
 acct_nbr number(10) not null,
 acct_name varchar2(40) not null)
/
create table transaction (
 acct_nbr number(10) not null,
 xact_amt number(10,2) not null,
 xact_flag char not null,
 xact_date date not null)
/

create table partition_xact (
 acct_nbr number(10) not null,
 xact_amt number(10,2) not null,
 xact_flag char not null,
 xact_date date not null)
 PARTITION BY RANGE (xact_date)
 (PARTITION P1 VALUES LESS THAN (to_date('01-APR-1997','DD-MON-
YYYY')),
 PARTITION P2 VALUES LESS THAN (to_date('01-JUL-1997','DD-MON-
YYYY')),
 PARTITION P3 VALUES LESS THAN (to_date('01-OCT-1997','DD-MON-
YYYY')),
 PARTITION P4 VALUES LESS THAN (MAXVALUE))
/

All examples use the following data files (see Listings 14.3, 14.4, and 14.5).

Listing 14.3cust.dat—Description of the Listing

0000001BOB MARIN 123 MAIN ST. TOPEKA
KS12345
 Â999-555-1234 20-APR-55
0000002MARY JOHNSON 18 HOPE LANE SAN FRANCISCO
CA94054
 Â415-555-1299 32-JAN-69
0000003RICHARD WILLIAMS 1225 DAFFODIL LANE BOSTON
MA98377
0000004WALTER SIMS 1888 PROSPECT AVE. BROOKLYN
NY11218
 Â718-555-3420
0000005LARRY HATFIELD TWO FIELDS CT. SOMERSET
NJ07689
 Â732-555-2454 25-DEC-60
0000006LAURA LAU 25 CHRISTOPHER LN SAN BRUNO
CA90234
 Â510-555-4834
0000123PRISCILLA WONG 888 FORTUNE COURT PHILADELPHIA
PA35545
 Â 01-JAN-65
0000068SONNY BALRUP 27 KAMA ST. JACKSON HEIGHTS
NY10199
 Â718-555-9876 07-MAY-61
0023494RUPAL PARIKH 2 FORCE BLVD NEW YORK

NY10105
 Â212-555-5887 31-DEC-72
0000324CRAIG SILVEIRA 1674 ISLAND ST SMITHTOWN
NY12467
 Â516-555-5534 27-OCT-74
0000010DANIEL SMITH 35 DIRECT DRIVE BERGEN
NJ07899
 Â201-555-3734

 continues

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 336

Listing 14.3Continued

0011102STEPHEN LEUNG 16 STANFORD CT STANFORD
CA96688
 Â650-555-1248 05-SEP-76
0011102ALICIA LOWRY 5678 TIMOTHY DR ATLANTA
GA47730
0002340JENNIFER LEUNG 1 MURRAY HILL GREENWICH
CT78835
 Â203-555-7564
1003423HORACE MICHAEL 90 MINISTER ST MINNEAPOLIS
MN77788
 Â 18-MAR-65
0000223CHRISTOPHER YEE 9077 MUSIC AVE DETROIT
MI45345
 Â777-555-7785 22-JUL-75
0009032JAMES BORIOTTI 65 FIREMENS LANE COLUMBUS
OH37485
 Â904-555-5674
0000088HIREN PATEL 69 CLUB ST. NEW YORK
NY12445
 Â212-555-7822 12-APR-70
0000100RICHARD JI 1225 STEER ST KOBE
KS12009
 Â999-555-5824 10-OCT-74
0000046DAVID CHOW 49 HUGO DRIVE FLUSHING
NY10199
 Â718-555-4367
0000758HENRY WALKER 12 SIGMUND ST. CHICAGO
IL33890
 Â312-555-5567 09-APR-45
0002993GEORGE BLOOM 28 BRIDGEWATER ST SAN MATEO
CA90475
 Â650-555-2838 25-MAY-63
0009488LISA JONES 30 MISSION ST UNITY
FL23899

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch14/0341-0344.html

Listing 14.4acct.dat—Description of the Listing

0000001,459023,SAVINGS
0000001,459024,CHECKING
0000003,211108,SAVINGS
0000003,211123,CHECKING
0000006,23388,SAVINGS
0000123,43992,CHECKING
0000123,50699390,LINE OF CREDIT
0000068,23330,SAVINGS
0023494,433020,SAVINGS
0000010,4566,SAVINGS
0000010,4599,CHECKING
0000223,8887544,SAVINGS

Listing 14.5xact.dat—Description of the Listing

0000459023 123.45D01-FEB-97
0000459023 1233.86C01-MAR-97
0000459023 987.00P01-DEC-97
0000459024 1000C03-JUN-97
0000211108 875.27D23-JUL-97
0000211123 20987.88C30-DEC-97
0000211123 12500.16D10-JAN-97
0000023388 1.75C19-MAY-97
0000043992 350.00C12-MAR-97

Page 337

0050699390 2899.09D01-SEP-97
0000023330 100D26-JAN-97
0000433020 60.99C20-NOV-97
0000004566 230.23C20-AUG-97
0000004599 14.96D05-JUN-97
0000004599 14.AAD07-JUN-97
0008887544 9999.99D11-JUL-97

Example 1—Loading Fixed-Length Data

This example loads the data in the cust.dat data file into the customer table. Since the data is in fixed-
length format, the control file (see Listing 14.6) maps the data to the database by column positions.

Listing 14.6load1.ctl—The Control File

LOAD DATA
INFILE `cust.dat'
INTO TABLE customer
 (cust_nbr POSITION(01:07) INTEGER EXTERNAL,
 cust_name POSITION(08:27) CHAR,
 cust_addr1 POSITION(28:47) CHAR,
 cust_city POSITION(48:67) CHAR,
 cust_state POSITION(68:69) CHAR,
 cust_zip POSITION(70:79) CHAR,
 cust_phone POSITION(80:91) CHAR,
 cust_birthday POSITION(100:108) DATE "DD-MON-YY"
NULLIF cust_birthday=BLANKS)

Invoke SQL*Loader using example/expass as the username and password (see Listing 14.7). The
control, log, bad, and discard files are passed to SQL*Loader as command-line parameters as previously
discussed in the section on using SQL*Loader (see Listing 14.8).

Listing 14.7load1.ctl—Invoking the SQL*Loader

$ sqlldr example/expass control=load1.ctl log=load1.log bad=load1.bad
 discard=load1.dis

The following is the server response:

SQL*Loader: Release 8.0.3.0.0 - Production on Fri Nov 21 9:52:36 1997
(c) Copyright 1997 Oracle Corporation. All rights reserved.

Commit point reached - logical record count 23

Page 338

Listing 14.8load1.ctl—Example 1 Log File Contents

SQL*Loader: Release 8.0.3.0.0 - Production on Fri Nov 21 9:52:54 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Control File: load1.ctl
Data File: cust.dat
 Bad File: load1.bad

 Discard File: load1.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional

Table CUSTOMER, loaded from every logical record.
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ---- ---- ----

CUST_NBR 1:7 7 CHARACTER
CUST_NAME 8:27 20 CHARACTER
CUST_ADDR1 28:47 20 CHARACTER
CUST_CITY 48:67 20 CHARACTER
CUST_STATE 68:69 2 CHARACTER
CUST_ZIP 70:79 10 CHARACTER
CUST_PHONE 80:91 12 CHARACTER
CUST_BIRTHDAY 100:108 9 DATE DD-MON-
YY

Column CUST_NAME is NULL if CUST_NAME = BLANKS
Column CUST_ADDR1 is NULL if CUST_ADDR1 = BLANKS
Column CUST_CITY is NULL if CUST_CITY = BLANKS
Column CUST_STATE is NULL if CUST_STATE = BLANKS
Column CUST_ZIP is NULL if CUST_ZIP = BLANKS
Column CUST_PHONE is NULL if CUST_PHONE = BLANKS
Column CUST_BIRTHDAY is NULL if CUST_BIRTHDAY = BLANKS

Record 2: Rejected - Error on table CUSTOMER, column CUST_BIRTHDAY.
ORA-01847: day of month must be between 1 and last day of month

Table CUSTOMER:
 22 Rows successfully loaded.
 1 Row not loaded due to data errors.
 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 9216 bytes(64 rows)
Space allocated for memory besides bind array: 0 bytes

Page 339

Total logical records skipped: 0
Total logical records read: 23
Total logical records rejected: 1
Total logical records discarded: 0

Run began on Fri Nov 21 09:52:54 1997
Run ended on Fri Nov 21 09:52:54 1997

Elapsed time was: 00:00:00.21
CPU time was: 00:00:00.04

Example 1 comments: Record 2 is rejected due to an invalid date and is written to the bad file (load1.
bad). This record can then be corrected in the bad file and loaded by making changes to the same control
file to use the bad file as the input file, and adding the keyword APPEND before the keywords INTO
TABLE. Also note the use of the NULLIF clause in the control file. Without this clause, records that had
blanks for dates would have failed the database date check.

Example 2—Loading Variable-Length Data

This example (see Listings 14.9 and 14.10) loads the data in the acct.dat data file into the customer table.
Because the data is in variable-length format, the control file defines the delimiter used to distinguish
between the different data items.

Listing 14.9LOAD2.CTL—Example 2 Control File

LOAD DATA
INFILE `acct.dat'
INTO TABLE account
FIELDS TERMINATED BY `,' OPTIONALLY ENCLOSED BY `"`
 (cust_nbr, acct_nbr, acct_name)

Invoking SQL*Loader for Example 2 at the command prompt:

$ sqlldr example/expass control=load2.ctl log=load2.log bad=load2.bad
 discard=load2.dis

The following is the server response:

SQL*Loader: Release 8.0.3.0.0 - Production on Fri Nov 21 10:30:48 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Commit point reached - logical record count 12

Page 340

Listing 14.10Example 2 Log File Contents

SQL*Loader: Release 8.0.3.0.0 - Production on Fri Nov 21 10:30:48 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Control File: load2.ctl
Data File: acct.dat
 Bad File: load2.bad
 Discard File: load2.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional

Table ACCOUNT, loaded from every logical record.
Insert option in effect for this table: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ---- ---- ----

CUST_NBR FIRST * , O(") CHARACTER
ACCT_NBR NEXT * , O(") CHARACTER
ACCT_NAME NEXT * , O(") CHARACTER

Table ACCOUNT:
 12 Rows successfully loaded.
 0 Rows not loaded due to data errors.

 0 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.

Space allocated for bind array: 35328 bytes(64 rows)
Space allocated for memory besides bind array: 0 bytes

Total logical records skipped: 0
Total logical records read: 12
Total logical records rejected: 0
Total logical records discarded: 0

Run began on Fri Nov 21 10:30:48 1997
Run ended on Fri Nov 21 10:30:49 1997

Elapsed time was: 00:00:00.23
CPU time was: 00:00:00.04

Example 2 comments: All records are successfully loaded. Remember that variable-length data must
have delimiters to separate data items within the input data file. When loading delimited character data,
it is more efficient to define the maximum length of each char data field. In this example, acct_name char
(20) should be used in the control file. If the maximum length is not defined, SQL*Loader uses a default
of 255 bytes for the length, which influences how many records are inserted in each execution of the
bind array.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch14/0341-0344.html

Previous | Table of Contents | Next

Page 351

Chapter 15

Designer/2000 for Administrators

In this chapter

● Designer/2000—Oracle's Popular CASE Solution 352 LI>Designer/2000 Overview 353
● Designer/2000 Administration 365
● Enhancing the Performance of Designer/2000 377
● Application Programming Interface 379
● Troubleshooting Designer/2000381 381

Page 352

Designer/2000—Oracle's Popular CASE Solution

The acronym CASE stands for Computer-Aided Software/Systems Engineering. Traditionally, the
system development process involved very little planning before programming of the system began; and
also, the IT group was not in constant communication with the users of the system. This resulted in
systems that did not meet user expectations. Today, many organizations rely on a formal methodology to
guide their system development tasks wherein the
methodology has specific guidelines regarding what is accomplished at specific stages of the project,
resulting in better systems. An increasing number of organizations have purchased a CASE tool or are
considering purchasing one to assist them with their system development tasks. Oracle's popular CASE
solution is the Designer/2000 toolset.

Systems Development Life Cycle (SDLC)

The idea of a life cycle is to break a large project into smaller units called stages. Each stage consists of
many specific tasks that must be completed before the next stage is started. The life cycle begins with
the initial idea of the project followed by planning and design, programming, testing, implementing, and
finally using the system. Usually the life cycle spends a lot of time
in the initial phases, where critical data is gathered from the user community and is properly
documented. Organizations must understand the importance of this stage; if they rush through this stage,
the resulting system might not be what the users expect.

A traditional SDLC consists of a minimum of five stages:

● Strategy. Involves gaining an overall idea of the scope of the project and how the project will
proceed.

● Analysis. Involves determining the user requirements for the proposed system and the project
planning.

● Design. Involves the database design and programming module design.
● Implementation. Programming and testing the system.
● Support.The system is put into production, users are trained to use the system, and support is

provided for the system.

Oracle Corporation has a customized methodology called Oracle Case Method. Customers can purchase
"CASE*Method Tasks and Deliverables," which details the tasks and outputs of each stage.

Here are some terms that you need to know:

Application. A logical grouping of software engineering elements that can represent
anything from a high-level conceptual model to a specific system model.
DES2K repository/instance. An Oracle account that owns a set of database objects.
Whenever you create, edit, or delete something in DES2K, the records of underlying
tables are modified by DES2K via specific packages.
Subordinate user. An Oracle account that accesses the repository through synonyms.

Page 353

Repository. Consists of the tables and views used to interface with the data and the
procedures to manage them.

Upper CASE Versus Lower CASE

A common terminology in use today is whether a given CASE tool is an upper CASE tool or a lower
CASE tool. An upper CASE tool is used to define system requirements and produce diagrams and
documentation, which can be reviewed by the users during the early stages of the project. An upper
CASE tool is not used to generate the actual database or program modules. Lower CASE tools are
primarily concerned with the design and building stages of the SDLC. They increase productivity by
generating syntax to build databases and programs. On its own, neither tool is sufficient because the
upper CASE tool does not increase productivity, whereas the lower CASE tool does not provide
documentation for verification by the users.

Designer/2000 Overview

Designer/2000 provides a complete upper CASE and lower CASE solution and supports the entire

SDLC.

The logical model created during the analysis stage becomes the basis of the physical model, which is
created during the design stage. Applications are generated using this model and therefore any business
change is immediately reflected in the application. It also supports methodology from customers, which
is not necessarily Oracle CASE method.

The minimal requirements for installing Designer/2000 are listed as follows (client side, then server
side).

Client-side requirements:

● IBM, COMPAQ, or at least compatible with a 486 25DX2 processor or better.
● CD-ROM drive.
● 300MB free disk space.
● 40MB minimum swap space to run the applications.
● 16MB available memory.
● MS Windows v3.1 or higher (enhanced mode).
● MS DOS v5.0 or higher.
● SQL*NET v1.1 or v2.0 (SQL*NET is required only if running against a remote server).

Server-side requirements:

● Oracle7 v7.1.3 or higher with procedural option installed. Oracle distributed option is required if
remote database reverse engineering is required. Oracle 7.3.x version or higher of Designer/2000
R 2.0.

● Shared pool size of 18MB minimum.
● Recommended optimizer mode.

Page 354

● RULE-based for R 1.3.2.
● COST-based for R 2.0.
● 40MB.
● 60MB in the SYSTEM tablespace for the repository PL/SQL packages, procedures, and views.

NOTE

Refer to the installation manuals to determine storage
requirements.

For the latest information on product availability, please contact Oracle WorldWide Customer
Support. As of the date of this writing, the information available is as follows (by version):

Designer/2000 R 1.3.2:

❍ Available now on both 16-bit and 32-bit platforms.
❍ Availability in Japan may be different.
❍ 32-bit is certified with Developer/2000 R 1.3.2, R 1.4, and R 1.5.1 (patches required).
❍ Contact Oracle WorldWide Customer support for required patches.

Designer/2000 R 2.0:

❍ 32-bit only.

Now let's cover information on the Designer/2000 components.

Designer/2000 Components

The Designer/2000 toolset components contain the following items:

Repository Services includes:

❍ Repository Object Navigator (RON)
❍ Matrix Diagrammer
❍ Repository Management facilities
❍ Process Modeler

Systems Modeler includes:

❍ Entity Relationship Diagrammer
❍ Function Hierarchy Diagrammer
❍ DataFlow Diagrammer

Systems Designer includes:

❍ Module Structure Diagrammer
❍ Preferences Navigator

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 348

FIG. 14.2
Conventional and direct path load methods.

Using Conventional Path Load

The conventional path uses SQL INSERT statements and in-memory bond array buffers to load data into
Oracle tables. This process competes with all other processes for memory resources within the SGA.
This can slow down loader performance if the database already has the overhead of supporting many
concurrent processes.

Another overhead of using conventional path is that the loader process must scan the database for
partially filled blocks of the table being loaded and attempt to fill those blocks. This is efficient for daily
transactional processing, but it is an additional overhead that conventional path loading has.

Page 349

There are cases when conventional path is the preferred and sometimes mandatory method over the
direct path:

● If the table being loaded is indexed and being accessed concurrently with the load, or inserts and
deletes are being run against the table, conventional path must be used.

● When applying SQL functions in the control file, SQL functions are not allowed using the direct
path.

● When the table being loaded is a clustered table.
● When loading a small number of rows into a large indexed table and/or the table has referential

integrity or check constraints. It is explained in the direct path section why conventional path is

javascript:displayWindow('images/ch14fg02.jpg',320,513)

preferred in this instance.
● When loading is done through SQL*Net or Net8 with heterogeneous platform, both nodes must

belong to the same family of computers and both must be using the same character set in order to
use direct path.

Using Direct Path Load

Instead of using SQL INSERT statements and bind array buffers, direct path formats the input data into
Oracle data blocks and writes them directly into the database. It is important to note that direct path
loading always inserts data above the table's high-water mark. This eliminates the time spent scanning
for partially filled blocks. If direct path is being used and does not complete, and loader is restarted from
the beginning, the data that is loaded should be truncated or the table dropped and re-created. Simply
deleting the data does not reset the high-water mark, and you will be using more storage than is
necessary.

An understanding of what happens to a table's indexes using the direct path method is important to
maximize the efficiency of direct path loading. In Oracle8, indexes are marked unusable when the
loaded data becomes visible (the high-water mark is moved and committed), as this is the point that the
indexes are out-of-date with respect to the data that it indexes. As each index is brought up-to-date, the
index unusable state is cleared. This allows queries to take place against the table while direct path
loading is in progress. However, a query executing while the load is in the finishing stage (moving the
high-water mark and updating indexes) may fail if the query requires an index that is in an unusable
state.

During the load, the new index values are written to temporary segments, and at the end of the load they
are sorted and merged with the old index values, at which time the index becomes usable again. This can
significantly increase the need for temp space. In order to avoid the additional need for temp space to do
the sort, you can presort the data in the order of the index and use the keywords SORTED INDEXES in
the control file.

In the previous section on conventional path loading, the restrictions that would prevent the use of direct
path were listed. Loading a relatively small number of rows into a large table with indexes and/or
referential and check constraints is not a restriction against using direct path, but it will probably be
more efficient to use conventional path. In the case of the indexes, it would probably be quicker for
conventional path to update the indexes as it is loading the data, rather than doing a large sort/merge to
create the new indexes. With referential and check

Page 350

constraints, direct path requires that these constraints be disabled before the load. After all the data is
loading and constraints are re-enabled, the entire data's table is checked against these constraints, not
only the data that was loaded.

Using SQL*Loader Performance Tips

Below are some additional tips on increasing the performance of SQL*Loader:

1. Use positional fields over delimited fields, which require Loader to scan the data to search for the
delimiters. Positional fields are quicker because Loader only has to do simple pointer arithmetic.

2. Specify maximum lengths for terminated by fields to make each bind array insert more efficient.
3. Pre-allocate enough storage. As data is being loaded and more space is required in the table,

Oracle allocates more extents to hold the data. This operation can be expensive if it is being done
constantly during the load. Calculating or estimating the storage requirements prior to the load
enables you to create the necessary storage up front.

4. Avoid using NULLIF and DEFAULTIF clauses in the control file if possible. Each clause causes
the column to be evaluated for every row being loaded.

5. Split data files and run concurrent conventional path loads.
6. Reduce the number of commits by using the command-line parameter ROWS.
7. Avoid unnecessary character set conversions. Ensure that the client's NLS_LANG environment is

the same as the server's.
8. Use direct path whenever possible.
9. When using direct path, presort data for the largest index of the table and use the SORTED

INDEXES clause.
10. When using direct path, use the parallel direct path option when possible.
11. Minimize the use of redo logs during direct path loads. There are three ways of doing this with

different levels of control:
Disable archiving of the database.
Use the keyword UNRECOVERABLE in the control file.
Alter the table and/or index with the NOLOG attribute.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 345

Record 3 is discarded and placed into the discard file because the flag is neither "C" nor "D," thus not satisfying either condition. Record 15 is
rejected because the dollar amount is not numeric. These two records show the two stages of checking previously mentioned. Record 3 is
discarded by the loader process while record 15 was not rejected until the database tried to insert it into the table.

Example 5—Loading into a Table Partition

This example (see Listings 14.15 and 14.16) is a variation of Example 4, in which we load the data from the xact.dat file. In this example, we
load the data into the partition_xact table, which has four partitions to store the data by calendar quarter. A single partition or all partitions of a
table can be loaded in the same loader session. In this instance, we only load partition P1 for the first quarter.

Listing 14.15LOAD5.CTL—Example 5 Control File

LOAD DATA
INFILE `xact.dat'
INTO TABLE partition_xact PARTITION (P1)
WHEN xact_flag = `D'
 (acct_nbr POSITION(01:10) INTEGER EXTERNAL,
 xact_amt POSITION(11:20) INTEGER EXTERNAL ":xact_amt * -1",
 xact_flag POSITION(21:21) CHAR,
 xact_date POSITION(22:31) DATE "DD-MON-YY" NULLIF xact_date=BLANKS)

INTO TABLE partition_xact PARTITION (P1)
WHEN xact_flag = `C'
 (acct_nbr POSITION(01:10) INTEGER EXTERNAL,
 xact_amt POSITION(11:20) INTEGER EXTERNAL,
 xact_flag POSITION(21:21) CHAR,
 xact_date POSITION(22:31) DATE "DD-MON-YY" NULLIF xact_date=BLANKS)

Invoking SQL*Loader for Example 5 from the command prompt:

$ sqlldr example/expass control=load5.ctl log=load5.log bad=load5.bad
 discard=load5.dis

The following is the server response:

SQL*Loader: Release 8.0.3.0.0 - Production on Fri Nov 21 14:50:32 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

Commit point reached - logical record count 16

Listing 14.16Example 5 Log File Contents

SQL*Loader: Release 8.0.3.0.0 - Production on Fri Nov 21 14:50:32 1997

(c) Copyright 1997 Oracle Corporation. All rights reserved.

 continues

Page 346

Listing 14.16Continued

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch14/0341-0344.html

Control File: load5.ctl
Data File: xact.dat
 Bad File: load5.bad
 Discard File: load5.dis
 (Allow all discards)

Number to load: ALL
Number to skip: 0
Errors allowed: 50
Bind array: 64 rows, maximum of 65536 bytes
Continuation: none specified
Path used: Conventional

Table PARTITION_XACT, partition P1, loaded when XACT_FLAG = 0X44(character `D')
Insert option in effect for this partition: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ---- ---- ---- --------------
ACCT_NBR 1:10 10 CHARACTER
XACT_AMT 11:20 10 CHARACTER
XACT_FLAG 21:21 1 CHARACTER
XACT_DATE 22:31 10 DATE DD-MON-YY

Column XACT_AMT had SQL string
":xact_amt * -1"
 applied to it.
Column XACT_DATE is NULL if XACT_DATE = BLANKS

Table PARTITION_XACT, partition P1, loaded when XACT_FLAG = 0X43(character `C')
Insert option in effect for this partition: INSERT

 Column Name Position Len Term Encl Datatype
------------------------------ ---------- ---- ---- ---- --------------
ACCT_NBR 1:10 10 CHARACTER
XACT_AMT 11:20 10 CHARACTER
XACT_FLAG 21:21 1 CHARACTER
XACT_DATE 22:31 10 DATE DD-MON-YY

Column XACT_DATE is NULL if XACT_DATE = BLANKS

Record 3: Discarded - failed all WHEN clauses.
Record 5: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition
Record 10: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition
Record 14: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition
Record 15: Rejected - Error on table PARTITION_XACT, column XACT_AMT.
ORA-01722: invalid number
Record 16: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition
Record 4: Rejected - Error on table PARTITION_XACT, partition P1.

Page 347

ORA-14401: inserted partition key is outside specified partition
Record 6: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition
Record 8: Rejected - Error on table PARTITION_XACT, partition P1.

ORA-14401: inserted partition key is outside specified partition
Record 12: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition
Record 13: Rejected - Error on table PARTITION_XACT, partition P1.
ORA-14401: inserted partition key is outside specified partition

Table PARTITION_XACT, partition P1:
 3 Rows successfully loaded.
 5 Rows not loaded due to data errors.
 8 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.
Table PARTITION_XACT, partition P1:
 2 Rows successfully loaded.
 5 Rows not loaded due to data errors.
 9 Rows not loaded because all WHEN clauses were failed.
 0 Rows not loaded because all fields were null.
Space allocated for bind array: 7168 bytes(64 rows)
Space allocated for memory besides bind array: 0 bytes

Total logical records skipped: 0
Total logical records read: 16
Total logical records rejected: 10
Total logical records discarded: 1

Run began on Fri Nov 21 14:50:32 1997
Run ended on Fri Nov 21 14:50:33 1997

Elapsed time was: 00:00:00.31
CPU time was: 00:00:00.04

Example 5 comments: To load a partition of a partitioned table, the keyword PARTITION needs to be added after the table name in the control
file. Note that the partition name, in this instance P1, must be enclosed in parentheses. All partitions are loaded if the keyword PARTITION is
omitted. All records that are not in P1's partition range are written to the bad file.

Conventional and Direct Path Loading

SQL*Loader provides two methods to load data, conventional and direct path loading. Conventional path loading is the default for
SQL*Loader. To enable direct path loading, DIRECT=TRUE must be added to the command-line parameters when invoking SQL*Loader. As
seen in Figure 14.2, conventional path loading has additional steps that direct path loading doesn't. These extra steps add overhead to the
process, making conventional path slower than direct path. The additional steps of formatting SQL INSERT statements and going through the
buffer cache of the SGA are contending with all other processes that are running concurrently against the database. Although the inclination is
to always use direct path for its speed, there are restrictions and cases in which conventional path should be used. This is covered in the
following section.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch14/0341-0344.html

Previous | Table of Contents | Next

Page 355

● Module Logic Navigator
● Data Diagrammer
● Module Data Diagrammer
● Generators

The Designer/2000 components are shown in Figure 15.1.

FIG. 15.1
The Designer/2000
components.

Understanding the Repository

The heart of Designer/2000 is the repository that records all the information entered into Designer/2000.
It is the basis for generation in the build stage of the SDLC. Features include:

● Repository Object Navigator (RON). A part of the repository services that allows a highly
intuitive method of viewing and manipulating repository objects.

● Repository-based. This allows multiuser concurrent access, check-in and check-out facilities
available, and data access from other products such as SQL*PLUS.

● Version control. This allows the development to proceed with the current state of the application
frozen. It allows the maintaining of a history of system development over time and also parallel
development of the application using one or more versions. For example, an inventory system
can be developed for use in both the United States and the UK—one version containing UK-
specific details, and the other containing U.S.-specific information.

● Quality checks. It provides a variety of quality checks during the initial stages by cross-
referencing and checking consistency rules that allow the fixing of errors during the early stages.

● Documentation. It offers an extensive set of reporting options to generate systems documentation.
All the information is entered into property sheets and diagrammers

javascript:displayWindow('images/ch15fg01.jpg',420,476)

Page 356

as the project progresses; the reports are available easily. There are over 100 standard
reports that can be run.

● National Language support. It allows Designer/2000 to be run against an Oracle database built in
any character set, including multibyte character sets.

Several reports can be obtained from the repository, as shown in Figure 15.2.

FIG. 15.2
The reports available
from the repository.

Using the Diagrammers

Features common to all diagrammers of the Designer/2000 toolset are as follows:

● Graphical user interface
● Point and click
● Pull-down menus
● Context-sensitive help
● Multiple windows
● Integration with the repository
● OLE 2.0 integration
● Hierarchical views

All diagrammers and utilities provided with DES2K have certain common aspects, and you can use
similar steps to interface with them. After Designer/2000 has been installed, you will see an Oracle
Designer/2000 icon in the Designer/2000 group. Double-click this icon and log on

Page 357

to the Oracle database where the repository resides. If you are opening an existing application system,
choose it at this point. Otherwise, you can create a new application system at this point.

javascript:displayWindow('images/ch15fg02.jpg',800,600)

NOTE

The Designer/2000 window can be started from the command line using the following
syntax:
DES2KXX username/password@database /A:apps_system,version /S where username/
password@database is the connect string; /A specifies the application system and the
version; and /S is used to suppress the splash screen.

To create a new application system, complete the following steps:

1. Select RON and choose File, New.
2. Create a name for the application system.

You can continue working with this application system or change it by choosing a different one from the
File menu.

The main DES2K window has buttons to start all diagrammers and utilities as well as context-sensitive
links to the help system. The status line of the different tools and utilities contains valuable information
about the current session, such as the application system, version, and logged-on user. All the
diagrammers have a similar look and feel. They have a Multiple Document Interface (MDI) and enable
the user to look at the same object from different views and through different diagrams at the same time.

The diagrammers make extensive use of the mouse to manipulate objects and also respond to dialog
boxes. All the standard Windows mouse actions such as drag-and-drop, selecting, double-clicking to
change the properties, moving, resizing, and so on are supported. A full-featured menu system allows
easy manipulation of the objects and the application systems. A toolbar is also provided as an extension
of the menu system and makes the most frequently used functions easily accessible to the developers.
The DES2K utilities also have a common look and feel. Two types of utilities are used:

● Full-window utilities such as Repository Object Navigator, Repository Administration,
Repository Reports, Preferences Navigator, and Matrix Diagrammer provide an MDI interface
similar to the diagrammers. These utilities provide an object navigator and properties window to
easily manipulate the objects.

● Pop-up window utilities such as the generators and reverse engineering utilities are generally
started from another diagrammer or utility.

Diagramming Techniques Used by Designer/2000

During the logical and physical design of a system, diagrams help us accurately document the proposed
system and communicate with the users and other team members. The following Designer/2000
diagrammers are commonly used during the logical and physical design of the database:

Page 358

● Entity relationship diagrammer. An ERD models the information needs of an organization. It
should involve communication and consensus between the project team and the end users. Entity
relationship modeling involves identifying the things of importance in an organization (entities),
the properties of those things (attributes), and how they relate to each other (relationships). A
simple two-entity ERD is shown in Figure 15.3.

FIG. 15.3
An example of a two-
entity relationship
diagram.

● Function hierarchy diagram. This identifies everything the company needs to do and shows
functions that the company performs and those that it wants to implement in the future. The
function hierarchy begins with an overall mission description and breaks it down into major
functions that are further decomposed until it is not possible to break it further.

● Dataflow diagram. The DFD depicts how information flows in the business and how it flows
between the outside environment and the system interfaces.

● Matrix diagrams. The repository services of Designer/2000 allow the generation of a variety of
matrix diagrams for the system. The purpose of the matrix is to identify areas that might have
been overlooked during the logical design stage.

● Process flow diagram. The process modeler component of Designer/2000 supports process
modeling techniques that can be used to support Business Process Re-

● engineering (BPR) or prototyping. It can also act as a means of visual feedback to the users about
the analyst's understanding of the system requirements.

● Data schema diagrams. Graphical representations of the interrelated tables and constraints in the
database. Primary and foreign keys are shown in the diagram, which

Previous | Table of Contents | Next

javascript:displayWindow('images/ch15fg03.jpg',800,600)

Previous | Table of Contents | Next

Page 359

might also show the views, snapshots, and columns of the tables. The DSD is created
during the design stage and uses the ERD from the analysis stage. Figure 15.4 shows a
schema obtained from this diagrammer.

FIG. 15.4
An example of a
schema.

● Module data design. Depicts one program module. Typically, a system will have several module
data diagrams—one for each screen, report, and batch utility. It is usually based on the Function
hierarchy diagram and feeds information directly to the forms and reports generators.

● Module structure diagram. Shows the interrelationship of the modules defined by the module data
diagrammer. It is created during the design stage.

Generators

Several code generators are provided by Designer/2000, and these are repository utilities that allow the
generation of complete, bug-free code to be used in the build phase of the System Development Life
Cycle. The collection of generators can be classified into two types: Server Code Generator and Front-
End Code Generator.

Forms GeneratorThis DES2K component allows Developer/2000 applications to be built quickly based
on repository information. Forms generator has a lot of features, including

● Generating full-featured and menued forms applications
● Integrating with the systems designer

Page 360

● Enabling generation of applications with GUI items such as buttons, check boxes, radio groups,

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch15/0364-0367.html
javascript:displayWindow('images/ch15fg04.jpg',800,600)

and so on
● Providing foreign-key validation
● Providing implementation of business rules
● Reverse engineering of Oracle forms applications and storing it in the repository
● Regeneration of forms without losing code enhancements added by developers
● Support for VBX controls for 16-bit versions and OCX controls for 32-bit versions
● OLE 2.0 support and integration with Windows-based desktop applications

Figure 15.5 shows the forms generator in use.

FIG. 15.5
An example of the forms
generator in use.

Reports GeneratorThe reports generator is a DES2K component that enables Oracle
reports applications to be built quickly, based on repository information. Its many features include:

● Supports multilink reports
● Provides many reporting styles and layouts including control break, master-detail, and matrix

reports
● Provides productivity gains to developers
● Provides templates for standardization
● Customization of generator operations
● A variety of summary functions
● Reverse-engineering from existing reports and creates module definitions stored in the repository
● Regeneration of reports with changed specifications

Page 361

Server GeneratorThis Designer/2000 component allows for the creation of database objects and PL/SQL
modules based on repository information. Its features include:

● Generates ANSI standard SQL for database object creation
● Generates check constraints

javascript:displayWindow('images/ch15fg05.jpg',443,477)

● Generates and validates PK-FK relationships
● Supports the role-based security of Oracle7
● Generates PL/SQL modules including triggers, procedures, functions, and packages
● Snapshots
● Reverse-engineers database objects and stores their definitions in the repository

Basically, you define the objects in the repository and then use this generator to specify the object for
which you want the script created.

Figure 15.6 shows the server generator used to generate DDL.

FIG. 15.6
An example of the use
of the server generator.

Visual Basic GeneratorThis generator is similar to the forms generator. The code from this generator can
be loaded into Visual Basic 4.0 and is used to create an executable file.

Figure 15.7 shows a Visual Basic generator.

WebServer GeneratorThe WebServer Generator can be used to create Web applications. To create a
Web application:

1. Define the modules in the module data diagrammer.
2. Create PL/SQL packages from the modules using WebServer.
3. Run the generated PL/SQL scripts on Oracle WebServer to create the Web application.

Page 362

FIG. 15.7
An example of a Visual
Basic generator.

javascript:displayWindow('images/ch15fg06.jpg',428,477)

MS Help GeneratorThe MS Help Generator creates help files in MS Help file format that can be used
with forms and Visual Basic applications. The MS Help Generator puts help text in a file and creates the
necessary links and jumps. You will also need the MS Help Compiler, a separate product, to generate
the WinHelp format files.

C++ Object Layer GeneratorThis generator allows you to access object-relational databases by creating
C++ class definitions and code using the systems modeler tools. It can be used to produce the classes for
both the data and the functions that form the object. You will need to compile the generated classes with
the rest of the C++ code and also link it with the C++
libraries.

Module Regeneration Strategy

All the post-generation work should be implemented in such a way that module regeneration can take
place more or less in a painless manner. The following strategies can be used to accomplish this task:

● Put all the information in the repository. This method ensures that the changes are automatically
applied in the regenerated modules. However, this method results in increased administration of
the repository.

● Use multiple templates—a base template and other form-specific templates. The base template
can be used for all the forms in the system. You can also put form-specific information in the
other templates, thereby making it easy to manage the code.

Oracle CASE Exchange

Oracle CASE Exchange is a utility that allows bidirectional exchange of information between
Designer/2000 and CASE tools from other vendors. This can be very useful for people who have been
using CASE tools from other vendors and are now interested in using Designer/2000. It is especially
useful if an organization does its analysis using another CASE tool like

Page 363

LBMS Automate Plus and now wants to finish the project using Designer/2000. One limitation of
DES2K is that it does not generate 3GL code; by using CASE exchange, one can transfer the
information from the repository into another CASE tool and generate 3GL from that tool.

javascript:displayWindow('images/ch15fg07.jpg',434,464)

Oracle CASE exchange supports the CASE tools described in the following lists.

Upper CASE support includes:

● ADW/IEW from Knowledgeware
● Excelerator from Intersolv
● Design/1 from Anderson Consulting
● LBMS Automate Plus

Lower CASE support includes:

● ASK Ingres 6.0
● Pansophic Telon

Validation checks are provided by CASE exchange for the following before loading:

● Entities without attributes
● Attributes without an entity
● Entities without relationships
● Entities without unique identifiers
● Compatibility with the target tool

Waterfall-Oriented Methodology Using Designer/2000

The following are the steps involved in CASE studies: Strategy, Analysis, Design, and Implementation:

1. Create an application, which will be your work area. Use Repository Object Navigator (choose
File, New).

2. By using the entity relationship diagrammer, create the entities and their relationships. Use Edit,
Domain to enter domains, their valid values, and their defaults. Double-click an entity to enter
attributes, and to specify its domain and relationships. Also add attribute defaults and valid
values.

3. Use the function hierarchy diagrammer to create this diagram. Double-click each function and
add additional information to determine whether it will be a module or a form.

4. By using the matrix diagrammer, specify the correlation between functions and entity attributes.
5. Use the various reports to examine the quality of your analysis.
6. Use the properties window to define an area where the database objects will reside.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch15/0364-0367.html

Previous | Table of Contents | Next

Page 393

CHAPTER 16

Oracle Web Application Server 3.0

In this chapter

● Introducing the Oracle Web Application Server 394
● Understanding the Network Computing Architecture (NCA) 394
● Understanding the Oracle Web Application Server 395
● Providing Basic Services with the Oracle Web Application Server 398

Page 394

Introducing the Oracle Web Application Server

The Internet burst into the consciousness of most people within the past 18 to 24 months. The Internet
was seized upon by the media and by computer users as something new, unlike any computing
innovation that preceded it.

The Internet has also added some new standards to the computing environment. With the nearly
universal addressing scheme offered by the Internet and TCP/IP, the standard mail and other protocols
offered by the Internet services, and an easy, cross-platform hypertext display standard in HTML, the
Internet provides a way to integrate dissimilar computers across the world.

Oracle has been a leader in providing database technology for the past 15 years, and because the Internet
is a gigantic network for exchanging data, it makes sense that Oracle products should play a role in the
retrieval and dissemination of data over the Internet and through Internet-based applications.

The Oracle Web Application Server is the basis for Oracle's use of the Internet. However, it is also much
more than just a way to use the Internet. The Oracle Web Application Server is a key piece of the
Network Computing Architecture (NCA), which is, in turn, the blueprint for the implementation of a
completely distributed application system. Internet-based applications are a type of distributed
application, so the Oracle Web Application Server is ideally suited for Web-based applications as well.
The rest of this chapter introduces you, at a high level, to the Oracle Web Application Server. The rest of
this book will help you create systems that are implemented over the Internet or an intranet and use the
services of the Oracle Web Application Server.

Understanding the Network Computing
Architecture (NCA)

The Network Computing Architecture is a framework that can be used to create open, distributed
application systems. To understand the NCA, it helps to take a look at the evolution of the computing
infrastructure over the past few years.

Ten years ago, virtually all applications were deployed on a single monolithic machine, with users
connected to the machine by dumb terminals. Different software components running on the machine
were used to implement systems, such as database management systems and application programs, but
all the components communicated with each other through shared resources, such as disk and memory,
or, at worst, over an internal communication bus.

As personal computers (PCs) began to enter the computing landscape, the client/server model began to
be used for application systems. Client/server computing featured personal computers as clients, with
enough power to support the graphical user interfaces demanded by users, as well as the execution of
application logic, connected over a local area network to a database server. It took several years for
developers and the tools that they used to appropriately

Page 395

support the client/server architecture and reduce the impact of the bottlenecks imposed by limited
network bandwidth.

The client/server computing architecture was widely favored by users, but the distribution of computing
resources over a wide number of client machines created its own set of problems for application
developers and system administrators. Whenever applications changed, new client components had to be
distributed to all client machines, and the growing complexity of application logic began to strain the
limits of the computing power on PC clients. To address both of these issues, a three-tier computing
model evolved, where application logic was run on a server machine that acted as an intermediary
between the client and the database server.

The NCA has been introduced to extend the three-tier model into a multitier model. The NCA provides a
standard interface that can be used by a variety of cartridges, which are self- contained units of
functionality that can act as client components, application logic components, or data components. The
Network Computing Architecture also includes a standardized communication protocol, so that the
different cartridges in an NCA application can communicate with each other. The basic structure of the
Network Computing Architecture is illustrated in Figure 16.1.

FIG. 16.1
The Network Computing

Architecture provides
a framework for
distributed computing.

The NCA is also ideally suited for Internet applications. A Web client, in the form of a browser, can use
the NCA framework to interact with other application components. The same components can be used
as cartridges within a more traditional client/server architecture, or even with dumb terminals connected
to a monolithic computer. By clearly defining the ways that client, logic, and data cartridges interact, the
NCA allows virtually unlimited flexibility in creating and deploying application systems.

Understanding the Oracle Web Application Server

The Oracle Web Application Server plays a key role in the Network Computing Architecture and acts as
the focal point for the management of cartridge services and the communication between cartridges.

Page 396

The illustration of the Network Computing Architecture presents a conceptual view of the NCA. The
Oracle Web Application Server provides some of the substance that is needed to make the Network
Computing Architecture a reality.

A cartridge is a code module which interacts with the Oracle Web Application Server through a standard
interface. The basic function of the Oracle Web Application Server in the NCA is to manage the
interaction of cartridges. To accomplish this, the Oracle Web Application Server manages the creation
of application logic cartridges, the communication between client cartridges and application logic
cartridges, and the inter-cartridge communication between application logic cartridges. The Oracle Web
Application Server also provides basic services to cartridges that are necessary to implement robust
applications using the Network Computing Architecture.

The Oracle Web Application Server is composed of the following three basic components:

● The Web Listener, which handles communication between clients and the Web Application
Server through standard Internet protocols.

● The Web Request Broker, which manages the creation of cartridge processes; load balancing
between multiple instances of individual cartridges; and services to cartridges, such as transaction
services, inter-cartridge communication services, persistent storage services, and authentication
services.

javascript:displayWindow('images/ch16fg01.jpg',395,228)

● Specific cartridges which are used to implement specific application functionality.

This layered architecture gives Oracle Web Application Server two basic advantages. First of all, it
allows each component to be designed to best address the needs of its particular function, instead of
trying to handle all of the tasks of a server. For instance, the Web Listener must be ready to receive all
HTTP messages, so it should be a small application to be as responsive as possible. Web Request
Broker, on the other hand, will potentially have to handle many different types of requests, so it will
have to be able to manage multiple tasks, requiring a more robust application.

The Oracle Web Application Server can support multiple instances of individual cartridges, which
makes applications that use these cartridges highly scalable. This scalability is enhanced by the ability to
add additional resources where you need them, without affecting the rest of the components. For
instance, you can have multiple listeners to handle high volume traffic, or spawn additional cartridge
instances if a particular cartridge's functionality is heavily taxed.

The second advantage comes from having a well-defined application program interface between the
different components. This interface makes Oracle Web Application Server an open system, to which
you can add your own custom components to create your system. For instance, you can substitute some
other HTTP listener for Oracle Web Listener and still use the other components of the Oracle Web
Application Server. Even more importantly, the open architecture of Oracle Web Request Broker allows
you to write your own cartridges, to support any development environment, and to deliver any type of
functionality you need in your Web applications.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 389

Table 15.10 details the Designer/2000 supported-versions list (please contact Oracle WorldWide
Support for an updated list for Designer/2000 R 2.0).

Table 15.10Designer/2000 Supported Versions

Designer/2000
Release 1.32 (16-
bit)

Release 1.32 (32-
bit)

Platform
Windows 3.1, NT
3.5.1, and OS/2
3.0 Warp

Win95, NT 3.5.1,
and NT 4.0

Version Number 6.0.10.0.1 6.0.10.0.0

Server Version 7.3.2.1 and 7.3.2.3 7.3.x and 8.0.3

Forms 4.5.7.1.2E 4.5.7.1.6

Reports 2.5.5.2.5C 2.5.5.2.5C

Graphics 2.5.7.1.0D 2.5.7.1.0C

Procedure Builder 1.5.6.14.0 1.5.6.15.3

Discovery Browser 2.0.9.2.7 2.0.9.2.8

SQL*PLUS 3.3.2.0.2 3.3.2.0.2

SQL*NETV1 ————— —————

SQL*NETV2 2.3.2.1.6 2.3.2.1.6A

Oracle Installer 3.1.4.1.2F 3.1.4.1.3

Forms Generator 4.5.10.0.1 4.5.10.0.0

Reports Generator 2.5.10.0.1 2.5.10.0.0

Server Generator 1.0.10.0.1 5.5.10.0.0

Visual Basic
Generator

1.0.10.0.1 1.0.10.0.0

Visual Basic
Professional
Edition V4 (16-
bit)

Professional
Edition V4 (16-
bit)

Oracle Objects for
OLE

V2 V2

C++ Object Layer
Generator

1.0.10.0.0 1.0.10.0.0

Visual C++
MS Visual C++
1.52, 2.2, 4.1

MS Visual C++
1.52, 2.2, 4.1

Web Generator 1.0.10.0.1 1.0.10.0.0

Oracle Web Server
Option

V2 V2

MS Help Generator 1.0.10.0.1 1.0.10.0.0

Page 390

Table 15.11 describes the Designer/2000 utility and the corresponding executable filename.

Table 15.11Mapping of Tools to the Executable

Designer/2000 Utility Executable Filename

Data Diagrammer dws13.exe

Dataflow Diagrammer awd23.exe

Designer/2000 Diagnostics ckndiag.exe

Entity Relationship Diagrammer awe23.exe

Forms Generator cf45g32.exe

Function Hierarchy Diagrammer afw23.exe

Graphics Generator cg25g32.exe

Matrix Diagrammer awm23.exe

Module Data Diagrammer iwmdd13.exe

Module Logic Navigator iwmln13.exe

Module Structure Diagrammer dwm13.exe

MS Help Generator cvhpg13.exe

Preferences Navigator iwgpn13.exe

Process Modeler bpmod13.exe

Reports Generator cg25r32.exe

Repository Administration Utility ckrau13.exe

Repository Object Navigator ckron13.exe

Repository Reports ckrpt13.exe

RON Load Utility ckld13.exe

VB Generator cvvbg13.exe

WebServer Generator cvwsg13.exe

Page 391

PART IV

Oracle on the Web

16. Oracle Web Application Server 3.0
17. Web Application Server Components
18. Installing and Configuring the Oracle Web
19. Application Server

Page 392

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 386

querying tables. However, keep in mind that views are just stored select statements and
can be used post-generation for the minor changes requested by the users, such as new
reports or security changes to the application.

● Before the creation of modules, make sure that the default data is entered. Before modules are
created, default data should be entered in the table definitions. The following defaults can be
verified for every table: display datatype, display sequence, format, prompt, hint, default order
sequence, and display length and width. This will save a lot of time when modules needed to be
redeveloped.

● Display meaningful error messages. When users enter invalid information in fields, it is better to
provide meaningful error messages to them that indicate what the valid values are rather than
give them meaningless system-generated errors.

● Enforce standards. Standardization in development can lead to increased development efficiency,
reduction of maintenance, and reduction in the learning curve for new developers. Designer/2000
provides many reports that enforce standards. It also provides an API that consists of a set of
views against the repository tables and a set of PL/SQL packages that enable the repository to be
updated. The API can be used to generate reports that list/fix the violations in the standard.

● Learn about the generation preferences of forms and reports. The time spent in understanding the
preferences during generation pays off at the end by reducing post-generation efforts.

● Set the default preferences for the application. Become familiar with the preferences that can be
set at the application level and should be left unchanged for the generated modules. Other
preferences can be used for each generated module as needed to conform to the design standards.

● Learn and use the forms and reports generators. Many developers like to use the Designer/2000
generators to generate a skeleton form or report and do most of their development using
Developer/2000. However, the DES2K generators are quite useful, and if you take the time to
understand their capabilities, it will result in a high percentage of generation.

● Involve users to a certain extent in the project. It definitely helps to get user approval for the
prototype, and constant communication with the users is essential. But after a certain point the
users should not be allowed to make suggestions; otherwise, the system will be constantly
changing, and user expectations can become very high.

● Post-generation should start after all the modules are generated. If post-generation is started at an
early stage, major changes in data design will be difficult to incorporate in the final modules.

● Document post-generation steps. Use the DES2K repository to store a detailed description of
post-generation steps so that the developers can easily reapply these steps if there is (and usually
there is) a need to reapply the steps. You can use the module's text fields like "notes" or create
your own custom text fields to store this information.

● Customize the templates. DES2K provides a number of templates that can be customized to

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch15/0382-0385.html

implement specific needs.

Page 387

● PL/SQL should be placed in library functions, procedures, and packages. This will simplify code
maintenance of the modules. The template code can access these libraries, and if there is any
change to the code in the library, the modules will immediately reflect the changes without
recompilation.

Designer/2000 R 2.0 Features

Designer/2000 Release 2.0 provides a variety of new features. These features include:

Extended Server Generation:

● Support for Oracle7, Oracle RdB, Oracle Web Server
● Support for non-Oracle databases: MS SQL Server, Sybase, DB2/2, and Informix
● Support for ODBC databases
● API generation for DML and lock procedures for tables

Client Generation:

● Design Reuse: Once a module is defined, its components can be shared with other modules.
● Application logic: Store PL/SQL, Visual Basic and Java code.
● Generators integration.
● Generation of database triggers based on declarative design information in the repository.
● One hundred percent reverse engineering of application logic as well as one hundred percent

generation.

Design Editor:

● A single fully integrated design and generation environment.
● Maximize ease-of-use by means of wizards, drag and drop, edit-in-place, right mouse menus, and

synchronized updates.

Migration Paths to Designer/2000 R 2.0:

● Designer/2000 R 2.0 can perform upgrades on Designer/2000 R 1.x repositories.
● A separate utility will be provided for upgrading from CASE 5.0.x and 5.1.x to Designer/2000 R

1.3.2. The repository can then be brought up-to-date with R 2.0.

Application Upgrades:

● The Restore facility in the RON can be used to upgrade a pre-existing Release 1 application or a
set of applications to Designer/2000 R 2.0. A two-step process upgrades the archived applications
to be 1.3.2-compliant and then upgrades this to R 2.0.

● The disadvantage of this approach is that if the upgrade process is aborted due to errors, it has to
be restarted with the original archive. To prevent this from happening, analyze the data before
archiving it.

Page 388

Coexistence of Release 1.x and Release 2.0:

● 16-Bit Release 1.x—Yes, provided that the 16-bit Release 1.x and the 32-bit Release 2.0 are in
separate Oracle homes.

● 32-Bit Release 1.x—Yes. Installing Release 2.0 on top of existing Release 1.x will not be a
problem, because the default directory names are different in Release 2.0.

Cautions:

● The NLS_LANG parameter in the Registry must match the NLS_LANG parameter in the server;
otherwise, it will cause problems when loading package definitions during install and upgrade.

● A typical upgrade should take 2_3 hours to drop the existing API, and another 2_3 hours to load
the new API and perform instance conversion and initialization.

● If the RAU has invoked SQL*PLUS, do not manually invoke SQL*PLUS; it can lead to process
hands and even corruption of the repository.

Designer/2000 and Oracle8

The introduction of Oracle8 has taken the databases and the applications built on those
databases to a whole new level, both in the amount of data stored and the number of users supported.
Designer/2000 provides a complete set of modeling and generation tools for the relational and object
constructs of Oracle8.

Designer/2000 2.0 provides support for all the Oracle8 scalability features, including:

● Partitioning of tables
● BLOBs (binary large objects) and CLOBs (character large objects)
● Index organized tables (IOTs)
● Deferred constraint checking
● Type tables
● Collections

● Object views (represent a relational structure as though it were a type)
● Embedded types
● VARRAYS (multivalued columns)
● Nested tables (tables embedded within other tables)
● References (directly reference one object from another)

Designer/2000's schema modeler has been extended to use the scalability and object features of Oracle8
without compromising ease of use. It allows you to design database schema or load existing schema
definitions into its repository. The server generator then translates the graphical representation into the
appropriate SQL DDL to implement it. Designer/2000 uses unified modeling language (UML), an
emerging open standard from the Object Management Group (OMG) to represent its type models.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch15/0382-0385.html

Previous | Table of Contents | Next

Page 397

The Web Listener

The Web Listener, as the name implies, listens for HTTP requests coming to the IP address of the server
machine. When Web Listener gets a request, it passes the request on to Web Request Broker. Web
Request Broker tries to identify the type of request by checking to see whether the directory of the
request's URL can be mapped to a directory that is associated with one of the cartridges of the server. If
the URL does map, the request is executed by the appropriate cartridge. If the URL does not map to one
of the associated directories, the URL is passed back to Web Listener and the document represented by
the URL is retrieved.

The Web Request Broker

What's under the hood of Web Request Broker? When a request comes in for a particular Web Service, a
Web Dispatcher passes the request to the Web Service. The Web Dispatcher handles assigning a request
for a cartridge to a particular Web Service, which is labeled as a WRBX in Figure 16.2. Each Web
Service is a multithreaded process, and each service request has its own thread. This saves the overhead
of starting a process for each request. You can have more than one service for a cartridge and specify the
maximum and minimum number of threads for the service, so the Web Dispatcher performs dynamic
load balancing between multiple services.

FIG. 16.2
The architecture of
the Oracle Web Application
Server handles the
assignment of tasks
to Web request engines.

Each service has its own execution engine and uses a shared library. The Web Request Broker execution
engine communicates with cartridges through three basic Application Program Interface (API) calls to
initialize a service, shut down the service, and pass requests to the service.

Cartridges

javascript:displayWindow('images/ch16fg02.jpg',400,207)

Oracle Web Application Server comes with the following six predefined cartridges:

● A PL/SQL cartridge, which can call PL/SQL packages
● A Java interpreter cartridge, which provides a runtime Java execution environment
● A Perl cartridge, which can call Perl scripts
● An ODBC cartridge, which provides access to a variety of data sources using the Open Database

Connection interface

Page 398

● A VRML cartridge for implementing VRML applications
● A LiveHTML cartridge to work with server-side includes

The PL/SQL and Java cartridges include additional functions that extend the capability of the cartridge
to perform extended processing, such as writing HTML back to a browser.

Oracle will also be delivering a Web cartridge interface for applications developed with its
Developer/2000 for the Web product in the second quarter of 1997. The Web cartridge for
Developer/2000, as illustrated in Figure 16.3, will allow any application created with Developer/2000
for the Web to be re-compiled and deployed over the Web, with a Java applet acting as a user interface
on the client and the application itself running on a Web server.

FIG. 16.3
Developer/2000 for
the Web uses a Web
cartridge to imple-
ment application systems.

The Web Request Broker uses an open API, so you can design your own cartridges. You can create
system cartridges, which execute a predefined function, or programmable cartridges, which can be used
to interpret runtime applications. Third-party developers can also develop cartridges for specific
purposes. Any new cartridge can be easily integrated into the open Web Application Server environment
by registering the cartridge in the Web Application Server configuration file.

Providing Basic Services with the Oracle Web Application Server

The Oracle Web Application Server provides some basic services that can be used by any cartridge.
There are four basic categories of services provided by Oracle Web Application Server:

javascript:displayWindow('images/ch16fg03.jpg',400,108)

● Transaction services
● Inter-Cartridge Exchange services
● Persistent storage services
● Authentication services

In addition, the Oracle Web Application Server provides a log server to log requests to the Oracle Web
Application Server and a log analyzer, which helps to understand the server logs.

Page 399

Transaction Services

The Oracle Web Application Server provides transaction services to all cartridges. A transaction is a
clearly defined unit of work. If a transaction is committed, all changes implemented by the transaction
are applied to the relevant data stores. If a transaction is rolled back, which means that the data is
returned to the state it was in prior to the start of the transaction, the data stores are left in the same state
they were in prior to the start of the transaction. By providing transaction services, the Oracle Web
Application Server allows you to overcome the problems faced by the stateless nature of HTTP
communication.

Inter-Cartridge Exchange Services

The Oracle Web Application Server provides Inter-Cartridge Exchange services, which allows different
cartridges to communicate with each other.

In Release 3.0 of the Oracle Web Application Server, the internal communications between cartridges
are handled by an internal communication protocol that is compliant with the Common Object Request
Broker Architecture, also known as CORBA. The CORBA standard is an open protocol that is supported
by a wide variety of hardware and software vendors.

Subsequent releases of the Oracle Web Application Server will extend the use of the CORBA standard
for Inter-Cartridge Exchange so the independently developed CORBA components will be able to
transparently interact with NCA cartridges through the use of the Oracle Web Application Server.

Persistent Storage Services

The Oracle Web Application Server includes a set of application programming interfaces that allow
developers to read and write data objects, create data objects, and delete data objects and their data.
These APIs can be used to write data to either the Oracle7 database or to native files on the server
platform.

These APIs are built on a schema that includes attributes such as content type, author, and creation date.
The persistent storage services allow all cartridges to operate through a common interface whenever data
has to be stored on disk or for future reference within an application.

Authentication Services

Release 3.0 of the Oracle Web Application Server gives developers a variety of extensible authentication
schemes that can be used in their applications including basic, digest, domain, and databased
authentication.

The authentication services give developers the flexibility to implement security in the way which is best
suited to the needs of their particular application.l

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 400

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 401

CHAPTER 17

Web Application Server Components

In this chapter :

● Examining the Web Listener 402
● Examining the Web Request Broker 404
● Examining the Web Application Server SDK 408

Page 402

Examining the Web Listener

Oracle Web Application Server uses Web Listener to wait for incoming requests for services. Typically,
such a listener would set up an address that serves as an electronic signpost to tell all wayfaring packets
of data, "I'm open for business." Of course, the listener must tell Oracle Web Application Server its
address before opening for business. When Oracle Web Application Server has this address registered, it
can build a road to Web Listener. This way, when a client issues a request, Oracle Web Application
Server can route the message on to Web Listener, which then can execute the appropriate service.

Getting Into More Details

Web Listener processes one or many simultaneous client or remote server requests, in which case the
remote server is acting as a client. For remote requests to be issued, you must make sure that the Web
Request Broker object has been instantiated first. Otherwise, the remote listener won't exist and client
requests can't be issued remotely.

After these communication channeling objects are in place, a client issues a request to Web Listener.
Web Listener first checks to see whether this incoming message is a request for a static document or a
dynamic document. If it's a static document, Web Listener returns to the client a "packet" that contains
the file and the associated type information. If the client requests a dynamic document, Web Listener
invokes a method (program) to create the document.

Web Listener executes its task so that it's compatible with the Common Gateway Interface (CGI). Web
Listener uses CGI to invoke a method on the Web Agent object when a client requests a remote or local

database procedure. All logging activities are automatic unless you started the listener through the
Listener Administration page or the Boot page. In this case, you can manually start the logging service
by updating the Log Info section in Web Listener administration forms.

Finally, regarding the HTTPD listener process, Oracle has decided that root ownership of this process
violates overall system security. It doesn't disappear—it just gets bumped down the listener hierarchy,
replaced at the top of the hill by the admin listener. In Oracle Web Application Server 3.0, you have to
start the admin listener at the root level. This particularly helps companies that have advanced
workgroup models with various security levels per workgroup and per role within each workgroup. So
now you create, modify, or start each listener by group, user (or by role), or as running at port 1024.

To create, modify, or start a listener, enter the following command at the prompt:

owsctl start/stop admin 2

Based on the needs of the request, your admin listener becomes a virtual DBA, in a sense, as it issues
database requests that require DBA permissions. Such requests could be to create new

Page 403

users. For this implementation to work properly, you or your database administrator will need to include
the admin listener owner in your Oracle database's DBA group.

Understanding Web Listener's Architecture

Although multithreaded processing is a must in today's mission-critical client/server environment, some
IS technicians have overused and abused this technology. What they neglect to understand—and it's easy
to do so—is that each process needs memory and resources allocated to it. Without the appropriate
memory and resource allocation, system performance can slow as more threads are opened, especially
where processes handle requests synchronously. Therefore, you need to put a lot of thought into
implementing multithreaded architectures.

Oracle designed Web Listener with this in mind. Web Listener's only task is to accept incoming client
requests and route them to the Web Request Broker. Therefore, only one process on one thread is
needed. Web Listener also handles requests asynchronously, meaning that when it receives a request,
Web Listener doesn't need the client for further processing.

Memory Mapping of Files

If a file won't be permanently cached in memory, Web Listener uses a dynamic memory address
mapping scheme in which more than one client connection can access common files. As a result, file
access is speeded up as duplicate disk reads are avoided. And because a file is mapped in memory, the

operating system can retrieve the next memory segment of such a file while another file is being sent to
a client. This performance-enhancing strategy works well even where there is only one connection.

Directory Mapping

An important concept in the object-oriented circles is the idea of encapsulation or data hiding. Here, you
don't care what an object does—you simply want it to perform what you expect. Likewise, Web
Listener, in a sense, encapsulates how it stores URL path names. That is, you might see the same URL
every time you go to a Web site, but Web Listener may have different names over time. Oracle Web
Application Server administrators are responsible for correctly mapping the URL directories that users
see to the actual physical directory in the machine's file system.

Resolving the Domain Name

Domain name server resolution ensures that the client user's request is sent to the proper network
address/URL. When this is happening, the IP address of the client machine is recorded by the HTTP
server, through which the request for an HTML form is being routed.

The Domain Name Service (DNS) serves as a reference for the conversion of a client's IP address into
an ASCII host name. More than one machine may be involved in this resolution process, meaning that
you might consider listening to your favorite CD while waiting for the address to be resolved.

Page 404

Web Listener offers you, as the Oracle Web Application Server administrator, three ways for handling
DNS tasks:

● Resolving IP addresses on connection
● Resolving IP addresses when needed
● Never resolving IP addresses

Oracle Web Application Server includes an Administration Utility that allows you to edit the system
configuration file for one of these three DNS resolution options. With DNS resolution, the results of this
process are cached in memory as many connections may occur within the same time window, possibly
from the same client. For performance reasons, the default configuration for DNS resolution is to never
resolve IP addresses.

Web Listener Configuration Parameters

The configuration parameters for Web Listener are stored in a configuration file, which is read when
Web Listener is initially started and when a `1' signal is received on UNIX implementations. After Web
Listener is started, you specify its configuration file on the command line with the -c option, thus

allowing multiple Web Listeners with different configuration files to be started on the same Web
Listener machine.

Oracle Web Application Server provides an HTML-based Administration Utility, which you can access
with any forms-capable Web browser. This utility eliminates the need for you to edit the Web Listener
configuration file manually, in most cases, and provides explanatory help text on the individual
parameters. This section documents the parameters in the configuration file for completeness, in the
event an administrator wants to edit the file manually.

The Web Listener configuration file is divided into sections that start with a section name in
brackets—for example, [NetInfo]. You set individual configuration parameters by name = value pairs,
with the configuration parameter to the left (the lvalue) of the equal sign and the value to the right (the
rvalue). For example, look at the following section of a typical configuration file:

;
; www.samsona.com configuration file
;
[NetInfo]
HostName = www.samsona.com
HostAddress = SomeHostAddress
PortNumber = 80

This portion of the file sets HostName to www.samsona.com, HostAddress to SomeHostAddress, and
PortNumber to 80.

Examining the Web Request Broker

After Web Listener successfully receives incoming messages from clients, it passes the baton to Web
Request Broker (WRB). Of all the Oracle Web Application Server components, WRB is

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 405

the most pivotal because the listeners and cartridges broker their messages through WRB. A cartridge, to
use a simple definition, is an extension of the Web Application Server that is typically developed by
third-party vendors or as part of an in-house development effort.

WRB incorporates a multithreaded and multiprocess architecture, resulting in increases in machine
productivity as more requests can be processed almost simultaneously. The WRB also supports
asynchronous independent processing, so client and server resources aren't forced unnecessarily to wait
for result sets or other messages to be returned.

Here's how WRB works: You're on the Web and want to access a site that uses Oracle Web Server. At
this site is a form that allows you to request data. You fill in the information and click the Submit button.
Your browser sends the request to Web Listener, which then sends the request to the Dispatcher. The
Dispatcher determines the proper cartridge to handle the request and then summons WRB to invoke a
service within the cartridge.

WRB actually allocates an execution instance—also known as WRBX—of the cartridge. That is, WRB
sends requests to the appropriate server extension for specialized processing in separate processes. Web
Request Broker, as its name implies, brokers client requests by routing them to the appropriate database
server, Web server, and application programming interface libraries. When returning the information
you requested, the process is repeated in reverse.

NOTE

Interobject message communications follow the Common Object Request Broker
Architecture (CORBA). In a nutshell, systems that follow the CORBA model have
objects that can carry out the role of client, agent, or server, each of which help pass
messages from an end user's machine to some local or remote server.

WRB Messaging

Object orientation requires messaging between objects, and WRB is no exception. An end user message
results every time users click inside a Web browser. A Web browser can process some of these
messages, including your requests for locally stored documents and browser preferences; WRB handles
the other messages. The browser then checks to see whether it can process the message. Because it can't,
it sends the message on to WRB. WRB brokers the message—determines which object should process
it—and sends the message to the appropriate object.

NOTE

Oracle is incorporating a possible open-platform future for WRB where messaging
mechanisms won't be exclusive to Oracle products. Oracle Web Application Server 3.0
will support the Internet Server systems of Microsoft and Netscape. Given that Oracle is
on more cozy relations with Netscape than with Microsoft, you might see stronger
support of the Netscape implementation.

Third-Party Implementations

True object orientation for any system requires that objects be reusable and scalable. WRB has a
software development kit that lets developers create customized plug-ins. Java developers can

Page 406

also create applets and applications that Oracle Web Application Server can interpret. For instance, if
you created a Java applet that then was downloaded to a client browser, it can pass database requests to
WRB. WRB then executes PL/SQL commands on the database server. C developers will find Oracle
Web Server's support for server-side includes (SSIs) familiar. Oracle database developers can
incorporate a PL/SQL agent for requesting data from an Oracle database engine.

Now examine WRB messaging from an architectural point of view. WRB dispatches requests to server
extensions running in separate processes. The Internet messaging protocol is provided by the Hypertext
Transport Protocol (HTTP), with its encryption and security mechanisms. Oracle's implementation of
HTTP provides a low-level, asynchronous channel at the network level between the client and the
server. This connection is short-term as a result, and there can be several connections as HTTP is
multithreaded.

During this connection, the client is requesting a service or file object from the HTTP server. The server
then returns the requested object if it finds it; otherwise, it sends the message on to WRB or returns an
error message. On receiving this object, the client checks its MIME type attribute value for further
processing. Based on this value, the client may process this object for use by the user, or invoke a helper
application or—in the case of a Web browser—a network loadable object or plug-in to prepare the
incoming object for your use.

From this description, you should have a pretty good idea of the life cycle of a typical message traveling
through HTTP. The life cycle of such a message is also loosely called a transaction. Oracle Web
Application Server uses Web Listener as the HTTP message handler.

The WRB Dispatcher

You've just digested quite a bit of information; now it's time to delve a little deeper. After Web Listener
sends a message to WRB, WRB's dispatcher determines the type of object the client requested. In detail,
this dispatcher looks into the WRB configuration file, which helps the dispatcher determine the
relationship between virtual directories and WRB services. If the dispatcher finds no relationship to suit
the client's request, it returns the request back to Web Listener, which continues the message life cycle.

Quite naturally, with WRB's architecture you can distribute processing loads between service object
instances dynamically. This helps minimize network contention and optimize Oracle Web Application
Server performance. As administrator of Oracle Web Server, you have to keep an eye out for potential
resource drains and performance degradation when using multiple service instances (or processes, for
UNIX techies). You can specify minimum and maximum numbers of instances of each service WRB
provides.

In a nutshell, each service object has an interface that provides essential methods (functions) to deliver a
"product" to the client. In object-oriented terms, this acceptance of service responsibility and the
resulting delivery of the service is called a binding contract. Further, as some client/server experts have
noted, "the location of the object should be transparent to the client and object implementation."

Page 407

In this situation, WRB is loosely defined along the ORB (Object Request Broker) model. As with
CORBA, the main idea behind ORB is that an object, acting as an agent on the behalf of some client
object, handles the requesting of remote services. The WRB, then, provides clients the ability to invoke
object methods on service objects transparently across a network or on your machine. This means that
you don't need to concern yourself with the physical location or operating system platform of the objects
providing the services you need. This lends itself to data hiding or encapsulation.

IPC Support

The transport-independent WRB protocol handles all interprocess communications (IPC). Oracle Web
Application Server supports standard IPC mechanisms. IPC is the heart and soul of client/server
architecture for UNIX platforms. However, IPC isn't the easiest client/server tool suite to use, especially
when it comes to developing multitiered, multiprocess applications. My hunch is that Oracle provided
this support because of its heavy background in UNIX-based platforms.

Oracle Web Application Server 3.0 supports other mechanisms in addition to IPC, such as OMX,
Oracle's CORBA-compliant Object Request Broker. The idea here is that WRB Services may be
implemented together as industry-standard distributed objects, thus enabling distribution and scalability
across multiple nodes.

The WRB Execution Engine (WRBX)

WRB has an Execution Engine object (WRBX), with a shared library, to provide a low-level
development interface to execute WRB services. Each WRB service responds to demands from WRBX.
The shared library is dynamically loaded at runtime. Oracle motivation behind this open API approach is
to encourage customers and solution providers to integrate their own extensions. The Execution Engine
object provides better integration at a much more encapsulated level than the relatively low-level,
cumbersome approaches of CGI or various HTTP server APIs.

WRB Application Program Interface

You can use the WRB API to register three essential callback functions with the WRBX Execution
Engine object:

● Initialization
● Request handler
● Shutdown

These methods taken together follow the typical class structure in which you can initialize objects, send
and receive messages when the object is initialized, and destroy objects when you're finished using
them. This structure lends itself quite easily to the object-oriented approach to system development.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 408

The WRB API can be quite extensive in terms of auxiliary methods or functions it contains. Some of
these methods are discussed later in this chapter. These methods may be invoked directly from the three
basic callbacks mentioned earlier.

Oracle's open approach to product development means that customers and solution providers/partners
are jointly developing the WRB API. This cooperative effort means that the API should provide
maximum openness and interoperability between Oracle Web Application Server and third-party
applications such as cartridges.

Examining the Web Application Server SDK

The Oracle Web Application Server Developer's Kit (SDK) consists of two cartridges—a system
cartridge that executes system functions or methods and a programmable cartridge that's a runtime
interpreter for applications.

On the Web

VeriFone also created a cartridge called the Virtual Point of Sale cartridge (VPOS). VeriFone cartridges
are part of VeriFone's expansion of electronic commerce capabilities on the Web. You can get more
information about the VPOS cartridges at http://www.verifone.com.

The Web Application Server SDK is a set of PL/SQL routines and sample applications that help users
quickly create Web applications with Oracle Web Server. With some simple modifications to include
text and graphics specific to a user's site, these samples can be quickly and easily customized for a
particular site.

Each WRB API function can be thought of as a method within WRB, although it appears as though each
method really doesn't belong to any particular object.

The WRB Logger API

Given Web Application Server's tight coupling with the Oracle database, you should become more
familiar with the WRB APIs related to database connections. The WRB Logger API functions offers
such routines:

● WRB_LOGopen() opens a file or establishes a database connection.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch17/0411-0413.html
file:///E|/www.verifone.com./default.htm

● WRB_LOGwriteMessage() writes a system message to persistent storage.Persistent storage can
be either a database or flat file where the log data lives persistently beyond the life of the server
application.

NOTE

WRBLogMessage() is supported in an earlier version of the Web Application
Server. In Oracle Web Application Server 3.0, you should use
WRB_LOGwriteMessage() instead.

WRB_LOGwriteAttribute() writes a client-defined attribute to persistent storage.
● WRB_LOGclose() closes a file or shuts down a database connection.

Page 409

Listing 17.1 shows the WRB_LOGopen method's implementation.

Listing 17.1 The Syntax for the WRB_LOGopen() Method

WAPIReturnCode WRB_LOGopen(dvoid *WRBCtx,
ub4 *logHdl,
WRBLogType type,
WRBLogDestType dest,
text *MyFileName);
Parameters
Return Values
[Returns WAPIReturnCode]

Invoke this method from your cartridge component to open a file or initiate a database connection. The
WRB application engine passes the WRBCtx pointer to your calling method in your cartridge. WRBCtx
points to the WRB context object. LogHdl is a handle that indicates the type of object contained in the
connection object: file or database. type indicates the type of entry in the log. The entry can be a client
attribute or a message. dest indicates whether to log the transaction in a flat file or a database.
MyFileName is simply the string name of the file. It can also be NULL when you're logging information
to the database.

The method in Listing 17.2 writes a system message to the persistent storage specified by the value of
logHdl.

Listing 17.2 WRB_LOGWriteMessage() Method Syntax

WAPIReturnCode WRB_LOGWriteMessage(dvoid *WRBCtx,
ub4 logHdl,
text *component,
text *msg,
sb4 severity);
Parameters
Return Values
Returns WAPIReturnCode.

Invoke this method from your cartridge to write a system message to the persistent storage specified by
the value in logHdl. The WRB application engine passes the WRBCtx pointer to your calling method in
your cartridge. WRBCtx points to the WRB context object. logHdl is a handle that indicates the type of
object contained in the connection object: file or database. type indicates the type of entry in the log. It
can be a client attribute or a message. component points to the text description to identify the type of
cartridge, such as "java". msg is the text you want to log. Messages can't exceed 2K in length. The
backquote character (`) is used as a delimiter; if you need to incorporate this interesting character in your
message, you must specially tag it with a backslash (that is, \`). severity is just the severity of the
message.

The code in Listing 17.3 writes a client-defined attribute to the storage specified by logHdl.

Page 410

Listing 17.3 The WRB_LOGWriteAttribute() Method Syntax

WAPIReturnCode WRB_LOGWriteAttribute(dvoid *WRBCtx,
ub4 logHdl,
text *component,
text *name,
text *value);
Parameters
Return Values
Returns WAPIReturnCode.

Invoke this method from your cartridge to write client-defined attributes to the persistent storage
specified by the value in logHdl. The information that is stored is useful for seeing how your custom
cartridge responds to system messages. Tracking error and exception handling is critical when
developing components. The WRB application engine passes the WRBCtx pointer to your calling
method in your cartridge. WRBCtx points to the WRB context object. logHdl is a handle that indicates
the type of object contained in the connection object: file or database. type indicates the type of entry
that is in the log. It can be a client attribute or a message. component points to the text description to
identify the type of cartridge, such as "ODBC". msg is the text you want to log. name is a text item that

identifies a particular attribute you want to log. value provides additional text to qualify the attribute you
named. See Listing 17.4 for the syntax for WRB_LOGclose() method.

Listing 17.4 The WRB_LOGclose() Method Syntax

WAPIReturnCode WRB_LOGclose(dvoid *WRBCtx, ub4 logHdl);
Parameters
Return Values
Returns WAPIReturnCode.

Invoke the WRB_LOGclose() method from a method in your cartridge to close the file or shut down a
database connection as specified by the value in logHdl.

The WRB application engine passes the WRBCtx pointer to your calling method in your cartridge.
WRBCtx points to the WRB context object. logHdl is a handle that indicates the type of object
contained in the connection object: file or database. This handle was created in the WRB_LOGopen()
method.

Understanding Cartridges and ICX

The cartridge provides the openness that Oracle has really pushed for with Web Application Server 3.0.
It's also the third major subsystem type in the Web Application Server architecture. Cartridges are
components that provide specialized services that augment the overall behavior of Web Application
Server. Not only are there built-in cartridges, you or some company can also develop cartridges for a
specific need.

ICX, which stands for Inter-Cartridge Exchange, is a mechanism supported by the Web Application
Server that facilitates communications between cartridges. ICX provides load-balancing for

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch17/0411-0413.html

Previous | Table of Contents | Next

Page 423

CHAPTER 18

Installing and Configuring the OracleWeb Application Server

In this chapter :

● Installing Oracle Web Application Server for Sun Solaris 424
● Understanding Web Application Server's Latest Installation Features 425
● Identifying Product Dependencies 426
● Setting Preliminary Environment Variables 427
● Setting Permission Codes for Creating Files 428
● Installation Notes on the Web Agent 429
● Using the Web Administrative Server 432
● Installing the Oracle Web Application Server Option 432
● Installing the Web Application Server Developer's Toolkit 434
● Improving Performance for Multiple Web Agent Installations 435
● Using the Oracle Web Application Server Administration Utility 436
● Setting Up a New Web Agent Service 436
● Defining Configuration Parameters for the Web Listener 438
● Troubleshooting 439
● Attempting to Install Oracle Web Application Server on Windows NT 441

Page 424

Installing Oracle Web Application Server for Sun Solaris

The Web Application Server is a Hypertext Transfer Protocol (HTTP) server that includes a tightly
integrated Oracle7x server. This database server component enables you to create dynamic Hypertext
Markup Language (HTML) documents from data stored in an Oracle database.

This functionality supplements the presentation of static, or unchanging, data, which is found on most
Web sites today. The Oracle Web Application Server option, which does not include the Oracle7x
database system, includes the Oracle Web Listener (OWL) and the Oracle Web Agent (OWA).

The Oracle Web Listener is an HTTP server that services document requests from any Web browser.
The Web Listener determines whether the client request is for a static or a dynamic document. The Web

Listener directly services static document requests. If database access is required to generate a dynamic
document, the Web Listener invokes the Oracle Web Agent.

Hardware and Software Requirements

To even think about installing Web Application Server on Solaris, you need a few minimum machine
requirements (see Tables 18.1 and 18.2).

Table 18.1 Hardware Requirements

Hardware Requirement

CPU A SPARC processor

Memory 64M

Disk Space 200M

Swap Space 64M

CD-ROM Device RockRidge format

Table 18.2Software Requirements

Software Requirement

Operating
system

Solaris 2.4 with X Windows, and Motif or
Open Windows

Browser Table and Form enabled browsers

Database Oracle 7.1.6, 7.2.2, 7.2.3, or 7.3.2.2

Source: Oracle Corp.

Page 425

NOTE

Oracle's documentation does not require the exclusive use of an Oracle database in Web
Application Server 3.0. However, Web Application Server is most mature with an Oracle
database.

Understanding Web Application Server's Latest
Installation Features

To help make your installation a little easier, Oracle has incorporated several installation enhancements
to Web Application Server 3.0. These features include the following:

● Installation Components—Oracle provides several installation products, including Listener 2.1,
Advanced/Basic Web Request Broker 3.0, Cartridges, and Web Request Broker Listener
Dependencies.

● The owsctl Utility—This utility provides centralized control of each of Web Application Server's
listeners and related Object Request Broker (ORB) processes. After you install the server, run
this utility if you plan to use Web Application Server right away. Running this utility initializes a
Web Listener.

● Flexible Upgrading and Migrating Options—If your previous Internet server was Web
Application Server 2.x, Web Application Server now helps ease your migration migraines. If it
was a Netscape Internet server, Web Application Server can also help. However, unfortunately, it
does not look like it offers any assistance with migrating from Microsoft's Internet Information
Server.

● Single or Multi-Node Install Options—If your domain requires only one network node, you can
choose the Single-node option. If more than one, you have the flexibility to customize the install
to recognize more than one node.

● Flexible Web Application Server Location Variable (ORAWEB_HOME)—With previous
versions of Web Application Server (formerly known as WebServer), the location of the system
was tied to the home location specified in the ORACLE_HOME environment variable. In version
3.0, you can now have a location that is not tied to this environment variable. Each installation,
then, would have its own environment domain called ORAWEB_HOME.

Relinking Your Executables After Installation

In addition to hardware and software requirements, you might find it necessary to relink your
executables. Linking is the process of combining compiled programs and libraries into an executable
program. Relinking an executable is necessary because Web Application Server handles some of the
duties an operating system would normally handle. In addition, Web Application Server has its own
header files that you need to incorporate into any executables that require the services of the Web
Server. Keep in mind, also, that the Oracle Web Application Server Option requires the relinking of your
executables. Nevertheless, if you choose to relink

Page 426

the executable after doing the installation, Web Application Server requires that you install the following
files, libraries, and utilities:

● Oracle library files. These files have the .A extension.
● Oracle makefiles. These files have the .MK extension.
● Oracle object files. These files have the .O extension.

● Networking system libraries.
● The ar library manipulation utility.
● The ld utility.
● The make utility.
● X libraries.
● Motif libraries.

It might be in your best interest to do a full recompile of your executables if time permits. That way, you
can isolate any upgrade/migration-related anomalies before they come back to haunt you.

Identifying Product Dependencies

You need to consider what products you must have in place for Web Application Server to be useful. If
you plan to use Web Application Server only as a stand-alone Internet server, you don't need to concern
yourself with this section. However, if you plan to implement Web Application Server as a server within
your overall Oracle environment, you should read the list in this section. To make sure your
environment has all of the necessary components, you should go through the following list, which
includes the software component and its respective release:

● Oracle7 Server, 7.1.6
● PL/SQL, 2.1.6
● SQL*Net, 2.1.6
● TCP/IP Protocol, 2.1.6
● Server Manager, 2.1.3

Implementing Pre-Installation Tasks

Before installing Web Application Server for Solaris, you must perform some duties to ensure a smooth
installation process. These duties include the following:

● Choose a network port for the Oracle Web Listener. This port number makes it possible for the
Web Listener to receive incoming client requests. The number should be at least 1,024 but no
higher than 65,535. The default, as installed, is 8,888.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 422

PL/SQL Agent has made improvements since earlier versions of Web Application Server. This
improvement comes from the fact that each PL/SQL Agent instance stays connected to your Oracle7x
database between incoming requests. The idea here is that there's no need to establish a new database per
stored procedure execution. You should use the latest version of PL/SQL after doing isolation testing to
make sure that you experience no side effects.

The PL/SQL Agent executes two tasks that allow your stored procedures to create dynamic HTML
pages:

● It invokes a parameterized procedure and passes in the essential parameters shipped with the
HTTP request. The Web Application Server must perform a translation of an HTTP request to PL/
SQL.

● It provides a method for your stored procedure to send data as returns to the caller. The low-level
details here are seamless to you.

In addition to performing these tasks, the PL/SQL Agent includes the PL/SQL Web Toolkit—a
collection of packaged procedures, functions, and utilities to enhance productivity and ensure valid
HTML output.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 418

If chunkSize ub4 has a non-zero value, the size of the request response in bytes will be restricted to this
value. In such situations, you'll need to invoke the WRB_ICXfetchMoreData() method repeatedly until
you've received the entire response. If ub4 chunkSize is zero, no data is returned. If ub1 sendToBrowser
is non-zero, WRB will send the response directly to the originating browser; in this case, the response
parameter will contain NULL on return.

WRB_ICXsetAuthInfo()This method sets the authentication header data to accompany the specified
request (see Listing 17.13).

Listing 17.13 Setting the Authorization Header for a Specific Request with WRB_ICXsetAuthInfo()

WAPIReturnCode
WRB_ICXsetAuthInfo(void *WRBCtx,
dvoid * hRequest,
text *username,
text *password,
text *realm);
Parameters
Return Values
WRB_ICXsetAuthMethod() returns a value of type WAPIReturnCode.

If your cartridge issues requests to another cartridge that in turn requires that your cartridge authenticate
itself, you should invoke the WRB_ICXsetAuthInfo() method. Doing so sets the authentication header
data per request to the other cartridge.

*WRBCtx is a pointer to the opaque WRB context object that the WRB application engine passed to
your cartridge method. dvoid * hRequest identifies the request for which authentication is to be
established. WRB_ICXcreateRequest() returns this handle. text * username is a pointer to a user name
for request authentication. The user name must be defined in the specified realm. text * password points
to the password for the username. text * realm points to the name of the authentication realm that defines
the username.

WRB_ICXsetContent()WRB_ICXsetContent() sets request content for a specified request (see Listing
17.14).

Listing 17.14 Setting Content Data for a Specific Request with WRB_ICXsetContent()

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch17/0414-0417.html

WAPIReturnCode
WRB_ICXsetContent(void *WRBCtx,
dvoid * hRequest,
WRBpBlock hPBlock);
Parameters
Return Values
WRB_ICXsetContent() returns a value of type WAPIReturnCode.

Page 419

To establish content data for a particular request, perform the following steps:

1. Invoke WRB_createPBlock() to allocate a parameter block containing the content data.
2. Pass the parameter block to WRB_ICXsetContent(). You specify the request by passing the

request handle returned by WRB_ICXcreateRequest().
3. Set the content data.

*WRBCtx points to the opaque WRB context object that the WRB application engine passed to your
cartridge function. dvoid * hRequest identifies the request for which content is to be specified. This
should be a handle returned by WRB_ICXcreateRequest(). WRBpBlock hPBlock represents the
parameter block containing the request content.

WRB_ICXsetHeader()WRB_ICXsetHeader() is responsible for setting HTTP header data for a specified
request (see Listing 17.15).

Listing 17.15 Setting Headers for a Specific Request with WRB_ ICXsetHeader()

WAPIReturnCode
WRB_ICXsetHeader(void *WRBCtx,
dvoid * hRequest,
WRBpBlock hPBlock,
boolean useOldHdr);
Parameters
Return Values
WRB_ICXsetHeader() returns a value of type WAPIReturnCode.

Invoking this method requires certain calls having been made first. The sequence of calls involved are as
follows:

1. Invoke WRB_createPBlock() to allocate a parameter block and contain the header data.
2. Pass the parameter block to WRB_ICXsetHeader(). You specify the request by passing the

request handle that WRB_ICXcreateRequest() returned.

3. Set header data for a request.

*WRBCtx points to the opaque WRB context object that the WRB application engine passed to your
cartridge function. dvoid * hRequest identifies the request for which headers are to be set.
WRB_ICXcreateRequest() returns the dvoid * hRequest handle. WRBpBlock * hPBlock represents the
parameter block that contains the header information. If boolean useOldHdr is set to TRUE, the ICX
request incorporates header data from the original request, in addition to the data defined by the
parameter block. If useOldHdr is FALSE, only header data from the parameter block is used.

WRB_ICXsetMethod()WRB_ICXsetMethod() is responsible for setting the request method, such as
GET or POST, for a specified request (see Listing 17.16).

Page 420

Listing 17.16 Setting the HTTP Method to Use in a Specific Request with WRB_ICXsetMethod()

WAPIReturnCode
WRB_ICXsetMethod(void *WRBCtx,
dvoid * hRequest,
WRBMethod method);
Parameters
Return Values
WRB_ICXsetMethod() returns a value of type WAPIReturnCode.

The assumption here is that you invoked the WRB_ICXcreateRequest() method to create a request.
Invoke WRB_ICXsetMethod() to specify a request method for the request. The default request method
is GET.

*WRBCtx points to the opaque WRB context object that the WRB application engine passed to your
cartridge function. dvoid * hRequest identifies the request for which the method is to be set.
WRB_ICXcreateRequest() returns this handle.

WRB_ICXsetMethod() takes an argument of type WRBMethod that represents the request method to be
used for a request (see Listing 17.17).

Listing 17.17 The WRBMethod Enumerated Type

typedef enum _WRBMethod
{
OPTIONS,
GET,
HEAD,

POST,
PUT,
DELETE,
TRACE
} WRBMethod;

For more information on this enumerated type, refer to your documentation on Web Request Broker.

WRB_ICXsetNoProxy()This method builds a list of DNS domains for which the proxy server (specified
by WRB_ICXsetProxy()) shouldn't be used. This ensures that any request URLs originally intended for
the given proxy server are rejected. Listing 17.18 shows how to implement this method.

Listing 17.18 Specifying Domains for Which the Proxy Server Shouldn't Be Used with
WRB_ICXsetNoProxy()

WAPIReturnCode
WRB_ICXsetNoProxy(void *WRBCtx,

Page 421

text *noProxy);
Parameters
Return Values
WRB_ICXsetNoProxy() returns a value of type WAPIReturnCode.

If your cartridge calls WRB_ICXsetProxy() to set up proxy server request translation but you don't want
requests to all DNS domains to use the proxy server, use WRB_ICXsetNoProxy() to specify a comma-
separated list of domains to which requests should be sent directly, without proxy server intervention.

*WRBCtx points to the opaque WRB context object that the WRB application engine passed to your
cartridge function. *noProxy points to a comma-separated list of DNS domains to which requests should
be sent directly.

WRB_ICXsetProxy()This method tells cartridges which proxy server to use in making future ICX
requests that must be routed outside a firewall. Listing 17.19 shows how to specify a proxy server.

Listing 17.19 Specifying a Proxy Server with WRB_ ICXsetProxy()

WAPIReturnCode
WRB_ICXsetProxy(void *WRBCtx,
text *proxyAddress);
Parameters

Return Values
WRB_ICXsetProxy() returns a value of type WAPIReturnCode.

Invoking this method is useful when your intranet-based cartridge needs to dispatch ICX requests to
servers outside the firewall. The cartridge would reference the address set by this method.

*WRBCtx points to the opaque WRB context object that the WRB application engine passed to your
cartridge function. *proxyAddress represents the proxy address in character-string form.

Using the PL/SQL Agent

With the PL/SQL Agent, you can develop your Web applications by using Oracle7x stored procedures.
The assumption here is that these stored procedures are written in Oracle's native SQL language, PL/
SQL. For non-Oracle databases, you'll have to acquire a third-party ODBC cartridge or develop one
yourself. Oracle, however, assures its customers that interacting with database objects is much easier in
PL/SQL than any other language. Quite obviously, because Web Application Server is more mature with
Oracle databases, your safest bet for portability and scalability issues is to incorporate PL/SQL.

The PL/SQL Agent shares a similarity with its sister, the Web Agent, which was discussed briefly
earlier. Both agents allow your development staff to build data-driven, dynamic HTML pages with
customized content by using Oracle7x stored procedures. In terms of speed, the

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch17/0414-0417.html

Previous | Table of Contents | Next

Page 427

● On UNIX, you must set the following environment variables: ORACLE_TERM,
ORACLE_HOME, ORAWEB_HOME, and ORACLE_SID. You also need to know the name of
your machine. This is the machine name you normally use to access files and services. For
instance, for HTTP Web machines, your machine name might be www.samsona.com or
something similar. If you're not sure, ask the person responsible for creating domain names and
assigning TCP/IP addresses in your company or group.

● You need patch 101945-27 if you need to install the Oracle Web Application Server option on
SUN Solaris. Contact Oracle at http://www.oracle.com.

● Create your admin password. The Installer program asks for a password. You also need to create
what's called a root user account to actually have ownership over the Web Listener's UNIX
account. A root user account has low-privileged UNIX access, meaning your Web Listener does
not need to be tied to a particular DBA group or have Oracle account privileges. Such access
compromises your database security. There's a useradd command to help you create such an
account for your Web Listener.

The following installation duties require that you log on using the built-in Oracle user account. Because
it is assumed that you are an administrative user with the authorization to install such a system, no
password is necessary.

Setting Preliminary Environment Variables

Specifying initial values for your server environment variables helps your operating system
communicate with Web Application Server. You need to place the necessary environment variable
values in the startup file of the built-in Oracle account. This is advisable when possible. Of course, if
you don't set them in the startup file, then specify the values in the .PROFILE or .LOGIN file of the
Oracle account. You can also set variables specific to the current shell session as the shell prompt is
displayed (see Table 18.3).

Table 18.3 Initial Environment Variable Values

Environment
Variable

Sample Value

ORACLE_HOME /u01/app/oracle/product/732

ORACLE_SID MyID

ORACLE_TERM xsun5

ORAWEB_HOME $ORACLE_HOME/ows/3.0

file:///E|/www.oracle.com./default.htm

PATH

.$ORAWEB_HOME/bin:
$ORACLE_HOME
/bin: /opt/bin:/bin:/usr/bin:
/usr/ccs/bin:/GNU/bin/make

TMPDIR /var/tmp

TWO_TASK
Must be undefined while installing
software

Page 428

For instance, you set the ORACLE_SID value using C shell as follows:

setenv ORACLE_SID MyID
In Bourne, it would be the following:
ORACLE_SID=MyID; export ORACLE_SID

Setting Permission Codes for Creating Files

You set permission codes in the startup files. The umask variable holds the necessary permission code
you need. Before changing the value of umask, look at its contents by entering the following at the
prompt:

$ umask

If the value of umask is not 022, change it to this value. This value tells the server which groups or users
have READ and EXECUTE permissions; the WRITE permission is not affected. To set umask to 022,
do the following:

● For Bourne or Korn shell, enter umask 022 in .profile.
● For C shell, enter umask 022 in .login.

Finally, you should check the various user startup files just to be sure the umask variable is set to 022.

Updating Your Environment from a Startup File

As your environment situation changes (that is, you install new nodes and so on), you will have to
upgrade your environment information. To update environment variables, load the startup file into
memory or some persistent medium, as follows:

Bourne/Korn shell: $. .profile

C shell: % source .login

Note that, if you update these variables in a nonpersistent media such as memory (at the prompt), their
values are not stored after you exit your current shell session. If you store them in a persistent object
such as a file, you must execute the startup file to make the values effective.

Designing the Directory Structure

Identifying your needs for a directory structure in some ways resembles the principles of object-oriented
design. You must know your base objects and any derived objects descending from this base object.
Implementing the wrong hierarchy can cause confusion later and lead to redundant effort. For
directories, this is especially true when server software upgrades become necessary as older versions
become archaic. Many domains have a policy in place for

Page 429

creating and maintaining complex directory structures. Oracle offers the Optimal Flexible Architecture
(OFA) to ease the management and maintenance duties associated with directories. Listing 18.1 shows
the recommended directory structure for the primary node.

Listing 18.1 Oracle-Recommended Directory Structure

ORACLE_BASE
 product
 oracle
 7.3.2 ($ORACLE_HOME)
 rdbms
 ows
 cartx
 plsql
 1.0
 java
 3.0
 bin
 lib

 admin
 MyDBName
 ows
 MySite1

 httpd_MyMachine1
 owl.cfg
 admin
 config
 log
 list80
 cartx
 plsql
 config
 log
 java
 wrb
 config
 log

This directory structure conforms to the Optimal Flexible Architecture directory structure. OFA
separates data files from configuration files and executables so that you can run more than one version
of any of Oracle's products, including Web Application Server.

Installation Notes on the Web Agent

The Web Listener invokes the Oracle Web Agent. This is the process that handles the details of making
a connection to the database server. For installation and configuration purposes, you might want to keep
in mind that the Oracle7x database could reside on the same node as the Web Listener and the Web
Agent. It could also reside on a different node. However, Oracle requires that the Web Listener and Web
Agent be on the same node.

Page 430

As an administrator, you want to properly install and configure the Web Agent and subsequently
maintain it by using the Administration Utility. In addition, you need to know the following:

● How to manage Oracle Web Application Server services, including the ability to create, modify,
and delete them. Oracle has added several packaged API wrapper classes to help you in this
regard, including oracle.owas.wrb, oracle.owas.wrb.services.http, oracle.owas.nls, and oracle.
owas.wrb.services.logger.

● On which machine and directory to install the Developer's Toolkit PL/SQL packages provided by
the Web Agent. Proper licensing issues come into play here. You need to survey the various
developers to discover which directories will house the installation.

● How to set the Web site environment variable. The Oracle Web Application Server needs to
know which Web site maps to which server. Oracle Web Application Server 3.0 allows you to
have multiple servers per installation. This means you can have multiple Web sites (intranets, for

instance) within a company. You need to set the ORAWEB_SITE environment variable before
invoking the owsctl command.

One of the most important installation items you need to create is the OWA.CFG file. In this file, you
enter the information the Web Agent needs to connect to your database server, such as Oracle7x. The
configuration file contains such vital connection information as the server name, database name, user
name, and user password.

Because the Oracle Web Application Server follows Oracle's Flexible Architecture (OFA), configuration
files such as the OWA.CFG file no longer have to be located in the OWS Administrative directory. The
caveat is that you must have installed your Oracle database according to this OFA structure as well. If
this is the case, simply choose the Install New Product option from within the installation program. By
choosing this installation option, the Oracle Web Application Server generates each of the necessary
configuration files for you within ${Oracle Base}/admin/ows directory, where {Oracle Base} is the base
specified in the ORACLE_BASE environment variable. Oracle Web Application Server requires you to
specify a meaningful value after the installation is complete.

If you did not install your Oracle database based on the OFA structure, don't worry. Instead of choosing
Install New Product, choose Add, Upgrade Software. By choosing this option, Oracle Web Server's
installation program creates the necessary default configuration files within the ${ORACLE_HOME}/
ows/admin/ows directory. For each new directory structure, every listener has a corresponding listener
directory within the following path: ${ORAWEB_ADMIN}/ows/${ORAWEB_SITE}/
httpd_<machine_name>/ . The WRB-related configuration files are housed in the
${ORAWEB_ADMIN}/ows/${ORAWEB_SITE}/wrb/ directory.

The Web Agent determines which service to use by parsing the SCRIPT_NAME environment variable.
Web Listener sets up this variable in accordance with the CGI 1.1 specification. The path section of the
configuration file, which corresponds to the portion of the URL just before the /owa, indicates the
service to use. For instance, if /ows-bin/hr/owa is the leading portion of the URL, then hr is the service
to use.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 431

Inside the OWA.CFG File

The following section provides an example of a Web Agent service entry in the OWA.CFG file.
A description of each variable follows:

Developer's T#
(
owa_service = es
(
owa_user = www_samsona
)
(
owa_password = strong
)
(
oracle_home = /home/Oracle7x
)
(
oracle_sid = samsona22
)
(
owa_err_page = /samsona_err.html
)
(
owa_valid_ports = 8000 8888
)
(
owa_log_dir = /home/Oracle7x/ows/log
)
(
owa_nls_lang = AMERICAN_AMERICA.US7ASCII
)
)

Table 18.4 describes each item in the file. You need to specify values in these variables after installation,
but before running Web Server.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch18/0435-0437.html

TIP

Never rely on Web Application Server default values. This is important because the
default values are not likely to be suited to your environment. For instance, your home
directory most likely would be /home/Oracle7x. Also, for security reasons, you'll use a
different ID and password than the defaults.

Table 18.4O WA.CFG File Variables

Variable Description

OWA_SERVICE Name of the Web Agent service.

OWA_USER
Database username that the Web Agent
uses to connect to the database.

 Continues

Page 432

Table 18.4 Continued

Variable Description

OWA_PASSWORD
Database password that the Web
Agent uses to connect to the
database.

ORACLE_HOME

The location of the Oracle7x code
tree in the file system. This should
be the ORACLE_HOME for the
database to which this Web Agent
service connects, unless the Web
Agent service is set up to connect to
a remote database (over SQL*Net).
In that case, specify the
ORACLE_HOME where the Web
Agent is installed.

ORACLE_SID
Name of the database system ID to
connect to. Does not apply for
connections to a remote database.

OWA_ERR_PAGE

HTML document returned by the
Web Agent when an error occurs in
the PL/SQL procedure that the Web
Agent invoked.

OWA_VALID_PORTS
The valid Web Listener network
ports that the Web Agent will
service.

OWA_LOG_DIR

The directory to which the Web
Agent writes its error file. The name
of the error file is SERVICE_NAME.
ERR.

OWA_NLS_LANG

The NLS_LANG of the Oracle7x
database to which the Web Agent
connects. If not specified, the Web
Agent administration program looks
it up when Web Listener submits the
service. To make sure you've
installed the correct version of Web
Agent, type $ORACLE_HOME/ows/
bin/owa -v at the command line.

Using the Web Administrative Server

The Oracle Web Administrative Server is another Oracle Web Listener process that the Oracle Web
Application Server Administrator uses only for its own use. The Web Administrative Server uses a
separate Web Agent service for accessing the Oracle7x database. The name of this service is the
OWA_DBA service. Thus, in your configuration setup, remember that the OWA_Default_Service is the
default service that the Oracle Web Agent uses.

Installing the Oracle Web Application Server Option

To install the Web Application Server option, follow these steps:

1. Start the Oracle Installer.
2. After you have answered initial questions about your database system—preferably the Oracle7x

database—choose to install the Oracle Web Application Server option.
3. Specify the hostname and network port for the Oracle Web Application Server Administrative

Server.

Page 433

4. Specify the password for the Web Application Server Administrator account. The username of
the Web Application Server Administrator is admin.

5. On UNIX systems, log in as root and run the $ORACLE_HOME/orainst/root.sh shell script. This
step is very important because it initializes and executes the Web Application Server
Administrative Server.

Configuring Web Server

The following steps show you how to configure your Web Server. The steps also show how to specify
the host name, database name, and other vital pieces of information needed to communicate with other
servers, specifically database servers.

To configure your Web Server, follow these steps:

1. Verify connectivity to the Oracle7x database, which is accessed by the Oracle Web Listener.
Note that, if the Oracle7x database is on a different node from the Oracle Web Listener and the
Oracle Web Agent, SQL*Net has to be installed and configured.

2. Start any Web browser and specify the URL http://HOSTNAME:PORT/ows-abin/register to
connect to the Oracle Web Application Server Administrative Server. HOSTNAME is the name
of the node where the Oracle Web Application Server Administrative Server is running. PORT is
the TCP/IP port used for connecting to the Oracle Web Application Server Administrative
Server.

3. After supplying the username and password for the Web Application Server Administrator,
complete the Oracle Web Application Server Product Registration Form page and click the Send
Registration button. This takes you to the Web Application Server Install Form.

4. Choose to configure the OWA_DBA service and supply the following information:
❍ Username and password for the OWA_DBA Oracle Web Agent service
❍ ORACLE_HOME
❍ ORACLE_SID
❍ Port number of the Oracle Web Administrative Server
❍ SQL*Net v2 service for connecting to a remote Oracle database
❍ Existing DBA username and password

5. Click the Create Service button. This creates the OWA_DBA service. An entry for this service is
written to $ORACLE_HOME/ows/admin/owa.cfg on UNIX systems.

6. Choose to configure the first Oracle Web Listener and enter the following information:
❍ Host name
❍ Port Number (note that this should be a different port from the one used by the Oracle

Web Administrative Server)
❍ UNIX user ID and password

Page 434

file:///E|/hostname:port/ows-abin/register

7. Click the Create Listener button. Clicking this button starts the first Oracle Web Listener. On
UNIX systems, configuration information is written to $ORACLE_HOME/ows/admin/svPORT.
cfg, where PORT is the TCP/IP port number assigned to the Oracle Web Listener.

8. Choose to configure the OWA_DEFAULT_SERVICE and supply the information required for
configuring the OWA_DBA service. Remember that this is the service the Oracle Web Listener
will request for non-dba transactions.

9. Click the Create Service button. Clicking this button creates the OWA_DEFAULT_SERVICE
service. An entry for this service is written to $ORACLE_HOME/ows/admin/owa.cfg on UNIX
systems.

Installing the Web Application Server
Developer's Toolkit

Installing the Developer's Toolkit may not be a user-friendly process, but the steps involved provide a
good measure of security for your server. These steps ensure that only authorized individuals are
installing the toolkit. This also minimizes the risk of bringing down the server. To install the toolkit, do
the following:

1. Connect to the Oracle Web Application Server Administrative Server and click the Web
Application Server Administration hyperlink. You find the Web Application Server
Administration hyperlink on the Oracle Web Application Server Products home page.

2. Click the Oracle Web Agent link. You are prompted for the user name and password of the Web
Application Server administrator user. If you're not the administrator, contact that person. This is
important because there are settings in Web Application Server that only the administrator
knows.

3. Select the service in which you installed the Developer's Toolkit.
4. Scroll down to the button list. In this list, you see the following items:

❍ Create OWA database user
❍ Change OWA database user password

5. Install Web Application Server Developer's Toolkit PL/SQL Package and choose Install Web
Application Server Developer's Toolkit PL/SQL Package.

6. Click the Modify button.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch18/0435-0437.html

Previous | Table of Contents | Next

Page 445

CHAPTER 19

Oracle Networking Fundamentals

In this chapter

● Understanding Oracle Networking Product Features 446
● SQL*Net and Net8 Architectures 448
● Networking Protocol Stacks 449
● Using the Open Systems Interconnection Reference Model 451
● Understanding SQL*Net Operations 456
● Installing and Configuring SQL*Net 456

Page 446

Understanding Oracle Networking Product Features

Oracle Network Products—SQL*Net in the Oracle7 environment and Net8 in Oracle8—are Oracle's
networking solution for transparent client-to-server and server-to-server application connectivity. These
products contain a rich core of network services, including data transport, network naming, security, and
transaction monitoring. These Oracle Network Products form an abstraction layer, insulating users and
user applications from the physical network, allowing heterogeneous, distributed computing across
computers regardless of vendor, operating system, hardware architecture, or network topology.
Applications will work as written on an AS-400 with LU6.2 network protocol, on a token-ring network,
or on an HP-9000 with TCP/IP network protocol on an ethernet network. Oracle SQL*Net is available
on virtually every platform supported by Oracle, from PCs to mainframes, and supports almost every
network transport protocol, including TCP/IP, Novell SPX/IPX, IBM LU6.2, NetBIOS, DECNet, and
AppleTalk.

The Oracle Network architecture offers excellent performance for all it does. In Oracle7, SQL*Net
supports network load balancing and fault tolerance. When multiple paths to the database server exist,
SQL*Net determines which route is the most efficient and establishes the connection accordingly.
Additionally, during connection setup, SQL*Net will detect any component failures on the primary path
and will automatically switch to an alternate route if possible, using secondary network interfaces or
network software protocol stacks. SQL*Net will also detect a broken connection and release all server
resources, cleaning up failed connections.

Oracle8 and Net8 surpass the SQL*Net family in performance and scalability through two new features:
connection pooling and session multiplexing. These technologies reduce the amount of server-system
resources needed to support network connections, allowing a single database server to support
increasing numbers of users. In Oracle8 Enterprise Edition, a new middle-ware application called Oracle
Connection Manager takes advantage of the multiplexing feature to act as a high-speed proxy to a
database server. As a proxy, Oracle Connection Manager acts as a firewall, controlling network-level
access to the database server for enhanced network security.

Other standard features available in all Oracle Network Products:

● Support for multiple protocols running simultaneously on a single machine.
● Support for transaction processing monitors such as Encina and Tuxedo.
● Open interfaces to third-party applications through open interfaces and Oracle's SQL*Net/Net8

OPEN application programming interface.
● Open database interfaces using Oracle's SQL*Net/Net8 Open Database Connectivity (ODBC)

drivers for Microsoft Windows, and Oracle Transparent Gateway technology for third-party
database access. Net8 provides interfaces for JavaSoft's JDBC specification for Java applications.

● Multiple protocols in a single connection when using the Oracle MultiProtocol Interchange. The
Oracle MultiProtocol Interchange runs on a computer loaded with two or more protocols. This
computer provides transparent protocol bridging so clients running one protocol can connect with
a server running a different one.

Page 447

Understanding the Administration and Management Components

Oracle Network Products include a comprehensive set of administration and management components.
SQL*Net's graphical management facility, Oracle Network Manager for Oracle7 and Net8 Assistant for
Oracle8, are powerful tools for creating and managing an Oracle network. Oracle Net8 Assistant
supersedes Oracle Network Manager by providing a Java-based tool that is driven by a wizards
interface. Using these tools, the administrator can configure all components of the Oracle SQL*Net
family, including database servers, gateways, clients, and Oracle MultiProtocol Interchanges, either
centrally or in a distributed fashion. Oracle Net8 Assistant runs on most desktop and UNIX operating
systems, but Oracle Network Manager is only for desktop systems.

Oracle Names, the Oracle global naming service, is also fully administered and maintained through the
above tools. Oracle Names allows administrators to define network entities (such as service addresses,
database aliases, and so on).

SQL*Net and Net8 include support for the Simple Network Management Protocol (SNMP). The
Oracle7 and Oracle8 servers (as well as Network Listener, MultiProtocol Interchange, and Oracle

Names) can be monitored by SNMP-based network management consoles, such as Oracle Enterprise
Manager and HP OpenView. This allows existing network operation centers in a company to include
Oracle systems in their proactive monitoring.

Other administrative components and features include:

● Client registration services give SQL*Net 2.3 and Net8 administrators access to registration
information about who is accessing the database, including username and resource usage.

● Comprehensive diagnostic error and trace logging at the client and the server. Oracle Trace in
Oracle7 Release 7.3 and Oracle Trace Assistant in Net8 are diagnostic and performance analysis
tools to help administrators interpret trace information generated.

● Native naming services allow the application of existing enterprise-wide directory services, such
as Sun NIS/Yellow Pages, Novell NetWare Directory Services (NDS), Banyan StreetTalk, and
OSF DCE Cell Directory Service. This Advanced Networking Option integrates Oracle clients
and servers into the native name environment.

● Network configuration and route testing tools, including Network Test (NetTest), for testing
connections to remote databases across the network and TNSPing for testing connections to
servers, without need for a service name, username, and password. TNSPing also allows full
diagnostic tracing to a trace file and measures round-trip time for the client-to-server connection.

Network Naming Conventions

One of the challenges in a large organization is producing unique names for all network resources. The
common flat model naming system, where objects are given a single unique name, often falls short in
the enterprise. For this reason, Oracle supports naming network resources using a domain hierarchy. In a
domain model, network resources are named according to the group they fall in or the purpose they
serve. For example, the marketing department

Page 448

in the Oracle Corporation may belong to the marketing.oracle.com domain. TNS resources belonging to
the marketing department would be named using this domain—for example, prod01.marketing.oracle.
com for a production database or listener01.marketing.oracle.com for a listener.

In version 7.3 of the Oracle database, TNS resources are placed in the world domain if no domain is
created for them. This ensures that network applications expecting a domain name will always have one,
even if the organization has implemented a flat naming hierarchy.

NOTE

Oracle tools will expect the full network resource name, including the domain, unless a
default domain is specified in the sqlnet.ora configuration file. The names.
default_domain parameter specifies what domain should be automatically added to any
network resource name when resolving the resource name.n

For most installations, using a flat naming model (implemented with the .world default domain) is
sufficient. Adding domains to your network topology should be done out of need, not just because it can
be done. Managing an Oracle network with multiple domains adds complexity to the installation and
configuration.

Understanding the Optional Security Extensions

The final set of Oracle Network Products includes several optional security extensions that make up the
Oracle Advanced Networking Option. These include:

● High speed global data encryption using RSA RC4 or DES encryption algorithms. This encrypts
all network traffic with either a 56-bit or exportable 40-bit encryption key.

● Single sign-on using Kerberos and SESAME authentication servers, Security Dynamics ACE/
Server token system, and Identix TouchNet II fingerprint ID system.

● Integration with OSF/DCE and the DCE security system.

SQL*Net and Net8 Architectures

With the introduction of Oracle8, Oracle has renamed the current SQL*Net Network Product group to
Net8. As mentioned previously, Oracle has introduced some new network performance and scalability
features in the updated Net8 product. All other components and features in Net8 remain relatively
unchanged from SQL*Net 2.3.3, the latest SQL*Net release for Oracle7 Release 7.3. In this discussion
of Oracle networking fundamentals, I will be describing features and functions of SQL*Net 2.3.3. I will
also be using the example of TCP/IP and ethernet in most examples, since these are the predominate
network architectures. To make things as simple as possible, I will try to define all jargon and use
analogies where possible.

In most of the current SQL*Net architecture diagrams, SQL*Net is shown as the central building block,
tightly integrating network transport (Oracle Protocol Adapters), network naming (Naming Adapter),
and security services (Oracle Advanced Networking Option) at the network level. User-client
applications ride on top of this SQL*Net layer to access Oracle7 servers,

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 443

PART V

Oracle Networking

19. Oracle Networking Fundamentals
20. Advanced Oracle Networking

Page 444

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 442

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch18/0438-0441.html
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch18/0438-0441.html

Previous | Table of Contents | Next

Page 449

transparent gateways to third-party database servers, procedural gateways to other applications, or the
Oracle Web Server.

Networking Protocol Stacks

In this section, you will look closely at the network transport services, the native local area network
(LAN), and wide area network (WAN) protocol stacks that make up the core of networking. You will
also touch on native network naming services as they apply to the native network protocols. Native
network naming services are used to map "English" names and aliases for computers with their network
addresses. Oracle Names is used to map English names and aliases to Oracle databases. Oracle Names
often takes advantage of native network naming services by allowing the administrator to specify server
host names rather than network addresses in the Oracle Names database.

As promised, jargon will be defined as it comes up, starting with network architectures and protocol
stacks. A network architecture is a collection of modular components that are combined to form an
effective, synergistic solution. Each component provides a "service" to the whole. By choosing and
combining a subset of the available component technologies, a network architecture is built. It is this
ability to mix and match components that underlies the principle of open systems and interoperability.

Without some type of reference blueprint for the assembly of components and a set of standards
governing their construction, these pieces would not be plug and play. This environment exists for native
network transports. These standards are often called protocols, and the reference blueprint is called a
stack. The reference blueprint describes the network framework as a stack of service layers, much like a
layer cake. Each layer has a specific, clearly defined responsibility within the stack and provides service
to the layer above until the stack of components is working together.

For the native network transport, the reference model is the International Organization for
Standardization's (ISO) Open Systems Interconnection reference model. Standards are developed and
maintained by the American National Standards Institute (ANSI) and the Institute of Electronic and
Electrical Engineers (IEEE) 802 committee. The Oracle networking layers and protocols above the
native network transport follow Oracle's SQL*Net architecture.

The current SQL*Net architecture blueprint is missing some important protocol layer detail needed to
understand how SQL*Net works. It is missing the core network protocol of SQL*Net, Oracle's
Transparent Network Substrate (TNS) peer-to-peer networking application. It is the TNS that provides
the primary abstraction layer, or a common application interface, to many of the network products that
make Oracle applications hardware and network transparent—thus the name Transparent Network

Substrate. TNS provides the service layer to access the native network transport, Oracle Names, and
various security and naming services. The Oracle Network Listener is a TNS application that runs on an
Oracle server to establish connections between clients and the server. The TNS layer is responsible for
most of the client error messages, as the TNS prefix on these error messages reveals.

Page 450

There are five fundamental protocol layers that make up the SQL*Net architecture (see
Figure 19.1):

● Network-Specific Protocol Stack: The foundation is the native network transport supported by
the computer and the local area (LAN) or wide area (WAN) network. The most commonly used
LAN protocol, and the one used in examples, is the TCP/IP protocol stack, though SPX/IPX,
NetBIOS, DECNet, LU6.2, AppleTalk, Banyan Vines, MaxSix, Named Pipes, OSI, and X.25
protocols are also supported.

● Oracle Protocol Adapter: The connector between the function calls of the TNS protocol and the
native network transport protocol stack. The adapters are specific to the exact native stack used.

● Transparent Network Substrate (TNS): The peer-to-peer networking protocol, very similar to
NetBIOS, that forms universal transport for all Oracle network products.

● SQL*Net: Layers on top of TNS to offer a set of functions needed to authenticate and
communicate with a distributed database.

● User Programmatic Interface (UPI): Sits on top and is the application programming interface
connector between SQL*Net and the client application.

FIG. 19.1
The client side and
server side SQL*Net
and Net8 protocol
stacks.

Oracle Protocol Adapters

The Oracle Protocol Adapters are the interfaces between specific native protocol stack implementations
and the Transparent Network Substrate (TNS). The Oracle Protocol Adapters perform a function similar
to the interfaces in the native network transport, mapping the standard functionality to TNS with those
functions found in the native stack. Oracle Protocol Adapters are specific to the exact vendor's
implementation of the native protocol stack.

javascript:displayWindow('images/ch19fg01.jpg',327,152)

Transparent Network Substrate (TNS)

As stated earlier, the TNS is a peer-to-peer networking protocol developed by Oracle. It provides the
means for establishing network connections and delivering a "pipe" through which to pass SQL*Net,
application messages, and data. The most critical TNS application is the Network Listener.

The Network Listener is a protocol-independent application listener, or daemon, that receives TNS
connections for any TNS application running on the Oracle server. SQL*Net connections

Page 451

are identified by the listener, based on a SQL*Net-specific port or socket identified in the ADDRESS
portion of the connect descriptor in the TNSNAMES.ORA file or Oracle Names database. While a
session is established with the listener, a dedicated server process is established (or assigned) to handle
the communication session.

Using the Open Systems Interconnection
Reference Model

As the foundation for both TNS and SQL*Net, your local area network (LAN) protocols must be
working properly before anything layered on top will work. Understanding proper LAN operation,
therefore, is a required prerequisite to understanding Oracle networking. As I describe the native
network protocol stack, I will emphasize the concepts needed for troubleshooting and proper design.

As previously mentioned, the reference blueprint for the native network transport is the ISO's seven
layer Open Systems Interconnection (OSI) reference model. In the late 1970s, the ISO organized a
subcommittee of computer professionals to establish standards to encourage interoperability among
computer and data communication vendors. The resulting OSI blueprint organizes network
communication into the following seven layers:

Layer 1—Physical Layer
Layer 2—Data-Link Layer
Layer 3—Network Layer
Layer 4—Transport Layer
Layer 5—Session Layer
Layer 6—Presentation Layer
Layer 7—Application Layer

For your purposes, this reference blueprint is much too detailed; I will describe a simplified reference
blueprint (see Figure 19.2), beginning with the foundation, the interfaces, and the protocol stacks.

The Foundation

Nothing can be built without a strong foundation. The same is true of networks. This layer consists of
the physical cabling and electronics required to electrically transmit data between computers. This world
is governed by the Electronics Industries Association (EIA), Telecommunication Industries Association
(TIA), and the Institute of Electrical and Electronic Engineers (IEEE). The joint EIA/TIA standards
committee has worked toward the development of a cabling standards and standard practices. These
standards harmonize the wiring necessary for telephone and data. The adoption of the EIA/TIA-568A
standard in the wiring industry has driven most LANs to a star-wired design using telephone-type cable
called unshielded twisted-pair (UTP). Shielded twisted-pair (IBM Type1 Token-Ring) and fiber optic
cabling are also recommended in the 568A standard.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 452

FIG. 19.2
The "simplified" 3-Layer
Reference Model
compared to the OSI
Model.

The IEEE 802 committees set standards for the electronics that push bits over the cabling. It is the Media
Access Control (MAC) protocol that defines how bits are pushed onto the network. This software talks
directly to the network hardware. For performance and technical reasons, this is a complicated and
cryptic interface. The MAC protocol calls for the assignment of unique addresses to individual network
adapters so that each computer's network adapter is uniquely addressable, much like a telephone
number. This address, called a MAC address, is a 12 digit, hex serial number "burned" into a chip on
every network adapter. The first six digits of the MAC address are assigned to each hardware vendor by
the IEEE. The last six digits of the MAC address are the serial number set by the vendor.

IEEE standards exist for most of the popular network technologies, including EtherNet, Token Ring,
FDDI, 100BaseT, ATM, and Gigabyte Ethernet.

Why should you care about this layer? There are two very good reasons. First, the MAC address
(sometimes called the DLC address) is a critical addressing component for almost every protocol stack.
Individual workstations can be identified and tracked based on this number. The other reason is that this
layer is the most unreliable layer in the network. It is often said that 80 percent of network faults occur
in the wiring. These faults are not only due to bad or loose wiring connections. Wiring faults can also be
due to wrongly configured electronics.

TIP

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch19/0455-0457.html
javascript:displayWindow('images/ch19fg02.jpg',405,238)

With EtherNet, one of the main sources of failure comes from excessive packet
collisions. The causes for this can be attributed to an excessive number of repeaters
between stations (more than three), EtherNet transceivers connected to repeaters with
SQE turned on (SQE should never be turned on in this instance), and failing EtherNet
adapters not listening before sending.

The Interface

On top of the foundation is an interface. The main interface for LAN protocols is the IEEE 802.2
Logical Link Control protocol. It creates a simple and standard means, called Service

Page 453

Access Points (SAPs), for accessing the wire. This is not a very important layer for troubleshooting, but
you probably should remember that SAPs are the methods used to access the foundation, since this term
comes up occasionally.

The Protocol Stack

Above the interface is the protocol stack. The protocol stack encompasses the network and transport
layer of the OSI model. Multiple protocol stacks can share the same wire, while the same protocol stack
can use different wires. The network layer of the stack handles the routing of messages through the
network or through the multiple connected wires. The transport layer of the stack provides error-free
transmission of data, data flow control, error recovery, and receipt acknowledgment. TCP/IP has
established itself as the standard protocol stack. Other protocol stacks include IPX/SPX, NetBIOS,
DECNet, LU6.2, AppleTalk, Named Pipes, Banyan Vines, and so on.

The protocol stack is very complicated. A lot goes on in the stack, and each stack is very different from
another. Protocol stacks often have another addressing scheme different from the MAC address. These
addressing schemes often break a network up into sub-networks or subnets, also called zones or areas in
some stacks. Much like an area code is needed when dialing a long-distance telephone number, special
subnet addressing is used to communicate with another subnet. Specialized devices, called routers, are
placed at the intersections of adjacent subnets to inspect messages and deliver them to the correct subnet.

The TCP/IP Protocol Stack

TCP/IP is the most popular protocol stack used for SQL*Net and client/server connections. Developed
in the 1960s by the U.S. military and a group of west coast American universities, TCP/IP was
developed for the original Internet, called the ARPANET. Core to the design of TCP/IP was the ability
to "self-heal" in case of the loss of a portion of the network. This was important to a Cold War military

concerned about command-and-control during a nuclear attack. It is also a good design for a huge
network without any central control—the Internet.

The TCP/IP stack can run over almost every type of foundation, including EtherNet, Token Ring, Frame
Relay, and ATM. This flexibility accounts for much of TCP/IP's success. The TCP/IP protocol
implements two protocols, IP and ICMP, to handle the routing of messages through the network.

Internet Control Message Protocol (ICMP) ICMP is a very important protocol for troubleshooting,
because it provides error and other control information for testing of routes through a network. Some of
the most useful ICMP messages include:

● Echo Request/Echo Reply. A TCP/IP utility called PING uses echo request and reply to
determine if a specified address can be reached. The PING command sends an echo request to the
remote node. If the protocol stack is working, it will reply to the request with an ICMP echo
reply. When PING receives the reply, it will calculate the elapsed time required for the round
trip. It will also indicate if a reply is missing, indicating a busy network. This tool is
indispensable.

Page 454

● Destination Unreachable. If a route between networks or subnets cannot be accessed, ICMP
reports the error. Again, the PING tool will report an unreachable destination, indicating some
type of routing misconfiguration or network failure.

● Time Exceeded. ICMP will report back to the sender when the message's time-to-live (TTL)
counter expires. The TTL counter is normally set to 20 when a message is first broadcast on the
network. Each time a message passes through a router moving from one network or subnet to
another, the TTL counter is decremented by one. When the counter is decremented to zero, ICMP
sends the message back to the sender providing the name of the last router or hop. This stops
messages from getting into infinite loops and provides the name of the offending router.

Another indispensable tool for TCP/IP uses this feature to trace the route a message takes to get to its
destination. The TRACEROUTE tool begins by sending a message with a TTL of one. This first router
will expire its counter and send back the message. The address of this router is then recorded by
TRACEROUTE. A message with a TTL of 2 is now sent to discover the second router, and so on until
the destination is found. In Windows 95, this standard Microsoft utility is called TRACERT.EXE.

TIP

A super, free combination PING and TRACEROUTE tool called Sub-O-Tronic is
available for Windows 95 from Virgin Interactive at http://subspace.vie.com on their
download page. It is a diagnostic tool for use with their SubSpace Internet game to
identify network bottlenecks hurting the performance of their client/server game. It
works just as well looking for network problems and bottlenecks in your network. A
must have!

Another area of concern for most administrators is correct IP addressing and configuration. For the IP
protocol to correctly route your messages across the network, several parameters must be set up
correctly.

IP Addressing The IP address is expressed in 4-byte, dotted-decimal notation. In decimal notation, a
byte can have a value between 0 and 255, so a 4-byte, dotted-decimal notation looks like an address
between 0.0.0.0 and 255.255.255.255. As mentioned earlier, the IP address refers to both a specific
network or subnet and a specific host. This address is divided into classes.

● Class A—The first byte of a Class A address is a number starting with 1 to 126. Class A
addresses use the first byte to designate the network address and the last three bytes to designate
the host address. Class A addresses are reserved networks with a huge number of hosts.

● Class B—The first byte of a Class B address is a number starting with 128 to 191. Class B
addresses use the first two bytes to designate the network address and the last two bytes to
designate the host address. Class B addresses are normally reserved for Internet service
providers.

● Class C—The first byte of a Class C address is a number starting with 192 to 223. Class C
addresses use the first three bytes to designate the network address and the last byte to designate
the host address. Only 254 hosts can be in any Class C network.

Previous | Table of Contents | Next

file:///E|/subspace.vie.com/default.htm
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch19/0455-0457.html

Previous | Table of Contents | Next

Page 467

CHAPTER 20

Advanced Oracle Networking

In this chapter

● Understanding Enterprise Networking 468
● Configuring SQL*Net and Net8 468
● Understanding the Oracle Names Server 475
● Using the Advanced Networking Option 477
● Enabling Data Encryption and Checksums 478
● Understanding the Multi-Threaded Server 479
● Using the Oracle Connection Manager 483

Page 468

Understanding Enterprise Networking

The Oracle database is capable of supporting many different environments, from small workgroups
supporting tens of users and hundreds of megabytes of data, to enterprise applications with thousands of
simultaneous users, gigabytes of data, and hundreds of transactions per second. In a similar vein, Oracle
networking is designed to support both the smallest and largest environments. If your needs are simple,
your Oracle networking components can be configured so that one person can easily administer them
with a minimum of time and effort. For larger installations with more complex implementations, the
same concepts used in a small installation can be built on and expanded to support more challenging
requirements. In this chapter, you look at some of the features of SQL*Net and Net8 that enable it to
serve the needs of the enterprise.

Configuring SQL*Net and Net8

Unfortunately, installing the SQL*Net networking software is the least of your Oracle networking
administrative duties. SQL*Net software must be carefully configured before it can be used, both on
client and server machines. There are, in general, two accepted methods of configuring
SQL*Net—through manual editing of the correct configuration files, or through the usage of the
supplied Oracle configuration tools, Network Manager for Oracle7 and Net8 Assistant in Oracle8.

Oracle recommends configuration of the SQL*Net configuration files only through the supplied
configuration. However, experienced (or impatient!) network administrators are often more comfortable
making configuration changes directly to the configuration files. Also, there are times when the only
way to configure a brand-new networking product, or enable a feature, is through direct configuration
file manipulation. For these reasons, it is highly recommended that you at least familiarize yourself with
the configuration files involved in SQL*Net and Net8 communication.

NOTE

Currently, the Network Manager and Net8 Assistant utility will not edit configuration
files that have been modified by hand. Therefore, you must make the choice to either use
the tool, or not to use the tool.

The easiest and most foolproof way to configure SQL*Net is with the Network Manager utility. In most
cases, configuring your network resources using the Network Manager or Net8 Assistant is simply a
matter of choosing the appropriate icon and filling in a few parameter values. The way these tools work
is that the network configuration is stored internally. Based upon the Oracle resources you have created
(such as Listeners, Names Servers, Databases, and so on), the appropriate configuration files for clients
and servers are generated when you execute the utility. You are then responsible for placing these
generated configuration files in the appropriate directories on the client or server.

The Net8 Assistant is different from Network Manager in that it is a Java application, and as such can
run on any platform that has the appropriate Java runtime environment installed.

Page 469

It also contains additional functionality not found in Network Manager, as well as support for new Net8
features, such as the Connection Manager and the Advanced Networking option.

Using the Oracle Tools to Configure Oracle Networking

The following step-by-step explanation will create a simple Oracle network using the Network Manager
tool. We will create a Oracle network consisting of a database server, a Listener, a database, and a
Names server. Note that placing your mouse cursor over a button will cause a message explaining the
button's purpose to appear. All of the button's functionality can also be performed using menu items.
Complete the following steps:

1. Start the Network Manager utility. With some versions, you will be asked where you would like
to store the Network Definition: Select File.

2. Select File, New, or press the Create A New Network Definition button. The utility will ask
whether you want to perform a walk-through; select No.

3. Press the Community button, and enter a name for the community. In Oracle terms, a community
is one or more network resources that use the same protocol, and the community name should
reflect the protocol name. Choose the correct protocol from the Protocol drop-down list, and
press OK. Notice how each component of the network appears in the box at the left of the
Network Manager screen as you create it, and the network resources contained within each
highlighted container object appear in the box at the right.

4. Press the Node button. A Node is a computer that houses an Oracle resource, such as a database
or listener. Enter the name of the Node (the computer name), and select the Node type from the
Node drop-down list. You will also need to select the community the Node belongs to by
selecting the Community tab and adding the correct Community.

5. Press the Listener button. As you can see, the Listener has many configurable options, but most
of them are related to optional behavior, such as logging levels and monitoring. The name will
default to Listener, and unless there are multiple listeners for the server, there is no need to
change this value. The first Node will automatically appear in the Node box; select the correct
Node if necessary. You can also assign a password to the Listener, which will be used when
attempting to perform administrative tasks on the Listener. For now, the other parameter values
can be left at their defaults.
b. Select the Addresses tab. The address will specify the hostname and port on which the Listener
will listen at. The default is 1521 or 1526, depending on the server type, and in most cases the
default is fine. Press the Create button and accept the default values by hitting OK.
c. Select the Databases tab. Here you specify what databases the Listener will listen for. You can
only specify databases that reside on the Node the Listener resides on. If you have databases
already created, you can select them from the Available list. Otherwise, press OK to create an
empty Listener. We will assign databases to it in the next step. One quirk of Network Manager is
that you cannot create databases on a Node without first creating a Listener on that Node.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 466

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 463

To install specific product components, double-click the desired product in the Products Available list
and then select the specific component to install. Click Install to begin product installation.

TIP

Update the Windows Registry to add the key USERNAME to the
HKEY_Local_Machine/Software/Oracle section and the HKEY_Local_Machine/
Software/Oracle/Oracle_Homes/Oracle1 section. The value for this key should be the
user's name. This value is used when a SQL*Net connection is made to the Oracle server.
This value is displayed on the server for your connection. This will aid releasing
connections to shutdown the database.

TIP

Two other changes to the Registry should be considered. Add the key
CNTL_BREAK=ON to the HKEY_Local_Machine/Software/Oracle and
HKEY_Local_Machine/Software/Oracle/Oracle_Homes/Oracle1 sections of the
Windows Registry. This key will allow a Ctrl+C keypress to stop a long query. Also,
changing the value for NLS_LANG in both sections can improve the order data is sorted
using the ORDER BY clause. PeopleSoft software running against Oracle requires the
US7ASCII character set be used. Use the following syntax in the ORACLE.INI file:
NLS_LANG=AMERICAN_AMERICA.US7ASCII.

Using The Oracle Client Software Manager (OCSM) Component

Oracle Client Software Manager (OCSM) is a new feature to the Oracle Windows Installer. It allows the
administrator to install 16-bit applications on a shared file server directory for use by any Windows
client platform, including Windows 95 and Windows NT. Installation is centralized and updates to
software on client workstations are automatic, using the intelligence built into Oracle Installer.

The Oracle Client Software Manager can be used to deliver 16-bit client software bundled with Oracle7
Workgroup and Enterprise servers including SQL*Net. Runtime and development versions of Oracle
Developer/2000, Oracle Office, and the Oracle Applications suite can also be installed with OCSM. It is
also a critical delivery tool for the GUI version of Oracle Financials.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch19/0461-0462.html

CAUTION

Two notable omissions to the applications delivered by the Oracle7 OCSM is the Oracle
ODBC driver and the 7.1 and 7.0 Required Support Files. This is no longer the case with
Net8.

Oracle Windows Installer creates the Oracle Client Software Manger directory and loads the selected
software into this shared network directory. Oracle Windows Installer configures the administrator's PC
to run the Oracle Client Software Administrator, a utility that allows the administrator to set up client
configurations. The exact suit of products needed by a group of users is associated to a configuration.
Users are then assigned the appropriate configuration to perform their job. Optionally, the administrator
can give the user a suite of products to pick from and install for himself.

Page 464

The Client Software Administrator has other options such as installation conflict resolution and the
ability for the administrator to decide the location of executables. A client can be configured to use
Oracle applications in three ways.

● In shared mode directly from the file server
● In EXE/DLL download mode when just the executables and DLLs are loaded locally on the

client PC for performance improvements
● In Full Download mode, when a complete installation is made on the client machine

The user portion of OCSM is the Oracle Client Software Agent. This small executable is loaded onto the
client PC and is run in the Windows Startup group. The Agent monitors the server for changes and
automatically updates the client using the Oracle Window Installer engine.

Installing SQL*Net Using the Oracle Client Software Manager

If you are running Windows 95 or Windows NT, your PC will probably autorun the installer for the
appropriate 32-bit version of SQL*Net for your operating system. Since you are installing, and OCSM
only works with the 16-bit version of the Oracle Network Products, cancel out of this installation if
autorun is enabled on your PC. Use the following steps to install SQL*Net using the Oracle Client
Software Manager:

TIP

Autorun can be disabled by holding down the Shift key while loading the CD-
ROM.

1. Start the Oracle Installer. The install directory on the CD-ROM for the 16-bit version of Oracle
Network Products is called \WINDOWS. Change to this directory. Find and run the program
SETUP.EXE with a /SHARED option using File, Run in Windows 3.1 and Windows NT 3.51 or
the Start/Run dialog in Windows 95 and Windows NT 4.0. Type in the following (substituting
your CD-ROM drive letter for D): D:\WINDOWS\SETUP.EXE /SHARED.

2. Select Oracle Installation Settings.
3. Next you will be prompted for the language being used for the installation. After choosing a

language and selecting OK, you will be presented with an Oracle Installation Settings dialog box.
Type your company name in the Company Name field, and then specify the location of the
shared Oracle home in the Oracle Home field.

CAUTION

You must be careful in specifying the Oracle home for the shared installation. This path
should be on a network file server drive that all Oracle users can access. This should
NOT be on your local hard drive.

4. You will then be prompted for the /BIN directory setting in your Autoexec.bat file. You will see
the Oracle Client Software Manager Administrator Information dialog box. Type in the
administrator's username, and click OK. The standard Software Asset Manager dialog box will
now appear.

Page 465

5. Install the Oracle Installer, Oracle Client Software Manager Administrator, and the Oracle Client
Software Manager Agent to the shared Oracle home by first highlighting them on the left pane
and clicking Install. Once complete, install all other required applications, such as SQL*Net and
the appropriate Oracle Protocol Adapter. Pick any other applications needed in the shared Oracle
home.

6. Exit the Installer.

As the Software Manager Administrator, the Administration program will be installed on your PC. You
will need to use the PC to make changes to the shared configuration.

CAUTION

You cannot be the Software Manager Administrator AND a user running the Manager
Agent. You probably should pick a machine you do not use for development or
production as your Administrator machine. You should pick an alias name as your
administrator name so it will not conflict with your username if you install Oracle
products on the computer at your desk.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch19/0461-0462.html

Previous | Table of Contents | Next

Page 470

6. a. Now that the server and Listener are configured, we are ready to create a database entry. Press
the Database button, and fill in the Database Name, Node, and Database SID fields. Set the
Database Name to the name you specified when the database was created (or the value of the
db_name init.ora parameter). Also fill in the Operating Specific directory in the field, if
necessary.

NOTE

Step 6a does not actually create a database. It only defines it within the SQL*Net
environment.n

b. Press the Listeners tab, and select the Listener(s) that will service this database from the list of
Available Listeners. You cannot create the database without specifying a Listener. Press OK to
accept the default settings for all other configuration parameters.

7. Select File, Validate. This will ensure all of your object definitions have been properly created.
8. Select File, Generate. If this is a new configuration, you will be asked to provide a network

definition filename. You will also be prompted for the directory in which to store the generated
network configuration files. Select a directory, and press OK.

After generation has completed, the configuration files for the Oracle network will be in the directory
you specified in the last step above. A directory exists with the name you gave the network file. Within
this directory will be subdirectories for each Node in the network, as well as for each community. The
community directory will contain the files necessary for clients, and the server directories will contain
the server configuration files. Transfer these files to the appropriate directories on the server or clients,
and test your network configuration. Assuming all parameters were entered correctly, your networking
configuration is complete.

When a change is made to the network configuration, it will be necessary to regenerate and distribute all
of the configuration files for each server. While time-consuming, the benefits you realize from
maintaining the entire network configuration in one central location are great.

NOTE

Network Manager and Net8 Assistant store the options found in the sqlnet.ora file in the
Profile object. Edit the Profile for the Community to modify the sqlnet.ora parameters.n

Creating a network configuration using Net8 Assistant is very similar to doing so with the Network
Manager. The biggest difference is the look and feel of the utility itself. Terminology and configuration
is for the most part identical, with the addition of configuration for Net8 resources and options. The new
configuration options available in Net8 are detailed in the following section, "Exploring the New Net8
Parameters."

Exploring the New Net8 Parameters

One of the most noticeable differences between Net8 and SQL*Net V2 are the new configuration
parameters available. The following is a list of the new parameters you should be aware of (most of
these parameters can be configured in the Profile editor in the Net8 Assistant, or by hand by editing the
sqlnet.ora file):

Page 471

DISABLE_OOB—Disable out-of-bound breaks if transport protocol doesn't support a feature. Out-of-
bound breaks are what allows you to cancel a long-running query or job by pressing Ctrl+C (or the
Cancel button), by sending a control command that does not wait for completion of the current
command, but executes immediately (in other words, an out-of-bound command).

SQLNET.EXPIRE_TIMEOUT—In earlier versions of SQL*Net, this defaulted to an extremely high
number of seconds. When calculated, it measures in years. It is recommended that this value be reduced
to a more manageable number, such as 10. This does not mean that if the connection is idle for 10
seconds, it will be disconnected, but rather when the connection dies it spins off on its own. This is the
number of seconds the process will stay active prior to being killed. DBAs that have had to deal with
locks left over from these "ghost" processes will appreciate the effects of this setting.

LOG_FILE_CLIENT—The log file will be written on the client to this filename. The file will be placed
in the directory specified in TRACE_DIRECTORY_CLIENT. Logging is automatic in Oracle and
cannot be turned off. It tracks the errors that occur on the client. This is a good place to go when
evaluating errors. When not specified, the default filename is SQLNET.LOG. This file should be
periodically purged; however, this should be done while the client is quiet so that the logging facility
will find the file if an error occurs.

LOG_DIRECTORY_CLIENT—This is the directory location for logging files on the client.

TRACE_LEVEL_CLIENT—In version 7.3 and below, in order to get a full trace, the trace level would
have to be set to the undocumented level 16. In version 8, Oracle has renamed this level to "support."
Keep in mind that this is a very robust trace level and should not be used unless requested by support, or
extremely well versed in network trace files. Normally, the trace levels of "user" or "admin" are
sufficient. Naturally, a performance hit will be taken when tracing is enabled.

TRACE_FILE_CLIENT—The trace file will be written on the client to this filename. The file will be
placed in the directory specified in the TRACE_DIRECTORY_CLIENT.

TRACE_DIRECTORY_CLIENT—This is the directory location for logging files on the client.

TNSPING.TRACE_LEVEL—This is the level for the tnsping. It can be the following values: OFF,
USER, ADMIN.

TNSPING.TRACE_DIRECTORY—This is the directory location for the tnsping trace.

Administering the Oracle Listener

One of the most important components of your Oracle Network configuration is the Oracle Listener. The
Listener is the program that services the requests by programs to connect to remote databases. It
"listens" at a specific port on the database server, and connects incoming connections with server
sessions on the database. Ensuring that your Listener runs properly is key to managing your Oracle
Network environment.

Page 472

The most common way to control the Listener is by using the Listener Command Utility, LSNRCTL.
This is a command line utility that allows you to perform administrative tasks against the listener. You
can run LSNRCTL commands in interactive or batch mode. To run LSNRCTL interactive, issue the
command with no arguments. To run LSNRCTL in batch mode, issue the LSNRCTL command with the
Listener commands as arguments to the program.

All of the commands you can issue can be displayed by typing help at the LSNRCTL prompt. To start
the listener, you issue the start command. For example:

$lsnrctl start [listener name]

By default, all commands will be issued against the default Listener named Listener. If you have
multiple Listeners running on one Node, you will have to specify the names of the Listeners in the
command. For example:

Lsnrctl start listener01

If you have defined a password for the Listener, you will not be able to change the Listener status
without first issuing the password. To do this, start the LSNRCTL control program and issue the set
password command. For example:

% lsnrctl
LSNRCTL> set password oraclerules
Command completed successfully.
LSNRCTL> [perform administrative tasks]
LSNRCTL> quit

To stop the listener, you use the stop command. In batch mode, this command will be issued as follows:

Lsnrctl stop [listener_name]

Again, the default Listener will be stopped, unless a Listener name is explicitly given. You can also
display the status of the listener with the status command. This will display the resources this Listener is
servicing, as well as the trace level, Listener start time, and so on.

Troubleshooting the Client Configuration

There are many configuration files involved in making a successful SQL*Net connection.
Unfortunately, a slight error in any of these files, on the client or server side, can result in hours of
frustration resolving the issue. And pity the administrator who wastes hours of time troubleshooting
network connection problems, only to find a misplaced `)' in their tnsnames.ora file. For this reason, we
offer the following checklist of common problem solutions:

● Is the Listener up on the server?
● What does the log file show?
● Are all the DLL files located on the client?

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 473

NOTE

Oracle has a document that will provide a list of all DLLs needed for SQL*Net versions
up to 2.2. The document is Problems Resolution Number 1015204.4, and can be accessed
using Metalink or provided to you through Oracle World Wide Customer Support.n

● Is the ORA_CONFIG file defined in the win.ini file?
● Is the ORACLE.INI file configured correctly?
● Has any other software been recently installed on the client that could affect the DLLs?
● Are there multiple versions of the same DLL located on the client?
● Are the files for the network backbone also there, for example (VSL.ini)?
● Are all the files in the correct directory?
● Has the network been upgraded or changed recently?
● If on the network, are the files accessible by the client?
● Is the entire path correct in the environment of both the client and the server?
● If in a Windows 3.1 environment, is the environment large enough to hold the critical paths?
● Has the TCP/IP address been defined properly in the network?
● Have previous versions of Oracle software been completely removed from the client?
● If you are using the Names server, is the Names server up and running?
● Is there a Name server defined but not being used?

There are also several tools available on the client that will help in determining the cause of connection
problems:

TNSPING—This utility allows a user to see whether the SQL*Net connection is working
properly or whether another underlying problem exists. The utility will attempt to connect
to a Listener on a database server, and return a successful connection attempt if the
Listener responds. Note that this will not give you any idea whether database connections
are working, but it will reassure you that you are able to connect to the target database
server. To use this utility, you use the TNS alias (as defined in your tnsnames.ora file) as
an argument to the command. For example, TNSPING PROD01.

PING—This utility is a TCP/IP tool, rather than an Oracle networking tool. It will test
your connectivity to a networked computer. If you are able to use PING to establish a
connection to a host, you can be assured your TCP/IP networking software is properly
configured and that the physical route to the host is established. To use this utility, use the

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch20/0476-0478.html

computer name of the host you are attempting to contact. For example, ping dbprod.acme.
com.

TRCROUTE—This is another utility that will display the route taken by a packet from
your computer to the target host. TRCROUTE shows the route the connection is taking
and can pinpoint the exact location where a problem exists. The output produced is similar
to Listing 20.1.

Page 474

Listing 20.1Output of TRCROUTE

Route of TRCROUTE:

Node: Client Time and address of entry into node:
--
28-NOV-97 22:01:15 ADDRESS= PROTOCOL=TCP Host=hpdev Port=1521

Node: Server Time and address of entry into node:
--
28-NOV-97 22:02:07 ADDRESS= PROTOCOL=TCP Host=hpdev Port=1521

In the event of an unsuccessful connection, the output would be
similar to
the following:
Route of TRCROUTE:

Node: Client Time and address of entry into node:
--
28-NOV-97 22:01:15 ADDRESS= PROTOCOL=TCP Host=hpdev Port=1521

TNS-12203: TNS:unable to connect to destination
TNS-12541: TNS:no listener
TNS-12560: TNS:protocol adapter error
TNS-03601: Failed in route information collection

This output gives more information than TNSPING. Here, it shows that the connection failed and where
the problem most likely resides. In this case, it is likely that the listener is not up.

Troubleshooting the Server

If errors or problems occur at the server, ask the following questions:

● Are the TNSNAMES and LISTENER.ora files on the server?
● Are these files in the right place and properly configured?
● Were the files transferred in binary instead of ASCII?
● Are the SID names spelled correctly in each file?
● Are the SID names in the proper case (operating system_dependent)?
● Are the file-system permissions correct for the TNSNAMES and LISTENER files?
● Is the Oracle environment correctly set up?
● Are all Oracle processes owned by the Oracle user?
● Are there errors in the log files?

TIP

In order to more easily identify and isolate problem connections, set the trace to a new
file. To do this, use the following:

$ lsnrctl set trace_file newtrace.trc

Page 475

This places the trace file in the same default directory as the current trace files. As with all
tracing activity, there will be a reduction in performance while tracing. It should be used
for troubleshooting only.

Understanding the Oracle Names Server

As the complexity of your Oracle network increases, the time and degree of difficulty involved in
managing the network also increases. The Oracle Names server provides Oracle administrators with a
more robust and centralized method of administering naming information previously stored only in the
tnsnames.ora files—the database aliases. The Names server provides the means to store SQL*Net V2
and Net8 database aliases in a central database repository, rather than in physical files maintained on
individual clients or shared network directories. In a Names server environment, database aliases are
passed from the client to the Oracle Names server, which consults its internal lookup map and passes the
complete connect string back to the client. This lookup map of aliases and complete addresses can be
stored in an Oracle database, or in memory of the Names server computer. In a Names server
environment the only configuration the client needs is the name and address of the Oracle Names
server—all other configuration information can be stored and retrieved from the Names server. As an
added benefit, version 2 of the Names server introduced the capability of discovering network resources
automatically. This functionality is extended in Net8, where Net8 resources will announce their
availability to the Names server when they are started.

A Names server can either replace or supplement the tnsnames.ora name resolution mechanism. Clients
can be configured to consult any number of available directory services, moving on to the next if the
current service fails to resolve the requested name. For example, production database aliases can be
stored in the central Names server, and individual development or testing database aliases can be
maintained by developers on their own clients in their personal tnsnames.ora files. When a production
application runs, the Names server will provide the TNS lookup information; when the developer
attempts to connect to a test database not stored in the Names server, his or her personal tnsnames.ora
file will resolve the alias.

The creation and configuration of a Names server can add complexity and overhead to your overall
environment, and the decision to go with one or the other should be made carefully. However, the ease
of administration and the headaches saved by managing your database resource information centrally
can be well worth the initial costs of installation. Environments with many databases, or frequent
configuration or naming changes, would be well served by investigating Oracle Names. The capability
for the Names server of automatically discovering resources is also a strong point in favor of opting for
installation.

Names Server Configuration

The configuration information for the Oracle Names server is stored in the names.ora file in
$ORACLE_HOME/network/admin. Parameters affecting the Names server can also be found in sqlnet.
ora. The recommended method for generating these files is through Network

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch20/0476-0478.html

Previous | Table of Contents | Next

Page 487

CHAPTER 21

Managing Database Storage

In this chapter

● Administering Database Objects488
● Understanding Database Fragmentation492
● Managing Rollback Segments499
● Identifying Storage Problems506
● Administering a Growing Database514
● Understanding Space Manager521

Page 488

Administering Database Objects

An Oracle database has many different components that consume disk and system resources. As we will
see, each resource has unique storage characteristics and requires unique handling and care. In the
following sections, we'll look at database segments and their unique storage concerns. We'll talk about
the segments themselves, such as tables, clusters, indexes, rollback segments, and temporary segments,
as well as the internal methods used by the Oracle database to store them.

Managing Oracle Blocks

The smallest unit of storage addressable by the Oracle server is the Oracle block. All database segments
are composed of Oracle blocks, and the block structure is the same whether the segment is a table, index,
cluster, or other object. Designing a database with optimal characteristics starts with the proper
configuration and administration of the Oracle blocks.

Each Oracle block is made up of the following three sections:

● Block header
● Data storage
● Free space areas

The block header contains information about the block—what type of segment data is stored in the
block, what segments have data in the block, the address of the block, and pointers to the actual rows
stored in it. The header size is comprised of a fixed part and a variable part, and a block header in
general uses 85 to 100 bytes in the block.

Within the Oracle block, managing the data storage and free space areas are directly related to each
other. The data area is where the rows are actually stored in the block. The reserved free space area is a
region, defined as a percentage of the total available space, that is reserved to store information for
future updates of rows stored in the block. Managing the data and reserved block areas are the main
concern of Oracle block administration, and are discussed below.

Understanding PCTFREE and PCTUSED

PCTFREE and PCTUSED are two storage parameters that are often misunderstood, but the concept is
actually quite simple. When the Oracle RDBMS writes information to the database blocks, it uses the
PCTFREE and PCTUSED parameters to tell itself whether a block is available for new rows to be
added. If the percentage of space in the reserved area is greater than the PCTFREE parameter, the block
can be used to store new rows. Once the reserved space has fallen below PCTFREE, the block is
considered "full," and Oracle will not add any additional rows. Should the amount of used space in the
block fall below PCTUSED, Oracle will then again use the block to add new rows. This method allows
Oracle to keep enough extra space for rows to grow without having to span more than one block.
Keeping rows confined to a single block will help keep your database running at peak performance.

Page 489

Once a block's reserved free space falls within the PCTFREE region, it stays off the available list until
its free space percentage reaches the PCTUSED value (through deletions of rows stored in the block, or
updates that decrease the length of rows in the block). PCTUSED merely specifies the percentage of free
space the block must have before Oracle will consider it for new rows.

The values of PCTFREE and PCTUSED should never equal 100 percent. If a segment is configured this
way, it is possible that the block will reach a point where it is continuously being taken off of and placed
on the free list by every minor data manipulation. The overhead incurred by the database engine
handling can easily be avoided by leaving a margin of at least 20 percent between PCTFREE and
PCTUSED. The Oracle defaults of 10 for PCTFREE and 40 for PCTUSED illustrate this margin.

PCTFREE and PCTUSED are specified in the storage clause of the database segment. You can query
their current values using the dba_tables, dba_clusters, or dba_indexes data dictionary views. Using
PCTFREE and PCTUSED, you can fine-tune the storage characteristics of individual tables to meet their
particular storage needs. For example, a table that will never be updated (a mainframe database extract
used for reporting, or tables held in read-only tablespaces) can be safely set with a PCTFREE of 0. This
saves you space in each block—for a 4KB block and PCTFREE setting of 10, approximately 800 bytes

per block is available for data that would have been reserved. For a 500MB table, you could realize
savings of around 50MB for implementing this one minor change. On the other hand, a table containing
columns that are guaranteed to be updated in the future can be set with a higher PCTFREE to avoid row
chaining or migration. Row chaining and migration are discussed in detail in the "Understanding
Database Fragmentation" section of this chapter.

Figure 21.1 shows how PCTUSED and PCTFREE work together to control space utilization inside the
block. In the example, we assume that PCTFREE is set to 20 percent and PCTUSED is set to 80 percent.
Number 1 shows that inserts can utilize all the space inside the block until the 80 percent limit is
reached. This is because 20 percent of the space after block overheads is reserved for future updates via
the PCTFREE parameter. Number 2 shows that once the PCTFREE limit is reached, the reserved free
space can only be used for updates of current row data—no new inserts are permitted in this block.
Number 3 shows the block being placed back on the free list as a result of deletions or updates and the
used space in the block falling below 40 percent (the PCTUSED setting of the table). Number 4 shows
that once the used space falls below PCTUSED, new insertions are now possible in the block. As
insertions are made inside the block, the used space starts increasing, again touching the upper limit, and
the cycle begins again.

Managing Table Storage

Tables are probably the most straightforward objects for determining storage needs. A table's space
requirements are roughly the product of average row length and number of rows. When DBAs are
discussing the approximate size of the databases in their care, the number of rows is often used as a
metric. Although this by itself does not provide a lot of information for planning long-term storage
needs, it does tend to give us some insight as to the magnitude of the database size.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 482

Listing 20.3Two TNS Aliases Connected to the Same Database

PROD_MTS =
(DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS =
(COMMUNITY = tcp.world)
(PROTOCOL = tcp)
(HOST = dbprod)
 (PORT = 1521)
)
)
 (CONNECT_DATA = (SID = PROD01)
)
)
PROD_BATCH =
(DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS =
(COMMUNITY = tcp.world)
(PROTOCOL = tcp)
(HOST = dbprod)
 (PORT = 1521)
 (SERVER = DEDICATED)
)
)
 (CONNECT_DATA = (SID = PROD01)
)
)

Administering the Multi-Threaded Server

During normal operation, the Oracle server will start and stop shared server and dispatcher processes as
they are needed. This is based on the load placed on the processes. However, it may be necessary to
manually administer MTS operation, or monitor for performance problems. For this reason, there are
several data dictionary views available that display information relating to the MTS workings. V
$DISPATCHERS and V$SHARED_SERVERS will display runtime information on the dispatcher and

shared server processes. V$MTS will display overall statistics such as the maximum number of MTS
connections, the number of servers started, the number of servers killed, and the high-water mark for
servers. V$QUEUE will display information on the Request and Response queues. Finally, V$CIRCUIT
shows information on user connections using dispatchers or servers. These performance views allow you
to check on your MTS configuration, and make adjustments or refinements where necessary.

You can make adjustments to the number of shared server and dispatcher processes while the instance is
running by using the appropriate ALTER SYSTEM commands. You can increase or decrease the
number of processes with the appropriate command. Note that if you attempt to terminate servers or
dispatchers, the Oracle server will only terminate them as the User sessions using them are closed.

Page 483

The following examples show how these commands are used:

ALTER SYSTEM SET MTS_DISPATCHERS = `spx,10';

This will start or stop SPX dispatchers until ten are running.

ALTER SYSTEM SET MTS_SERVERS = 5;

This will start or stop shared server processes until five are running.

Using the Oracle Connection Manager

The Oracle Connection Manager is a new Net8 option that is supplied with the Enterprise version of
Oracle8. It provides enhanced services for handling connection pooling, access control, and multiple
protocol support. It is ideal for environments with hundreds or thousands of simultaneous connections,
and provides similar benefits as the Multi-Threaded Server.

To configure the Connection Manager, use the Network Manager or Net8 Assistant. Alternatively, the
Connection Manager can be configured by directly editing the cman.ora file.

Configuring Connection Multiplexing

Multiplexing connections (or Concentration, as it is referred to in Oracle documentation) is
the process of routing multiple discrete connections over a single network connection. When
connections are multiplexed, less resources are consumed by the server, as the multiplexed connections
only uses the overhead of a single connection. Concentration can be enabled in environments configured
to use MTS.

In an Oracle Names environment configured with Dynamic Discovery, concentration will occur
automatically when the Connection Manager is brought online. To manually enable concentration, you
must place the address and port where the Connection Manager is listening in the tnsnames.ora file.

To configure where Connection Manager will listen, add the following line to cman.ora:

cman=(address=(protocol=tcp)(host=HOSTNAME)(port=PORT)))

where HOSTNAME is the hostname of the computer Connection Manager is running on, and PORT is
the port Connection Manager should listen to. By default, Connection Manager listens on port 1600.

To configure the client to use Connection Manager pooling, specify the Connection Manager
information in the address list, and set the SOURCE_ROUTE parameter to yes. For example:

(description =
 (address_list =
 (address = (protocol=tcp)(host=conman)(port=1600))
 (address = (protocol=tcp)(host=dbserver)(port=1580))
)
 (connect_data=(sid=db1))
(source_route = yes))

Page 484

NOTE

The SOURCE_ROUTE parameter indicates the client must travel through multiple
destinations to get to the final destination. Used with Connection Manager, it indicates
the client must first go to the Connection Manager machine before traveling on to the
actual database. n

Configuring Multiple Protocol Support

The Multiple Protocol Support of Connection Manager takes the place of the Multiprotocol Exchange of
Oracle7. To enable handling of multiple protocols by Connection Manager,
install all of the protocols on the machine where Connection Manager is run. Connection
Manager will route the requests automatically depending on the configuration of the client's tnsnames.
ora file. A source route address which indicates the protocols being traversed in the tnsnames.ora file is
all that is required to enable muliprotocol communications. For example:

(description =

 (address_list =
 (address = (protocol = spx)(service=conmansrvc))
 (address = (protocol = tcp)(host = dbserver)(port = 1580))
 (connect_data = (sid = db))
 (source_route = yes))

Page 485

PART VI

Managing the Oracle Database

21. Managing Database Storage
22. Identifying Heavy Resource Users
23. Security Management
24. Backup and Recovery
25. Integrity Management

Page 486

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 479

The SQLNET.ENCRYPTION_TYPES_SERVER and SQLNET.ENCRYPTION_TYPES_CLIENT
parameters specify the encryption algorithms the client or server machine can use. If more than one
algorithm is specified, the machine will attempt each one, starting from the first to the last. The actual
algorithm used in the session will be determined from the negotiation between the client and server. If
an algorithm cannot be negotiated because the server and the client do not have an algorithm in
common, the connection will fail.

Valid encryption types are:

● RC4_40: RSA RC4 (40-bit key size) Domestic & International
● RC4_56: RSA RC4 (56-bit key size) Domestic only
● RC4_128: RSA RC4 (128-bit key size) Domestic only
● DES: Standard DES (56-bit key size) Domestic only
● DES40: DES40 (40-bit key size) Domestic and International

To specify the checksum behavior, the SQLNET.CRYPTO_CHECKSUM_SERVER and SQLNET.
CRYPTO_CHECKSUM_CLIENT parameters are used. Like the encryption parameters, these
parameters will accept ACCEPTED, REJECTED, REQUESTED, and REQUIRED as valid values, and
behave in the same way when negotiating a connection.

There is one final set of parameters: SQLNET.CRYPTO_CHECKSUM_TYPES_SERVER and
SQLNET.CRYPTO_CHECKSUM_TYPES_CLIENT. These parameters will specify the type of
algorithm used to produce the checksum values. Currently, only MD5 is supported as a valid value for
these parameters.

Finally, the SQLNET.CRYPTO_SEED parameter is configured on the client computer to seed the
cryptographic keys. This is an alphanumeric value from 10 to 70 characters long. The longer and more
random this series of digits is, the stronger the checksum key is. You must specify a value for this
parameter when using encryption or checksums.

Understanding the Multi-Threaded Server

By default, users connect to the Oracle database server through the use of dedicated server processes.
This means that for each user connection, there is an associated process that handles the work for that
user process, such as loading requested data from the datafiles into the data block buffer, and returning
the results of database queries to the user. This is the fastest and simplest way to provide connectivity
into the database. However, in situations where hundreds or even thousands of users are connected

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch20/0476-0478.html

simultaneously, the overhead involved in maintaining these dedicated server processes is prohibitive.
Also, the dedicated server processes consume the same amount of resources on the database server
whether they are active or idle. If, as in many cases, you have a large population of users connected to
the database but actually accessing data from the database infrequently, the server resources tied up in
maintaining these dedicated server processes are wasted. It is here that the Multi-Threaded Server
(MTS) can save the day.

Page 480

In simplest terms, the Multi-Threaded server allows many user sessions to share a group of server
processes, thereby reducing the overhead resources necessary to support a large simultaneous user base.
This structure will also allow you to reduce the overall idle time among these server sessions. For
example, if you have one hundred simultaneous user connections, but on average ten are active at any
one time, you can maximize your resources by allocating ten server processes for the users to use. This
keeps ten server processes active at all times, rather than ten active and ninety idle processes when using
dedicated server processes.

Multi-Threaded Server Architecture

When MTS is used, there are several differences in the architecture that need to be understood. If you
recall from Chapter 5, "The Oracle Instance Architecture," when connecting to an Oracle database using
dedicated server processes, the Listener connects the user session with a dedicated server process, who
manages the user's connection to the Oracle database. In an MTS environment, the Listener's actions are
slightly different. Instead of spawning and connecting the User session to a dedicated Server process, it
passes the User process to one or more Dispatcher processes. These Dispatcher processes are responsible
for placing the User processes commands into the Request Queue, as well as retrieving the results of
User processes commands from the Response Queue. The Request and Response Queues are both held
in the SGA.

The Shared Server processes do not communicate directly with the Dispatcher or the Server processes.
Rather, they monitor the Request Queue, and when a new command is placed in the queue they read the
command, process it by reading appropriate data blocks in the data block buffer and submitting the
command to the database, and place the results in the Dispatcher's Response Queues. All Dispatchers
place their requests into one Request Queue. Each Dispatcher also has its own Response Queue. The
Shared Server processes ensure that the results of User commands are placed in the correct Response
Queue for the Dispatcher that issued the command. In this way, the Shared Server processes can work
very efficiently together by handling the requests from all User sessions, while the Dispatchers only
have to retrieve and manipulate data for User sessions being handled by them.

Usage of the Multi-Threaded server also changes the allocation of memory to the SGA. Because there
are no dedicated server processes, user session data and cursor state information is stored in the SGA,
rather than the PGA. The SGA should be adjusted accordingly because of this. Note that this is not an

additional cost of running MTS, but an adjustment of where the data is held in memory.

Configuring the Multi-Threaded Server

The Multi-Threaded server is configured largely through parameters contained in each databases init.ora
file. The following are the parameters you configure to enable MTS:

MTS_SERVICE

The name of the service the Dispatcher
processes associ-
ate themselves with. The Listener will pass
requests for a
service to the appropriate Dispatcher based
on the value
of this parameter. Usually set to the value of
the
database name (db_name init.ora parameter
value).

Page 481

MTS_SERVERS
Specifies the number of
shared server processes to
create at instance startup.

MTS_MAX_SERVERS

Specifies the maximum
number of shared server
processes
that will run at any one time.
Shared server processes will
be allocated and destroyed
depending on need, but their
number will never be greater
than this number, or
lower than the value of
MTS_SERVERS.

MTS_DISPATCHERS

Defines the protocol and
number of dispatchers to
allocate
at instance startup. To specify
multiple dispatchers
with different protocols,
specify each protocol with
separate
MTS_DISPATCHERS
parameters.

MTS_MAX_DISPATCHERS

Specifies the maximum
number of dispatcher
processes
that will run at any one time.
Dispatcher processes will
be allocated and destroyed
based on system load.

MTS_LISTENER_ADDRESS

The address the dispatcher
processes will listen at. This
is the same as the Listener
address.

The MTS parameters from an example init.ora file are shown in Listing 20.2.

Listing 20.2INIT.ORA

MTS_SERVICE = PROD01 # Database name is PROD01.
MTS_SERVERS = 3 # Start 3 shared server
processes
at Âinstance start.
MTS_MAX_SERVERS = 10 # Never start more than 10 shared
server

Âprocesses.
MTS_DISPATCHERS = "tcp,3" # Start 3 dispatchers that use the TCP/
IP

Âprotocol.
MTS_DISPATCHERS = "spx,1" # Start 1 dispatcher that uses SPX.
MTS_MAX_DISPATCHERS = 10 # Never start more than 10 dispatcher
processes.
MTS_LISTENER_ADDRESS = "(address=(protocol=tcp)(address=dbserver)

(port=1521))"
MTS_LISTENER_ADDRESS = "(address=(protocol=spx)
(service=novellserver))"

In addition to configuring the dispatchers and shared server processes, you can also control MTS
behavior on the client. Because certain jobs cannot be run using a shared server process (such as direct
load exports and SQL*Loader executions), and certain jobs perform much better using dedicated servers
(such as batch or processing intensive jobs), you may want to force the usage of a dedicated server. You
can do this globally on the client by setting the sqlnet.ora parameter USE_DEDICATED_SERVER to
TRUE. This will force all SQL*Net connections made by the client to use a dedicated server. To specify
the usage of a dedicated server for an individual TNS alias, set the tnsnames.ora file SERVER parameter
to DEDICATED. For example, Listing 20.3 specifies two TNS aliases that connect to the same database.
However, the second alias uses a dedicated server, while the first uses a shared.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch20/0476-0478.html

Previous | Table of Contents | Next

Page 490

FIG.21.1
The relation between
PCTFREE and
PCTUSED.

Tables are generally the starting point for most storage management; they act as a yardstick of sorts that
determines the storage needs of most other database components. For this reason, understanding the
nature of the data contained in database tables (data types, number of null columns, and so on) will
prove to be very beneficial to the savvy DBA.

A table's size increases as new rows are inserted, or existing rows are updated with larger values. The
average length of a row and the number of rows are the main factors influencing a table's size.

Sizing a table is a conceptual task and should be done in the design phase, before the table is created.
Issues, such as expected growth and storage parameter values, should be handled when deciding sizing
parameters.

Consider the following CREATE TABLE example:

create table employee (/* PART 1 */
 emp_no char(4),
 emp_name varchar2(30),
 age number,
 dept_id char(4)
)
 tablespace EMPLOYEE_TS /* PART 2 */
 storage (initial 10M
 next 10M
 pctincrease 0
 minextents 1
 maxexents 50
 freelists 1)
 pctfree 10;

javascript:displayWindow('images/ch21fg01.jpg',363,221)

The CREATE TABLE statement is made up of two parts: Part 1 (as labeled) is the mandatory table
definition, where you indicate the key attributes such as columns, datatypes, and constraints. Part 2 deals
with sizing issues related to the table and is what we are interested in. Let's look at an explanation of
these sizing parameters:

Page 491

● TABLESPACE: what tablespace the table will be created in. If omitted, the table is created in the
default tablespace for the owner.

● INITIAL: the size of the initial extent allocated for the table.
● NEXT: the size of the next extent allocated for the table, if the initial extent is completely filled

with table rows.
● PCTINCREASE: percentage to oversize the third (if minextents is set to 1)and subsequent

extents of the table. Originally created as a way to "lazily" handle extending tables, this
parameter can quickly make life difficult for the unwary DBA. For example, a table with
PCTINCREASE of 50 (the default), an INITIAL setting of 10MB, and a NEXT of 10M will have
a first extent of size 10MB, a second extent of size 10MB, a third extent of 15MB (10MB * 150
percent), a fourth extent of 22.5MB, and so on. Calculate the size of the 11th extent and you'll see
a value of 0 or 1 is recommended for this parameter.

● MINEXTENTS: the number of extents allocated at creation time. For tables this is almost always
1—rollback segments have different requirements, as discussed later on in the section,
"Managing Rollback Segments."

● MAXEXTENTS: the maximum number of extents the table can allocate. While versions 7.3 and
later of the Oracle RDBMS enable you to have unlimited extents allocated, it is useful to give this
parameter a value if only to alert you to an object wildly overextending.

● PCTFREE: the amount of space reserved in each block of the segment for future updates of
existing rows.

● PCTUSED: the point at which a block in the segment is placed back onto the free list. Both
PCTFREE and PCTUSED are discussed in the previous section.

● FREELISTS: specifies the number of freelists to be stored in the freelist group of the table, index,
or cluster. This defaults to one, and should be increased only if many simultaneous updates to a
single block of the table are expected.

Managing Indexes

Indexes can be the most difficult type of segment to manage. Many application programmers (as well as
DBAs) try to solve any database performance issue by asking for more indexes. Remember that more
indexes almost always hurts update performance and may not always provide better SELECT
performance. Keep close tabs on your indexes and remove any that are not being used.

Many unnecessary indexes can, over time, creep into your database and cause performance problems.
Oracle almost always prefers performance to disk space thriftiness. Keep a record of every non-primary

key index and the application the index has been created for, as well as the particular function or
problem the index was created to solve. It is not unusual for several indexes to be created for a specific
application. Without documentation, you may find yourself supporting indexes created for applications
that no longer exist.

Page 492

Monitoring Temporary Tablespaces and Segments

Like rollback segments, the temporary tablespace(s) in an Oracle database require special monitoring.
Temporary segments are held only as long as the transaction creating the segment is active. Therefore,
high water marks are our metric, rather than how much space is being used at any one point in time. The
goal is insuring that enough space exists for the largest transaction the system will have to process.

Understanding Database Fragmentation

One of the most common problems facing database administrators deals with fragmentation of database
objects. Fragmentation wastes space, causes performance problems, and makes administration of
database objects more difficult than necessary. The term database fragmentation, however, is a class of
problems, rather than a problem in and of itself—there are several problem areas that fall under the
generic term of database fragmentation, including fragmented database objects, fragmented tablespaces,
chained rows, and migrated rows.

Database fragmentation is the result of rows being inserted, updated, and deleted, and objects being
created and dropped. Thus, a newly created database is not fragmented. It's only after you've run one or
more active applications on your database that you begin to see evidence of database fragmentation.

In the following sections, we'll look at four types of database fragmentation and outline ways you can fix
your database, as well as prevent this from happening in the first place.

Understanding Fragmented Tablespaces

Tablespaces become fragmented through the erratic and unplanned dropping and re-creating of database
objects within the tablespace. Tablespace fragmentation occurs when bubbles of free space become
trapped between used extents in a tablespace. This happens when objects that reside in the tablespace are
dropped. These bubbles of trapped space can be reused, but only if an object is created that fits in the
space left by the object.

NOTE

Tablespaces do not become fragmented through any row-level activity. This is a
common—but completely false—misconception.

For example, assume there are four tables in a tablespace: customer, employee, stock, and company.
Each of these objects is comprised of one extent of 10MB each. The configuration of this tablespace will
look like Figure 21.2. Note the free extent of 10MB at the end of the tablespace, and how closely packed
these objects are. This is the goal, and what we should attempt to obtain at the end of the day.

Of course, we can't have this situation for long. Assume that due to performance requirements, we have
to move the customer table into a different tablespace. The tablespace will now look like Figure 21.3.
Notice the 10MB hole in the tablespace. If we need to create another object with a size less than or equal
to 10MB, there is no problem. But assume we need to create a

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 493

policy table in this tablespace, having storage parameters of an initial extent of 15MB and a next extent
of 10MB. This tablespace has 20MB of total free space, but the maximum size of any free extent is only
10MB; therefore, our creation of the policy table will fail.

FIG.21.2
Tablespace configura-
tion before fragmenta-
tion.

FIG.21.3
Fragmentation in the
tablespace after
dropping one table.

This example shows the problem occurring on a very small scale, with only one object in the tablespace
being dropped. Consider a busy real-life development environment, however, where objects are dropped
and different-sized objects are created almost continuously. This activity results in non-contiguous
bubbles of free space forming all over the tablespace—similar to that depicted in Figure 21.4. The total
free space of the tablespace seems quite adequate at first glance, but no large contiguous free space
extents are in the tablespace, which severely limits your ability to make use of the free space.

Page 494

FIG.21.4
A completely frag-
mented tablespace.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch21/0497-0499.html
javascript:displayWindow('images/ch21fg02.jpg',186,207)
javascript:displayWindow('images/ch21fg03.jpg',307,206)

The Oracle RDBMS does try to help the DBA slightly with space allocation and management. Consider
the same scenario above with four tables in the tablespace. Now suppose we drop two of the tables, both
of which reside in the "middle" of the tablespace. This gives us a tablespace structure as shown in Figure
21.5. If the same request for a 15MB table is processed, the SMON background process automatically
coalesces the two 10MB extents into one 20MB extent, and uses it to fulfill the object creation. SMON
also coalesces space automatically, if the PCTINCREASE for the tablespace is set to a non-zero value.

FIG.21.5
Fragmentation in
tablespace after
dropping two tables.

You can also manually coalesce the space in a tablespace with the following command:

alter tablespace armslivedb01_ts coalesce;

The following script creates a view you can use to identify problem segments in your tablespaces. Query
this view by tablespace_name to get an idea where space problems might be occurring, as well as to see
how fragmented individual objects are in the tablespace.

CREATE OR REPLACE VIEW ts_blocks_v AS
SELECT tablespace_name, block_id, bytes, blocks, `== free space =='
segment_name
FROM dba_free_space
UNION ALL

Page 495

SELECT tablespace_name, block_id, bytes, blocks, segment_name

javascript:displayWindow('images/ch21fg04.jpg',222,188)
javascript:displayWindow('images/ch21fg05.jpg',188,209)

FROM dba_extents;

Select * from ts_blocks_v;
TABLESPACE_NAME BLOCK_ID BYTES BLOCKS
SEGMENT_NAME
------------------------------ ---------- ---------- ----------

PROG_PLAN_IDX_08 34562 221962240 27095 ==
free space ==
BMC_SMGT_TS 339 102088704 12462 ==
free space ==
DBA_TEST 42372 533700608 65149 ==
free space ==
BPW_DATA_01 111667 133808128 16334 ==
free space ==
BPW_IDX_01 155439 299515904 36562 ==
free space ==
AUDIT_01 84231 40960 5
SQLAB_COLLECTION
AUDIT_01 2 1064960 130
TB_225AUDIT
AUDIT_01 2692 532480 65
TB_237AUDIT
BPW_DATA_01 105737 41943040 5120
TB_G026CAPACITY
BPW_DATA_01 105702 286720 35
TB_G016RESOURCE
BPW_DATA_01 105667 286720 35
TB_G006NSU
BPW_DATA_01 105602 532480 65
TB_7056SUBST_AUDIT
BPW_DATA_01 105567 286720 35
TB_64S6MSG_TYPE_CODESET
BPW_DATA_01 101982 29368320 3585
TB_64R6CAPACITY_CONSTRAINT
BPW_DATA_01 1092 286720 35
TB_5317INV_RI

Tablespace fragmentation can lead to the following problems:

● It can cause space in the tablespace to be trapped and unable to be effectively used.
● It can cause administrative problems when it becomes necessary to recreate fragmented objects.

It was once thought that tablespace fragmentation was also a performance hit, but both disk and RDBMS
technology has advanced sufficiently such that only the most badly fragmented tablespaces are likely to
cause any measurable performance degradation. If you do suspect fragmentation as a possible culprit in
performance problems, it is far more likely that chained or migrated rows are causing problems, rather
than tablespace fragmentation.

Dealing with Fragmented Tablespaces

The best way to deal with tablespace fragmentation is to avoid it. This can be done but requires careful
planning and administrative overhead. If you are faced with cleaning up fragmented tablespaces, the
easiest way is to export the offending objects in the tablespace, drop the objects, and import them back.
This not only coalesces your free space, but Export also coalesces your database objects into one extent.

To prevent fragmentation, group objects with similar space and growth characteristics together. Size
their extents the same, so that all objects can share extents deallocated or regained from dropping
objects. Keep your PCTINCREASE at 0, or if you must have SMON automatically coalesce, at 1. This
eliminates extents of all different sizes being created, and then being unusable by future database
segments.

Page 496

NOTE

Beginning in Oracle7.3, setting the default PCTINCREASE greater than 0 on a
tablespace will cause SMON to automatically coalesce adjacent free extents. Unless your
database system absolutely cannot spare the CPU time or disk I/O, you should set this
parameter to at
least 1.

Finally, the following script shows you how much free space is available in each tablespace in your
database, as well as the size of the largest free extent, and the number of free extents in each tablespace.
This is a good place to start when looking for problems—if you see 500MB
of free space in a tablespace, but have a largest free extent of 15MB, you have an obvious
problem.

SELECT tablespace_name, sum(bytes) "Free Bytes", max(bytes) "Largest
Extent",
 count(block_id) "# Extents"
FROM dba_free_space
GROUP BY tablespace_name;

Understanding Object Fragmentation

Fragmented tablespaces are a sure way to give any DBA space allocation headaches. The more insidious
and easily missed fragmentation problems, however, are at the object level. In object-level
fragmentation, the object may look fine and healthy at the tablespace level, having a single extent, but
some probing inside those extents can reveal a different story.

A common occurrence is that a DBA sees space allocation problems in an often-modified tablespace,
and rebuilds the tablespace and all of its objects. Subsequently, the database performance may increase.
This increase in performance is attributed to the tablespace fragmentation being eliminated, but it could
very well be the elimination of object-level fragmentation that gives us the performance boost.

One type of fragmentation which goes on generally unnoticed is the fragmentation in the object due to
frequent delete activity. When a row is deleted from a block, free space is left in the block. This free
space is not used again until the time the block comes back in the free list again. For this to happen,
enough rows should be deleted so that the actual amount of space used in the block is lesser than the
PCTUSED setting of the table. Once the used space of the block falls below the PCTUSED parameter,
then the block is back on the free list and the block can then be used for future inserts and thus
optimizing space usage. This kind of fragmentation can leave the database with free space holes which
could be detrimental to performance. Other commonly known types of fragmentations are discussed in
the next section.

Object fragmentation can lead to the following problems:

● Unnecessary read calls made to the database. This has a severe impact on the performance of
queries and, in certain cases, can more than double the number of reads necessary to perform an
operation.

● Wasted space due to holes of free space inside table and index blocks.
● Read performance drops. Because data is no longer closely packed together, the database must

perform more reads to get the same amount of data. For example, data that is stored in 100
database blocks could easily fit in 50, if there weren't holes in the data.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch21/0497-0499.html

Previous | Table of Contents | Next

Page 531

CHAPTER 22

Identifying Heavy Resource Users

In this chapter

● Resources That Make the Difference 532

● Resource: CPU 533

● Resource: File I/O (Disk Access) 549

● Resource: Memory 557

Page 532

Resources That Make the Difference

There are a number of approaches that you can take to identify heavy-resource users. The approach
followed here first takes an overview of the environment. If something wrong is sensed, further probing
is done into the area to get into the user details. The resources to look at here are CPU, file I/O, and
memory. If the CPU is heavily loaded and kept busy by some user doing a lot of CPU-intensive work, it
could drag the system down. Similarly, heavy file I/Os could also cause system performance to drop.
Heavy requirements for memory by some processes could lead to paging and swapping, which could
severely hamper the performance of the system. You should concentrate on these three resources.
Basically, every process that gets executed on the server tries to acquire the following resources:

● CPU: Every process needs to have some time slice of the CPU time for executing its job. Some
processes grab a lot of CPU time, and others finish a lot earlier. The limited amount of available
CPU power must be shared between the Oracle processes on the system and the internal
operating system processes. Obviously, CPU-intensive users are users that consume a lot of CPU
time.

● File I/O: Every time a process needs to access data, it will first search the buffer cache if the data
is already brought in by some previous process. If the data is already present in the buffer cache,
the read is completed in the shortest time. If the data required is not present in the cache, the data
will have to be read from disk. A physical read has to be performed. Such reads from the disk are

very expensive, because the time it takes for reading from the disk is approximately 50 times
higher than the time it takes to read from the cache. When the system starts becoming I/O-
intensive, system performance may start degrading, as all the processes would be doing most of
the time, is waiting for the data to be returned from the disk.

The resource about which we are talking here is time. There is greater time being consumed as a
result of heavy disk file accesses, and time is the essence of life. Ultimately, the use of all
resources will boil down to one resource—time.

● Memory: Shortage in this resource due to high usage of memory by some processes could also be
one of the possible reasons for performance degradation. On UNIX systems, efficient use of
memory is made by using the concept of virtual memory. In a virtual memory system, only the
most-used pages are kept in the physical memory; the rest or currently inactive pages are kept on
the swap space and are brought in on request. When memory falls short on a system due to low
physical memory or high demands on memory by processes, then to cater to this memory
requirement, the system will first start paging; if there is still shortage of memory, the system will
resort to swapping physical processes, which can substantially degrade system performance.
Paging and swapping are discussed in the later sections.

When there is heavy usage of these resources, the system will experience a drop in performance.
Therefore, it is very important to locate how much of these resources are allocated to each user. In order
to identify heavy resource consumption, you concentrate on one resource at a time and try to identify the
individual resource consumption by processes.

Page 533

NOTE

All scripts in the chapter were run on Oracle version 7.3.2.3 running on an HP-UX K210
Series 800 machine. The version of UNIX used was 10.10.n

Resource: CPU

UNIX is a multiprocessing operating system; that is, the UNIX operating system is capable of managing
multiple processes simultaneously. Every process that has to execute a job using the CPU will wait in
the queue called the run queue for a CPU time slice to execute its job. When it's the process's turn, the
process will be allocated a time slice to execute its job. A well-tuned CPU should not have many
processes waiting in the run queue to execute processes, but it should be adequately busy. The next
sections identify processes that are consuming an excessive amount of CPU resource. While doing this
exercise, bear in mind that on a lightly loaded system, one process could literally hog all the CPU, which
is perfectly normal and should cause no reason for alarm. When you are trying to identify heavy CPU
users, you must see to it that at any point of time there are sufficient number of jobs running on the

system and that there is a performance problem. It is only under this condition that you proceed with the
approach mentioned here, because as specified earlier, a system with low load will have its few users
consuming a lot of the CPU time, which is really normal.

Taking a CPU Overview

Before you identify which user is causing a CPU resource problem, you must have a general overview
of how the CPU is behaving. On UNIX systems, you can find CPU behavior by using the sar -u
command. The sar -u command output has three columns of interest, as shown in Table 22.1.

Table 22.1 Important Columns in sar -u Command Output

Column
Name

Description

%usr
Percentage of CPU time spent in servicing
user requests.

%sys
Percentage of time spent by CPU attending
system calls.

%wio

Percentage of time spent by the CPU waiting
for completion of I/O from the disk. If this
percentage is regularly high, it could indicate a
possible bottleneck on the disks or
inefficiencies in the I/O system.

%idle Percentage of time the CPU was idle.

A well-tuned or healthy CPU would generally have the user CPU time double the system CPU time; that
is, the CPU is spending more time servicing user requests as compared to servicing system calls.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 529

Using the Space Manager MenuSpace Manager is invoked by typing spc_mgr.u from the command line.
This will display the main menu with the thirteen options. A brief description of what each option means
and how to use them is given next.

1. Build Repository

Use this option to build the repository of the Space Manager.

2. Capture Space Statistics

Use this option to capture the space statistics. It is normally run at the end of the day or any other
suitable interval which the user thinks is an accurate time interval over which space statistics have to be
captured.

3. Tablespace Free Space Drop Trends

Use this option to report the space used by tablespaces between two space snapshots. Refer to Figure
21.12 for the output. You can use this option to find out the fall in space in a tablespace during a
specified interval and then use Option 4 (Report Object Growth Rate) to pinpoint which object in the
tablespace has actually used this space.

4. Report Object Growth Rate

Use this option to report the object growth rate. It prompts you for the Start and End Space IDs over
which the growth rate has to be reported. Refer to Figure 21.13 for sample output. When used in
conjunction with Option 3, this can be very useful.

5. Report Tablespace Space Usage

Use this option to report the allocated and used space for every tablespace in the database. Refer to
Figure 21.11 for details.

6. Report Object Space Usage

Use this option to report the space used by every object in the database. It uses the latest captured
snapshot to report this.

7. Extents Greater than Specified

This option uses the latest captured Space Snapshot information to report. It prompts the user for the
number of extents required and then reports all the objects in the database whose current number of
extents of the object is greater than specified.

8. Percentage of Extents Greater than Specified

This option uses the latest captured Space Snapshot information to report. It prompts the user for the
percentage of extents to be reported and then reports on all the objects in the database whose number of
extents as a percentage of the maximum extents in the database is greater than the percentage specified.

Page 530

9. Space Warnings

This option will not use any repository data to report. It uses the system tables to report objects having
next extent parameters greater than the maxextent size in the tablespace. The possible actions to be taken
if this report shows any such objects are to:

1. Add a datafile to the tablespace.
2. Decrease the next extent parameter of the offending object so that it is less than the maximum

extent size of the tablespace in which it resides.
3. Coalesce the tablespace so that some fragmented free space is released, if possible.

10. Tablespace Predictor

Use this option to obtain the predictions as to when the tablespace will become full. As usual, this
prompts you for the Start and the End Space IDs, which are the snapshot IDs of the statistics captured
over different times. The prediction is made using these.

11. Drop the Repository

This option performs the cleanup if for some reason the current repository has to be dropped. It drops all
the repository objects. Be very careful when using this option, as all historical information captured will
be wiped out.

12. Purge a Snapshot

This option can be used to delete individual captured snapshots. It performs a cascade delete and deletes
from all tables that have the particular snapshot information.

13. View the Generated Reports

Most of the previous options generate an output file that is stored in the same directory as the software.
Use this option to view all reports generated by Space Manager without exiting Space Manager.

Almost all the previous options revolve around the concept of space id. Each option will ask for a start
space id and an end space id or just a space id. Using the various previous options and the statistics
captured during various intervals (defined by start space id and end space id), it becomes easy for the
DBA to point out space abnormalities that have occurred in the past and that are otherwise impossible to
track back.l

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 526

● spc_obj.sql: This module reports on the space used by objects in the database. It can be used for
finding out objects where space is overallocated. It reports on actual space used inside an extent.
For example, if a table has one extent of 800MB and only 300MB of space is used inside the
800MB extent, it reports 300MB as the actual space used by the object.

● spc_prd.sql: This is the space predictor module of the Space Manager. Given two Space IDs, it
reports the days in which the tablespace will become full assuming the growth rate of the objects
remains the same. It also reports the per day space requirement of the tablespace.

● spc_ex1.sql and spc_ex2.sql: These scripts are used for extent monitoring. They report on the
objects in the tablespace having extents greater than a given number of extents and objects whose
number of extents is greater than a given percentage of the maxextents defined for the objects.

● spc_wrn.sql: This is the space warning module of Space Manager. It reports on all objects in the
database whose next extent is greater than the maximum extent size in the tablespace.

● spc_tbs.sql: This module reports the space used in every tablespace, giving reports of the usage
of space within every datafile.

● spc_ttr.sql: This module reports the free space drop trend in all tablespaces in the database. It can
be used to find tablespaces with high growth objects in them.

● spc_drp.sql: This is the cleanup module of Space Manager. It drops the repository along with all
the packages and tables. Use this option with care.

All scripts are invoked from the main script spc_mgr.u. The user can write additional utilities using the
repository information and can then have them called from spc_mgr.u.

Understanding Space Manager Repository DetailsSpace Manager builds objects in the schema where the
repository resides. It is recommended that you create a user called spcmgr for using Space Manager,
because then it operates in isolation as Space Controlling Center. Refer to Appendix A, "Oracle on
UNIX," for attached listing details.

The list shown next shows the various objects that the Space Manager repository is comprised of.
Basically the repository is made of one package spc_pkg and a few other repository tables.

● spc_pkg: This is the package that contains all the stored procedures related to Space Manager. A
brief description of the components in the package is as follows:

❍ spc_check: Stored procedure for doing validation of user inputs.
❍ spc_pop: Stored procedure to capture space statistics.
❍ spc_pr1: Stored procedure used for predictions.

● spc$spcseq: This is master table that stores all the snapshot details captured to date. It allocates a
unique ID, referred to as the Space ID for each space snapshot captured.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch21/0523-0525.html

● spc$tblspc: This table is used to store free space and other tablespace-level statistics.
● spc$tblspc_obj: This table is used to store space statistics of individual objects in the tablespace.

It is populated by the procedure spc_pkg.spc_pop.

Page 527

● spc$tblspc_prd: This is the temporary table used for tablespace full predictions. It is populated
every time the prediction is to be made.

● sp$tblspc_grt: This is the temporary table used for reporting object growth statistics.

The package spc_pkg and all other repository tables are created by using the Build Repository option
from Space Manager. The repository can be dropped with equivalent from Space Manager using the
Drop Repository option.

Installing Space ManagerDecide upon a home directory where Space Manager is to be installed and then
copy all the Space Manager scripts from the CD to the directory. It is recommended that you use a
directory like /unn/spc_mgr as the home directory of the product.

Decide upon the database user in whose schema the product will be installed. It's best to use a dedicated
schema and name it spcmgr.

You must now modify the product setup file, spc_set.var, to reflect these changes. For example, if the
database user under which Space Manager is installed is spcmgr, and the password xx and home
directory under which Space Manager is installed is /u01/spc_mgr, then the setup file spc_set.var looks
something like this:

dbuser=spcmgr
dbpasswd=xx
scriptdir=/u01/spc_mgr
editor=vi
export dbuser dbpasswd scriptdir editor

Before building the repository, some system privileges are to be granted to Space Manager. The
following are the detailed privileges to be granted to Space Manager.

● RESOURCE: Space Manager requires the resource privilege to create procedures, create tables,
drop tables, and so on.

● ANALYZE ANY: Space Manager requires the analyze any system privilege to obtain the free
space details from the system tables for objects in different schemas.

● SELECT: Space Manager requires select privileges on some system tables, namely
dba_free_space, dba_extents, dba_segments, v_$parameter.

● DBA: The DBA privilege must be granted to Space Manager.

All these steps can be done by logging into SQL*PLUS as SYSTEM and running spc_grn.sql, which all
grant all the privileges to the Space Manager User spcmgr.

You can also manually execute the following commands and achieve the same:

SQL>grant resource to spcmgr;
SQL>grant analyze any to spcmgr;
SQL>grant role dba to spcmgr;
SQL>grant select on v_$parameter to spcmgr;
SQL>grant select on dba_extents to spcmgr;
SQL>grant select on dba_segments to spcmgr;
SQL>grant select on dba_free_space to spcmgr;

Page 528

Building the Space Manager RepositoryTo build the repository run from the home directory of Space
Manager, run the command ./spc_mgr.u from command prompt. This should bring the Space Manager
main menu as shown in Figure 21.18.

FIG.21.18
The main menu.

Select Option 1 from the menu, which should automatically build the repository for you using the
spc_set.var as the reference file. It prompts you for the tablespace under which the repository is to be
built. Use TOOLS if one already exists on your system. Ignore any drop errors that occur, as Space
Manager will try to drop any existing repository tables.

NOTE

Check for any other errors while building the repository and correct them.
n

Using Space ManagerMost of the options in Space Manager prompt you to enter the Start Space ID and
the End Space ID after displaying the Space ID's captured as yet. The prompt will look as follows:

 Completed Snapshots

javascript:displayWindow('images/ch21fg18.jpg',511,344)

Instance Startup Time Snap Started SPC_ID
-------- -------------------- -------------------- --------
 0 26 Jul at 10:52:52 26 Jul at 20:39:22 1
 28 Jul at 07:54:47 28 Jul at 11:10:05 3
 28 Jul at 18:40:21 5
 28 Jul at 18:41:32 6
 28 Jul at 18:58:16 7
 28 Jul at 21:36:51 28 Jul at 21:46:26 8
 28 Jul at 22:00:13 9
Enter SPC ID of start snap: 1
Enter SPC ID of end snap: 8
Enter name of output file [OBJ_GR1_8] :

This previous output shows all snapshots captured to date. The user is prompted to enter the Start SPC
ID and the End SPC ID. Using the statistics captured between the intervals entered, the required outputs
are shown.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch21/0523-0525.html

Previous | Table of Contents | Next

Page 534

A sample output of the sar command is shown later. The basic format of the command is

sar -u n t

where n is the interval for which the monitoring is to be done and t is the number of times for which the
monitoring is to be performed.

$ sar -uM 2 10

HP-UX arms1 B.10.10 U 9000/819 09/04/97

19:53:57 cpu %usr %sys %wio %idle
19:53:59 0 38 9 40 12
 1 43 10 37 10
 system 40 10 39 11
19:54:01 0 51 14 29 6
 1 45 17 33 6
 system 48 15 31 6
19:54:03 0 42 8 44 6
 1 44 6 42 8
 system 43 7 43 7
19:54:05 0 52 10 34 4
 1 34 17 42 6
 system 43 14 38 6
19:54:07 0 30 14 45 11
 1 37 10 46 7
 system 34 12 46 9
19:54:09 0 44 10 38 8
 1 44 6 43 6

If the CPU overview shows a lot of idle time, it could possibly mean that the CPU is not utilized to the
fullest. If the %wio, %usr, and %sys columns have low values and the %idle column has high value, it
means nothing is running on the system.

If the system time spent by the CPU is higher than the user time, this also needs to be checked. Overall,
you should aim to get the user CPU time double or more than the system CPU time; otherwise, you need
to probe further. In the previous output, the %wio column shows a high value; that means that in the

current scenario there is no problem with the CPUs but there could be a bottleneck on the disks. You
may further need to execute the sar -d command to find out which disk is facing the I/O load.

As mentioned earlier, every process that has to be executed on the system will wait in the queue called
the run queue. If there are too many jobs waiting on the run queue, it is an indication there are heavy
resource-intensive jobs running on the system and the CPU cannot cope with the demands of the system.
The following is a sample assessment of the run queue and also another good starting point to see
whether the CPUs are bogged down with processes running on the system:

Page 535

$ sar -qu 2 10

HP-UX arms1 B.10.10 U 9000/819 09/06/97

17:35:37 runq-sz %runocc swpq-sz %swpocc
 %usr %sys %wio %idle
17:35:39 1.0 25 0.0 0
 39 11 43 6
17:35:41 0.0 0 0.0 0
 46 10 40 5
17:35:43 1.0 25 0.0 0
 17 5 55 24
17:35:45 1.0 25 0.0 0
 38 9 42 10
17:35:47 1.0 25 0.0 0
 39 9 45 8
17:35:49 0.0 0 0.0 0
 36 6 52 6
17:35:51 1.0 25 0.0 0
 22 10 51 16
17:35:53 1.0 25 0.0 0
 44 7 46 3
17:35:55 2.0 25 0.0 0
 41 8 45 6
17:35:57 0.0 0 0.0 0
 25 8 50 17

Average 1.1 18 0.0 0
Average 35 8 47 10

Table 22.2 explains the meaning of the different columns in the output.

Table 22.2 Explanation of Columns in the sar -qu Output

Column
Name

Column Description

runq-sz

The size of the run queue. It does not include
processes that are sleeping or waiting for I/O
to complete; it does include processes that are
in memory and waiting to be run.

%runocc
The percentage of time the run queue is
occupied by processes waiting to be executed.

swpq-sz

The average length of the swap queue during
the interval the monitoring was done.
Processes that are ready to be run but have
been swapped out are included in this count.

%swpocc
The percentage of time the swap queue of
runnable processes (processes swapped out but
ready to run) was occupied.

Page 536

From the previous output, you can see that the size of the run queue is only 1; that means that during the
monitoring interval, only one process was waiting for the CPU in the queue. During the interval, the run
queue percentage is occupied only 25 percent of the time. You can conclude that at this point the CPU is
very lightly loaded. Typically, be on the lookout for a run queue in excess of 5 or 6. If the queue gets
larger than these values, either reduce the number of running processes, increase the number of CPUs, or
upgrade the existing CPU. You can identify which processes are waiting for CPU resources or loading
the CPU by using the techniques mentioned in the next section.

Finding Heavy CPU Users

There are several ways to find heavy CPU users on a system. You can either use the operating system
tools to identify heavy CPU usage users or use the information stored in the Oracle system tables. In this
section, you examine both options. In fact, both routes could be used to tally up and find a heavy CPU
user on the system.

Using the Oracle RouteThe Oracle dynamic system performance table provides a vast wealth of
information about what is happening on the system. The V$SYSSTAT and V$SESSTAT views are two
of the dynamic performance views that you use to find the information you require.

A general listing of the value stored in V$SYSSTAT is given in Listing 22.1. The information we are

interested in here is CPU usage, but this view can be used for a number of other monitoring purposes.

Listing 22.1 Using V$SYSSTAT to Find System Statistics

SQL> select * from v$sysstat order by class,statistic#;

STATISTIC# NAME CLASS
VALUE
---------- -- ----------

 0 logons cumulative 1
2051
 1 logons current
1 68
 2 opened cursors cumulative 1
72563
 3 opened cursors current 1
636
 4 user commits 1
289212
 5 user rollbacks 1
7299
 6 user calls 1
2574300
 7 recursive calls 1
4726090
 8 recursive cpu usage 1
1334927
 9 session logical reads 1
205058382
 10 session stored procedure space
1 0
 12 CPU used by this session 1
4896925
 13 session connect time 1 6.2794E
+11
 15 session uga memory 1
8599758248
 16 session uga memory max 1
169781672
 20 session pga memory 1
311833920
 21 session pga memory max 1

324695784
 101 serializable aborts
1 0
 133 bytes sent via SQL*Net to client 1
206511175
 134 bytes received via SQL*Net from client 1
174496695

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 537

 135 SQL*Net roundtrips to/from client 1 2588500
 136 bytes sent via SQL*Net to dblink 1 0
 137 bytes received via SQL*Net from dblink 1 0
 138 SQL*Net roundtrips to/from dblink 1 0
 84 redo entries 2 2040536
 85 redo size 2 502002531
 86 redo entries linearized 2 0
 87 redo buffer allocation retries 2 2391
 88 redo small copies 2 1807035
 89 redo wastage 2 76782505
 90 redo writer latching time 2 888
 91 redo writes 2 183133
 92 redo blocks written 2 576689
 93 redo write time 2 502618
 94 redo log space requests 2 66
 95 redo log space wait time 2 2635
 96 redo log switch interrupts 2 0
 97 redo ordering marks 2 0
 22 enqueue timeouts 4 25
 23 enqueue waits 4 57
 24 enqueue deadlocks 4 0
 25 enqueue requests 4 707487
 26 enqueue conversions 4 7259
 27 enqueue releases 4 707376
 37 db block gets 8 5809539
 38 consistent gets 8 202261999
 39 physical reads 8 124879028
 40 physical writes 8 367214
 41 write requests 8 25221
 42 summed dirty queue length 8 37479
 43 db block changes 8 3994241
 44 change write time 8 56399
 45 consistent changes 8 822006
 46 redo synch writes 8 23407
 47 redo synch time 8 103518
 48 exchange deadlocks 8 0
 49 free buffer requested 8 123453575
 50 dirty buffers inspected 8 42044

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch22/0541-0543.html

 51 free buffer inspected 8 86462
 52 commit cleanout failure: write disabled 8 0
 53 commit cleanout failures: hot backup in 8 0
 progress

 54 commit cleanout failures: buffer being w 8 164
 ritten

 55 commit cleanout failures: callback failu 8 2769
 re

 56 total number commit cleanout calls 8 547911
 57 commit cleanout number successfully comp 8 538392
 leted

 58 DBWR timeouts 8 10503
 59 DBWR make free requests 8 38615

 continues

Page 538

Listing 22.1 Continued

 60 DBWR free buffers found 8 18186694
 61 DBWR lru scans 8 42222
 62 DBWR summed scan depth 8 20800400
 63 DBWR buffers scanned 8 20699788
 64 DBWR checkpoints 8 998
 70 recovery blocks read 8 0
 71 recovery array reads 8 0
 72 recovery array read time 8 0
 73 CR blocks created 8 125716
 74 Current blocks converted for CR 8 14791
 99 background checkpoints started 8 18
 100 background checkpoints completed 8 18
 28 global lock gets (non async) 32 1
 29 global lock gets (async) 32 0
 30 global lock get time 32 0
 31 global lock converts (non async) 32 0
 32 global lock converts (async) 32 0
 33 global lock convert time 32 0
 34 global lock releases (non async) 32 0

 35 global lock releases (async) 32 0
 36 global lock release time 32 0
 78 next scns gotten without going to DLM 32 0
 79 Unnecessary process cleanup for SCN batch 32 0
 ing

 80 calls to get snapshot scn: kcmgss 32 2619387
 81 kcmgss waited for batching 32 0
 82 kcmgss read scn without going to DLM 32 0
 83 kcmccs called get current scn 32 0
 65 DBWR cross instance writes 40 0
 66 remote instance undo block writes 40 0
 67 remote instance undo header writes 40 0
 68 remote instance undo requests 40 0
 69 cross instance CR read 40 0
 98 hash latch wait gets 40 0
 118 table scans (short tables) 64 366085
 119 table scans (long tables) 64 10819
 120 table scans (rowid ranges) 64 15
 121 table scans (cache partitions) 64 0
 122 table scans (direct read) 64 15
 123 table scan rows gotten 64 904956876
 124 table scan blocks gotten 64 129018277
 125 table fetch by rowid 64 31893640
 126 table fetch continued row 64 506029
 127 cluster key scans 64 135034
 128 cluster key scan block gets 64 363979
 129 parse time cpu 64 34740
 130 parse time elapsed 64 55148
 131 parse count 64 532516
 132 execute count 64 2390178
 139 sorts (memory) 64 40412
 140 sorts (disk) 64 268
 141 sorts (rows) 64 49141580
 142 session cursor cache hits 64 0

Page 539

 143 session cursor cache count 64 0
 11 CPU used when call started 128
4896911
 14 process last non-idle time 128 6.2794E+11
 17 messages sent 128 160593
 18 messages received 128 160593

 19 background timeouts 128 31883
 75 calls to kcmgcs 128 90759
 76 calls to kcmgrs 128 4168092
 77 calls to kcmgas 128 306090
 102 transaction lock foreground requests 128 0
 103 transaction lock foreground wait time 128 0
 104 transaction lock background gets 128 0
 105 transaction lock background get time 128 0
 106 transaction tables consistent reads - un 128 143669
 do records applied

 107 transaction tables consistent read rollb 128 131
 acks

 108 data blocks consistent reads - undo reco 128 678275
 rds applied

 109 no work - consistent read gets 128 194428691
 110 cleanouts only - consistent read gets 128 25194
 111 rollbacks only - consistent read gets 128 86452
 112 cleanouts and rollbacks - consistent rea 128 54180
 d gets

 113 rollback changes - undo records applied 128 14117
 114 transaction rollbacks 128 1520
 115 immediate (CURRENT) block cleanout appli 128 73789
 cations

 116 immediate (CR) block cleanout applicatio 128 79374
 ns

 117 deferred (CURRENT) block cleanout applic 128 264576
 ations

 144 cursor authentications 128 95248

NOTE

Be careful when you use this view. Some of the statistic values in this view can get so large
that, due to existing bugs in some Oracle versions, these may show wrong values.n

The statistic we are interested in is CPU used by this session having a statistic# value

of 12:

12 CPU used by this session 1 4896925
SQL> select * from v$sysstat order by class,statistic# WHERE name = `CPU
used
by Âthis session'

Page 540

Now the value of CPU used by this session is in hundredths of a second. Converting the value into minutes,
we modify the query as follows:

col name format a35
col value format 999.99 heading "Time in | Mins"
select statistic#,name,class ,value/60/100 value
from v$sysstat
where statistic# = 12
/
STATISTIC# NAME CLASS Mins
---------- ---------------------------------- ----------- --------
 12 CPU used by this session 1 817.56

This output shows that the RDBMS with all its background and foreground server processes has consumed
approximately 817 minutes of CPU time since startup. This is again information at an overall level. You
now want to find which session has consumed how much of the CPU resource.

There is another dynamic performance view called V$SESSTAT. Basically, the only difference between the
two is that V$SYSSTAT stores the summary level information, and V$SESSTAT stores information at the
session level; V$SESSTAT can be called the child table of V$SYSSTAT. You can use the information in V
$SESSTAT to find out which session is consuming the maximum CPU. You do that by using the script in
Listing 22.2.

Listing 22.2 Script and Output to Produce CPU Usage Report

col prog format a10
col value format 9999.99 heading "Time In| Mins"

Select a.sid,
 spid,
 status,
 substr(a.program,1,10) prog,
 a.terminal,
 osuser,
 value/60/100 value

From v$session a,
 v$process b,
 v$sesstat c
Where c.statistic# = 12
And c.sid = a.sid
And a.paddr = b.addr
Order by value desc;

 Time In
 SID SPID STATUS PROG TERMINAL Schema Mins
--------- -------- -------- ---------- ---------- -------- --------
 45 11145 INACTIVE C:\ARMS\BS Windows PC RICHARDH 95.87
 95 12370 INACTIVE C:\WINDOWS Windows PC MATHEWS 22.99
 47 9778 INACTIVE C:\ARMS\BS Windows PC KARENC 10.22
 22 9295 ACTIVE C:\ARMS\DE Windows PC SUNIT 3.96
 37 14427 INACTIVE C:\ARMS\CS Windows PC PETER .50
 107 9454 INACTIVE sqlplus@ar ttyp2 TOM .34

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch22/0541-0543.html

Previous | Table of Contents | Next

Page 567

CHAPTER 23

Security Management

In this chapter

● User Authentication 568

● Database Privilege Management 572

● Monitoring Database Assets 579

● Protecting Data Integrity 582

● Hardware Security 582

● Recovering Lost Data 583

Page 568

User Authentication

Users must be identified and authenticated before they are allowed access to your database. Users will
be identified by Oracle, but they can be authenticated in three different ways: database, external, or
enterprise authentication.

Database Authentication

Database authentication is used when a user is created and a password is specified. This is a good
approach for small user communities and when there are no additional security products available. The
other types of authentication require the reserved word external to be used in place of the user password.

When a user is created, a password must be selected for the user. Applying rules on a user password is
called password management, and a company should have guidelines for passwords. A strong password
is one that is not easily guessed, is longer then five bytes, and is not a word found in the dictionary. If
the password is in a dictionary, a computer vandal may be able to guess the password by using a "brute
force attack." (A brute force attack is one in which a computer vandal uses a userid and writes a program

to try different passwords that are generated from a dictionary.) A password also should expire after a
certain length of time and not be reused by the same user.

Oracle now has the capability of providing password management when using database-level
authentication. This is accomplished by setting parameters on a profile and assigning that profile to a
user. A profile is a database entity that will specify resource limits, and when a profile is assigned to a
user, it enforces those limits on the user. A profile can be created using the Enterprise Manager or
SQL*Plus. The database must have resource limits turned on in order for the profile resource limits to
take affect. You do this by setting the RESOURCE_LIMIT parameter in the init.ora file to TRUE. A
profile can limit the number of sessions, the CPU usage per session, the number of CPU calls, the logical
reads, the logical reads per call, idle time, and connect time. The profile can prevent computer vandals
from utilizing all the resources from a computer in a denial-of-service attack.

The profile can now enforce password management rules, which are options that you may elect to be
used:

● Locking of a user account: When a user has multiple failed logins, the account can be locked for
a specified period of time.

● Password Lifetime and Expiration: A given password will now have a specified time limit for use
and then will expire and have to be changed. A grace period will be given to a user after the
password expires; if the user does not change the password, the account is locked. The database/
security administrator can also set the password to an expired state.

● Password History: The password history option checks each newly specified password to ensure
that a password is not reused for the specified amount of time or for the specified number of
password changes. The database administrator can configure the rules for password reuse with
CREATE PROFILE statements.

Page 569

● Password Complexity Verification: Complexity verification checks the strength of a password to
make it harder for a computer vandal to defeat it. The default password complexity verification
routine requires that each password

Be a minimum of four characters in length

Not equal the userid

Include at least one alpha, one numeric, and one punctuation mark

Not match any word on an internal list of simple words, such as welcome, account,

database, user, and so on.

Differ from the previous password by at least three characters.

● Database Administrator Authentication: Database administrators require a more secure
authentication scheme due to the privileged nature of their tasks (such as shutting down or
starting up a database). Additional authentication can be implemented using the operating system
and/or a password file.

● Operating system: If the operating system provides a way of segmenting users into groups such
as UNIX or NT, Oracle will recommend DBAs be placed in a special group. This enables Oracle
to have additional authentication via the group id to know that a user is DBA.

● Using a Password File to authenticate DBAs: A password file for DBAs is optional and can be
set up using the ORAPWD password utility. The password file will restrict administration
privilege to only the users who know the password and have been granted a special role. The
roles are SYSOPER and SYSDBA:

SYSOPER permits you to perform STARTUP, SHUTDOWN, ALTER DATABASE OPEN/
MOUNT, ALTER DATABASE BACKUP, ARCHIVE LOG, and RECOVER, and includes the
RESTRICTED SESSION privilege.

SYSDBA contains all system privileges with ADMIN OPTION, and the SYSOPER system
privilege permits CREATE DATABASE and time-based recovery.

Using ORAPWDThe ORAPWD utility is executed at the command prompt of an operating system. Use
the following steps:

1. Create the password file using the ORAPWD utility

ORAPWD FILE=filename PASSWORD=password ENTRIES=max_users

where FILE= is the actual filename for the password file, PASSWORD= is the password that
must be used to sign on to the database as a DBA, and ENTRIES= is the maximum number of
users that can have the DBA privilege.

2. Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to a valid value. This
parameter has three valid values NONE, SHARED, and EXCLUSIVE. The NONE value causes
Oracle to behave as if the password file does not exist; this is the default value. The
EXCLUSIVE value will do the following:

❍ Restrict the password file to one database.

❍ Allow users to be granted the roles SYSDBA and SYSOPER.

Page 570

The SHARED value will allow a password file to be used by multiple databases.
However, the only users recognized by a SHARED password file are SYS and
INTERNAL, and you cannot add users to a SHARED password file.

3. Users can be added to the password file by using the GRANT command to assign the database
administration privilege to the appropriate user, as long as the password file is in EXCLUSIVE
mode. The following are examples:

GRANT SYSDBA TO jefferson

GRANT SYSOPER TO smith

NOTE

Use the REVOKE command to remove users from the password file.
n

Using SYSDBAThe privilege SYSDBA permits the user to perform the same operations as OSDBA.
Likewise, the privilege SYSOPER permits the user to perform the same operations as OSOPER.

Privileged users should now be able to connect to the database by using a command similar to this:

CONNECT jefferson/password@prddb.hq.com AS SYSDBA

The use of a password file does not prevent OS-authenticated users from connecting if they meet the
criteria for OS authentication.

If you want to list password file members, the view V$PWFILE_USERS will show all users that have
been granted SYSDBA and SYSOPER system privileges for a database.

External Authentication

External authentication relies on an operating system or network authentication service. This places
control outside of Oracle for password management and user authentication, although Oracle will still
identify the user. A database password is not required for this type of login. To use this option, set the
parameter OS_AUTHENT_PREFIX in the database init.ora file. This will tell Oracle that any user that
has the same prefix as this value is to be authenticated externally. For example, if the value is set to ops$
and you have two users, ops$jones and smith, Oracle will not require a password from ops$jones, but

will require one from smith. This parameter can be set to any prefix you like and even can be set to a
null string by specifying an empty set of double quotes. The init.ora parameter
REMOTE_OS_AUTHENT must be set to true (the default is false) to enable Oracle to use the username
from a nonsecure connection. This keeps a potential computer vandal from masquerading as a valid user.

Network authentication is accomplished with Oracle Advanced Networking Option (ANO) and can
authenticate users with the following technologies:

● Network Authentication Services(such as Kerberos and SESAME): Allow a central source for
password management and can enforce single sign-on using third-party software. A user is
created on each database that he or she will use and database privileges will be

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 565

can be determined by using the sharable_memory column of the V$SQLAREA view, which contains all
the SQLs in the shared pool. Every session that executes the same SQL will share the same shared SQL
area.

The private SQL area is the memory area that contains data such as binding information and runtime
buffers. Every session that executes a SQL statement will have its own individual private SQL area for
every SQL that it executes. To summarize, for multiple sessions that are executing the same SQL
statement, there will be one shared SQL area and multiple private SQL areas owned individually by each
of the sessions. The private SQL area is further divided into a persistent area and the runtime area.

The area of memory in which we will be required to monitor memory usage is the Program Global Area
(PGA). The PGA contains data and control information for a single process. The PGA is also referred to
as the Process Global Area. The contents of the PGA vary depending on the type of connection,
dedicated or multithreaded.

In both architectures, the PGA will always contain the stack space, which is the memory used to store
the sessions variables, arrays, and other information.

In a dedicated server option, the PGA will store additional information related to the user's session—that
is, the private SQL area and other session information is stored here. In a multi-threaded option, this
information is located in the SGA.

You can monitor the PGA usage and assess the per-user memory requirement on the system. The PGA
memory usage can be done by using the V$SESSTAT view. The statistic# value=20 corresponds to
PGA memory usage. To monitor heavy memory users, use the script in Listing 22.23.

Listing 22.23 Finding PGA Memory Usage Using v$sesstat

col value format 99999 heading "Memory |Kb"

Select sid,
 value/1024 value
 From v$sesstat
 Where statistic# =20
 Order By value desc

 Memory

 SID Kb
---------- ------
 31 1165
 153 754
 142 733
 101 686
 70 362
 73 336
 26 306
 60 298
 82 297
 53 297
123 275
 44 272
 110 270

Page 566

Having ascertained the session that consumes a high amount of PGA, you can proceed with the steps
mentioned in the previous sections to find what each session is doing.l

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 563

NOTE

The SZ column refers to text plus data plus stack memory usage. This size of the text
page of the Oracle executable can be determined by using the size command on the
Oracle executable. After the text page size of the executable is obtained, then,
theoretically, if you subtract the value obtained from the virtual memory size using the ps
-ael command, you would get the actual per-process virtual memory usage of the
process. But sometimes the SZ column in the ps -el command does not report the actual
text page size; it reports only the page required by the process. This happens because of
the demand-paging algorithm, wherein only the most required pages of text are used by
the process, and the rest are brought as required from the file system.

You could use the size column report in the top command because the top command
reports the total text-page size rather than the actual used-page size when it reports on the
virtual memory in the SIZE column. In Listing 22.21, the size of the virtual memory used
by the process ID 25623 is 8640K, which includes the complete text page.

If I try to find the size value using the ps command, the following is obtained:

$ ps -ael | grep 256,23
 1 R 105 25623 25622 254 241 20 3909b00
1524 - ? 9:20 oracle

The ps command shows that the size of the virtual memory is 1524*4K =6096K, which is much less
than the top command 8640K value because the text page size used is actually much lower than the total
text page size.

Keep this in mind when computing actual memory usage of the individual processes.n

Listing 22.21 Obtaining the Virtual Memory Size by Using the top Command Output

System: arms1 Tue Sep 9
19:41:51 1997
Load averages: 4.87, 4.74, 4.44
211 processes: 204 sleeping, 7 running
Cpu states:

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch22/0560-0562.html

CPU LOAD USER NICE SYS IDLE BLOCK SWAIT INTR SSYS
0 4.98 88.1% 0.0% 11.9% 0.0% 0.0% 0.0% 0.0% 0.0%
1 4.75 79.2% 0.0% 20.8% 0.0% 0.0% 0.0% 0.0% 0.0%
-- ---- ----- ----- ----- ----- ----- ----- ----- -----
avg 4.87 83.2% 0.0% 16.8% 0.0% 0.0% 0.0% 0.0% 0.0%

Memory: 53592K (15892K) real, 72336K (25548K) virtual, 11848K free
Page# 1/20

CPU TTY PID USERNAME PRI NI SIZE RES STATE TIME %WCPU %
CPU COMMAND
0 ? 25623 arms 240 20 8640K 548K run 7:34 43.47 43.39
oracleor
1 ? 18128 oracle 241 20 9184K 1024K run 177:07 31.29 31.23
oracleor
0 ? 19523 oracle 240 20 9644K 1552K run 60:48 26.19 26.15
oracleor

Page 564

Using the output in Listing 22.22, you can determine the pid of the Oracle processes. When the pid is
obtained using the SQL statements in the previous sections, the sid of the processes can be found and
then further investigation can be done at the session level.

Listing 22.22 ps Command Used for finding the Memory Usage by Processes

$ ps -eal | grep oracle | sort -n -r -k 10
 1 R 129 28060 28058 248 240 20 3932f00 2400 - ? 15:24
oracle
 1 R 104 28049 1 246 239 20 3941080 2001 - ? 10:55
oracle
 1 S 104 25751 1 0 156 20 38e1f80 1939 461b34 ? 19:02
oracle
 1 S 104 15018 1 0 154 20 37c2980 1915 3d90e38 ? 198:25
oracle
 1 S 104 25861 1 59 148 20 3807d00 1711 2194bac ? 32:42
oracle
 1 S 104 25743 1 0 156 20 3e38380 1658 461b1c ? 23:52
oracle
 1 S 104 14103 1 0 154 20 2829900 1653 3d4e338 ? 109:12
oracle
 1 R 104 25739 1 255 241 20 37c2d80 1623 - ? 142:21
oracle

 1 S 104 27772 1 0 156 20 372ba80 1603 461b04 ? 9:11
oracle
 1 S 105 22744 22743 0 154 20 3941e80 1578 3d61da2 ? 38:59
oracle
 1 S 129 25731 25727 0 154 20 335f700 1538 38c47a2 ? 0:00
oracle
 1 S 104 19722 1 0 154 20 2845380 1525 3d6cb38 ? 0:05
oracle
 1 S 129 28055 28053 0 154 20 3780f00 1522 3dda0a2 ? 0:00
oracle
 1 S 125 25629 1 0 156 20 3738680 1511 461aa4 ? 0:01
oracle
 1 S 104 7258 1 0 154 20 38e6100 1498 391e838 ? 0:00
oracle
 1 S 125 25623 1 0 156 20 294f600 1493 461a8c ? 0:38
oracle
 1 S 125 25621 1 0 156 20 2576080 1490 461a84 ? 1:15
oracle
 1 S 125 25627 1 0 156 20 3807300 1483 461a9c ? 0:03
oracle
 1 S 125 25625 1 3 156 20 3937000 1483 461a94 ? 2:00
oracle
 1 S 125 25649 1 0 156 20 2958980 1478 461af4 ? 0:10
oracle
 1 S 125 25647 1 0 156 20 3903b00 1478 461aec ? 0:10
oracle
 1 S 125 25645 1 0 156 20 2845a80 1478 461ae4 ? 0:11
oracle
 1 S 125 25643 1 0 156 20 3354400 1478 461adc ? 0:13
oracle
 1 S 125 25641 1 0 156 20 391d700 1478 461ad4 ? 0:13
oracle
 1 S 125 25639 1 0 156 20 3739b80 1478 461acc ? 0:13
oracle
 1 S 125 25637 1 0 156 20 2852780 1478 461ac4 ? 0:14
oracle
 1 S 125 25635 1 0 156 20 2888580 1478 461abc ? 0:15
oracle
 1 S 125 25633 1 0 156 20 3663e80 1478 461ab4 ? 0:15
oracle
 1 S 125 25631 1 0 156 20 3e40c80 1478 461aac ? 0:15
oracle
 1 S 125 25619 1 0 156 20 27fb500 1477 461a7c ? 0:01

oracle

The memory usage of individual processes can also be monitored using the V$SESSTAT system view.
To understand which part of memory we are looking at, we will now look into how memory is organized
in the Oracle SGA. The SGA is a shared segment that comprises the shared pool, the block buffers, and
the redo log buffers. The shared pool is the area in the SGA that contains constructs such as shared SQL
areas and the data dictionary cache.

For every SQL that is executed on the server, there is a shared part (shared SQL area) and a private part
(private SQL area). Two users executing the same SQL will use the same shared SQL area, but each
user will have an individual private SQL area.

The shared SQL area contains the parse tree and the execution plan for every SQL statement. The size of
the area depends on the complexity of the statement. The size of every such SQL

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch22/0560-0562.html

Previous | Table of Contents | Next

Page 571

assigned to that user, but the password will be the reserved word external. This will tell Oracle
to identify the user only and enable an external source to authenticate the password. ANO will
use an authentication server that will have usernames, passwords, and hostnames to verify the
password. If the password is authenticated, the user is allowed access to the Oracle database.

● Token Devices: A token is a physical device that a user must have to establish a connection to the
database. The token could be a one-time numeric password that is generated on a device the size of a
thick credit card. This numeric password must be used in conjunction with a short numeric personal
identification number (PIN). The Oracle server has an additional security service added to the
configuration that is keeping track of the token's password. Another method is the challenge/
response. A number is sent to the user (challenge) and the user enters the number on a device, which
gives another number (response) that is used as the password.

● Biometric Devices: Uses a physical characteristic that is unique to the individual, currently a
fingerprint scan device that can be used with ANO. The user fingerprint must first be recorded on the
system, and then the user specifies the Oracle service and places his or her finger on the fingerprint
reader. The finger placed on the reader will be compared with the fingerprint on the database.

Enterprise Authentication

Enterprise Authentication allows a central source for password management and can enforce single sign-on
using Oracle Security Service (OSS). The user is called a global user and must be created on each database
that he or she will use with the password globally. This will tell Oracle to identify the user only and enable
an OSS to authenticate the password and convey user enterprise authorizations. If the password is
authenticated, the user is allowed access to the Oracle database. OSS will interface with Oracle Enterprise
Manager to centralize security role management and enterprise authorizations. This will enable the user to
have global identities that are centrally managed.

Global RolesGlobal roles are different than database roles because they enable you to assign authorization
information to (global) users across multiple databases. When a global user logs on to a database, the global
roles are dynamically assigned to that user. Global roles must first be assigned to a global user in the Oracle
Security Server, then have privileges associated with each global role on the database server. The privileges
associated with a global role can differ between databases.

Tablespace Assignment and UsageWhen the user is created, you must tell Oracle where you want to store
objects that the user creates in the database; if a storage clause does not specify where to place the objects,
this is called the user's default tablespace. The default tablespace should be specified to prevent database
objects such as tables or indexes from being created in the system tablespace; if the user will never have the
privilege to create an object in the database, you can let it default to system. If the user will be creating

objects in the system tablespace, tablespace fragmentation or an out-of-space condition could be the result.
The temporary tablespace is really a sort-work area and is used by SQL statements (such as

Page 572

ORDER BY and GROUP BY). The temporary tablespace also is used when a user builds an index. You
should specify a temporary tablespace other than the system tablespace, due to the increased contention with
the data dictionary.

A tablespace quota limits the size of database objects that users create in a tablespace. The default is to have
no quota size limitation, but if a user has allocated database objects in a tablespace and you would like to
restrict the use of that tablespace, set the quota for that user to 0 for that tablespace. With this restriction in
place, the current objects in that tablespace cannot be allocated any more space, but they will remain in the
tablespace.

Database Privilege Management

A privilege can be either an object privilege or system privilege. There are over 60 distinct system privileges
that allow users to perform administrative activities on the database (see Table 23.1).

Table 23.1 System Privileges

Privilege Actions Allowed

ANALYZE

ANALYZE ANY
Analyze any table, cluster, or
index in the database.

AUDIT

AUDIT ANY
Audit any schema object in the
database.

AUDIT SYSTEM
Enable and disable statement
and privilege audit options.

CLUSTER

CREATE CLUSTER
Create a cluster in own
schema.

CREATE ANY CLUSTER
Create a cluster in any schema.
Behaves similarly to CREATE
ANY TABLE.

ALTER ANY CLUSTER
Alter any cluster in the
database.

DROP ANY CLUSTER
Drop any cluster in the
database.

DATABASE

ALTER DATABASE

Alter the database; add files to
the operating system via
Oracle, regardless of operating
system privileges.

DATABASE LINK

CREATE DATABASE
LINK

Create private database links in
own schema.

Page 573

Privilege Actions Allowed

INDEX

CREATE ANY INDEX
Create an index in any
schema on any table.

ALTER ANY INDEX
Alter any index in the
database.

DROP ANY INDEX
Drop any index in the
database.

LIBRARY

CREATE LIBRARY
Create callout libraries in
own schema.

CREATE ANY LIBRARY
Create callout libraries in
any schema

DROP LIBRARY
Drop callout libraries in own
schema.

DROP ANY LIBRARY
Drop callout libraries in any
schema.

PRIVILEGE

GRANT ANY PRIVILEGE
Grant any system privilege
(not object privileges).

PROCEDURE

CREATE PROCEDURE
Create stored procedures,
functions, and packages in
own schema.

CREATE ANY PROCEDURE

Create stored procedures,
functions, and packages in
any schema. (Requires that
user also have ALTER ANY
TABLE, BACKUP ANY
TABLE, DROP ANY
TABLE, SELECT ANY
TABLE, INSERT ANY
TABLE, UPDATE ANY
TABLE, DELETE ANY
TABLE, or GRANT ANY
TABLE privileges.)

ALTER ANY PROCEDURE
Compile any stored
procedure, function, or
package in any schema.

DROP ANY PROCEDURE
Drop any stored procedure,
function, or package in any
schema.

EXECUTE ANY
PROCEDURE

Execute any procedure or
function (standalone or
packaged), or reference any
public package variable in
any schema.

PROFILE

CREATE PROFILE Create profiles.

ALTER PROFILE
Alter any profile in the
database.

DROP PROFILE
Drop any profile in the
database.

ALTER RESOURCE COST
Set costs for resources used
in all user sessions.

 continues

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 574

Table 23.1 Continued

Privilege Actions Allowed

PUBLIC DATABASE LINK

CREATE PUBLIC
DATABASE LINK

Create public database
links.

DROP PUBLIC
DATABASE LINK

Drop public database links.

PUBLIC SYNONYM

CREATE PUBLIC SYNONYM Create public synonyms.

DROP PUBLIC SYNONYM Drop public synonyms.

ROLE

CREATE ROLE Create roles.

ALTER ANY ROLE
Alter any role in the
database.

DROP ANY ROLE
Drop any role in the
database.

GRANT ANY ROLE
Grant any role in the
database.

ROLLBACK SEGMENT

CREATE ROLLBACK
SEGMENT

Create rollback segments.

ALTER ROLLBACK
SEGMENT

Alter rollback segments.

DROP ROLLBACK SEGMENT Drop rollback segments.

SESSION

CREATE SESSION Connect to the database.

ALTER SESSION
Issue ALTER SESSION
statements.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch23/0578-0580.html

RESTRICTED SESSION

Connect when the database
has been started using
STARTUP RESTRICT.
(The OSOPER and
OSDBA roles contain this
privilege.)

SEQUENCE

CREATE SEQUENCE
Create a sequence in own
schema.

CREATE ANY SEQUENCE
Create any sequence in any
schema.

ALTER ANY SEQUENCE
Alter any sequence in any
schema.

DROP ANY SEQUENCE
Drop any sequence in any
schema.

SELECT ANY SEQUENCE
Reference any sequence in
any schema.

Page 575

Privilege Actions Allowed

SNAPSHOT

CREATE SNAPSHOT
Create snapshots in own schema.
(User must also have the
CREATE TABLE privilege.)

CREATE SNAPSHOT

Create snapshots in any schema.
(User must also have the
CREATE ANY TABLE
privilege.)

ALTER SNAPSHOT
Alter any snapshot in any
schema.

DROP ANY SNAPSHOT
Drop any snapshot in any
schema.

SYNONYM

CREATE SYNONYM
Create a synonym in own
schema.

CREATE ANY
SYNONYM

Create any synonym in any
schema.

DROP ANY SYNONYM
Drop any synonym in any
schema.

SYSTEM

ALTER SYSTEM
Issue ALTER SYSTEM
statements.

TABLE

CREATE TABLE

Create tables in own schema.
Also allows grantee to create
indexes (including those for
integrity constraints) on table in
own schema. (The grantee must
have a quota for the tablespace or
the
UNLIMITED TABLESPACE
privilege.)

CREATE ANY TABLE

Create tables in any schema. (If
grantee has CREATE ANY
TABLE privilege and creates a
table in another user's schema,
the owner must have space quota
on that tablespace. The table
owner need not have the
CREATE [ANY] TABLE
privilege.)

ALTER ANY TABLE
Alter any table in any schema
and compile any view in any
schema.

BACKUP ANY TABLE
Perform an incremental export
using the Export utility of tables
in any schema.

DROP ANY TABLE
Drop or truncate any table in any
schema.

LOCK ANY TABLE
Lock any table or view in any
schema.

COMMENT ANY TABLE
Comment on any table, view, or
column in any schema.

SELECT ANY TABLE
Query any table, view, or
snapshot in any schema.

INSERT ANY TABLE
Insert rows into any table or view
in any schema.

 continues

Page 576

Table 23.1 Continued

Privilege Actions Allowed

UPDATE ANY TABLE
Update rows in any table or
view in any schema.

DELETE ANY TABLE
Delete rows from any table
or view in any schema.

TABLESPACE

CREATE TABLESPACE

Create tablespaces; add files
to the operating system via
Oracle, regardless of the
user's operating system
privileges.

ALTER TABLESPACE

Alter tablespaces; add files
to the operating system via
Oracle, regardless of the
user's operating system
privileges.

MANAGE TABLESPACE

Take any tablespace offline,
bring any tablespace online,
and begin and end backups
of any tablespace.

DROP TABLESPACE Drop tablespaces.

UNLIMITED TABLESPACE

Use an unlimited amount of
any tablespace. This
privilege overrides any
specific quotas assigned. If
revoked, the grantee's
schema objects remain but
further tablespace allocation
is denied unless allowed by
specific tablespace quotas.
This system privilege can be
granted only to users and not
to roles. In general, specific
tablespace quotas are
assigned instead of granting
this system privilege.

TRANSACTION

FORCE TRANSACTION

Force the commit or rollback
of own in-doubt distributed
transaction in the local
database.

FORCE ANY
TRANSACTION

Force the commit or rollback
of any in-doubt distributed
transaction in the local
database.

TRIGGER

CREATE TRIGGER
Create a trigger in own
schema.

CREATE ANY TRIGGER
Create any trigger in any
schema associated with any
table in any schema.

ALTER ANY TRIGGER
Enable, disable, or compile
any trigger in any schema.

DROP ANY TRIGGER
Drop any trigger in any
schema.

Page 577

Privilege Actions Allowed

USER

CREATE ANY USER

Create users; assign quotas on any
tablespace, set default and temporary
tablespaces, and assign a profile as
part of a CREATE USER statement.

BECOME ANY
USER

Become another user. (Required by
any user performing a full database
import.)

ALTER USER

Alter other users in an ALTER USER
statement: change any user's
password or authentication method,
assign tablespace quotas, set default
and temporary tablespaces, assign
profiles and default roles. (Not
required to alter own password.)

DROP USER Drop another user.

VIEW

CREATE VIEW Create a view in own schema.

CREATE ANY
VIEW

Create a view in any schema. To
create a view in another user's
schema, you must have CREATE
ANY VIEW privileges, and the
owner must have the required
privileges on the objects referenced in
the view.

DROP ANY VIEW Drop any view in any schema.

You should give these privileges only to users who administer the database. Object privileges allow access
to and maintenance of database objects; this category of privileges is for end-users. An object privilege (see
Table 32.2) can be administered directly to the user, or the privilege can be granted to a role and then the
role granted to the user.

Table 23.2 Object Privileges

Object SQL Statement Allowed

ALTER ALTER object (table or sequence).

DELETE DELETE FROM object (table or view).

EXECUTE
EXECUTE object (procedure or function).
References to public package variables.

INDEX CREATE INDEX ON object (tables only).

INSERT INSERT INTO object (table or view).

 continues

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch23/0578-0580.html

Previous | Table of Contents | Next

Page 585

CHAPTER 24

Backup and Recovery

In this chapter

● Backup Strategy 586

● Understanding Physical and Logical Data Loss 587

● Using Logical Backups 590

● Using Cold Physical Backups 595

● Using Hot Physical Backups 600

● Restoring from Logical Backups 604

● Using Physical Recovery 609

● Testing Strategies 618

Page 586

Backup Strategy

As most of us have learned at some point in our computing lives, data backups are an absolutely essential ingredient in
most any computer system that we depend on. Disk head crashes, circuitry failure, and even catastrophic loss of data
centers are all facts of life that DBAs must plan for. Fortunately, Oracle is a very robust database system with years of
field-proven backup and recovery techniques that can keep your data safe when the inevitable happens. As a
professional DBA, you are expected to keep your system running like a well-oiled machine. You must also take
measures to ensure that the data contained in your RDBMS is safe from all sorts of threatening hazards.

Imagine that it's two weeks prior to end-of-year processing and your database system has just lost a disk drive. The CEO
and CFO are both standing in your office. They want to know how long it will be before the system is back up, and they
remind you that they can't lose any data from the financial system. This chapter is designed to give you the information
you'll need to tell them "It won't be long" and "Of course there won't be any loss." You'll also learn some common non-
emergency uses of the backup system.

It's also worth pointing out that, in this context, backups are used for data recovery both in emergency situations and in
controlled situations in which you are simply moving data from one instance into another, switching machines, or just
reorganizing a database.

The emphasis of this chapter will be on helping you decide, plan, and test your backup strategy. The ease with which

you'll be able to recover your database is directly related to the effort you put into your backup strategy. If you are in an
uncomfortable recovery situation, you should work with Oracle support for your specific recovery needs because the
details will vary on a case-by-case basis. As you design, implement, and use your backup strategy, please keep these
important points in mind:

● Plan your backup and recovery strategy. Plan how you'll use your backups to recover your database.

● Test your backup and recovery strategy on a regular basis (especially important with new staff members).

● Be sure OS-level backups are still taken off the database server. Database backups do not safeguard init.ora files,
Oracle installations, or operating systems.

● Perform appropriate backups of the database before and after significant modifications. This is particularly
important if modifications include dropping segments or tablespaces.

● Tablespaces containing very dynamic data need to be backed up more frequently than more static tablespaces.

● Keep older backups on hand. You might not find that a table or row was deleted for months and sometimes
years.

● Export your databases regularly for added protection.

● Consider distributed database backups for high-availability applications.

Page 587

Understanding Physical and Logical Data Loss

Data loss can be classified as either physical or logical. Physical data loss is the loss of components at the operating
system level of a database, such as data files, control files, redo logs, and archived logs. This might be caused by a disk
drive crash, someone accidentally deleting a data file, or a configuration change that overwrites any critical database
file. Logical data loss is a loss of database-level components such as tables, indexes, or table records. This could be
caused by someone accidentally dropping the wrong table, an application going awry, or a shortsighted WHERE clause
in a DELETE statement. Not surprisingly, Oracle allows for both physical data and logical data backups. Although each
backup solution could be used as a substitute for the other, you'll find out that an effective backup plan must include
both to fully protect you from data loss.

The physical data backup is a copy of

● Data files

● Control files

● Applicable archived redo logs

If you lose a disk drive or need to move some of the data files around, this is the most straightforward approach to
recovery. Physical backups are usually run at scheduled intervals to protect against the physical loss of a database.
Indeed, if you want to ensure that you can recover the system to the last commit, you must have a physical backup as a
base, as well as the archive and redo logs that have accumulated since the last physical backup.

Physical backups are further categorized into cold and hot backups. Cold backups are used when you have the option of
shutting down the database long enough to back up the system. Hot backups provide a physical backup when the
database is open and available for use by users. This allows an Oracle database to operate 24 hours a day, 7 days a week
(24/7) and still be backed up at regular intervals. Unless you absolutely must have your database running in a 24/7 cycle,
you are much better off using cold backups. As you will see, hot backups are not for the meek and must be thoroughly
tested before you rely on them.

Please be aware that the term cold backup is synonymous with offline backup, as is hot backup with online backup.

Backup Frequency and ARCHIVELOG Mode

Two essential parts of planning backups are choosing the proper backup frequency for your database and deciding
whether to run in ARCHIVELOG mode.

When choosing a backup interval, always ask yourself, "How much data can I afford to lose?" If your database is not
running in ARCHIVELOG mode, you could lose all transactions since your last backup. If your business needs allow
the database to lose one week's worth of transactions, you would need to back up the database at least once per week.

 continues

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 584

A cold backup has the virtue of having the least number of steps in the restore process, which usually
means the least chance of error, and it is faster than a hot backup.

Logical Backup

A logical backup using the Oracle Export utility creates a file that has the information to re-create data
structures and the data contained in the database. This information can be stored on a disk device or tape
media. A logical backup takes longer than a physical backup and may require additional work in
preparing the database for recovery. There are three Export modes:

● User mode, which backs up all objects owned by a user

● Table mode, which backs up specific tables owned by a user

● Full database, which backs up all objects of the database

You can control the Export utility using a parameter file to perform custom backups of data on the
database. You can perform an export at three levels of data collection: incremental, cumulative, and
complete. An incremental export backs up only data that has changed since the last incremental export.
A cumulative export exports data only from tables that have changed since the last cumulative export;
this export is used to condense the incremental exports. A complete export exports all data contained in
a database. You should execute a complete export on a limited basis, due to the large volume of data
collected.

Exports can be very flexible, but a regular schedule is important. It is a good idea to do a complete
export on the first day of the month, an incremental export every day, and a cumulative report every
weekend.l

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 581

Statement Option

SYNONYM
CREATE SYNONYM, DROP
SYNONYM

SYSTEM AUDIT AUDIT, NOAUDIT

SYSTEM
GRANT

GRANT system privileges/role TO user/
role REVOKE system privileges/role
FROM user/role

TABLE
CREATE TABLE, ALTER TABLE,
DROP TABLE

TABLESPACE
CREATE TABLESPACE, ALTER
TABLESPACE, DROP TABLESPACE

TRIGGER

CREATE TRIGGER, ALTER TRIGGER,
ENABLE or DISABLE, ALTER TABLE
with ENABLE, DISABLE, and DROP
clauses

USER
CREATE USER, ALTER USER, DROP
USER

VIEW
CREATE [OR REPLACE] VIEW, DROP
VIEW

Auditing DML on Database Objects

You can audit a specific schema object using the following syntax:

AUDIT object_opt ON schema.object
BY SESSION/ACCESS WHENEVER NOT/SUCCESSFUL;

You can specify an object option, such as insert or update, or you can use the keyword ALL to specify
all object options.

AUDIT insert,update
ON scott.emp_table
WHENEVER NOT SUCCESSFUL;

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch23/0578-0580.html

AUDIT ALL
ON scott.emp_table
WHENEVER NOT SUCCESSFUL;

Administering Auditing

If you choose to store the audit records on the database, it is a good idea to run reports on the audit table
on a daily basis and then delete the data to conserve space. The audit table should have restricted access,
and all activity against the SYS.AUD$ table should be recorded by using the following statement:

AUDIT INSERT, UPDATE, DELETE, SELECT
ON sys.aud$
BY ACCESS;

Auditing can create excessive overhead on a database, so be very selective. The BY SESSION clause in
the audit statement causes Oracle to write a single record for all SQL statements of the same type that
were used in the same session. The BY ACCESS clause in the audit statement causes Oracle to write
one record for each audited statement. If you audit data definition language (DDL) statements, Oracle
automatically uses BY ACCESS, no matter which clause is

Page 582

specified. To maintain a secure environment, you should implement a policy to decide which actions to
audit.

The following AUDIT SQL statement shows how to use some of the more restrictive options:

AUDIT statement_opt/system_privileges
 BY user (optional)
 BY session/access WHENEVER NOT/SUCCESSFUL;

The next code sample shows how to audit statements relating to roles and a session:

AUDIT role;
AUDIT session whenever not successful;.

Protecting Data Integrity

You can protect data integrity through the use of secure user connections and encryption algorithms.
Passwords can now be encrypted when users sign on to an Oracle database. The password is encrypted

using a modified DES (data encryption standard) algorithm. Encryption is turned on by setting an
environment variable on the client machine and the init.ora parameter on the database server. You must
set the client machine's environment variable ORA_ENCRYPT_LOGIN to TRUE.

NOTE

This variable varies depending on the operating system. You must also set the
DBLINK_ENCRYPT_LOGIN init.ora parameter to TRUE on the database server.n

Oracle will encrypt the password of a userid when a database session is initiated, but it will not encrypt
the altering of the password.

Computer vandals can compromise data integrity by modifying the data or DML that travels on a
network, which can result in a logical-corrupt database. When the integrity of a database is in question,
it is very costly and time-consuming to restore.

Encrypting all your data is the perfect solution to potential security breeches, because if the data is being
passively monitored by computer vandals they can't use the data and will probably look for easier prey.
Oracle's Advanced Network Services provides this additional level of security and more. The ANO
currently offers two encryption algorithms, RSA and DES, with different key lengths. For use in the U.
S. and Canada, 56-bit RSA RC4, 56-bit DES, and 128-bit RSA are available; for export outside the U.S.
and Canada, 40-bit RSA RC4 and 40-bit DES40 are available. Data integrity is protected by using
cryptographic checksums using the MD5 algorithm. This ensures that the data is not tampered with
between the time it leaves a client workstation and the time it arrives at the database server.

Hardware Security

Computer hardware needs to be stored in a restricted area where access is limited and where appropriate
fire control mechanisms are in place. The electricity should be clean, meaning not

Page 583

subject to power surges or outages. Clean electricity is usually provided by an uninterrupted power
supply (UPS).

Recovering Lost Data

In your security plan, you must specify how to recover data lost due to a security breach. There is a
saying: "Your system is only as good as your last backup and your ability to recover." That sums up my
philosophy on database recovery. Following are some good questions to ask yourself regarding backups:

● How is the backup media physically secured?

● Is the backup media shipped offsite when the backup is complete, in case of a situation in which
the data center is lost?

● Is the backup media replaced in accordance with the manufacturer's guidelines?

● Is the backup hardware cleaned regularly?

● Is the backup verified as readable and available for recovery?

● Is there a backup log that shows which backup media was used for a particular day and how
many times the media has been used for backup?

There are two ways to back up an Oracle database. The first is by using an operating-system backup
called a physical backup; the second is by using the Oracle Export utility, which creates a logical
backup.

Operating System Backup

An operating-system backup requires a utility that is specific to the operating system and that enables
the DBA to restore the database by using an operating-system restore utility. You can perform the
operating-system backup with the database down (a cold backup) or with it up (a hot backup). A hot
backup is used in shops that require high-database availability. A hot backup enables tablespaces to be
backed up while online and available for transaction processing, or while offline and unavailable. A cold
backup must include all Oracle data files, control files, and online redo log files (for reference, I call
these files the operating-system backup file set). A hot backup is considered a partial backup because it
backs up only the files requested.

You can operate the database in ARCHIVELOG mode and in NOARCHIVELOG mode. The
ARCHIVELOG mode means that as the online redo logs are filled, their contents are archived, which
frees the current redo log. The archive redo logs are used to recover the transactions recorded on them or
to redo them in the event of a database recovery. To perform a hot backup, the database must be in
ARCHIVELOG mode. The NOARCHIVELOG mode means that online redo logs are not archived
when they are full, but are written over by the latest transaction. Therefore, only the current redo logs are
available for recovery. If you don't archive, you must make a backup of the operating-system file set,
and when the database is restored, you must restore all the files in the operating-system backup file set.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch23/0578-0580.html

Previous | Table of Contents | Next

Page 588

continued
You can't lose any transactions in production OLTP systems. Running in ARCHIVELOG mode is highly desirable (when practical) because it
allows you to fully recover your database to the last commit, even if your last physical backup was two days ago.

Even with ARCHIVELOG mode enabled, you must still make regular physical backups of the system. You must have all the archived redo logs
since the last physical backup to fully recover a database. A regular physical backup will reduce the amount of space needed to store archived redo
logs, as well as reduce the risk from losing transactions because of a lost or damaged archived redo log.

Physical backups should be used for recovery on the same machine, Oracle version, and instance from which they originated. Therefore, physical
backups should be considered non-portable. They are usually only useful for safeguarding data on the same machine and instance against data loss.

One exception to this rule is when you want to completely transfer a database from one system to another. As long as both machines are of the
same architecture, OS version, and Oracle version, you can just copy the physical components of a database from system A to system B. If any of
these conditions are not met, or if you are just in doubt, use a logical backup to move your data.

A logical data backup is usually a collection of SQL statements to re-create the database objects (the database itself, tables, indexes, grants, roles,
and so on), as well as the individual records in an ASCII format.

Oracle's logical backup system should be used when you need to move specific data between instances, or when you need to copy all of an
instance's data between differing system archi-tectures, OS versions, or Oracle versions. Logical backups are usually run by the DBA on an as-
needed basis, although there is certainly a need for somewhat regular logical backups in addition to physical backups.

In developer environments, application developers should work with DBAs to plan a logical backup strategy. Typically, two copies of the database
exist: one that is production and another that is used by the developers to debug their applications. The development database should be
synchronized with the production database periodically.

Let's talk about some practical real-world problems. You must have your database running in ARCHIVELOG mode and the archiver must be
running for you to recover your system to the last commit. The following sections list common backup needs and the recommended backup
methods. The remainder of this chapter will cover the actual mechanics of the backup and recovery methods provided by Oracle.

To help illustrate the correct usage of each backup system, the following provide several corresponding examples:

Page 589

For the cold physical backup,

● Provides protection against physical loss of the database. Allows you to shut down your database long enough for backups to be run.

● The system administrator will be upgrading your disks from 4GB each to 9GB each. You need to back up the system and restore it in the
same directory structure on the new drives.

For the hot physical backup,

● Your business needs demand that the database be available 24 hours a day, 7 days a week.

● Provides protection against physical loss of the database. You are not able to shut down the database long enough for backups to run.

For the full logical backup,

● You do not have another physical system for a test bed, but you do have a production and test instance on the same machine and you want to
synchronize them occasionally.

● The new server was just installed and will be replacing your old machine. Your old and new database servers are different platforms (such as
Sun and HP).

For logical backup of a specific table,

● You need to move table ABC from the JSMITH schema to the TGASPER schema.

● You will be dropping table ABC, although you would like to save a backup copy of it just in case.

For logical backup of a specific user,

● You have just been told that user JSMITH can be dropped. This user owns several tables, and you think there is a chance that someone
might want them later, so you want to back up just the JSMITH schema.

● There is an application using tables contained entirely in a single schema. You are planning to upgrade the application and must run a script
to "update" the tables and indexes for the new version to work correctly.

TIP

These specific cases illustrate which backup methods are appropriate for the different situations you will encounter throughout your
database's life. Don't rely on a single backup method. Although most DBAs understand the need for physical backups, many do not
run logical backups regularly. This makes them vulnerable to an inadvertent DROP command. Remember that DROPs are
immediate; there is no rollback. With help from Oracle Support, it is possible to use your physical backups to recover a dropped
table. This is a very time-consuming and expensive process that probably can be avoided by having a logical backup on hand.
Remember that the system does not need to be shut down for logical backups.

 continues

Page 590

continued

Making a logical backup is very important to do before you run a SQL script that you have not thoroughly examined. DROPs or
DELETEs might lurk unexpectedly, just waiting to zap your database!

If you run hot backups as your physical backup, you should also run cold backups when you have the opportunity. Because of the
complexity of hot backups, it gives many DBAs (myself included) a warm fuzzy to know that we have a fairly recent cold backup in
our back pockets. You can never have enough backups.

Using Logical Backups

Oracle provides us with logical backups through the EXP facility (IMP is used for logical recovery). You can use EXP either entirely in batch
mode, entirely interactively, or interactively with some keywords specified. Before we discuss the operational aspect of EXP, let's look at the
available keywords. Running exp HELP=Y will show all of them, as seen in Listing 24.1.

Listing 24.1 EXP Keywords: Output of exp HELP=Y.

oreo:/opt/oracle/bin$ exp help=y

Keyword Description (Default) Keyword Description (Default)
--
USERID username/password FULL export entire file (N)
BUFFER size of data buffer OWNER list of owner usernames
FILE output file (EXPDAT.DMP) TABLES list of table names
COMPRESS import into one extent (Y) RECORDLENGTH length of IO record
GRANTS export grants (Y) INCTYPE incremental export type
INDEXES export indexes (Y) RECORD track incr. export (Y)
ROWS export data rows (Y) PARFILE parameter filename
CONSTRAINTS export constraints (Y) CONSISTENT cross-table consistency
LOG log file of screen output STATISTICS analyze objects (ESTIMATE)

The keywords shown in Listing 24.1 are explained below.

USERID is the user ID/password that EXP will use to log in to the database to perform the export. At the minimum, you must have the CONNECT
SESSION privilege enabled to use EXP. If you intend to export another user's objects, you must have the EXP_FULL_DATABASE privilege. A
DBA user, of course, can do anything.

TIP

You can use EXP with remote databases using the usual USERID/PASSWORD@REMOTE_NAME
convention.

FULL specifies whether you are exporting the entire database or not. It defaults to N.

BUFFER is used to determine how many rows will be loaded into memory before committing to the export file. The default value is OS dependent.
The larger your buffer, generally the faster

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 591

your export will run (and the more system memory will be used). You can compute the number of rows
that will fit into the buffer as follows:

rows=buffer_size/maximum_row_size

If the table contains a LONG column, only one row will be in the buffer at one time.

OWNER lists the schemas you want to export. Use this keyword if you are exporting full schemas. If
ROWS=N, only the SQL code needed to regenerate a schema will be exported—no table rows.

FILE is the name of the export file. You should use a filename that is reasonably descriptive of the data
contained. In some OSs (UNIX in particular), you can export directly to a tape device. This is
particularly useful for large database backups when you don't have enough disk space anywhere for the
export file.

CAUTION

When you specify a filename for the FILE keyword, be aware that these files can be
rather large, depending on what you are exporting. In OSs like UNIX, you can export
directly to tape, which eliminates this problem. If this is not an option, you will have to
break up your export into small enough pieces to fit in either several different filesystems
or in one location, so that each piece can be moved off to tape before the next piece is
created in a subsequent EXP run. You may want to run EXP during off hours to reduce
the impact of a full filesystem.

TABLES lists individual tables you want to export. If ROWS=N, only the SQL code needed to
regenerate the specified tables is exported; no rows are exported.

COMPRESS has many implications when it is time to import the data. COMPRESS=Y will cause IMP
to construct the initial extent of a new object to be large enough to hold all the object's data. For
instance, if a table has four extents and each one is 20MB in size, the initial extent of the new table will
be approximately 80MB. If COMPRESS=N, the new table will have four 20MB extents just as the
original did.

CAUTION

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch24/0594-0596.html

Although COMPRESS=Y is very useful when you are trying to reorganize a table (to
reduce the number of extents, thereby improving performance), you need to do some
homework before using this option. Suppose you have a table, "ORDERS," that has these
extent sizes: 30MB, 100MB, 1000MB, 1500MB, 1500MB, and 1000MB. The total size
of this table is a little more than 5GB. Now suppose your machine only has disk drives of
2GB and 4GB. The largest single extent your system could have is 4GB, yet Oracle will
expect to find a 5GB extent. The import process will not work because Oracle will be
unable to allocate a 5GB extent. Before using COMPRESS=Y, use the following SQL
statement on each table you intend to export:

SELECT SUM(BYTES) FROM DBA_EXTENTS WHERE SEGMENT_NAME=<table
name>

AND OWNER=<table owner>

Using this statement will help make sure you can accommodate the table in a single
extent.

Page 592

RECORDLENGTH is used for moving export files to an Oracle database on another operation system.
If you are moving from system A to system B, you must know what the record size is on system B. This
information is found in the operating system documentation supplied by Oracle.

GRANTS indicates to EXP whether to export GRANTS associated with objects being exported.

INCTYPE specifies a COMPLETE, CUMULATIVE, or INCREMENTAL backup. You must use a
USERID with EXP_FULL_DATABASE because this option is only useful with FULL=Y. In most
OLTP production environments, this capability is seldom used.

NOTE

A CUMULATIVE or INCREMENTAL export will export an entire table if it has
changed. EXP will not just export changed rows. If you do choose to use this option, be
sure you regularly perform a COMPLETE export to keep your baseline export current.n

INDEXES indicates if you want to export the indexes on the tables being exported.

RECORD specifies whether or not Oracle keeps track of a COMPLETE, CUMULATIVE, or
INCREMENTAL export. This is useful in the following case:

You normally run a COMPLETE on Sunday and CUMULATIVEs on Monday through Friday. Tuesday
night you plan to reload the test system with a COMPLETE export of the production system. If
RECORD=Y when you exported the production system Tuesday night, Wednesday's CUMULATIVE
export will be based on Tuesday night's COMPLETE instead of Sunday's. Basically, RECORD=N will
be used if you are running an export on the database out of sequence with your normally scheduled
exports.

ROWS indicates whether or not you want to export the data contained in the tables you are exporting. If
ROWS=N, only the SQL code needed to re-create the table will be exported.

PARFILE is the name of a parameter file containing any valid keyword settings used for EXP. Here's an
example of a parameter file:

TABLES=CUSTOMER,VEDOR
OWNER=SUSAN
COMPRESS=N
RECORD=N

As you can see, there's nothing fancy about a parameter file. It only has a keyword and value on each
line. This is particularly useful if you have a standard export that you need to run periodically because
you don't need to worry about forgetting to set a keyword.

CONSTRAINTS indicates whether or not you want to export constraints associated with the objects you
are exporting.

CONSISTENT is useful if you are exporting tables while they are also being updated. CONSISTENT=Y
ensures that each table in the export is consistent to a single point in time. If EXP encounters an updated
row while exporting a table, it will use the rollback infor- mation and export the old version. If a new
row is inserted, EXP will ignore it. Do not use

Page 593

CONSISTENT=Y unless it is needed because EXP will keep a rollback segment during the entire
export. Because this also places extra load on your database, it is an option best used during off hours.

If you encounter a Snapshot too old error, you probably need to run your export during a period of
lighter system load. You may even need to run it with the database open in RESTRICT mode to keep
users from updating the database during your export. You may also need to export while in RESTRICT
mode if you need a consistent view of several tables. CONSISTENT=Y provides read consistency only
on a per-table basis.

LOG is a filename where you would like to save the export messages and errors. Normally, EXP just
displays this information onscreen. However, because the information may race by too quickly for you
to read, you'll probably want to save your EXP log output to file. All the messages and errors are shown
on your screen, even when you specify a LOG filename.

TIP

If you are using a UNIX system, you can redirect EXP's screen output to /dev/null if you
would rather not see the messages fly by on your monitor. If EXP is displaying a large
amount of information, it will usually run faster if you redirect the output to /dev/null.
This is because it is much faster for UNIX to simply throw away the information than
send it to your screen.

STATISTICS specifies how statistics are generated when the exported file is imported. The options are
COMPUTE, ESTIMATE, or NONE. If your export is large, setting STATISTICS to ESTIMATE or
NONE will save you time (NONE saves the most). You can always use the ANALYZE TABLE
command later to generate the statistical data.

DIRECT is a recent enhancement of EXP. It greatly improves exporting performance by reading the
data blocks directly (rather than going through the normal database engine). Generally, if you have this
option, you should use it! Your exports will run much faster.

FEEDBACK is a recent addition to EXP. If you set FEEDBACK=n (where n is some positive integer)
EXP will display a period (.) for every n rows it exports. Setting FEEDBACK=0 disables this feature.

You can enter as many keywords as you want in any order on the command line. Use the following
syntax:

exp [<keyword>=<value>[,<value>,...] [<keyword>=<value>[,
<value>...] ...]]

Generally, I prefer to use EXP entirely in batch mode because I can easily repeat the command, either
unchanged or with minor modifications. If EXP needs more information than you provided on the
command line, such as the user ID/password, it will prompt you to enter it. To run EXP entirely
interactively with no keywords, just type in exp at your system's command prompt. EXP will prompt
you for all the information it needs.

Full Logical Backups

EXP is particularly well suited for full logical database backups. The only requirements are that you
must have the EXP_FULL_DATABASE privilege and you must have enough storage space for

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch24/0594-0596.html

Previous | Table of Contents | Next

Page 621

CHAPTER 25

Integrity Management

In this chapter

● Introduction622
● Implementing Locks622
● Analyzing v$lock627
● Monitoring Locks on the System631
● Avoiding Locks: Possible Solutions635
● Implementing Locks with Latches638

Page 622

Introduction

As the size of the database and the number of users on the system increases, complexity in terms of
internal resource contention also increases thus leading to performance problems. The general symptoms
of such internal contention are: there is enough free memory, the CPU is not very busy, but still there are
performance problems on the system. Such symptoms would make a novice administrator wonder what
is happening on the system. The aim of this chapter is to empower the administrator to identify such
contention issues. The resources that are addressed in this chapter are locks and latches.

Implementing Locks

Locks may never be required for a single user database, but when you work in a multiuser environment,
it is important to have a mechanism in place that will automatically cater to data concurrency,
consistency, and integrity issues. Oracle automatically caters to these issues by acquiring different types
of locks on behalf of the user to allow or prevent simultaneous access to the same resource by different
users and ensuring that data integrity is not violated. Resource here means user objects such as tables
and rows. While implementing locks, one of the key issues to keep in mind is that it should not be a
bottleneck on the system, preventing concurrent access to data. Oracle will therefore automatically
acquire locks at different levels, depending on the database operation being performed to ensure
maximum concurrency. For example, when a user is reading data of a row, other users should be
allowed to write to the same row. No user should be allowed to drop the table, however. These issues,

relating to which transaction should be allowed what level of access to an object or data, are
implemented using the different locking levels, which we will be covering in the next section.

Need for Locking

Before we actually get into the intricacies of locking, let's examine the various scenarios under which
locking becomes really important. The following are a few of the instances that explain why data
consistency and concurrency are so important:

● A user is modifying data in a table, and at the same time another user is trying to drop the same
table. Oracle prevents this from happening by acquiring a table-level lock for the first user. The
second user, who wants to drop the table, waits for the table lock to be released by the first user,
after which he or she can drop the table.

● User A is trying to read some data within a transaction, which was modified and committed by
User B, after User A's transaction started. User A reads the committed data of User B. This
means that the data read within the same transaction is not consistent to a point of time. Oracle
ensures data read within a transaction is consistent with the point of time when the transaction
started. Oracle implements transaction-level read consistency using the system change number
(SCN) which is explained in a later section.

● One user modifies the data, and another user modifies the same row before the first user has
committed the transaction; therefore, the changes made by the first user are lost.

Page 623

● Oracle prevents this from happening by acquiring a row-level exclusive lock on the table's row
and causing the second user to wait.

● One user reads data off another user's data, which is not yet committed; that is, User A reads a
row that User B is changing before User B's changes are committed.

Oracle prevents this from happening by allowing User A to read the old data, that is the data before User
B modified it. Oracle does this by obtaining the data from the rollback segments.

Locking Concepts

Oracle will automatically decide—depending on the context—what lock needs to be applied for the
given situation to provide maximum level of data concurrency using the lowest level of restrictiveness.
Oracle has two levels of locking: share and exclusive.

Share locks are implemented with higher concurrency of data access in mind. If a shared lock
is acquired, other users can share the same resource. A number of transactions can acquire a shared lock
on the same resource, but this is not true in the case of exclusive locks. For example, multiple users can
read the same data at the same time.

Exclusive locks prevent simultaneous sharing of the same resource. For example, if one transaction
acquires an exclusive lock on a resource, no other transaction can alter or modify that resource until the
time the lock is released. Here again, sharing the resource is allowed. For example, if a table is locked in
exclusive mode, it will not prevent other users from selecting from the same table.

You can use the levels of locking to enable concurrent access and, at the same time, ensure data
integrity. Oracle achieves this goal by applying the lowest level of restrictiveness. Oracle will
automatically lock either the individual row or the entire table, depending on what is needed. Oracle
uses the following general guidelines to implement the level of locking it needs to apply:

● If a user is trying to read data from a row, another user should be allowed to write to the same
row.

● If a user is updating the data of a row, other users should be able to read data of the same row at
the same time.

● If two users are updating the same table, they should be prevented only when they are trying to
access the same row.

One of the most important functionality issues that is implemented using locking mechanisms is data
consistency. Oracle ensures data consistency at two levels: statement level and transaction level.

Statement-level read consistency means any statement that starts executing will see committed data that
was available just before the statement started executing. All changes, committed or uncommitted, made
to data while the statement was in execution are invisible. Oracle provides statement-level read
consistency by ensuring that only committed data before the SCN observed at the time when the
statement started executing is available.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 618

4. For each changed file, set the new filenames in Oracle. The following example changes Oracle
internally so that it will look in the right location for a data file. Here, you have moved the
rbs1test.dbf file from the /opt/oracle/dbs1 filesystem to the /opt/oracle/dbs2 filesystem.

ALTER DATABASE RENAME FILE
`/opt/oracle/dbs1/rbs1test.dbf' TO
`/opt/oracle/dbs2/rbs1test.dbf';

5. Now shut down and restart the database. If it fails to start up because of a missing data file, you'll
need to find out where the file went and use Oracle's RENAME facility so that Oracle finds the
file it needs.

Windows EnvironmentsUnfortunately, Oracle's Recovery Manager does not gracefully handle
incomplete recoveries. For this reason, the task of incomplete recovery using Oracle's Recovery
Manager is a task best left to Oracle Support. Incomplete recoveries are delicate procedures, and at this
point you can ill afford to take the chance that Recovery Manager will issue a SQL statement that would
render your database unusable.

Testing Strategies

In this chapter, we have covered a very large amount of material related to backing up and recovering
Oracle databases. Most DBAs find that every site has requirements for backup/recovery that make them
unique. Because you rely so heavily on your backup and recovery solutions, you must make certain that
they can truly be relied upon. An untested backup and recovery solution is worst than nothing at all—it
gives you a false sense of security.

The ideal situation is that you have a completely identical machine to the one you want to protect that
you can use to test backup and recovery scenarios. You should start out by cloning the production
system to your test system (with the databases shut down, of course). By simulating various failures
(shutting the power off to disk drives, deleting files, corrupting redo log files, and so on) and having to
recover from them, you'll get invaluable hands-on experience that you can never get by reading any
book or attending any seminar. If you can simulate a load on the system while performing these
operations, you'll get the best possible experience along with complete reassurance that your backup/
recovery solution will protect you against almost any failure.

If you, like most DBAs, don't have a complete system to use for your testing, create an instance on a
machine that is most similar to the one you need to protect. It is best to pick a machine that does not

already have Oracle instances. This minimizes the chance that you'll damage a working Oracle database.
Copy as much of the production database to this test instance as space permits. Simulate the filesystem/
disk layout as closely as possible. Use the same backup and recovery procedures you would use on the
production system while simulating failures and trying to recover from them.

Page 619

No matter how you test your backup and recovery solution, make sure that you document the exact
procedures you followed. Also document where you had difficulty and what your resolution was.
Anytime you experience a failure on your production system, add that scenario to your failure/recovery
exercises. If it happens once, it'll probably happen again. Whenever a new DBA joins your staff, have
him or her perform the same disaster and recovery exercises.l

Page 620

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 615

ORA-01113: file 4 needs media recovery
ORA-01110: data file 4: `/opt/oracle/dbs/usr1test.dbf'
SVRMGR> recover database automatic;
ORA-00274: Illegal recovery option AUTOMATIC
SVRMGR> recover automatic database;
ORA-00279: Change 15185 generated at 08/24/97 21:33:21 needed for
thread 1
ORA-00289: Suggestion : /opt/oracle/archive/test200.arc
ORA-00280: Change 15185 for thread 1 is in sequence #40
ORA-00278: Logfile `/opt/oracle/archive/test199.arc' no longer
Â needed for this ry
ORA-00308: cannot open archived log `/opt/oracle/archive/test200.arc'
ORA-07360: sfifi: stat error, unable to obtain information about file.
AT&T System V/386 Error: 2: No such file or directory
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

Oracle is now waiting for you to tell it what to do next. Because your complete recovery failed, you
must now begin an incomplete recovery. First, cancel the current recovery by typing CANCEL. Now
shut down the database normally.

The tablespace USERS uses usrtest.dbf, which Oracle cannot completely recover because of the missing
archived logs. Unfortunately, your life just got much more complicated. Now would be a good time to
let the spouse know you will not be home for a while because there is no way to bring the usrtest.dbf file
back to a consistent state relative to the rest of the database. Your only safe alternative (from a data
consistency standpoint) is to restore all the data files from your last backup and apply archived logs
through log #199. You will be losing all of the transactions that have occurred since log #199. Here are
the steps you'll need to follow:

1. Restore all of the data files from your last backup.

2. Try to start the database normally.

3. When Oracle says it is in need of recovery, enter this SQL statement:

 RECOVER AUTOMATIC DATABASE;

4. Oracle will stop recovering when it cannot find the archived log file you are missing.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch24/0612-0614.html

5. Cancel the recovery by entering CANCEL.

6. Cause an incomplete recovery with this SQL statement:

 RECOVER DATABASE UNTIL CANCEL;

7. Reply with CANCEL at the prompt.

8. Force the database open with this SQL statement:

ALTER DATABASE OPEN RESETLOGS;

8. Immediately shut down the database.

9. Make a cold backup.

10. Restart the database normally.

Page 616

CAUTION

Be sure to make a cold backup anytime you open the database with RESETLOGS. If you
do not, any archived log files will be useless because RESETLOGS makes the current
archived log files incompatible with a pre-RESETLOGS backup of the database.

Through a lot of work, you can restore the data contained in the USERS tablespace up to log #199 and
logically move it into the database without losing any data in other tablespaces. Doing this may create
referential integrity problems with your data. Although the specific procedures for this are beyond the
scope of this book, here's the general plan:

1. Restore your last backup of the system to a test machine. You'll need to re-create redo logs
manually.

2. Copy all of the archived logs through #199 to the test machine.

3. Recover the database with the RECOVER DATABASE UNTIL CANCEL command.

4. Step through all of the archived logs until you reach #199. After 199, cancel the restore.

5. Open the database with the RESETLOGS option.

6. Perform a logical backup of all of the tables in the USERS tablespace.

7. Re-create the USERS tablespace on your failed system.

8. Logically restore the tables exported in step #6 back to the instance that lost the USERS
tablespace in the first place.

In a situation such as this, it is best to bring Oracle Support into the process. Their expertise will provide
all of the details relevant to your particular recovery situation. If you do intend to pursue this course of
action, call Oracle Support before you attempt any type of recovery—do not attempt an incomplete
recovery.

Renaming and Moving Database FilesThere are many times when you need to either rename files in
your database or move them from one location on the server to another. Oracle does allow you to do all
of this, but there are very specific steps that should be followed. The most important of these steps is that
you should do all of this type of work during off-hours. You will need to shut down the database to
perform many of these operations. Be aware that dropping a redo log file, changing a control file entry,
or other operations within Oracle will not physically remove or rename files in the OS. You must
perform these operations manually.

Control FilesThe location of control files are kept in the appropriate init.ora/config.ora file with the
control_files keyword. To move control files, complete the following steps:

1. Shut down the database.

2. Copy or move a control file to the new location.

3. Edit the appropriate init.ora or config.ora file. There is a list of control files following the
control_files keyword. You may change the location or name of a control file, delete a control
file from the list, or add a location to a new control file.

4. Start up the database.

Page 617

Redo LogsRedo logs must be changed from within either SQL*Plus or Server Manager. Technically,
you can perform this operation while the database is up and running, but it is much easier to do when
you are sure there is no activity on the system. To move or rename redo logs, complete the following
steps:

1. Shut down the database.

2. Start the database in EXCLUSIVE mode. The following example shows this operation from

within Server Manager:

STARTUP EXCLUSIVE;

3. Use this SQL statement to find out the group number of the file(s) you want to change:

SELECT * FROM V$LOGFILE;

Keep a note of the group number you are working with.

4. Now determine which redo log group is active:

SELECT * FROM V$LOG;

5. The active redo log group is indicated by CURRENT, shown in the STATUS column from the
query run in #4. If a file you need to move is currently in an active group, switch Oracle to the
next redo log group:

ALTER SYSTEM SWITCH LOGFILE;

6. Now drop the redo log group. In the example, you're dropping the #2 log group. In your system,
use the number you wrote down from step 3.

ALTER DATABASE DROP LOGFILE GROUP 2;

7. Create the redo log file group with the files in the location you want. In this example, you will re-
create group #2 with two files (you should always have at least two files in each redo log group).
You will use 1MB for each file. Obviously, your group number, actual filenames, and size will
vary according to your site requirements.

ALTER DATABASE ADD LOGFILE GROUP 2
(`/opt/oracle/dbs1/log2atest.dbf','/opt/oracle/dbs2/log2btest.
dbf') size 1M;

8. Shut down the database and restart it normally.

Data Files Data files are fairly easy to move around. You'll need to use Server Manager and an OS
utility to actually move or rename data files. If you are relocating files as part of a physical recovery, just
place the data files where you would like them to be. Here's how to change your data file locations/
names:

1. Shut down the database if it is running.

2. With an OS utility, move or rename the files to the new locations or names. Be sure to keep track
of exactly where files were and where they are now.

3. Start the database in MOUNT mode. The following example shows this operation from within
Server Manager:

STARTUP MOUNT;

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch24/0612-0614.html

Previous | Table of Contents | Next

Page 624

Transaction-level read consistency means that all data seen within the same transaction are consistent to the point of
time. Oracle ensures transaction-level read consistency by using the SCN mechanism and by acquiring exclusive table
and row locks when needed.

Oracle implements read consistency by using the data available in the rollback segments. When a query enters the
execution stage, the current SCN is determined. As it starts reading data of data blocks, the SCN of the block is
compared with the observed SCN. If the block's SCN has a value greater than SCN at the start of the query, then it
means that the data in those blocks have changed after the query has started executing. If this data is read from the data
blocks, it is not consistent with the point in time the query started. Oracle uses the rollback segments to reconstruct the
data, as rollback segments will always contain the old data—except in cases of high update activity on the system where
the old data in the rollback segments could potentially be overwritten.

Locking TypesOracle automatically acquires different types of locking, depending on the operation and the resource on
which it has to acquire the lock.

There are three classes of Oracle locks:

Data locks (DML locks) are acquired on tables and are used to protect data, or rather ensure integrity of
data.

Dictionary locks (DDL locks) are used to protect the structure of objects—for example, the structural
definition of tables and view indexes. A dictionary lock is automatically acquired by Oracle on behalf of
any DDL transaction requiring it.

Internal locks and latches protect internal database structures. Latches are discussed in greater detail in the
next section.

Distributed locks and Parallel Cache Management (PCM) locks are used in Parallel Server.

Only data locks and internal locks are covered in this chapter because they are more relevant in the day-to-day issues of
the database.

Data LocksTable Locks (TM): Table Locks are acquired when a transaction issues the statements in Table 25.1. Table
Locks are acquired by Oracle on behalf of the transaction to reserve DML access on the table and to prevent conflicting
DDL operations on the table. For example, if a transaction has a Table Lock on a table, then it will prevent any other
transaction from acquiring an exclusive DDL lock on the table, which is required to drop or alter the table.

Table 25.1Statements and Table Locks Acquired

Statement Type Mode

INSERT TM Row Exclusive(3) (RX)

UPDATE TM Row Exclusive(3) (RX)

DELETE TM Row Exclusive(3) (RX)

SELECT FOR UPDATE TM Row Share(2) (RS)

LOCK TABLE TM Exclusive(6) (X)

Page 625

Table 25.1 shows the different modes in which Table Locks (TM)are acquired by the RDBMS when specific statements
are issued. The Type column has a value such as TM, and the Mode column has a value of 2, 3, or 6. The value TM
indicates a Table Lock; the value 2 indicates a row share (RS) lock, 3 indicates a row exclusive (RX) lock, and 6
indicates an exclusive (X) lock. The value TM(3), for example, is the value that would be stored in the v$lock table,
against the session that issued the statement, when the corresponding statement is issued, so you need to be familiar with
these values. v$lock is the table where Oracle lists the locks currently held by the Oracle server, which is discussed in
detail with examples in the section "Analyzing v$lock."

For example, when an Insert statement is issued, the Type column in v$lock will have value TM for the session and the
Mode column will have value 3 which means row exclusive (RX) lock. For additional details, refer to the section
"Analyzing v$lock." For all statements except the Lock table, there will be two entries in the v$lock table: one
corresponding to the Table Lock (TM) and another entry corresponding to the Transaction Lock (TX). For statements
such as insert update, deleting a TM lock is acquired only to prevent conflicting DDL operations on the locked objects,
which means that when a user is inserting into a table, he or she acquires a TM lock in mode 3 (RX). If another user is
trying to drop the same table, it will have to acquire a TM lock in mode 6 (Exclusive). The TM(3)(RX) lock will prevent
the TM(6)(X) session from acquiring the lock and the second session will remain waiting. Table 25.2 illustrates lock
modes acquired by a session and lock modes permitted.

Table 25.2Locking Modes and Operations Permitted

SQL Statement
Table Lock
Mode

Permitted Lock
Modes

Select * from
tname…

none RS, RX, S, SRX, X

Insert Into tname… RX RS, RX

Update tname… RX RS*, RX*

Delete From tname RX RS*, RX*

Select…From tname
For Update Of…

RS RS*RX*S*, SRX*

Lock Table In
ROW SHARE
MODE

RS RS, RX, S, SRX

Lock Table In
ROW EXCLUSIVE
MODE

RX RS, RX

Lock Table In
SHARE MODE

S RS, S

Lock Table In
SHARE ROW
EXCLUSIVE MODE

SRX RS

 continues

Page 626

Table 25.2Continued

SQL Statement
Table Lock
Mode

Permitted Lock Modes

Lock Table In
EXCLUSIVE
MODE

X None

RS: Row Share
SRX: Share Row
Exclusive

RX: Row Exclusive X: Exclusive

S: Share

* If another transaction has already acquired a lock on the row, a wait will occur.

Transaction Locks (TX): This type of lock is acquired when a transaction issues the statements in Table 25.3.
Transaction Locks are always acquired at the row level. TX Locks exclusively lock the rows and prevent other
transactions from modifying the row until the transaction holding the lock rolls back or commits the data.

Table 25.3Statements

Statement Type Mode

INSERT TX Exclusive(6) (X)

UPDATE TX Exclusive(6) (X)

DELETE TX Exclusive(6) (X)

SELECT FOR UPDATE TX Exclusive(6) (X)

For TX locks to be acquired, the transaction must first acquire a TM lock on the table. For example, when an Insert
statement is issued (refer to Table 25.1), a TM lock in mode 3(RX) has to be acquired. After the TM lock in RX mode is
acquired, the transaction will have to acquire a TX in exclusive (X) mode (refer to Table 25.3). The TX lock will be
prevented from being acquired only if another transaction has a TX lock on the same row, and the TM lock will be
prevented if there is already a TM lock in exclusive (X) Mode on the table.

The other modes are 4 (Share Mode) and 5 (Share Row Exclusive), but these locking modes do not occur commonly on
the database and hence do not merit much discussion.

The Share Mode (4) lock is acquired when a user issues the following statement:

Lock table <table name> in SHARE mode;

and the Share Row Exclusive lock is acquired when a user issues

Lock table <table name> in SHARE ROW EXCLUSIVE MODE;

Very few applications actually have to use these statements; therefore, they are not considered really important when
compared to other day-to-day, more frequently occurring locking types.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 627

Analyzing v$lock

Oracle stores all information relating to locks in the database in the dynamic status table v$lock . This
section analyzes various scenarios in the database when resources are locked and examines the v$lock
table to see how Oracle reports the lock.

The following is a description of the structure of v$lock:

ADDR RAW(4)

KADDR RAW(4)

SID NUMBER

TYPE VARCHAR2(2)

ID1 NUMBER

ID2 NUMBER

LMODE NUMBER

REQUEST NUMBER

CTIME NUMBER

BLOCK NUMBER

The important columns of interest, which would be of use when analyzing locking situations, are as
follows:

sidThis is the session identifier.

TypeThis is the type of lock acquired or waiting by the session. Example values are

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch25/0630-0632.html

TX Transaction

TM DML or Table Lock

MR Media Recovery

ST Disk Space Transaction

As said previously, this chapter covers only TX and TM locks.

lmode/requestThis column contains the mode of the lock. The possible values are:

0 None

1 Null

2 Row Share (RS)

3 Row Exclusive (RX)

4 Share (S)

5 Share Row Exclusive (SRX)

6 Exclusive (X)

If the column lmode contains a value other than 0 or 1, it indicates that the process has acquired a lock.
If the request column contains a value other than 0 or 1, it indicates that the process is waiting for a lock.
If lmode contains a value 0, it indicates that the process is waiting to acquire a lock.

The following select is a quick way to check whether there are any sessions waiting to acquire locks on
any table.

 Select count(*)
 From v$lock
 where lmode = 0

Page 628

If the select returns a value that is greater than zero, there are locks sessions on the systems currently
waiting to acquire locks.

id1Depending on the type of lock, the value in this column can have different meanings. If the type of
lock is TM, the value in this column is the ID of the object that is to be locked or waiting to be locked,
depending on the context. If the type of lock is TX, the value in this column is the decimal
representation of rollback segment number.

id2If the type of lock is TM, the value in this column is zero. If the type of the lock is TX, it is the
representation of the wrap number, that is, the number of times the rollback slot has been reused.

Using this information, you can now examine various scenarios and analyze the values stored in this
table in different cases. The next section covers detailed case analyses of commonly occurring locks on
the database and how to read this information from v$lock view.

Case 1: A Table Locked Exclusively

For purposes of discussion, let's assume that the table that is going to be locked is the employee table
and the session id is 28. Assume that one user issues the following statement:

Lock table employee in exclusive mode;

This statement will lock the table in exclusive mode. If a table is locked exclusively by a user, the only
SQL statement that can be used on the table by another user is the select statement. Insert, update, delete
or any DDL operation on this table by the other user's will not be permitted until the lock is released.

For examining the records in the v$lock table, use the following select:

Select sid,
 type,
 lmode,
 request,
 id1,
 id2
From v$lock
where sid = 28;

When you execute the select, you get the following output:

 SID TY LMODE REQUEST ID1 ID2

---------- -- ---------- ---------- ---------- ----------

 28 TM 6 0 7590 0

The following are the observations:

● There is only one entry in the v$lock.
● The lock acquired is a TM (Table) Lock.
● The lmode column contains the value 6, which indicates that a table-level exclusive lock has been

acquired by the session.

Page 629

● The id1 column contains the value 7590, which is the object id of the employee table. The id2
column, as expected for TM locks, has a value of 0. To obtain the description of the object, you
can use the sys.obj$ table. You can use the following select:

 Select name

 From sys.obj$

 where obj# = 7590;

 Name

 Employee

● The request column contains the value 0, which indicates that the lock has been acquired by this
session.

Case 2: Session Updating a Row of an Exclusively Locked Table

In Case 2, the table is locked exclusively by a session, and another session is trying to update a row of
the same table. Here is the SQL issued by the session trying to update the table:

Update employee
Set Name = `TOM'
where emp_id = `1086';

In this case, the entry for the first session in v$lock remains the same as in Case 1, but the entries for
session two are very interesting. Let us assume the session id of the second session is 29. Now if you
execute the following select:

Select sid,

 type,
 lmode,
 request,
 id1,

 id2
From v$lock
where sid in (28,29);

this is the output:

SID TY LMODE REQUEST ID1 ID2

---------- -- ---------- ---------- ---------- ----------

28 TM 6 0 7590 0

29 TM 0 3 7590 0

The following are the observations in this case:

● The entry for session 28 remains the same as in Case 1.
● There is one entry for session 29. This entry is for a TM lock. Note the value of lmode is 0, and

the value of request is 3. This means that session 29 is waiting to acquire a Table Lock on the
table. A Table Lock has to be first acquired by session 29 to flag that it is currently using this
table. This will prevent any other sessions from issuing any DDL statements on this table. This

Table Lock is basically acquired to flag or mark the table, as used by the session. The id1 column
here again indicates the object id of the table, which has to be locked.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch25/0630-0632.html

Previous | Table of Contents | Next

Page 649

CHAPTER 26

Parallel Query Management

In this chapter

● Introduction650
● SQL Operations That Can Be Parallelized653
● Understanding the Degree of Parallelism654
● Understanding the Query Server Processes656
● Analyzing Objects to Update Statistics656
● Understanding the 9,3,1 Algorithm657
● Understanding Parallel DML657
● Parallel Execution in OPS Environment658
● Tuning Parallel Query659

Page 650

Introduction

Large systems with significant memory and CPU resources were available for decades. However, these
systems were available only with proprietary operating systems and were not very cost effective.
Multiple CPU machines with UNIX open system architecture were available in the early '90s. These
machines had significant hardware resources and were comparatively cheap. Oracle introduced Parallel
Query Option in Oracle version 7.1 to effectively use the hardware resources available in these systems.
Oracle Parallel Query Option allows long running SQL operations, mainly queries, to be spread among
multiple CPUs in a coordinated fashion. This reduces the elapse time for execution of resource-intensive
SQL operations.

The Parallel Query Option allows certain operations to be performed in parallel by multiple server
processes. One process, known as the query coordinator, dispatches the execution of a statement to
several servers, coordinates the results from all the servers, and sends the results back to the user.

Although the feature is generally referred to as PQO, it also includes:

● Parallel Load

● Parallel Recovery
● Parallel Replication
● Parallel SQL

Parallel Load

The SQL*Loader direct path allows you to load data into the same table or partition simultaneously,
using multiple SQL*Loader sessions. For example:

sqlload saledba/saledba control=sales1.ctl parallel=TRUE direct=TRUE

sqlload saledba/saledba control=sales2.ctl parallel=TRUE direct=TRUE

sqlload saledba/saledba control=sales3.ctl parallel=TRUE direct=TRUE

Note the use of keywords parallel and direct in the command line. Also note the use of three different
input data files for each of the sessions. Other important features of parallel load are:

● Each SQL*Loader session loads data into a separate new extent. To optimize the I/O throughput
of the system, it is highly recommended to control the location and size of the new extent by
using the FILE and STORAGE keywords of the OPTIONS clause. A FILE keyword can be
specified in the command line or in the control file. However, a storage clause can only be
specified in the control file.

● Parallel load requires that there be no local or global indexes. If any are present, it gives an error
message and aborts the load. You need to manually drop the index before the load and rebuild the
index once the load is completed.

● Each loading session acquires a shared lock on the table. However, each loading session is
independent, and there is no communication between these sessions.

Page 651

● When a session finishes loading, Oracle joins the loaded extent(s) with the existing extents. The
unused blocks from the last loaded extent are returned as free extent. This results in nonstandard
sizes of the extents after the load. Truncating takes place even if you specify the extent size
through a storage clause via options in the loader control file.

As mentioned above, each parallel load session loads data into new extent(s) and does not use any
existing extents, even if they do not contain any data. Thus, the initial extent of a table that is loaded
only by parallel loads is never used. To optimize disk space usage, you should either create a very small
initial extent or put data into the initial extent by loading it without the parallel option.

Parallel Recovery

Oracle's basic read-write unit is a data block. Whenever changes are made to a block, Oracle records
these changes in the form of a redo log so that the block can be reconstructed using these logs if needed.
Due to media failure or for any other reason, if the contents of the present data file(s) are lost, the file is
restored from a suitable backup copy and then recovery is done. The recovery process involves:

● Reading the log file and obtaining the series of changes made to the data blocks.
● Determining which data blocks need the changes to be applied.
● Reading these data blocks in the buffer cache.
● Applying the desired changes to these data blocks, from the redo log.
● Writing the modified block back to the disk.

To perform recovery in parallel you should set the initialization parameter RECOVERY_
PARALLELISM. Alternatively, you can use the PARALLEL clause of the RECOVER command.
During parallel recovery, the Server Manager or SQLDBA session reads the redo log file and passes on
the changes to the parallel server processes. These processes then read the corresponding data file(s) and
apply the changes.

Parallel Propagation (Replication)

Replication allows you to maintain multiple images of one or more database objects in multiple
databases. Oracle Server transfers data over database links between these databases to propagate
changes made to the replicated objects. The SNP background processes perform the data replication.
However, if the data volume to be replicated is significantly large, it might take longer to synchronize
the objects. Oracle8 allows parallel replication, whereas multiple parallel server processes can be used to
propagate transactions.

Parallel SQL Execution

An Oracle database is a collection of physical data files that are manipulated through various processes.
A set of such background processes and a shared memory segment, collectively called Oracle Instance,
enable concurrent users to interface with the database. When a user wants to use (select, insert, update,
delete) the data in the database, he or she needs to connect

Page 652

to the database. On most of the UNIX systems, Oracle uses a two-task architecture. In this scheme, when
a user connects to the database, an additional process (frequently known as the shadow process) is
forked. The shadow process accesses the shared memory segment and the datafiles on behalf of the user.

NOTE

In a multi-threaded server (MTS) environment, when a user logs on to the database, a
shared server process is used instead of the shadow process. During Parallel Query
Option this shared server process acts as the query coordinator.n

Oracle stores the data in the data files in blocks. A data block is Oracle's basic data input/output unit.
When the user uses data, the corresponding data block is read by the shadow process in Oracle's buffer
cache (part of the shared memory segment). The block in the buffer cache can then be modified by the
user shadow process. Modified data blocks (dirty buffers) are written back to the disk by the DBWR.
Thus, a shadow process does the major part of the work required by the user. Operations like parsing the
SQL statement, sorting the data, and so on are also done by the shadow process.

This works very well in an OLTP system where the amount of data manipulated by a user is relatively
small. However, in a DSS environment, when a user generally processes huge amounts of data, the
shadow process might take a while to do the required work. While the shadow process is working long
and hard to manipulate the data, it is quite possible that the system has idle CPU memory resources. This
is where Oracle's Parallel Query Option comes in handy. With this option, Oracle can divide a user's
large data processing request into multiple, comparatively small units of work that are then concurrently
executed by different
processes. It uses a set of dedicated background processes, known as parallel query slaves (servers), to
do such work. The shadow process gets promoted to a management role and is called the query
coordinator. It is the responsibility of the query coordinator to:

1. Break down the functions into parallel pieces.
2. Ensure that a sufficient number of parallel query slaves are available.
3. Initialize the server process for the given work and assign the work among the PQO server

processes.
4. Gather the output from the slave processes and return the output.
5. Once the desired work is finished, free the query servers, making them available for other work.

Under favorable conditions, parallel execution reduces the execution time by as many factors as the
number of query slaves it uses. However, it does not reduce the total CPU time taken by the SQL
statement. Parallel execution uses more memory than serial execution, so if the
machine does not have spare CPU and memory resources, it may not yield desired scalability.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 646

By using bind variables, both the previous selects in the first case can share the same select, which is
stored in the library cache, thus reducing unnecessary parsing and reducing load on the latch. Using bind
variables prevents multiple copies of the same select from being formed in the shared pool.

Parsing can be reduced in the shared pool or by pinning frequently used objects such as procedures and
packages. The advantage of pinning these objects is that these will never be flushed out of the shared
pool and subsequently the parse time is reduced. Objects that are used very frequently can be identified
by the following query:

Select name ,executions

From v$db_object_cache

Where executions > <threshold limit>;

order by 2 desc;

These high-execution objects can be pinned in the shared pool using dbms_share_pool.keep
(`object_name','P');.

To check the objects in the shared pool that are not pinned, execute the following query:

Select name,type,kept,sharable_mem
From v$db_object_cache
Where kept = `NO'
Order by sharable_mem desc;

Fragmentation of the shared pool can also cause high demand for these latches. A fragmented shared
pool means the net free memory available in the shared pool may be large, but the total contiguous
memory available may not be the same. Therefore, when an object like a large
PL/SQL object with a very high memory requirement is to be located in the shared pool, it will cause a
lot of smaller chunks of allocated memory areas to be flushed. These would then have to be parsed again
when a user makes the request for the same SQL again. The primary cause of fragmentation is large PL/
SQL objects. Fragmentation can be avoided by increasing sharing among SQL statements by use of bind
variables and pinning of large PL/SQL objects using the techniques mentioned previously. l

Page 647

PART VII

Parallel and Distributed Environments

26. Parallel Query Management
27. Parallel Server Management
28. Distributed Database Management

Page 648

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 643

 11 cache buffers chains
 12 cache buffer handles
 13 multiblock read objects
 14 cache protection latch
 15 cache buffers lru chain
 16 system commit number
 17 archive control
 18 redo allocation
 19 redo copy
 20 KCL freelist latch
 21 KCL name table latch
 22 instance latch
 23 lock element parent latch
 24 loader state object freelist
 25 dml lock allocation
 26 list of block allocation
 27 transaction allocation
 28 sort extent pool
 29 undo global data
 30 ktm global data
 31 sequence cache
 32 row cache objects
 33 cost function
 34 user lock
 35 global tx free list
 36 global transaction
 37 global tx hash mapping
 38 shared pool
 39 library cache
 40 library cache load lock
 41 virtual circuit buffers
 42 virtual circuit queues
 43 virtual circuits
 44 NLS data objects
 45 query server process
 46 query server freelists
 47 error message lists

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch25/0639-0642.html

 48 process queue
 49 process queue reference
 50 parallel query stats
 51 parallel query alloc buffer
 52 device information

cache buffers lru (Least Recently Used) chainThe cache buffers lru chain latch is responsible for
protecting the access paths to db block buffers in the buffer cache. The buffer cache size defined by the
init.ora parameter db_block_buffers resides in the SGA and contains the cached copy of data read from
data files. When processes need to read data, the presence of the data in this buffer as a result of the data
being read in by some process makes the read very I/O-efficient.

The buffer cache is organized in two lists: the dirty list and the LRU list. The dirty list contains the
buffers, that have been modified but not written to the disk yet. The LRU list is comprised of the pinned
buffers, the dirty buffers that have not yet been moved to the dirty list, and the free buffers. The pinned
buffers are buffers that are currently accessed by other processes.

Page 644

The dirty buffers contain buffers that are to be written to the disk, and they then subsequently get moved
to the dirty list. The free buffers are the buffers that are available for use.

When a process needs to read data from the disk that is not already present in the cache, it needs a free
buffer to read in the new data. It scans the LRU list to check for free buffers. If there are excessive
requests for free buffers in the buffer cache there will be a high access to the LRU list causing
contention for the cache buffer LRU chain.

The contention for this latch can be minimized by the init.ora parameter db_block_lru_latches, which is
available in Oracle 7.3. By increasing the db_block_lru_latches value, the contention can be minimized
for this latch. The maximum value for this parameter is double the number of CPUs.

The basic reason for contention for this latch is a high request for free buffers. You can optimize the
SQL statements to minimize the high demand for free buffers or increase the db_block_buffer parameter
to increase the number of free buffers available on the system.

NOTE

Note that the SGA must fit into a contiguous chunk of real memory, so if the buffer
cache is enlarged, you must ensure that there is enough contiguous memory available on
the system to service the increase.n

redo allocation and redo copyThe redo allocation and redo copy latches control the write access to the
redo log buffer. When a process requires writing to the redo log buffer, one of these latches is to be
acquired by the process. If the size of the redo log information written to the redo log buffer is less than
log_small_entry_max_size parameter, the process will use the redo allocation latch. If the size is greater
than this value, the process is copied using the redo copy latch.

A quick way to check whether there is any contention on the redo log buffer is to check whether there
are any waits associated with writing to the redo log buffer. This can be done by using the system view v
$sysstat:

Select name, value
From v$sysstat
Where name = `redo log space requests';

Output Table:

Name Value

-- ----

redo log space requests 12

The size of the redo log buffer will have to be increased if the number of waits is too high.

Contention for redo allocation LatchThe contention for redo allocation can be reduced on a multi-CPU
system by forcing the process to use the redo copy latch instead. Because there can be multiple redo
copy latches, the copy will be done more efficiently. The number of redo copy latches is defined by the
init.ora parameter log_simultaneous_copies. The maximum number available latches on the system is
double the number of CPUs. For a

Page 645

single CPU system, this value is 0, and the redo allocation latch will be used. So, if there is a contention
for the redo allocation latch, the value of log_small_entry_max_size can be decreased from its current
value so that the redo copy latch is used.

Contention for the redo copy LatchIf the system is facing contention for the redo copy latch, it can be
decreased by either increasing the value of log_small_entry_max_size (so that the redo allocation latch
is used) or increasing the value of log_simultaneous_copies (so that it increases the number of redo copy
latches available).

The init.ora parameter log_entry_prebuild_threshold can be increased so that the data that is written to

the redo log buffer is grouped and written out. By increasing the parameter,
a number of write operations can be grouped so that they can be written out in one operation, thereby
reducing requests for these latches and thus contention.

library cacheThis latch is primarily concerned with control of access to the library cache. The library
cache includes shared SQL area, private sql areas, PL/SQL procedures packages, and other control
structures. Shared SQL area contains SQLs that are shared among multiple sessions. By increasing the
sharing of these SQLs, contention to this latch can be avoided.

Contention for this latch occurs when there is a lot of demand for space in the library cache. Very high
parsing on the system and heavy demand to open a new cursor because of low sharing among processes
are some of the common causes for contention for this latch.

Contention for this latch can be avoiding by using code that can be shared by multiple sessions. For
example, the RDBMS treats the following two SQLs differently:

select name from employee where emp_id = 100;

and

Select name from employee where emp_id = 100;

Though both the SQL statements look the same, the hash values of these statements are different. One of
the statements has select in upper case and the other one has select in lower case. Therefore, when this
statement is issued, the RDBMS will parse both the statements individually as different statements, thus
causing load on the latches. This situation can be avoided by developing coding standards wherein
indentation and case standards are implemented so that every SQL statement written would have the
same hash value as far as possible. Note that even putting more empty spaces causes one select to be
different from another, causing increased parsing.

Using bind variables in SQL statements can increase the sharing of the same clauses. For example,
consider the two cases, not using bind variables:

Select sal from employee where emp_id = 100;

Select sal from employee where emp_id = 200;

or, using bind variables:

Select sal from employee where emp_id := emp_id;

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch25/0639-0642.html

Previous | Table of Contents | Next

Page 653

SQL Operations That Can Be Parallelized

When an SQL statement is submitted, it is first parsed and then executed. After parsing and before
execution, the optimizer builds the execution plan. The query coordinator process examines the
operations in the execution plan to determine whether the individual operations can be parallelized.

Prior to version 8, Oracle could parallelize only SQL statements having queries or DDL operations like
create index, create table, as select, and so on, whose execution plan involved a full scan of an existing
table. In version 8, Oracle introduced parallel execution for insert, update, and delete operations.

Oracle8 Server Concepts Manual mentions that Oracle8 allows the following operations to be
parallelized:

● table scan
● nested loop join
● sort merger join
● hash join
● "not in"
● group by
● select distinct
● union and union all
● aggregation
● PL/SQL functions called from SQL
● order by
● create table as select
● create index
● rebuild index
● move partition
● split partition
● update
● delete
● insert…select
● enable constraint (the table scan is parallelized)
● star transformation

As a rule of thumb, one can say that Oracle can parallelize any operation that involves a full table
(partition) scan. Consider the following SQL statement:

select cust_id, sales_amt from sales_97 order by sales_amt;

Page 654

The execution plan consists of a full-table scan of the sales_97 table, assuming there is no index on these
columns, followed by a sort on the sales_amt column. As shown in Figure 26.1, the scan and sort
operations are divided and given to multiple processes. Both scan and sort are done simultaneously by
different processes. Thus, PQO not only allows an operation to be done by multiple processes, but also
enables multiple operations in the same SQL statement to be executed simultaneously rather than one
after another. It is possible because of the creator and consumer nature of these operations. In the
example, the rows fetched by the table scan operation are given to a sort operation without waiting for
the scan to finish.

FIG. 26.1
Parallel execution involving a full-table scan followed by a sort.

Dividing an SQL operation among multiple server processes is generally referred to as intra-operation
parallelism, whereas executing multiple operations simultaneously is known as inter-operation
parallelism. In the previous example, scanning and sorting operations have their own server processes.
Thus, inter-operation parallelism assigns different sets of servers to each operation. Oracle can execute
two operations simultaneously, in parallel, for an SQL statement. If the SQL statement has three or more
operations that can be parallelized, the third operation waits until the first one finishes. The query slaves
used by the first operation are then recycled and used by the third operation.

Understanding the Degree of Parallelism

The number of parallel query slaves an SQL operation can use is called the degree of parallelism. Oracle
determines the degree of parallelism by considering various user inputs, instance initialization
parameters, number of files, number of CPU in the system, and so on.

Determining the Degree of Parallelism

Degree of parallelism is decided from the following, in the given order:

1. 1. At SQL statement level: An SQL statement can specify the degree of parallelism through the
use of parallel hint, as shown below :

select /*+ PARALLEL (sales_97, 3) */

javascript:displayWindow('images/ch26fg01.jpg',355,112)

cust_id, sales_amt from sales_97 order by sales_amt;

1. In this example, Oracle uses three query slaves to perform the full table scan operation. The sort
operation requires another three slaves. Thus the SQL statement uses seven processes—six
parallel query slaves and one shadow process—in all.

Page 655

2. At object level: You set the degree of parallelism associated with a table, cluster, partition, and so
on through the corresponding create and alter commands. You can query the degree of
parallelism of an existing object from the data dictionary from the USER_TABLES view's degree
column.

Alter table sales_97 parallel(degree,3);

select degree from user_tables where table_name='SALES_97';

The first statement will set the degree of parallelism for the table sales_97 to three. Second SQL
statement queries the degree of parallelism for the sales_97 table. If multiple tables are involved
in an SQL operation and each of them has a different degree of parallelism, the highest degree of
parallelism becomes the degree of parallelism for that SQL operation. In the following example,
the SQL operation will be performed with a parallel degree of 5:

alter table sales_97 parallel (degree 3);
alter table warehouse parallel (degree 5);
select /*+ parallel(s) parallel(w) */
w.location, s.sales_date, s.sales_value
from warehouse w, sales_97 s
where c.w_id = s.w_id
order by s.sales_value, w.location ;

3. Instance level: If Oracle fails to get the degree of parallelism in the previous two steps (that is, if
the degree of parallelism is not specified by the user), it uses the default degree of parallelism.
The process of determining the default degree of parallelism has changed with version 7.3.

In version 7.3 and later, Oracle uses the number of available CPUs and the number of disks (files, if it
cannot determine the disk affinity) to determine the default degree of parallelism as follows:

Default degree of parallelism = Min (#CPU in the system, #disk drives the tables is spread on)

If you are using a RAID disk and OS striping so that a datafile is striped across multiple disks, Oracle

does not know the underlying disk striping and assumes the file to be on one disk.

In 7.1 and 7.2, Oracle uses the default degree of parallelism as the minimum of the following:

Table size in number of blocks / PARALLEL_DEFAULT_SCANSIZE

PARALLEL_DEFAULT_MAX_SCANS (init.ora parameter)

The degree of parallelism you should use is dependent on your machine resources (which include CPU,
memory, and the I/O bandwidth of your system), how the data is spread, the number of SQL statements
executed concurrently, and other loads on your system. You need to give considerable thought when
deciding the degree of parallelism. It is important that you have enough system resources for the given
degree of parallelism; otherwise you might introduce problems such as excessive paging, I/O
bottlenecks, and so on that might be counter-productive.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 656

When Enough Query Slaves Are Not Available

Once the degree of parallelism for an SQL operation has been decided, query coordinator will try to
enlist the available (already created but idle) servers. If available servers are not sufficient, it will create
them. If it cannot create the required query slaves due to the MAX_PARALLEL_SERVERS limit, it
will create as many as possible and use the available slaves for parallel execution. Prior to version 7.3,
Oracle executes the parallel operation with as many query slaves as possible and, if no query slaves are
available, the query will be executed in serial. In 7.3 you can specify the minimum number of slaves
required to execute the query by using the init.ora parameter PARALLEL_MIN_PERCENT. The default
value of this parameter is 0, which simulates behavior prior to 7.3. Any integer value between 0 and 100
can be specified for this parameter. When this parameter is set to a non-zero value, Oracle determines
the minimum number of query slaves required for an operation as follows:

Minimum slaves required = Parallel_min_pecent * Degree of parallelism /100

An error is signaled to the user and the SQL operation is aborted when Oracle cannot get the requisite
number of query slaves as determined by the previous formula.

Understanding the Query Server Processes

When an Oracle instance is started, it also starts the number of parallel query servers, as defined by the
PARALLEL_MIN_SERVERS initialization parameter. If you have multiple Oracle instances running
on a system, each instance has its own set of independent parallel query slaves. Similarly, in an Oracle
parallel server environment, each instance has its own set of parallel query slaves. If at any time the
instance requires more query servers, it will create them. However, the maximum parallel query slaves
created at any time cannot exceed the PARALLEL_MAX_SERVERS initialization parameter. Idle
servers are shut down after they have been idle for PARALLEL_SERVER_IDLE_TIME, which is
specified in minutes. However, the
minimum number of servers active at any time does not go below PARALLEL_MIN_SERVERS.

In the Oracle parallel server environment, an SQL operation can execute on multiple instances. The
maximum instances that can participate in a parallel SQL execution is determined by the
PARALLEL_MAX_INSTANCE init.ora parameter at the instance where the execution is started. The
query coordinator also resides on the same instance where the SQL statement is started.

Analyzing Objects to Update Statistics

Oracle uses a cost-based optimizer during parallel execution. If it finds the statistics associated with a
table in the data dictionary, it uses them. If the statistics are not present, it collects them on-the-fly. If the
statistic present with an object is outdated, Oracle might use the wrong execution plan. You should
regularly analyze the objects to keep the latest data dictionary's statistics. Also, after any major data
manipulation operation on a table, you should reanalyze the table.

Page 657

Understanding the 9,3,1 Algorithm

Oracle uses various algorithms for parallel execution. Prior to version 8, it mainly parallelized
operations based on a full-table scan. The simple scheme of parallelizing a table scan involves the
following:

1. Determining the degree of parallelism as described in the previous section.
2. Finding out the high water mark for the table and thus detecting the total number of occupied

data blocks in the table.
3. Dividing the blocks to be scanned into equal parts by dividing the total blocks with available

query servers. Now you are almost ready to assign equal work to each query slave. However, if
the data is not evenly distributed or access to part of the data is slower, some slaves might finish
their work earlier than other ones. To address this problem and optimize the performance, Oracle
uses the 9,3,1 algorithm.

4. Oracle further divides each work-partition into three chunks. The first part is 9/13 of the whole.
The second and third are 3/13 and 1/13 of the whole, respectively. Thus the whole table is
divided into the degree of parallelism * 3 partitions.

5. The query coordinator now assigns all the 9/13 parts to each of the query slaves. The
3/13 and 1/13 parts are assigned subsequently, as and when the query slaves finish their earlier
assigned work. This ensures all the slaves are used almost equally.

Please note that 9,3,1 is one of the basic algorithms Oracle uses for parallel execution. Oracle parallel
execution takes into consideration various other factors, as follows:

1. In the Oracle parallel server environment, the Oracle work division algorithm also takes into
account the disk affinity and so on.

2. Oracle8 parallelizes by partitions while parallelizing partitioned indexes and tables.

Understanding Parallel DML

As noted earlier, Oracle8 can also parallelize insert, update, and delete operations. To execute an insert,
update, or delete operation in parallel, you need to issue the following command:

alter session enable parallel dml ;

If you do not issue this command, the DML operation will be executed in serial, even if the SQL
statement contains explicit hints or parallel clauses to parallelize it.

Update and delete can be parallelized only across partitions. However, an insert can be parallelized
within a partition. Thus, for an update and delete operation, the maximum degree of parallelism can not
be greater than the number of partitions. Thus, the following deletes all the sales transactions less than
$100 from the table sales_97, which has three partitions.

delete /*+ parallel (s,3) */
from sales_97 s where sales_value < 100 ;

Page 658

The following are the hints related to the parallel query option:

● PARALLELYou can use a PARALLEL hint to specify the degree of parallelism in an SQL
operation. Oracle7 allows you to control the degree of parallelism for a table scan operation with
PARALLEL hints. In Oracle8, you can use hints to control the degree of parallelism for INSERT,
UPDATE, and DELETE operations, in addition to a table scan operation. The syntax of a parallel
hint is

PARALLEL (<table_name>, m,n)

where

m = number of parallel servers desired for an sql operation, and n = number of instances that
should execute the SQL operation. It is useful only in an OPS environment.

● NOPARALLELIf you wish to ignore the parallel degree associated with an object and want the
SQL operation to be performed in serial mode, you should use a NOPARALLEL hint.

● APPENDYou can use an APPEND hint to control the parallel execution during an INSERT
operation. It is the default mode of the parallel insert operation, and it uses new free blocks for
the inserted data and existing free space in the blocks is not used.

● NOAPPENDThis hint allows you to use existing free space in the blocks before allocating new
blocks for the inserted data.

● PARALLEL_INDEXOracle8 allows parallel execution for an index range scan of a partitioned
index. You can use a PARALLEL_INDEX hint to this effect. Its syntax is similar to a
PARALLEL hint.

Parallel Execution in OPS Environment

Oracle allows multiple OPS instances to participate in parallel execution of an SQL operation.
If there are four Oracle instances, and you execute the parallel operation with the degree of parallelism
equal to 2, two parallel query slaves will be used at each instance.

You can control the number of participating instances by using:

● Parallel hint
● Parallel instance group

Instance groups allow you to group instances in the desired manner. The PARALLEL_INSTANCE_
GROUP parameter defines the default group on which the instance's parallel operation is executed.
PARALLEL_INSTANCE_GROUP is a dynamic parameter, and you can change the value of the
PARALLEL_INSTANCE_GROUP parameter at the session or system level by using the ALTER
SESSION/SYSTEM… command. When a parallel operation is started, all the instances belonging to the
Instance groups defined by the PARALLEL_INSTANCE_GROUP parameter are involved in the
execution.

Consider a four-instance OPS configuration with the following initialization parameter:

Instance 1 -> INSTANCE_GROUPS = g_12, g_13, g_14, g_123

PARALLEL_INSTANCE_GROUP = g_12

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 659

Instance 2 -> INSTANCE_GROUPS = g_12, g_23, g_24, g_123
PARALLEL_INSTANCE_GROUP = g_123

Instance 3 -> INSTANCE_GROUPS = g_13, g_23, g_34
PARALLEL_INSTANCE_GROUP = g_34

Instance 4 -> INSTANCE_GROUPS = g_14, g_24, g_34
PARALLEL_INSTANCE_GROUP = g_12

When a user logs on instance 1 and executes a parallel SQL operation (without issuing an alter session
set parallel_instance_group command), the operation will be executed by parallel server processes from
instances 1 and 2. However, if the user executes

alter session set parallel_instance_group g_123 ;

before issuing the SQL statement, the operation will be executed on instances 1, 2, and 3.

Tuning Parallel Query

Parallel Query Option is a very powerful tool and, if used effectively, it can reduce the processing time
by several orders. However, it is very resource consuming, and the achieved performance gain is highly
dependent on the data distribution. You should have enough CPU and memory resources to support the
active parallel query slaves. Also, plan your data appropriately so that you do not have an I/O bottleneck
during parallel processing.l

Page 660

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 661

CHAPTER 27

Parallel Server Management

In this chapter

● Understanding the Benefits of Parallel Server 662
● Using Single Instance Versus Parallel Server Databases 663
● Determining when Parallel Server Can Solve a Business Need 683
● Designing a Parallel Database for Failover 684
● Designing a Parallel Database for Scalability 686
● Special Considerations for Parallel Server Creation 693
● Monitoring and Tuning Parallel Server 695

Page 662

Understanding the Benefits of Parallel Server

Oracle Parallel Server is useful for two basic types of application, those that need high- availability and
those that can be scaled along with the underlying hardware. In order for parallel instances to run, they
need more components than a single instance database. In this chapter, you will find out what these
additional components are and how you can use them to manage your Parallel Server database.

Parallel Server is an option that enables two or more instances to mount the same database concurrently.
With multiple instances, you increase the number or the net size of a number of resources available to
the database. These resources include:

● System global area, containing shared pool space, and database buffer cache.
● Background processes, such as database writer (DBWR), log writer (LGWR), and parallel query

slaves.
● User processes.
● SQL*Net or Net8 listeners.

Figure 27.1 shows how these resources multiply with parallel instances. As you can imagine, these
increases enable the database to process more work for more users, and this is the primary benefit most
people attribute to Parallel Server. As you add more hardware nodes, you can also start extra instances,

providing you with a long-term scalability strategy.

FIG. 27.1
Single instance versus
Parallel Server
instances and
resources.

Page 663

You can configure the various instances running in a Parallel Server database with different initialization
parameters. This allows you to tune some instances for users who perform heavy transaction processing,
others to best support batch report programs, and others to support online decision support activities,
depending on your user requirements. You may also need to configure your instances differently if they
are running on nodes with dissimilar capacity, such as memory size, number of CPUs, or CPU power.

Additionally, the extra instances can provide a security blanket for the users and for the database
administrator. A number of events, scheduled and unscheduled, can cause an Oracle instance to stop
running. In a single instance database, a stopped instance closes all access to the database for the users
and their applications. With parallel instances, the users who were working on a stopped instance can
reconnect to a still-running instance. You can design your system with Parallel Server to include one or
more spare instances, to support all your users should their primary instances be unavailable.

If your hardware can support sufficient nodes, you can make use of the scalability features as well as the
failover capability of Parallel Server in the same database. You simply have to reserve instances on one
or more nodes for use in a failover situation, rather than using them all concurrently for performance
gains. It is important, when planning a multi-instance database, for you to make a clear distinction
between these two functions. Shifting work onto an instance being kept free for failover reasons is going
to cause you contention and performance problems when it is needed by users from a failed instance.

Using Single Instance Versus Parallel Server
Databases

To fully understand how a parallel database is structured, you need to have a good grasp of the

javascript:displayWindow('images/ch27fg01.jpg',357,369)

distinction between databases and instances. A database consists of a set of files stored on disk. These
files include datafiles, redo log files, and control files. An instance comprises a set of memory structures
and processes. The major structure is called the System, or Shared, Global Area (SGA) and the required
background processes are the database writer (DBWR), redo log writer (LGWR), system monitor
(SMON), and process monitor (PMON). Many DBAs also run the optional redo log archiver (ARCH)
and the checkpoint (CKPT) processes and can elect to start additional processes. For parallel instances,
you must start at least one lock process, and you may start more. These processes are called LCK0,
LCK1, LCK2, up to LCK9.

You will also need to know how to start up an instance in parallel mode. A normal, exclusive Oracle
instance locks the control file for use by any other instance when it starts up. To avoid setting this lock,
the instance must be opened in parallel, or shared, mode. In Version 7.3, you do this by including either
of the keywords, PARALLEL or SHARED, in the STARTUP statement in command mode, or by using
the SHARED radio button on the instance management screens of the GUI database management tools.
In Oracle8, you need to set the parameter, PARALLEL_SERVER, to TRUE in your init.ora file.

Page 664

NOTE

The instance management GUI screens are part of Oracle's Enterprise Management
product, which runs only on NT platforms. Special Parallel Server management tools,
including NT-based GUI tools, also NT-based, exist for certain operating systems.n

Using Vendor Interfaces

Parallel Server runs a single database using two or more concurrent instances. The hardware must
support this configuration by allowing independent nodes to share the disks where the database is stored.
Many vendors support multiple nodes in UNIX clusters and a number are already providing two or four
node clusters under NT. Some vendors support clusters using proprietary operating systems. In all cases,
the vendor has to provide software to manage the cluster and the access to the shared disks. This may be
part of a proprietary operating system or may be one or more additional products. Oracle certifies
Parallel Server on platforms where it can successfully interface with these software functions. In some
cases, Oracle may limit the number of nodes on which Parallel Server can be run, even though the
vendor might be able to configure more.

Depending on your database version, you need to configure Oracle to interface with a Distributed Lock
Manager or to talk directly to the cluster/shared disk management software. Version 7.3 requires the
former and Oracle8 the latter (see Figures 27.2 and 27.3 for an overview of each architecture).

In either case, the details of the interface depend on the vendor's requirements, although Oracle created

the DLM code for some Version 7 Parallel Server platforms. You will need to read the Oracle Parallel
Server installation manual related to your particular hardware, software, and Oracle release to find out
the details of this configuration.

The DLM does not go away in Oracle8, by the way, but is integrated into the database code. So, while
you have to configure your system to work with the cluster interface, using the Group Membership
Services tools provided by Oracle, you do not have to set up the DLM interface as well. You may need
to modify some DLM-specific parameters in init.ora, however, as discussed in a later section of this
chapter.

There is one final note for you to consider when planning for Parallel Server if you are running on the
UNIX or NT operating systems. On these platforms, you will have to use raw devices for the shared
disks where you store your database files. In some cases, this may be beneficial due to performance
improvements in disk writes, but raw devices are generally more difficult for the system administrator to
manage. As well as the operating system documentation for your platform, you can also find details
about raw devices in the Oracle Installation and Configuration guide for your specific database release,
mostly in a chapter named "Raw Devices."

Using the Parallel Cache Management Lock Process

Parallel Server uses Parallel Cache Management (PCM) locks to ensure that only one instance at a time
is allowed to change a block's contents. They are applied to single or multiple blocks, in addition to the
normal transaction, row level, locks. A lock can have one of three statuses. A NULL status means the
lock is not currently assigned, a SHARED status signals that the current

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 665

owners of the lock can read the block(s) covered by the lock, and an EXCLUSIVE status enables the
owner to make changes to block(s). For an instance to acquire a lock in EXCLUSIVE mode, all other
instances must relinquish ownership of the lock.

FIG. 27.2
Version 7.3 Parallel
Server Interface to the
Distributed Lock
Manager.

FIG. 27.3
Oracle8 Parallel Server
interface to the Group
Membership Services
software layer.

Each instance starts one or more lock manager background processes, LCKn,where n is a single digit
and the first lock process is LCK0. These processes are responsible for obtaining any PCM locks
required by their instance and for managing the release of the locks. The LCKn processes are also
responsible for knowing which locks they currently own and the status of those locks. They maintain
this information in a shared lock area of the SGA.

Page 666

In addition to the LCKn processes, each node runs a Distributed Lock Manager (DLM) process or
processes. The DLM is responsible for the global allocation of locks across all instances and manages

javascript:displayWindow('images/ch27fg02.jpg',400,256)
javascript:displayWindow('images/ch27fg03.jpg',400,257)

requests for locks made by the various instances. The DLM can allocate unused locks or else recall locks
from another instance to pass them on to a requesting instance. The DLM also maintains the current
status of all locks, whether they are assigned to an instance or not.

Prior to Oracle8, the DLM code was provided by either the operating system vendor or by Oracle,
depending on the platform. Consequently, the commands you would use to start and stop the DLM, and
any files or parameters you would need to configure it, would differ from platform to platform. A
sample DLM configuration file is shown in Listing 27.1.

Listing 27.1 Sample DLM Configuration File

#NODE NAME IP ADDRESS NODE ID DOMAIN SERVICE PORT NUMBER
apple 123.45.678.001 1 0 1544
orange 123.45.678.002 2 0 1544
pear 123.45.678.003 3 0 1544

As with other platform-specific tools and facilities, you need to reference the Oracle installation/
configuration guide for your platform in order to determine the required steps to configure, start, and
stop the DLM. In Oracle8, the DLM becomes part of each Oracle instance and requires no configuration
information beyond the init.ora parameters used for Parallel Server. Two processes or threads are used
by the Oracle8 DLM, identified with the names DLMD and DLMOD. DLMD manages the lock
conversion activity while DLMOD monitors the status of the DLMD process and writes any error or
warning messages to a log file.

Assignment of PCM locks to the database datafiles is a critical task for the administrator of a multi-
instance database. Too many locks cause performance degradation due to the memory requirements of
the shared lock area and the DLM structures. If you don't assign sufficient locks, you may incur
substantial block pinging.

Block pinging occurs when one instance needs a PCM lock that is currently held by another instance in
EXCLUSIVE mode. Before releasing the lock, the owning instance wakes up its DBWR process to
inspect the blocks covered by the lock. DBWR looks for any of these blocks that contain changes not yet
flushed to disk, known as dirty blocks, then writes them back to the database files. This process of
writing dirty blocks as part of the down conversion of the PCM lock is known as pinging. As you
increase the number of blocks covered by a single lock, you also increase the likelihood that another
instance might want the lock and thus introduce the potential for more block pings.

At the other end of the ping is the instance that requested the lock. On receiving the lock, this instance
must read any blocks it needs into its buffer cache. It cannot rely on images of these blocks already held
in its cache because the other instance could have changed the block under its exclusive lock. If the
receiving instance needs all the blocks that were pinged to disk, the

Page 667

pings are considered true pings. If, on the other hand, the receiving instance needed none, or only some
of, the blocks pinged to disk, then the unneeded block writes are considered false pings. See Figure 27.4
for a diagram of how these different types of pings occur.

FIG. 27.4
How pinging occurs
between instances.

While true pings may be unavoidable if the instances need access to exactly the same blocks on a regular
basis, false pings constitute unnecessary overhead and need to be detected and decreased. The amount of
pinging and false pinging you experience depends on your database design and on the settings of the
PCM lock parameters in your init.ora file.

NOTE

Pinging is not bad, but a necessary component of the Parallel Server architecture.
Excessive pinging is a problem because it degrades performance. As you read this
chapter, you will learn how to design a database that maintains an acceptable level of
pinging.n

Using Parallel Cache Management Lock Parameters

You use a set of global cache management parameters to define the PCM lock environment for your
instances. The global cache parameter names are prefixed with the string GC_. These parameters are
slightly different between Version 7.3 and Oracle8. Table 27.1 shows the parameter name for each
release and the purpose of the parameter.

Page 668

Table 27.1 PCM Lock Management Parameters

Version 7.3 Oracle8 Description

javascript:displayWindow('images/ch27fg04.jpg',403,348)

GC_LCK_PROCS same

Number of
LCKn
processes to
start.

GC_DB_LOCKS obsolete
Number of hash
PCM locks for
data blocks.

GC_RELEASABLE_LOCKS revised

Number of fine
grain PCM
locks for data
blocks.

GC_FREELIST_GROUPS obsolete

Number of hash
locks for
freelist group
header blocks.

GC_ROLLBACK_LOCKS revised

Number of hash
locks for
rollback
segments
header blocks.

GC_ROLLBACK_SEGMENTS obsolete

Number of hash
locks for
rollback
segment undo
blocks.

GC_SAVE_ROLLBACK_LOCKS obsolete

Number of hash
locks for
deferred
rollback
segment blocks.

GC_SEGMENTS obsolete

Number of hash
locks for non-
rollback
segment header
blocks.

GC_TABLESPACES obsolete

Number of hash
locks for
tablespace
manipulation
(concurrent
ALTER...
ONLINE or
ALTER...
OFFLINE
commands).

GC_FILES_TO_LOCKS revised

Describes the
allocation of
PCM locks to
the datafiles.

NOTE

The parameters marked as obsolete in the Oracle8 column of Table 27.1 are discontinued
in Oracle8. Those marked as revised are changed in function or syntax, and you will find
the details of the differences in a later section of this chapter.n

You can leave many of these parameters at their default values unless, while monitoring the database,
you see some contention that could be alleviated with additional locks. The three parameters on which
you need to concentrate your efforts are GC_DB_LOCKS, GC_RELEASABLE_LOCKS, and
GC_FILES_TO_LOCKS.

As you can see from Table 27.1, there are two types of PCM locks, hash locks and fine grain locks, also
known as data block address (dba) locks or releasable locks. These two types of lock have one important
difference. When a hash PCM lock is acquired by an instance, it is not released back to the DLM unless
it is required by another instance. It is possible, therefore, for an instance to obtain a hash lock and never
to release it until the instance shuts down. On the other hand, a fine grain lock is only held by the
instance while it is using the block, or blocks,

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 669

being managed by the lock. After that, the lock is returned to the DLM for use by another—or even the
same—instance, should it be needed.

In general, you should use hash locks for query-intensive applications because instances can acquire the
same locks in shared mode. As long as the blocks are not updated anywhere, these locks will be held
indefinitely by every instance performing queries. You can define these hash locks to span many blocks,
reducing the total number of locks needed for the instance along with their associated overhead. If you
also define the locks to cover contiguous blocks, you will tend to improve the performance of full table
scans which read sets of adjacent blocks. In transaction intensive databases, you should consider fine
grain locks. Each of these locks covers a single block, or possibly a few related blocks. Consequently,
the possibility for false pinging is greatly reduced.

CAUTION

You should not automatically use fine grain locks unless you expect contention for PCM
locks between instances. Fine grain locks cause additional lock conversions because they
are released automatically when the instance is done with the related blocks, even if
another instance is not in need of them.

Of course, if you are using parallel server on a two node system for failover purposes, where you will
use only one instance at a time, you can use a minimal number of hash locks regardless of the type of
database activity. Locks do not serve any useful inter-instance function in a parallel environment when
only one instance has active users.

How do you set values for the GC_DB_LOCKS, GC_RELEASABLE_LOCKS, and
GC_FILES_TO_LOCKS parameters to achieve the required PCM lock distribution? First, you should be
aware that in Version 7.3 and Oracle8 the default behavior is slightly different. In Version 7.3, the
default mechanism is hash locking and the GC_DB_LOCKS parameter sets the total number of hash
locks available to the instance. If you don't assign them specifically, the locks are distributed evenly
across all the datafiles. Figure 27.5 illustrates how a database requiring only 10 hash locks would have
them assigned by the default behavior—not that such a database is likely to exist outside of this
example. In Oracle8, the default locking mechanism is fine grain locking, with the number of releasable
locks being the same as your DB_BLOCK_BUFFERS value.

When assigning PCM locks, you do not need to assign any locks to tablespaces in the following
categories:

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch27/0672-0674.html

● READ ONLY mode
● TEMPORARY mode
● When it contains only rollback segments
● When it contains only temporary segments

Simply leave the file ID numbers for these tablespaces out of the GC_FILES_TO_LOCKS parameter to
avoid assigning unnecessary locks.

Page 670

FIG. 27.5
Default allocation of
hashed PCM locks.

TIP

By placing all of your read only segments into their own tablespaces, you can make those
tablespaces read only and thus reduce the number of locks needed. Similarly, you can
decrease the number of locks you have to assign by using the TEMPORARY keyword
when defining tablespaces for your temporary segments. This will prevent any other type
of segment from being created in these tablespaces, so you can safely assign zero PCM
locks to their datafiles.
Finally, you should reserve tablespaces to contain only rollback segments because you
will not need to assign PCM locks to the related datafiles, just to the rollback segments
themselves. However, there is no keyword to ensure these tablespaces are kept free of
other types of segment.

PCM Locks in Version 7.3 If you assign hash locks with the GC_DB_LOCKS parameter in Version
7.3, they are assigned evenly across the datafiles as shown in Figure 27.5 above. To change this
behavior, you allocate some of these locks to your datafiles in the proportions best suited to your
applications and database design. You must leave some locks unassigned so that Oracle has a pool of
spare locks to allocate to unidentified datafiles, including any you might need to add. Use the
GC_FILES_TO_LOCKS parameter to assign the hash locks, with the following syntax:

javascript:displayWindow('images/ch27fg05.jpg',400,428)

Page 671

GC_FILES_TO_LOCKS = "file_list=locks:file_list=locks:file_list=locks "

where

 file_list is a file ID number, or multiple file ID numbers
separated by commas for
 individual files, or dashes for inclusive sets.

 locks is the number of locks.

You can include as many different file lists as you need, with a colon separating each file list and lock
count value. Note that the complete set of entries must be enclosed in double quotation marks and there
must be no blank spaces in the entry. Here is an example of a valid parameter which assigns a total of
1,005 locks:

GC_FILES_TO_LOCKS = "1=100:2-5=500:6,8,12=400:7,9-11=5"

File 1 receives 100 locks; files 2 through 5 share another 500; files 6, 8, and 12 share 400 more locks;
and files 7, 9, 10, and 11 share just 5 locks. Figure 27.6 shows how the five locks on files 9, 10, and 11
are allocated to these files. Any files that are not listed in the parameter are covered by spare locks.
These will be the balance of the locks assigned by GC_DB_LOCKS but not allocated by
GC_FILES_TO_LOCKS. In the above case, there would be GC_DB_LOCKS minus 1,005 spare locks,
which would be allocated to files in the default round-robin fashion.

FIG. 27.6
Allocation of hash PCM
locks where
GC_FILES_TO_LOCKS
equals "...7,9-11=5."

You can see that the spare locks are assigned in a round-robin fashion using the same default mechanism
depicted in Figure 27.5. If you want the locks to cover contiguous sets of blocks, you can use the

javascript:displayWindow('images/ch27fg06.jpg',400,292)

grouping identifier, the exclamation point (!), to indicate the number of blocks per group. For example,
to cover 10 blocks with each hash lock on files 7 and 9 through 11 from the previous example, you
would rewrite the parameter as:

GC_FILES_TO_LOCKS = "1=100:2-5=500:6,8,12=400:7,9-11=5!10"

Figure 27.7 shows you how these locks are allocated to the first few blocks in each of the files.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch27/0672-0674.html

Previous | Table of Contents | Next

Page 703

CHAPTER 28

Distributed Database Management

In this chapter

● Understanding Distributed Databases 704
● Using a Distributed Database 707
● Using Distributed Transactions 713
● Understanding Read-Only Snapshots 717

Page 704

Understanding Distributed Databases

Distributed databases are systems that act as a single database but are located in different locations.
These locations can be anywhere, from the next office to the other side of the world. Using a networking
and client/server technology, distributed databases act as a single system. In order to fully understand
how a distributed system works, the DBA must have a knowledge and understanding of multiple
hardware systems, networking, client/server technology, and database management.

There is little information concerning the management of distributed database systems. The use of
distributed databases dramatically changes with the release of Oracle8 and the further development of
data warehouses. Many DBAs have not had the opportunity to manage such systems and may not be
familiar with what they are.

This chapter describes each type of distributed system, how it is used, and how to manage one. Oracle8
provides a simple, no-nonsense method of creating several distributed systems. However, not all
companies have the capability of supporting a GUI environment; or in the event of remote support, the
line mode on the server may be the only option. For this reason, the processes described in this chapter
do not address the GUI portion of the distributed option. It does address what happens after the mouse is
clicked and how to manage a system without a GUI environment.

Describing Each Type of Database

Distributed databases are actually two types of systems:

● Distributed Databases with remote queries, data manipulation, and two-phase commit
● Replicated databases through data-managed methods such as snapshots and triggers, or other non-

database_managed methods (such as the COPY in SQL*PLUS).

A distributed database, in the purest form, is a series of independent databases logically linked together
through a network to form a single view. Replicated databases contain information from other remote
databases copied through a network connection.

Replicated databases are most easily classified by the method used to pass information between them.
The following are the two primary methods for this copy process (most commonly referred to as
propagation):

● Distributed transactions
● Snapshot refreshes

The distributed transaction is the process wherein a user, through Data Manipulation Language
(DML)—specifically, through the use of triggers and procedures, modifies data at one site and the
modification is sent to the other databases through the two-phase commit. Snapshots are copies of a
table (or subset) that are propagated to each of the remote sites from a master site.

Page 705

Naming Databases

Access to the Internet and Internet-based databases are beginning to have a greater influence on the way
databases are named, accessed, and managed. Oracle recommends that the naming convention of
databases and their links follows standard Internet domain-naming conventions. This convention can
have several parts, and each is divided by dots like the ones in an IP address.

The name of the database is read from right to left. This naming convention can have several parts, with
the first (rightmost) being the base or root domain. By default, the domain is world. This is not required
in Net8, but for consistency, it may be best to include it in order to support older versions of SQL*Net.

The domain name can be based on the structure of the company or the location. For example, the
naming convention for the database in Germany can be done in a few ways. In the simplest form, the
name can be GERMANY.WORLD. Should the DBA name be based on location, the name would be
GERMANY.BWC with BWC being the domain. One other way would be to expand the location to
continents, and then the name would be GERMANY.EUROPE.BWC. Whatever the naming convention,
it must be easily understood for future maintainability, yet remain transparent to programmers and users.

CAUTION

There are some limitations when naming a domain and database. In addition to normal
Oracle naming conventions (no spaces no special characters, and so on), the size of the
name may be limited by the operating system or network. Refer to the Oracle_specific
documentation for name length limitations.

Achieving Transparency

It is important that when providing names to the tables and objects on remote systems, the naming
convention allows the programmer and user of the system to access the table just as they would if it were
local. Transparency is the concept that all objects are accessible and look the same for DBA and user
alike.

Oracle, through the use of SQL*Net and transparent gateways, enables the development of a system that
looks the same regardless of database vendor, type, and location. For more information concerning data
transparency, please refer to Chapter 20, "Advanced Oracle Networking."

The purpose of transparency is to provide seamless access to all databases. For example, users should be
able to access any table (provided they have security) in the same method. A table located on a SYBASE
database should be accessible with the same SQL syntax as a local table. A table located on an Oracle
database in Germany should be accessible with the same syntax as a local table in Detroit. For more
information concerning transparent gateways, read Oracle8 documentation on the desired gateway. For
example, through the use of a transparent

Page 706

gateway, the SYBASE system will now look like an Oracle database and can be referenced by using a
database link. Figure 28.1 shows an example of what a heterogeneous environment can look like.

FIG. 28.1
A distributed heteroge-
neous environment.

There must be a methodology in place to propagate any changes of database addresses to other

javascript:displayWindow('images/ch28fg01.jpg',783,667)

distributed sites. This is ultimately the responsibility of the DBA. Many sites place the TNSNAMES.
ORA and SQLNET.ORA on a centralized application server, which enables management of
TNSNAMES in a less painful manner. However, this may not always be an optimal solution. In a
distributed environment, each site may have other independent databases (such as testing databases,
other databases specific to that site, and so on) and cannot have a localized TNSNAMES. If this is the
case, the company might decide to use Oracle Names rather than SQL*Net as the method of managing
connectivity. Schema names, userIDs, and passwords must also be managed when creating a distributed
environment. For example, if the password is included in the creation of a link, the password cannot be
changed, or if it is, this must be communicated to the DBAs responsible for maintaining the links
affected by that schema.

NOTE

If SQL*Net is used, communication between sites is important. There should be a
formalized methodology for moving distributed database IP addresses or renaming
databases.n

Using Oracle Security Server and Global Users

This is a new product that will enable the DBA or security administrator to manage security in a global
environment. The Security Server enables the administrator to create a user that utilizes a personal
certificate rather than a password for authentication. This certificate is like the one required when
accessing sites that support electronic commerce. One such certifying agency is VeriSign.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 701

CAUTION

Be careful when using the dynamic performance tables during a performance crisis. If
you look at the values today, they may well be larger than they were yesterday, simply
because many of them accumulate over the life of the instance. Any time the database
does useful work, these statistics are likely to increase. Develop a monitoring strategy
that will allow you to compare the rates of change, rather than simply relying on the
values shown in the tables at a specific moment in time. Also, do not try to gather data
from these tables too soon after instance startup. You should expect a lot of overhead
when the instance is new and still acquiring resources for the first time.

If you find true pinging from these tables, you have a number of options. First, if only two instances are
involved, you might consider combining their workload and their users into just one instance. If this is
not possible due to resource limitations, or if more than one instance is involved, you may need to
consider the partitioning options discussed earlier. Your objective should be to find a means to restrict
the majority of the access on a given block to one and only one instance. This may require examining
the values of the rows on the pinged blocks to identify partitioning options.

If you find false pinging is occurring, your simplest solution is to add more hash locks or to convert to
fine grain locks for the datafiles involved. The former may involve creating too many locks for your
current memory to handle in which case you would have to use fine grain locks. If these additional fine
grain locks, in conjunction with existing hash locks, still constitute too many locks for your system to
manage, you need to try reassigning some of the datafiles covered by hash locks to fine grain locks.

If you cannot solve the pinging problems using these methods, it may mean that your database is not
properly designed and you may need to return to the drawing board and use the design techniques
discussed earlier to find a better design. Releases of Oracle prior to Version 7.3, which didn't offer fine
grain locks and the related benefits, made some databases inappropriate for Parallel Server. Now, with
fine grain locking, the use of TP monitors, and the additional features of Oracle8 such as the global
views and reverse key indexes, you should be able to build and monitor a multi-instance database for
either failover or scalable purposes, if not both.l

Page 702

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 698

Monitoring V$BH

The V$BH table shows you the current contents of the database buffer cache of the instance. It provides
the file and block identification numbers for the block in each buffer along with the status of the PCM
lock on the block. A query along with the partial listing is shown in Listing 27.8.

Listing 27.8 Querying the V$BH Table

SQL> SELECT file#, block#, class#, status, xnc FROM v$bh;

FILE# BLOCK# CLASS# STATUS XNC
---- ------ ------ ------ ---
 8 438 1 XCUR 0
 8 467 1 SCUR 0
 8 468 1 SCUR 0
 8 468 1 SCUR 0
 9 192 1 CR 0
 9 198 1 CR 2
 9 201 1 XCUR 10
. . .

The status column has one of seven values, described in Table 27.8. You will typically only see the rows
with XCUR, SCUR, or CR values after your instance has been running for a while. By then, all the
buffers will have been used at least once and any media or instance recovery should be complete.
Occasionally, you may catch a buffer that is waiting for a physical read to complete, but do not hold
your breath.

Table 27.8 Buffer Status as Reported in V$BH

Status Explanation

FREE The buffer is not currently in use.

XCUR
The block in the buffer is covered by an exclusive
PCM lock.

SCUR
The block in the buffer is covered by a shared PCM
lock.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch27/0696-0697.html

CR
The block in the buffer was covered by an XCUR or
SCUR lock that was downgraded.

READ A block is being read into the buffer from disk.

MREC The block in the buffer is in media recovery mode.

IREC The block in the buffer is in instance recovery mode.

Page 699

TIP

If you find buffers with the MREC or IREC status, you should exit from the database
immediately. You can learn no useful information about how well your database is
working on behalf of your users when the database is in the process of recovery. Further,
your session is probably competing for resources that the recovery process could be
using to complete its work.

You will usually find that the cache contains many buffers in CR status when there is excessive X to
NULL or X to S conversion counts in V$LOCK_ACTIVITY. The XNC column shows the X to NULL
conversion count for a particular block. Rows with non-zero values in this column are actually being
pinged. You can identify which blocks are involved from the FILE# and BLOCK# columns. By
comparing the blocks held in the buffer cache's of the other instances, using their V$BH tables or the
Oracle8 GV$BH table, you can determine which blocks are being pinged and between which instances.
In some cases, you will not find the same blocks in any other instance's cache. This indicates that false
pings are taking place because the lock is being released but the blocks themselves were not needed.

To solve real or false pinging problems, it is useful to know which tables and even which values in those
tables are involved. You can look at the blocks involved by querying tables using the ROWID pseudo-
column. The query in Listing 27.9 is an example of such a query in a Version 7.3 database. Index entries
cannot be found by this method; the best you can do is to identify the name of the index.

Listing 27.9 Examining Row Contents of Specific Blocks

SQL> SELECT * FROM DEPT
 2 WHERE SUBSTR(rowid,1,8) = `00000201' -- the block id
number
 3 AND SUBSTR(rowid,15,4) = `0009'; -- the file id number

DEPTNO NAME LOCATION MGR_ID
------ -------------------- ---------- --------
 14 Human Resources Fairview 198

 22 International Sales New York 1356
. . .

To find the name of the segments associated with specific blocks identified in V$BH, you can query the
DBA_EXTENTS view but, more easily, you can use the V$CACHE or V$PING views.

Monitoring V$CACHE and V$PING

The two dynamic performance tables, V$CACHE and V$PING, are based on the same buffer
information as the V$BH view, but they include three additional columns (see Listing 27.10). These
identify the name, type, and owner ID number of the segment to which the block in the buffer belongs.
These views do not contain segment information for newly added extents unless catparr.sql has been run
since their creation. If the NAME, KIND, and OWNER# columns contain nulls, simply run the script
again to populate them with the new information.

Page 700

Listing 27.10 Querying V$CACHE

SQL> SELECT name, kind, owner#, file#, block#, status, xnc FROM v
$cache;

NAME KIND OWNER# FILE# BLOCK# CLASS# STATUS XNC
-------------- ------------ ------ ---- ------ ------ ------ -----
EMP TABLE 14 8 438 1 XCUR 0
EMP TABLE 14 8 467 1 SCUR 0
EMP TABLE 14 8 468 1 SCUR 0
EMP TABLE 14 8 468 1 SCUR 0
DEPT TABLE 14 9 192 1 CR 0
DEPT TABLE 14 9 198 1 CR 2
DEPT TABLE 14 9 201 1 XCUR 10
. . .

The difference between these two views is that V$CACHE contains an entry for every buffer in the
cache whereas V$PING only contains a row for each buffer that has potentially been pinged. This is
determined by the buffer having a non-zero value in the XNC column, indicating at least one X to
NULL conversion for the block it contains.

You may also use the V$FALSE_PING dynamic performance table to identify potential false pings.
This table contains the same columns as V$PING, but it only contains rows for blocks that are highly
likely to have been pinged falsely a large number of times. Oracle does not guarantee, however, that
every block listed in this table is undergoing false pinging, nor that the table includes every block that

has been falsely pinged. You should still check the other instances' caches to find definitive evidence of
false pinging as discussed previously.

Tuning Strategy for Parallel Server

The basic tuning strategy for the parallel instance components of a multi-instance database consists of
the following four steps:

1. Determine if there is excessive pinging.
2. Identify what is being pinged.
3. Resolve whether the pinging is true or false.
4. Solve the pinging problem.

By using the Parallel Server dynamic performance tables discussed above, you can find the amount of
pinging, the objects being pinged, and whether the same blocks are being pinged by one or more
instances. What should you do with this information?

As with all tuning activities, you only need to tune if the database performance is not at the level
required by the users. By monitoring the values in V$LOCK_ACTIVITY over time, you can tell if
increases in any of the values are inversely proportional to the response time of the transactions. If they
are, you then need to find the blocks responsible from VBH, VCACHE, or V$PING.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch27/0696-0697.html

Previous | Table of Contents | Next

Page 707

When logging into certain sites, an error is issued that warns users that they must have a personal
certificate prior to entering that site. Their certificate identifies them by name, address, and other
required information that uniquely identifies the person holding a certain certificate. It can be issued
only once, and great care must be taken to secure this certificate. Release 1 of Oracle Security Server
issues certificates only for Web servers. In Release 2, this capability is improved to include Net8 clients
and servers. According to Oracle documentation, the certificates issued by the Oracle Security Server
are in compliance with the international standard for electronic commerce (X.509).

To ensure that only those people with the proper authorization access the database, Oracle has created a
two-tiered level of security. The DBA must create the user with the Oracle Security Server and also in
the database as a global user. Without both the userid and the certificate, access is denied. Care must be
taken in creating the global user. A userid cannot be both global and local.

SQL*Net

The DBA must have a strong understanding of how to effectively set up and use SQL*Net in order to
manage a distributed system. SQL*Net and its management are addressed in Chapter 20.

In conjunction with the system administrator and the network administrator, the DBA will have to
establish what servers will be able to support the distributed systems. A server that controls the mail or
intranet system will be an unlikely target for the distributed databases. Network traffic has a direct
impact on the performance of any database, particularly the distributed system.

Using a Distributed Database

The distributed database is made up of several databases that are linked by database links and network
connections. Management of these systems can vary greatly. In large, highly decentralized companies,
each location may have its own DBA. In a highly centralized company, one DBA may be responsible for
databases located in different states, and in some cases, countries. The management and tuning of these
databases are the same as of autonomous databases, with the exception of the links and the views that
reference them.

There are several reasons to utilize the distributed database system. The following are some of them:

● Application design—Certain software designs evolve into a distributed system. Companies that
have multiple locations with separate IT/IS departments or databases will utilize the same or

similar software. Each locality will maintain data that is unique to its own environment. As the
company evolves, each locality will require access to data located at the other sites. This will
eventually develop into a distributed system.

● Improved performance—Local databases will be smaller than a larger centralized database. As a
result, queries and other transactions on the database will be faster. Network activity will be
significantly reduced, improving the overall system.

Page 708

● Smaller, less expensive hardware requirements—By reducing the total number of users on each
system, the hardware required to support such a system can be considerably smaller (depending
on the actual number of users on each site). For example, each local database may be able to run
on a single CPU NT server rather than a large mainframe.

● Improved reliability and availability—By distributing the data over several sites, the system is
more likely to be up. While one site might be down, the rest of the system will still be up and
accessible. This can be improved by distributing not only the data, but the software as well. The
distribution of software adds another dimension of reliability. By having sites that are software
copies, each can be a mirror site in the support of a disaster recovery plan.

These features can be very useful for companies. For example, let's say Big Widget Company (BWC) is
a large, international widget maker with offices in Detroit, Michigan, Milan, Italy, and Frankfurt,
Germany. BWC has started an aggressive R&D program to develop a new type of widget for
international use. Because of each country's standards, the widget specification for each country is
slightly different. These differences are kept in a separate table called SITE_SPECIFICATION. Because
this is an R&D project, the changes to the specifications are highly dynamic, and each country requires
occasional access to the other's specifications. This has created a need for a distributed database.

Setting Up a Distributed System

The setup of a distributed system may be dependent upon the application. If the software utilizes the
distributed database, many of the tasks performed by the DBA, such as the creation of database links,
may be performed automatically during the installation of the software. However, in the case of BWC,
the responsibility of setting up the distributed database is the DBA's. Because this is an R&D project,
BWC has decided to invest the funds in the development side of the project. As a result, the
responsibility for maintaining the databases relies on one DBA.

Each database will be installed as an autonomous database. The setup should be based on the number of
concurrent users on the database in each country. Other factors to consider when installing the database
are the following:

● Overall use of the database
● Other applications using the database

● Standard DBA tuning techniques
● Type of network protocol for connectivity
● How dynamic is the data? How will it affect the network traffic?
● Current level of network traffic and how the new databases will affect it

NOTE

Remote users should be included in determining concurrent users if a system is heavily
accessed.n

Using Database LinksDatabase links comprise the method used by Oracle to access a remote database
object. There are three types of database links:

Page 709

● Public
● Private
● Global

A public database link is similar to a public synonym; when referenced, it is accessible to all users.
Private links are accessible by the owner (schema) of the link. A global link is created automatically
when using Oracle Names, explained in detail in Chapter 20.

There are some significant additions in the syntax of the Oracle8 database link. The syntax for creating a
public or private database link is essentially the same:

CREATE
[SHARED]
[PUBLIC]
DATABASE LINK dblink
[authenticated clause]|[CONNECT TO [CURRENT_USER|user IDENTIFIED BY
password]
Â[authenticated clause]
USING `{connect string}';

There are several differences between Oracle8 and Oracle7 for this syntax. A new process has been
added and another has been altered.

SHARED is an entirely new process. In order to use this process, the database must be using a
multithreaded server. This enables the creation of a database link that can use existing connections, if
available. This should not be used unless the DBA fully understands the concept behind shared database

links and the multithreaded server. If set up improperly, the performance of the system can be severely
affected. For more information concerning shared database links and how to effectively use them, please
read Chapter 2, "Distributed Database Administration —Shared Database Links," in Oracle8 Server
Distributed Database Systems.

The authenticated clause is associated with the SHARED portion of the database link. This must be used
when using SHARED. The following is the syntax for the authentication clause:

AUTHENTICATED BY username IDENTIFIED by PASSWORD

This does not perform any action by the user in the authentication clause; it just requires that the
username be a valid user and password on the remote server. The DBA can create a dummy account
specifically for this purpose.

CURRENT_USER uses the new Oracle8 global user type. This powerful new feature enables the
creation of a user that can access any database on a node (server) with the use of a single login. This is
not to be confused with a local user. This user must be created using the Oracle8 Security Server.

Using the BWC example, the following code would create a simple public link in the Germany database
from Detroit:

CREATE PUBLIC DATABASE LINK germany.bwc.com
USING `GERMANY';

Note that the database name is case-sensitive. If not defined by Oracle Names, the name GERMANY
must appear, either as an alias or as the actual name in TNSNAMES.ORA. The

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 710

TNSNAMES.ORA must be on the client and the server. With this syntax, the user must have a current
login on both Germany's database and Detroit's database. Assuming that the schema name is the same
for both Germany and Detroit, the syntax for accessing the table SITE_SPECIFICATION would be the
following:

SELECT * FROM SITE_SPECIFICATION@GERMANY.BWC.COM;

NOTE

The link within the SQL statement is not case sensitive.
n

TIP

To ensure transparency, create a synonym or view to hide the database link from the
users:

CREATE SYNONYM germany_specification
FOR site_specification@germany.bwc.com;

Creating a database link can be as simple or as complex as the DBA chooses to make it. For example, a
link can be created establishing a connection to Europe. This could be advantageous in the event that
BWC expands to other countries in Europe. The database link for both Milan and Frankfurt would be

CREATE DATABASE LINK europe using `EUROPE.BWC';

This initial connect would not work, however, when creating a synonym; the DBA could then expand on
the name by adding the country:

CREATE SYNONYM germany_specification FOR
site_specification@europe@germany;

NOTE

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch28/0713-0715.html

As in previous versions of Oracle, Oracle8 does not support selecting a LONG datatype
from a remote database.n

Using Initialization Parameters for Distributed SystemsIn addition to the parameters specified in the
distributed database section, the parameters in Table 28.1 are also affected by the deferred transaction
database.

Table 28.1 Parameters Affected by Deferred Transaction Database

Parameter Description

COMMIT_POINT_STRENGTH
(0_255)

This parameter is
used to set the
commit point site in
the two-phased
commit. The site
with the highest
commit point
strength will be the
commit point site.
Each of the sites
using this as the
commit point site
must be on the
same node. The
factors determining
which database
should be the
commit point site
should be
ownership (driver)
of data, criticality
of

Page 711

Parameter Description

data and
availability of the
system.
Information
concerning the
status of the
commit is
located on the
commit point
site. It is
recommended
that not all sites
have the same
value or only one
with a higher
value. This
ensures that in
the event of a
failure, other
sites can record
this data. This
parameter's
defaults are
operating system
specific. Refer to
your operating
system_specific
Oracle8
documentation
for these values.

DISTRIBUTED_TRANSACTIONS
(0_TRANSACTIONS)

Limits the
number of
concurrent
distributed
transactions. If
set to zero, the
process RECO
(Oracle's
recovery process)
is not activated,
and distributed
capabilities of
the database are

disabled.

GLOBAL_NAMES

If set to true, the
name referenced
in the link must
match the name
of the database
and not the alias.
This must be
used in order to
utilize advanced
replication
features of
Oracle8.

DML_LOCKS (20_unlimited)

Limits the
number of DML
locks in a single
transaction.

ENQUEUE RESOURCES (10_65535)

Allows several
concurrent
processes to
share resources.
To determine
whether this
value is set
appropriately,
look at the
enqueue_waits in
the v$sysstat
table. If this is a
non-zero value,
increase the
enqueue
resources.

MAX_TRANSACTION_BRANCHES
(1_32)

The maximum
value for this
parameter has
been increased
from 8 to 32.
Branches are the
numbers of
different servers
(or server
groups) that can
be accessed in a
single distributed
transaction.
Reducing this
number may
decrease the
amount of shared
pool used.

OPEN_LINKS (0_255)

The number of
concurrent open
connections to
other databases
by one session.
In a distributed
environment,
care must be
taken to ensure
that this value is
not less than the
number of
remote tables
that can be
referenced in a
single SQL
statement. If the
value is set to 0,
there can be no
distributed
transactions.

OPEN_LINKS_PER_INSTANCE
(0_UB4MAXVAL)

This is new to
Oracle8. It limits
the number of
open links
created by an
external
transaction
manager. For
more
information,
refer to your
Oracle8
documentation.

Page 712

Identifying Potential Problems with a Distributed System

System changes are the biggest problem in managing a simple distributed system. That is not much
different than managing a single, autonomous database. The difference is that each database can see
objects in other databases. This creates a system that depends on continuity. Below are the changes
within a system that must be coordinated within a distributed system.

● Structural changes. Procedures and triggers used to update or replicate specific remote tables will
fail when the remote table is structurally altered or removed. Database links that reference a
dropped table will fail.

NOTE

If a user drops a table that is referenced by links from another system, there will not be a
referential integrity warning. These warnings occur only when the table contains
elements that are referenced.n

● Schemachanges. In addition to tables being removed, the privileges of a user referenced in a
database link must have the proper privileges. Changes to profiles and roles must be coordinated
to ensure that they will not affect the rest of the distributed system. This includes passwords!

● Changes to the SQL*Net objects. Files such as TNSNAMES, PROTOCOL and TNSNAV will
affect the distributed database system.

● System outages. Coordination between outages is crucial, particularly to systems that depend
upon distributed updates, snapshots, or replication. In many cases, if this process is broken,

manual intervention must occur in order to repair the problem. Unless a DBA is informed that a
database or network is down, the integrity of the distributed system is jeopardized.

Communication between organizations is extremely important, particularly among developers and the
DBA. A change in the structure of one database or IP address can affect the entire company and the
integrity of the distributed system. This coordination usually is in the hands of the DBA(s).

Another problem can occur if the connection between databases is lost. The responsibility in
determining what has happened if connectivity is lost will begin with the DBA. The DBA must be able
to easily identify error messages, particularly associated with SQL*Net or Net8. For more information
concerning troubleshooting connection problems, please refer to Chapter 20.

Tuning a Distributed System

Tuning methods for a distributed database should be the same as those for an autonomous database.
Please refer to Part VIII, "Performance Tuning," and keep the following rules in mind:

● Poorly written SQL will still perform poorly if distributed.
● Remote tables that are partitioned are not seen as partitioned by the local cost-based optimizer.
● Avoid using multiple database links in a single SQL statement.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch28/0713-0715.html

Previous | Table of Contents | Next

Page 727

Chapter 29

Performance Tuning Fundamentals

In this chapter

● Revisiting Physical Design
● Understanding Why You Tune
● Knowing the Tuning Principles
● Tuning Goals
● Using the Return on Investment Strategy
● Revisiting Application Types
● Understanding Benchmarks
● Using Oracle Diagnostic Tools

Page 728

Revisiting Physical Design

We stated in Chapter 3, "Physical Database Design, Hardware, and Related Issues," that physical (and
logical) designs are the first steps in tuning a database. This is indeed true. One of the first steps in many
tuning books is to tune the design. Well, following proper logical and physical design, you have done
just that. If all has gone well, your design should allow your database to perform at more than an
acceptable level to begin with. However, there are two things that always creep up with database
systems: growth and changing application requirements.

If your database is relatively static, is made up mostly of lookup tables, or for any other reason
experiences very little or very slow growth, this factor is not a problem. If, on the other hand, your
database is like most others, it will grow over time by some substantial percentage, such as 10 percent or
more. Then, despite initially good logical and physical designs, you might periodically need to tune the
database to accommodate or otherwise compensate for this growth. In addition, all database systems
have fallen prey to the phenomenon of applications, which are in perpetual redefinition. Here is an
example you might have come across:

Manager: "The application doesn't work. It's running too slowly. What's wrong with the database?"

Programmer: "The code hasn't changed."

DBA: "The database hasn't changed."

What could be the problem, then? In this instance, the usage has probably changed. This is really only
another fancy way of saying that the application requirements have changed. For example, suppose the
application originally was intended to allow read-only access to seven tables individually. However, if
the application is now being used to join four more tables with some or all of these seven tables to gather
more information than originally requested, some tuning might be necessary. In fact, some physical
redesign, also known as physical restructuring, might be required.

You can restructure a database physically to improve performance and still permit the application to
function as desired. This is possible with Oracle, as with other vendors, because Oracle obeys Codd's
rule number 8: physical data independence. So the answer might have been found by consulting with the
user:

User: "The application doesn't work? Oh yeah. We're using some different tables now."

There is one other thing, aside from growth and changing application requirements, that will require a
DBA's performance tuning skills: the poorly designed database.

With growth and changing application requirements, we had assumed the database was well-designed.
Unfortunately, as many DBAs can attest, this is often not the case. Many times a DBA takes over a
database system that another DBA has left, is called in to fix the performance of someone else's database
system, or is confronted with a database system that is the result of a legacy migration. In cases such as
these, what is needed before performance tuning is a logical and physical analysis and redesign. It might
be that the database doesn't need much redesign, or it might be that it needs a complete overhaul.

Page 729

In either case, once that design has been ironed out, the DBA can move on to performance tuning
proper. However, after the redesign, it might be best to simply put the application to use and do some
performance monitoring first. After all, with proper design (or redesign) comes initially good
performance. It might very well be that no new additional tuning is required for some time to come. (In
practice, I have personally found this to be the case.)

Understanding Why You Tune

Why tune? We have just answered this question. The current database system is not performing
acceptably, based on user-defined criteria, for one of the following reasons:

● Poor design

● Growth
● Changing application requirements (possibly including a redefinition of what acceptable

performance is)

When might database tuning efforts not be fully effective? When components that are external to the
database, yet vital to the entire client/server application performance, fail to perform acceptably,
database tuning might not help without the corresponding tuning of these other application infrastructure
pieces. Except for the most isolated, stand-alone, batch production database applications, most modern
database systems are client/server based.

The main components external to the back-end database are the back-end operating system (or OS), the
network, and the client OS. The major examples are:

● Very weak clients (PCs)
● Network saturation
● Very weak, saturated, or poorly tuned OSs

Clients (PCs) are weak in the sense that they have older CPUs (486 or less), relatively little memory (<=
16MB), and/or little storage (<= 1GB). This especially holds true if the application is "heavyweighted
toward the client" and thus requires a fat client. A fat client is one in which a large portion of the
application processing is segmented onto the client. A thin client is obviously the opposite of this, with
most of the processing taking place at the server end. So, unless an application requires only dumb
terminal access or thin clients, weak clients will not suffice.

A network is considered to be saturated by varying definitions. To be saturated means that a system
component has reached maximum possible throughput. A 10 Mbps ethernet is considered saturated
when it reaches 30 percent of its bandwidth. Networking specialists might handle this in different ways,
including resegmenting the network locally, adding more network segments, or changing to a broader-
band network media type, such as a 100 Mbps Fiber Distributed Data Interface (FDDI). In any case, we
have gone well off the beaten path of database tuning.

An OS might be very weak, just like a client. It is only weak relative to the applications it must support.
But in general, modern database servers that have 32-bit processors, 4 processors, 256MB memory, and
10GB of disk space might be considered weak. An OS can be saturated in

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 722

unmanageable, the DBA should purge the logs. This can be done via the enterprise management tool, or
the DBA can perform this with the stored procedure or API call DBMS_SNAPSHOT.PURGE_LOG.
The syntax for this is as follows:

Execute dmbs_snapshot.purge_log(`[master table name]',number,'flag');

number is the number of historical snapshots to remove. If the DBA wants to remove all the logs in the
snapshot log, this number should be very high. Care must be taken when using this. If all the logs are
removed, the snapshot will have to be completely refreshed. This can be a problem if the table is very
large.

NOTE

The flag is an override value. If set to DELETE, then even if the number is set to 0, the
logs will be deleted from the least recently refreshed snapshot.n

Understanding Limitations of Snapshots

The initial creation of a snapshot of a large table may be beyond the capabilities of the system. For
example, if a snapshot of a large table with several million rows of data had to be replicated over
unstable communication lines, it might be better to perform an offline instantiation. To perform this,
several steps must be taken. This must be done carefully and, if possible, in a test environment with a
great deal of storage space. Use these steps:

1. In the production database, create a snapshot log for each of the master tables (the tables that will
have snapshots in the remote site).

2. Using a new schema and in the test database, create a snapshot referencing the production
database containing the master table. The name must be unique. Ideally, it should be the name
that will be used at the remote site.

3. If this process must be done in the production database (not recommended), the link in the
CREATE SNAPSHOT statement will refer to the current database. Oracle refers to this
capability as a loopback link.

4. Export the new schema. The same schema as the owner of the new snapshots should perform the
export.

5. Drop the newly created snapshots. Be sure that this is done by hand (using API calls). If not,
ensure that only the snapshots, and not the corresponding objects, are created.

To create a snapshot at the remote site:

1. Create an empty snapshot group. This is necessary to support the procedure call in the next step.
2. Use the following procedure:

DBMS_OFFLINE_SNAPSHOT.BEGIN_LOAD
(gname='[groupname]'.sname=>'snapshotname',)

This will create a snapshot "shell" for the data about to be imported.
3. Import the snapshot base table. This is identified by the preface SNAP$ table.

Page 723

4. Once the import is complete, use the procedure DBMS_OFFLINE_SNAPSHOT.END_LOAD to
indicate to the system that the import is complete. The easiest way to visualize this process is the
hot backup process, where the command ALTER TABLESPACE BEGIN BACKUP is issued.

NOTE

Just as tables cannot be created using a select on a LONG datatype, snapshots cannot
support this select statement.n

Tuning Snapshots

Complex snapshots consisting of multiple table joins can severely degrade performance. It is imperative
that the query used to create a snapshot be thoroughly tested and tuned. This includes utilizing explain
plan and tkprof prior to creating the snapshot. If required, create several single table snapshots at the
child site and then create a view locally based on the physical snapshots. Performance will be
significantly enhanced and network traffic will be reduced.

In order to keep the packages used to refresh a database in the library cache, it helps to pin these
packages in memory. This will help prevent the package from being removed from memory. To pin a
package, call the package and then use the package DBMS_SHARED_POOL. Prior to pinning a
package, it must be referenced. The easiest way to reference a package is simply to recompile it. The
syntax for this is

ALTER PACKAGE DBMS_SNAPSHOT.I_AM_A_REFRESH COMPILE;

There will be a response:

Package altered.

Now, pin the package with the following statement:

Execute DBMS_SHARED_POOL.KEEP(`DBMS_SNAPSHOT');

The response will be

PL/SQL procedure successfully completed.

This will improve performance. It may not significantly enhance performance, however, it does
help—particularly with those snapshots that are frequently refreshed.

Other packages that can be pinned for performance are

● DBMS_REFRESH
● DBMS_REPUTIL
● DBMS_REPCAT
● DBMS_DEFER

For more information on these packages, refer to the Oracle8 Server Replication—Replication Manager
API Reference.

Page 724

Using Initialization Parameters for Snapshots

The init.ora table contains several parameters that directly impact the snapshot process. These
parameters are defined in Table 28.2.

Table 28.2 Initialization Parameters for Snapshots

Parameter Description

JOB_QUEUE_INTERVAL
(1_3600)

The interval that the
snapshot process wakes
up. Care must be taken
to ensure that this is not
set so high as to
interfere with the
interval of the snapshot
itself.

JOB_QUEUE_PROCESSES (0_36)

Limits the number of
processes for the
snapshot process.
Normally, one should
be sufficient unless
there are several
snapshots or large
snapshots that may
interfere with the
snapshot process.

Page 725

PART VIII

Performance Tuning

29. Performance Tuning Fundamentals
30. Application Tuning
31. Tuning Memory
32. Tuning I/O

Page 726

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 719

● LOB_storage_clause is related to the Large Object Definition. For more information on Large
Objects, please refer to Oracle8 Server Application Developer's Guide.

● LOGGING/NOLOGGING specifies whether redo log information is to be written when creating
an index. This is similar to the CREATE INDEX NO RECOVER command. It also affects direct
loading and direct load inserts. This can significantly affect the index during recovery. For more
information on this, read the GREAT INDEX command in the Oracle8 SQL documentation.

● CACHE/NOCACHE specifies whether the snapshot will be kept in memory after a full table
scan. For more information on this, read the Oracle8 Concepts Guide concerning memory
structures, cache, and the LRU algorithm.

● WITH PRIMARY KEY is a default in Oracle8. By specifying the creation of a primary key
snapshot, the master table can be reorganized without impacting a fast refresh. There are some
limitations concerning utilizing a PRIMARY KEY snapshot.
There must be a primary key in the table referenced. This must be by using the PRIMARY KEY
constraint of the CREATE TABLE command.
All columns within the primary key must be used.

CAUTION

If the primary key is not used with the create snapshot command, the record's rowid will
be used. This can create potential problems if the master table is recovered due to a
database recovery. The recovery will change the rowid values and can potentially
invalidate the snapshot. To ensure that this is not a problem, refresh snapshots using the
complete option after any database recovery.

Using defaultmaster|LOCAL specifies which type of rollback segment to use. DEFAULT will enable
Oracle to choose, MASTER will use the rollback segment at the remote site, and LOCAL will use the
rollback segments in the local database.

Using Snapshot Refresh Groups

Many snapshots, although associated with different master tables, may have the same refresh rate,
making them candidates for grouping. Although Oracle8 enables a point-and-click method for creating
these snapshots, it is important to know what happens behind the mouse.

Oracle refers to this capability as API calls. The manipulations of replicated objects are not performed

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch28/0716-0718.html

via standard SQL commands. The calls are performed through the use of procedures. For more
information concerning procedures, their syntax, and how they are used, refer to the Oracle8 Application
Developer's Guide.

Identifying Potential Problems with a Snapshot

As with any database management process, proactive management is the most appropriate method. To
proactively manage the snapshot process, the DBA must be able to identify potential problems and
design the system in order to prevent them from occurring. This section identifies some of these
problems.

Page 720

Sizing There is one pitfall to avoid during the creation of a snapshot. Although it is query only, the
snapshot is not a static table. Sizing should be based on the update rate of the table copied, not the
snapshot itself. For example, if the table GERMANY_SPECS is a highly dynamic table, it should have a
larger percent used (PCTUSED) to accommodate the updates. The table should be sized to ensure that
fragmentation does not occur.

Dropping Objects Inadvertently Some of the snapshots are in refresh groups. To find the job numbers
associated with them, query the DBA_REFRESH_CHILDREN table. These groups can be dropped;
however, care must be taken to ensure that the objects are not also dropped. For this reason, the method
for dropping any type of replication group should be performed via sql code and not the Enterprise
Manger. The Enterprise Manager enables the DBA to drop the objects by simply clicking on the objects.
The way to drop Refresh Groups is to use the procedure:

execute DBMS_REPCAT.DROP_SNAPSHOT_REPGROUP(gname=>'[name of
Âgroup]',drop_contents=>FALSE);

drop_contents defaults FALSE; specifically setting it to FALSE is just an added precaution. When using
procedures, they must be entered as a single line or they will not be invoked.

CAUTION

If you set drop_contents to TRUE, the tables associated with the group are also
dropped.

Losing Snapshot Refreshes When a master database cannot complete the refresh of a snapshot, it will
try 16 more times before the refresh attempts will stop. The 16 times does not mean 16 refresh intervals.
The first time a refresh fails, the snapshot process will wait one minute and try again. If that fails, the
time doubles to two minutes, then four, and the time span grows exponentially until it reaches or exceeds

the actual refresh interval. When that occurs, it will continue at the refresh rate. After 16 times, Oracle
will update the column BROKEN in the tables USER_REFRESH and USER_REFRESH_CHILDREN.
The broken column indicates that something has gone wrong with the snapshot refresh. This will not
only be reflected in this table, but the Oracle SNP process will also indicate a refresh problem in trace
files and alert.log.

One way to reduce the possibility of a broken snapshot is to create the snapshot with the FORCE option
rather than FAST. FORCE will choose FAST unless something has occurred to prevent a successful
FAST refresh; then it will perform a complete refresh instead. One drawback to using this option occurs
in the event of a very large table. If the refresh takes a long time, problems may occur if the current
refresh is still going when the next refresh is scheduled to occur.

After the DBA has determined that the refresh is broken and has rectified the problems that broke the
snapshot, the snapshot can be manually refreshed. Oracle8 provides several methods of refreshing
manually. One way is to execute the job defined as the snapshot. To determine this, log in at the child
site and perform the following query:

SELECT RNAME,JOB FROM DBA_REFRESH;

Page 721

The results will be similar to this:

RNAME JOB
GERMANY SPECS 142

Run the job that has the broken snapshot. The job name will be the same as the snapshot (locally/child).
To perform this, use the following procedure:

Execute DBMS_JOB.RUN(142);

The response will be the following:

PL/SQL procedure successfully completed.

When this has been completed, verify that the BROKEN status of the tables USER_REFRESH and
USER_REFRESH_CHILDREN is no longer Y. If the broken status remains at Y, repeat the process
again. If this does not fix the problem, ensure that there are not other problems (such a loss of
connectivity) that is preventing this refresh from occurring.

To proactively monitor the refresh process to prevent another broken snapshot, compare the snapshot
time and the time in the snapshot logs. These should match; if they do not, it may indicate that the

problem causing the initial loss of the snapshot has not been completely resolved.

At the master site, use the following query:

Select master,substr
(to_char
(current_snapshots,'MM-DD-YYYY HH:MI:SS'),
1,20)
time FROM DBA_SNAPSHOT_LOGS;

From the local/child site, use the following query:

SELECT NAME,SUBSTR
(TO_CHAR
(LAST_REFRESH,'MM-DD-YYYY HH:MISS'),
1,20)
TIME FROM DBA_SNAPSHOTS;

These times should match. If they do not, the snapshots will still require manual management until the
problem has been completely resolved.

Controlling Snapshot Log Growth Snapshot logs contain the DML changes of the master snapshot.
This determines what should be sent to the remote sites. The log is purged after all of the snapshots
using this log have been completed. However, if there is a problem with the snapshot, or one of the
snapshots is refreshed infrequently, then the snapshot log can grow uncontrollably. This can present a
problem in two ways. The DBA should size the logs to enable a certain amount of growth. If the stability
of the snapshot is mission-critical, the use of unlimited extents is recommended. This will remove the
possibility of reaching the maxextents. This fills the tablespace where the log resides. The DBA should
periodically check this log to ensure that this does not occur. If the size of the log is becoming

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch28/0716-0718.html

Previous | Table of Contents | Next

Page 730

various ways, just as a network can. Under heavy load (many concurrent users and/or huge amounts of
data being moved), an OS's CPU, I/O, and/or memory might be saturated.

Another way of putting this is that when a component is saturated, the system is bottlenecked on that
component. Hence, if the CPU of a UNIX machine is saturated, such as with a utilization of >= 85%, the
UNIX system is said to be bottlenecked on the CPU, or simply CPU bound.

Lastly, an OS might just need some re-tuning. If, for example, a DSS requires only very large files to be
stored on disks, a system administrator (SA) can tune the UNIX file system so that it optimally stores
very large files in contiguous chunks.

As you'll see in Chapters 31 to 33 and Appendixes A to C, tuning a database system is heavily
intertwined with tuning the OS. It is a good thing to be both an SA and a DBA, because you don't have
to ask permission to do this or that. You just do it. However, in practice, DBAs often have to fight
battles with SAs and management over resource allocation and tuning issues. My recommendation is to
gather quantifiable proof through Oracle diagnostic tools, discussed later in this chapter (see the section
"Using Oracle Diagnostic Tools") and in Chapters 31 to 33, and use those figures to justify your
resource needs.

Knowing the Tuning Principles

Now is a good time to enumerate the major performance tuning principles you will find in almost any
performance tuning reference.

What are the major performance tuning principles? They are as follows:

1. Divide and conquer.
2. Preallocate, prefetch, and precompile.
3. Triage. (Be proactive.)
4. Bulk, block, and batch.
5. Segment the application appropriately.

If these look familiar, they should. They are the physical design principles we discussed in Chapter 3,
with a slight twist on numbers 2 and 3. Let's look at a few scenarios regarding how these principles
apply to performance tuning per se, and not just physical database design.

Tuning Principle 1

Divide and conquer is the principle. In essence, you want to use parallel techniques as a remedy for a
bottleneck.

Follow along with this scenario: If performance monitoring shows that the database system has a heavy
concentration of physical reads and writes to one particular disk, that disk is a bottleneck. The physical
and logical structures of Oracle, for example, need to be separated to allow parallel access. As often is
the case, what is happening here is that an application has several users or processes trying to access the
same tables or tablespaces on that disk.

Page 731

Frequently, tables that must be joined together might exist on the same disk. This makes for poor
performance.

The OS must access the disk on Oracle's behalf for some blocks of the table's data, perform this cycle
again for the second table, and repeat the whole process for all the blocks of both tables until Oracle has
joined the two. What happens at the hardware level is that the read/write head of the disk must read the
requested sectors (physical data blocks) of the first table, reposition itself to read the requested sectors of
the second table until a match is found, and then repeat. Access time (in milliseconds) of a disk consists
of seek time and latency (rotational delay). Seek time is the repositioning of which we spoke, when the
read/write head must move inward and outward along the radius of the disk to find the track containing
the requested sectors. Seek time dominates the latency, or the time it takes for the disk to spin around to
access the sectors.

The important thing is that joining two or more tables on the same disk requires a high proportion of
seeks to reads. As a DBA, your goal is to reduce the number of seeks. You want to minimize contention
and get rid of this bottleneck. To do this, you separate the tables that are being joined onto different
disks. This same methodology holds true for tables that coexist on the same disk and can be
simultaneously accessed even though they aren't being joined together. The result is the same:
bottleneck. The solution is the same: separate them.

By the way, RAID is susceptible to this scenario just as easily as a standard disk. At first, it might not
seem possible that RAID, especially levels 1, 3, and 5 (which we discussed in Chapter 3), could suffer
this same type of problem. Quite clearly, striping a single table across several disks (a RAID volume)
will undoubtedly increase performance. However, if this table is stored on the same RAID volume with
tables that must be joined with it or at least are accessed concurrently, we have the same problem:
bottleneck. Again, the solution is the same: separate them.

The reason you still have the bottleneck is not so clear at first glance, but think about it. Chunks of all
the tables (stored in the data files of their respective tablespaces) are striped across all the disks of that

RAID volume. Although no single table exists in its entirety on any one disk, chunks of all tables coexist
on all of the disks. Hence, we have the same problem on a smaller scale. Rather than separating joined
or otherwise simultaneously accessed tables onto different disks as with standard disk setups, we
separate the tables onto different RAID volumes.

Tuning Principle 2

Preallocate, prefetch, and precompile is the principle. Do work ahead of time whenever possible.

Follow along with this scenario: Suppose you have a database system that is particularly volatile. It
grows and shrinks considerably and frequently. In fact, as an application type, it can be called a VCDB.
When you access the database during the non-growth period, performance is reasonable. However,
during its growth phase, performance is very poor, especially early on.

Page 732

What is likely happening here is that dynamic growth is slowing down the online system. In Oracle
terms, this is known as dynamic extension. Rows are being updated or inserted such that Oracle must
extend or allocate the next extent for a table, as designated by the storage clause when either created or
altered, or take the tablespace default. In either case, the table had enough space at creation time up until
this most recent growth period and then had to extend to accommodate it. Of course, simply having a
table extend in Oracle is not the end of the world. Far from it. It is, in fact, a normal course of events.

However, when a table is frequently extending, especially for large amounts of data, and causing online
access to suffer, it's a major problem. Concurrent users shouldn't have to suffer. For database systems of
this type that require frequent or very large data extents, preallocation is best. You want to create your
table with sufficient storage to begin with—that is, to handle the maximum expected peak size. In the
storage clause of your table (or tablespace) create statement, set your INITIAL extent size, your NEXT
extent size, and then set MINEXTENTS so that INITIAL + ((MINEXTENTS - 1) x NEXT) equals the
maximum expected peak size of the table.

Tuning Principle 3

Triage is the principle. Attack the most important problems first to get the greatest return on investment.

Follow along with this scenario: You have a slow batch system. When you do production runs, the
system crawls. Upon reviewing the SQL code that makes up the application, you seem to have several
very inefficient programs that could be rewritten. To do so might take about two months. You then
analyze performance monitoring statistics and find that rollback shows high contention, apparently
because you are running several concurrent programs at once to help speed up the runs. You fix the
rollback by adding more segments, but you gain little increase in your elapsed times. What to do?

No matter how well you tune the back end, the front end (or application code) dominates the total time
usage of a client/server system, not accounting for networking and other issues. You must tune the
application first and then tune the database. The investment of two months will be well worth it when
the production runs finish faster than ever.

If this can't be done for some reason, other database efforts such as logical or physical restructuring can
be done as a temporary measure. But this truly shouldn't be done at all; you'd be changing your good
database design because of a poor application design. You wouldn't gain much with that approach.

Tuning Principle 4

Bulk, block, and batch is the principle. When appropriate, group things together that are processed
together and don't compete with one another for resources.

Follow along with this scenario: Your DSS provides real-time, read-only information to external
analysts via the Internet. You have a Web page as a front end to our database system. Concurrency is
sometimes medium high (up to 100 users) but does not seem to cause problems. What you have had
complaints about is the throughput from selecting from large tables.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 733

You have a classic case here. When selecting most or all of the rows from a table, the optimizer must
choose a full table scan over any indexes as its access path. This in itself cannot be avoided if that is
what the user desires, and this type of access is part of the application requirements. What can you do to
speed things up? Well, you can initially set your DB_BLOCK_SIZE to 4KB on your UNIX system. You
can increase this to 16KB or 32KB. The larger the block, the more cost effective your reads are. In other
words, you get more rows of data per block with each read. Hence, you can make the reads more
efficient by increasing block size for large data retrievals.

You can also consider increasing DB_FILE_MULTIBLOCK_READ_COUNT and
DB_BLOCK_BUFFERS as necessary. Reading more blocks at once and increasing block buffering
should also help in DSS cases, but we'll discuss these later in Chapter 32, "Tuning I/O."

Tuning Principle 5

Segment the application appropriately is the principle. Assign the various pieces of the application to the
appropriate places (the client, the middle tier, or the server).

Follow along with this scenario: You have a client/server database system that does order entry and
control. However, the order entry screens themselves tend to run slowly on the PCs. Response time is
poor, and the application seems to burden the client because a single entry might take seconds (which is
slow, in terms of response time).

This could be anything. You first need to examine how the application is partitioned. It turns out that
most of the data validation is done in the front-end code, and this might be the culprit because it
accounts for a large majority of the lines of code. Most of the front-end code algorithms go like this:

1. Clerk logs in to the database.
2. Clerk reads data from some tables.
3. Clerk enters data into the screen.
4. Clerk waits while the front end validates entered data in some tables with other tables.
5. Clerk logs out if done or repeats steps 2 through 4 if not.

The problem with this is that the clerk's transaction is active the entire time, and it interactively validates
data among tables from the front end. This validation process (step 4) should take place on the server,
non-interactively. It belongs there because it deals directly with the data. Processes should normally be
located as close as possible to the data on which they operate, unless there is some compelling reason to
do otherwise (such as that the server is underpowered). A standard way to segment the preceding

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch29/0736-0738.html

application is to divide it into three major steps: read (the input data) with a transaction, change locally
(interactively) without a transaction, and write back the changes (the output data) with a transaction.
This application segmenting is also known as transaction chopping. If done correctly, it should result in
a substantial reduction in response time.

Page 734

Tuning Goals

There are different ways of determining the goals of a performance tuning effort. A DBA should
consider them all. Consider your application type, which we discussed in Chapter 3 and will discuss
again later in this chapter (see the section "Revisiting Application Types"). Database systems can be
sampled on various quantitative measures, which we also discussed in Chapter 3 and will discuss in
"Understanding Benchmarks" later in this chapter. The most important of these are

Throughput. Work per unit time, as measured by transactions per second (tps); higher is
better.
Response time. The time it takes for an application to respond, as measured in
milliseconds or seconds; lower is better.
Wall time: The elapsed time a program takes to run; lower is better.

In any system, throughput and response time usually run counter to one another as tuning goals. If
response time is high (poor), throughput might be high (good). If throughput is low (bad), response time
might be low (good).

Common sense helps when sorting out these two conflicting measures. The more users that are
concurrently using a system within a certain amount of time, the more likely it is that each user will
experience longer delays than normal, but the number of transactions going through the system will be
greater. On the other hand, if you decrease the number of concurrent users accessing the system within a
certain time window, each user will enjoy faster response time at the expense of fewer overall
transactions being completed in that duration.

Typically, OLTP systems want low response time or high throughput, in terms of transactions per
second, depending on the application needs. A DSS wants low response time. However, a DSS also
might want high throughput in terms of blocks read or written per unit time. This type of throughput is
not necessarily counterproductive to high concurrency and low response times. A batch (production)
system typically wants lower wall times. For example, everyone likes for the payroll application to
complete on time!

Always consider the two central tuning goals:

Maximize your return on investment. Invest your time and effort wisely by working the

problems most likely to yield the most improvement.
Minimize contention. Bottlenecks are characterized by delays and waits; eliminate or
reduce these whenever possible.

Finally, consider the following general-purpose database tuning goals:

Minimize the number of blocks that need to be accessed; review and rewrite code as
necessary.
Use caching, buffering, and queuing whenever possible to compensate for the
electromechanical disadvantage (memory is faster than disk); prefetch.
Minimize the data transfer rates (the time it takes to read or write data); fast disks, RAID,
and parallel operations help do this.

Page 735

Schedule programs to run as noncompetitively as possible; they might run concurrently
and yet still be noncompetitive for the most part.

Using the Return on Investment Strategy

The return on investment (ROI) strategy is a top-down, cost-effective way of viewing the performance
tuning process. It helps you find the best way to approach the tuning of your particular application. We
have seen ROI turn up before as one of the major performance tuning principles (triage) and as one of
the two major performance tuning goals. Now we take it to heart and use at as a high-level, step-by-step
methodology for performance tuning.

You want to do performance tuning in the order that gives you the greatest gain for your time and effort.
In the ROI strategy that follows, notice that steps 1 through 3 amount to logical and physical design,
which were covered in Chapters 1, "Databases, DBMS Principles, and the Relational Model," and 2,
"Logical Database Design and Normalization." Logical design is regardless of DBMS vendor. Hence,
there are no Oracle specifics when dealing with logical design (not counting logical design tools). We'll
revisit application types in the next section and apply some Oracle-specific recommendations for
physical design and performance tuning recommendations for these applications. In the later chapters,
we'll revisit these performance tuning recommendations for Oracle more closely, looking at tuning the
application, tuning memory, and tuning I/O.

Steps 4 and 5 amount to tuning the application, which we'll cover in Chapter 30, "Application Tuning."
Steps 6 and 7 amount to tuning memory and are included in Chapter 31, "Tuning Memory." Lastly, steps
8 and 9 amount to tuning I/O and appear in Chapter 32. Steps 10 and 11 deal with components even
more external to the database than the OS: the network and the client. Step 12 offers some advanced and
less-common solutions, which should be tried only after standard methods have been applied and the
desired performance gains have not been realized (steps 1 through 11). Chapters 30, 31, and 32 contain

Oracle specifics to help you do proper performance tuning.

For now, let's review the steps in a little more detail, in descending order of return on investment.

Step 1: Do a Proper Logical Design

As covered in Chapter 2, you can reduce storage. In practice, this often means more tables with fewer
rows per table. In turn, this means the capability for faster searching. The fewer rows that are stored and
must be searched through, regardless of the searching technique, the quicker you'll be able to find what
you're looking for.

Step 2: Do a Proper Physical Design

In Chapter 3, we offered a general-purpose hardware layout. In the section "Step 12: If All Else Fails,
Consider More Exotic Solutions," we'll offer some more application-specific twists to this general
hardware layout.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch29/0736-0738.html

Previous | Table of Contents | Next

Page 749

Chapter 30

Application Tuning

In this chapter

● Motivation
● Understanding the Optimizer
● SQL Trace and tkprof
● Understanding EXPLAIN PLAN
● Identifying Typical Problems
● Rewriting Queries
● Introducing New Index Features for Oracle8

Page 750

Motivation

Tuning the application really amounts to tuning your SQL statements within your application. If your
application has a graphical user interface (GUI) front end, tuning the application still amounts to tuning
analogs of SQL statements. In other words, all the GUI-level actions can be mapped to one or more SQL
statements (SELECT, INSERT, UPDATE, DELETE) of varying complexity. In any case, our Return-on-
Investment (ROI) strategy tells us that we must tune the application first, if at all possible, then resort to
tuning all the aspects of the database last.

Subjective estimates have shown applications being responsible, on average, for 80 percent of the total
system (application+database) performance, leaving only 20 percent for the database. I agree with the
idea behind this claim, as we have just covered. However, I tend not to agree with the numbers that
make up this claim. In my experience, I have seen systems that fulfill these estimates and systems that
exhibit the opposite situation—the opposite situation being the database accounting for most if not all
the performance.

What this really means to DBAs is that the performance of systems may be labeled situational, relative,
or application specific. This should sound familiar, especially in regard to discussions of application
types. Yet one absolute rule does hold true, and I wholeheartedly advocate that DBAs pay close
attention to the first rule of tuning: The application should always be tuned first.

This holds true for two reasons: (1) The majority of database systems existing today owe most of their
performance to their applications, and (2) Even if this does not hold true for your individual system, as a
DBA you must categorize the system's application type. This means that you must review the
application, specifically the types of transactions: the access code and the SQL code. Even if your
application code is programmed as efficiently as possible from a database access point of view, you
must still understand how the programs interact with your database.

How do you accomplish the task of reviewing the application? If the application is reasonably small—in
terms of lines of code or number of separate program units (modules)—then manually reviewing
everything is possible. On the other hand, if the application is large, full-manual review would most
likely be out of the question. Principle 3, Triage, of our Performance Tuning Fundamentals (Chapter 29)
gives us direction. You can focus on those modules or sections of code that tend to account for most of
the resource and time consumption.

First you will attempt to fix the 20 percent of the application code that accounts for 80 percent of the
system performance. (Then you can work on the remaining code to squeeze out the rest of the
performance potential, if you have time and personnel to do so.) How do you actually do this? The
sections following the next one discuss the Oracle tools that you will need. But first, the next section
gives you the necessary background to use those tools—an understanding of the Oracle optimizer and
how it works.

Page 751

Understanding the Optimizer

An optimizer is a piece of software and part of an RDBMS that is responsible for optimizing, or
formulating, the most efficient way for a given SQL statement to access the data. To do this, the
optimizer chooses a sequence of access paths that provide the (hopefully) fastest way for Oracle to get to
the data and then builds the execution plan based on those access paths. An access path is a physical way
to the data. An execution plan is the sequence of Oracle executable steps that follows the chosen access
paths.

The technology behind the Oracle optimizer, as with many other RDBMS vendors, has advanced
considerably over the past few years. Ironically, the optimizer still may not always provide the best way
(the optimal way) to access data. In older versions, the programmer had to be careful about how she
coded her SQL statements. With the knowledge that the ordering within a SQL statement could
drastically affect how it would perform, programmers had to do a lot of manual optimization. Likewise,
the DBA had to be aware of this situation. The better the optimizer, the less optimization responsibility
is on the users, programmers, and DBAs. Even with the current field of RDBMS optimizers,
programmers still need to know optimization techniques and apply them when possible. However,
programmers don't need to be quite as expert about the optimizer as before. DBAs should always remain

aware of the optimizer technology, optimization rules, and proper optimizer usage.

Optimizers come in two flavors:

● Rule-based—A rule-based optimizer chooses the access paths based on a static, RDBMS vendor-
specific rank-ordering of those access paths that are the fastest ways to the data. Although the
rankings are vendor specific, it is relatively easy to compare and map analogous access paths
between the output of different vendors' optimizers.

● Cost-based—A cost-based optimizer chooses the access paths based upon some data-distribution
statistics stored internally, usually within the RDBMS data dictionary. Typically, the DBA must
periodically run some RDBMS commands to maintain these statistics.

Oracle's 7.x and higher optimizers offer both rule-based and cost-based optimization capabilities within
the same optimizer. Oracle's 6.x optimizer offers rule-based, but does not have a fully automatic cost-
based optimization. All these versions offer a programmer an override known as a hint. It is not a true
override, in the sense that the optimizer does not always follow the hint. Consider a hint a suggestion to
the optimizer. If no syntax errors exist, the optimizer should generally follow it. A hint is placed inline,
meaning directly in the SQL statement code. Listing 30.1 shows a SELECT statement that suggests to
the optimizer to use the INDEX on the table from which it is selecting:

Listing 30.1An Example of a Query with a Hint

SQL> SELECT /*+ INDEX */ EMPLOYEE_ID
 2> FROM EMPLOYEES
 3> WHERE EMPLOYEE_ID = 503748;

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 748

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 745

Using Oracle Diagnostic Tools

Your major Oracle diagnostic tools are as follows:

● SQL_TRACE and TKPROF
● EXPLAIN PLAN
● The V$ dynamic performance views and Server Manager line mode
● Server Manager Monitor (GUI)
● The Performance Pack of Enterprise Manager
● utlbstat/utlestat and report.txt
● Third-party products

Using SQL_TRACE and TKPROF

To tune applications, you can use SQL_TRACE and TKPROF. You must set the init.ora parameter
TIMED_STATISTICS=TRUE to get timing information. The timing is good to 1/100 of a second. Real-
time database systems might have to use alternative timing methods, such as writing your own timer or
sampling the real-time OS clock on which the database system resides. You can optionally set the
USER_DUMP_DEST to the directory of your choice, and also set MAX_DUMP_FILE_SIZE to the
maximum number of bytes you want your trace file to grow. Set SQL_TRACE=TRUE at either the
system level (for all sessions), through the init.ora parameter, or at the session level through ALTER
SESSION SET SQL_TRACE=TRUE;.

Execute the application, and then set SQL_TRACE back to FALSE if desired. In effect, you're not
planning on running the application for timing purposes again in the near future. Use TKPROF to format
the trace file. (The TKPROF utility is run from the command line.) Statistics gathered include the query
execution cycle component times (parse, execute, and fetch) and logical versus physical reads. The
usage, syntax, and interpretation of SQL_TRACE and TKPROF will be covered in detail in Chapter 30.

Using EXPLAIN PLAN

Another application tuning tool is EXPLAIN PLAN. You must run utlxpln.sql to create the
PLAN_TABLE, or create it yourself interactively. EXPLAIN PLAN FOR <SQL statement>; will
explain the execution plan for that SQL statement without executing it. (This is similar to the NO EXEC
option with some other interpreted languages.) You can use this with or without SQL_TRACE and
TKPROF. I recommend you review the code first (read it), run SQL_TRACE with TKPROF next, and
then use EXPLAIN PLAN last if you're still having difficulty with an application that's performing

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch29/0743-0744.html

poorly. This will be addressed in Chapter 31, along with how the Oracle optimizer works, which will
help explain how EXPLAIN PLAN works.

Using the V$ Dynamic Performance Views

To help tune memory (Chapter 31) and tune I/O (Chapter 32), all of the Oracle products, such as
SQL*DBA, Server Manager, and Enterprise Manager, rely on the V$ dynamic performance views.
These views are grouped into instance, database, memory, disk, user, session, and

Page 746

contention aspects of performance. They are based on the internal X$ base tables. DESCRIBE V
$FIXED_TABLE and SELECT the columns you want from the V$FIXED_TABLE table to get a listing
of the V$ views. The X$ tables are typically not queried directly. Their names and contents change from
version to version and within a version.

The V$ views are called dynamic because they are populated at instance startup and are truncated at
shutdown. The V$ views (and X$ tables) also form the basis of the standard Oracle tuning scripts,
utlbstat/utlestat, which query them using SQL scripts and format the output that is returned. Therefore, if
utlbstat/utlestat do not give you what you want, you can use Server Manager and the V$ views to either
supplement or supplant those utilities. The least common denominators for all Oracle platforms, older
and newer, are SQL scripts, V$ views, and either SQL*DBA or Server Manager line mode (svrmgrl on
UNIX, and svrmgr23.exe on Windows NT, for example). This means that if you have developed your
own performance scripts, you can run them within these command-line utilities. And there's always
SQL*Plus, of course.

Using the Server Manager Monitor

The Server Manager Monitor, which is becoming obsolete because of the advent of Enterprise Manager,
offers several screens relating to performance. These screens monitor the MultiThreaded Server, logical
and physical I/O, process information, locks and latches, shared pool information, and rollback
information. The screens are updated in real time and, as mentioned, are based on the V$ views and X$
tables.

Using the Performance Pack of Enterprise Manager

Enterprise Manager's Performance Pack is extremely useful. It offers several components that can save a
lot of time over command-line methods and scripting, especially for experienced DBAs or those who
know precisely what to look for. Enterprise Manager allows you to quickly get to that information. The
statistics are based on the V$ views and X$ tables but are reformatted into a much more readily
digestible GUI form.

The components in the Performance Pack help analyze your logical and physical design. They also
monitor locks, a variety of performance issues (throughput, redo, rollback, I/O, memory, and so on), the
top user sessions with regards to resource consumption, your tablespace storage (data files,
fragmentation, and so on), and application events through tracing.

Using utlbstat/utlestat and report.txt

The most commonly used Oracle diagnostic utilities by far are the utlbstat/utlestat pair. A DBA runs
utlbstat before running his or her application or simulation. The utlbstat.sql script builds the beginning
tables necessary to collect and store the performance data. Then the DBA runs utlestat.sql, which builds
the ending tables and the difference tables, computes the performance differences (the deltas) between
the utlbstat run and this utlestat run (in effect, the application duration), formats the output data
(including comments and some explanations), and writes it to the default file, report.txt. This file must
be interpreted

Page 747

by the DBA, either directly or indirectly (by taking some of the output values given and using them as
inputs into simple formulas).

Interpretation of this data means comparing these final figures to more or less established guidelines,
keeping the ROI strategy in mind, and categorizing the findings as acceptable or not for that given area
of performance. The output in report.txt nearly covers all the bases, either directly or indirectly. So a
DBA must simply apply the ROI strategy, the established guidelines, and his or her application
knowledge and determine whether or not the memory performance is acceptable, the I/O performance is
acceptable, and so forth.

Using Third-Party Products

We've presented a fairly high-level overview of the major Oracle diagnostic tools. Third-party
performance monitoring tools exist, and they have relatively large market shares within the installed
Oracle customer base. Some examples include offerings from BMC, Platinum, and Compuware. We'll
use utlbstat/utlestat and report.txt as our diagnostic tools for Chapters 31 and 32. And, of course, we'll
use EXPLAIN PLAN and SQL_TRACE with TKPROF for the next chapter.l

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch29/0743-0744.html

Previous | Table of Contents | Next

Page 752

Notice that the hint immediately follows the SQL command (SELECT, INSERT, UPDATE, DELETE).
The hint comment, like any regular SQL*Plus comment, begins with a /* and is immediately followed
by a plus sign (+), to make /*+ the start of a hint comment. The usual */ ends the hint comment. Also
consider how the optimizer knows which index to use if more than one exists, especially if, for some
reason, more than one exists on EMPLOYEE_ID. In the previous example, only /*+ INDEX */ is stated,
and it is assumed that only one (primary key) index exists for this table. Hence, for this listing, there is
no ambiguity. In cases where there is ambiguity, you would need to include the table and index name in
the hint to give the optimizer specific information. Hints are discussed in more detail in the following
sections.

NOTE

The optimizer will accept only one hint per statement or statement block. The optimizer
will ignore any additional hints. Further, the optimizer will ignore any misspelled hints.
There is no reported error, and you would have to use Explain Plan, discussed later in
this chapter, to determine whether or not your hint was followed.n

Ranking Access Paths

The Oracle 7.x optimizer access paths, ranked by fastest to slowest, top down, are shown in Table 30.1.

Table 30.1Oracle Optimizer Access Paths, Rank-Ordered

Rank Access Path

1 single row by ROWID

2 single row by cluster join

3
single row by hash cluster key with unique or primary
key

4 single row by unique or primary key

5 cluster join

6 hash cluster key

7 indexed cluster key

8 composite key

9 single-column indexes

10 bounded range search on indexed columns

11 unbounded range search on indexed columns

12 sort-merge join

13 MAX or MIN of indexed columns

14 ORDER BY on indexed columns

15 full table scan

Source: Oracle Corporation.

Page 753

So, when the Oracle optimizer is following the rule-based strategy, it uses the fastest access paths that fit
the given query. For example, Listing 30.2 shows the same query from Listing 30.1 without the hint, and
it has been modified with a > WHERE clause.

Listing 30.2An Example of a Query Without a Hint and an Unbounded Range Search

SQL> SELECT EMPLOYEE_ID
 2> FROM EMPLOYEES
 3> WHERE EMPLOYEE_ID > 500000;

If Oracle were using rule-based as its strategy and a primary key index existed on EMPLOYEE_ID on
the table EMPLOYEES, it would use access path #11 (unbounded range search on indexed columns) for
Listing 30.2 because the WHERE clause is unbounded. In other words, a WHERE clause is unbounded
when it has a greater than (> or >=) operator and no corresponding less than (< or <=) operator, or vice
versa. The range is not known until execution time.

If the WHERE clause is bounded (in effect, it has both operators), the finite range is known at parse
time. To make an unbounded WHERE clause bounded, you could use the literal maximum (if you knew
it), or at least the theoretical maximum for that column according to your business rules. However, you
probably wouldn't want to use the MAX operator in addition to your original unbounded range
search—if you look at the rank ordering, using MAX is #13, which is below our objective of improving
an unbounded search (#11) to a bounded one (#10). Using the MAX operator with your original
unbounded range search would only slow you down. But using the actual maximum, if statistically
known, would do the trick. Follow these dos and don'ts, which are illustrated in Listing 30.3:

● Do use an actual maximum value (literal) known ahead of time. This is illustrated in the first
query of Listing 30.3 (678453).

● Do use a theoretical business maximum value (literal) known ahead of time if the actual is not
known. This is illustrated in the second query of Listing 30.3 (999999).

● Don't use the MAX SQL aggregate function because it will only slow things down. This is

illustrated in the third query of Listing 30.3.

Listing 30.3Following the Dos and Don'ts of Rewriting an Unbounded Search to Make It Bounded

SQL> SELECT EMPLOYEE_ID
 2> FROM EMPLOYEES
 3> WHERE EMPLOYEE_ID > 500000 AND EMPLOYEE_ID <=678453;

SQL> SELECT EMPLOYEE_ID
 2> FROM EMPLOYEES
 3> WHERE EMPLOYEE_ID > 500000 AND EMPLOYEE_ID <=999999;
SQL> SELECT EMPLOYEE_ID
 2> FROM EMPLOYEES

 3> WHERE EMPLOYEE_ID > 500000 AND EMPLOYEE_ID <= MAX
(EMPLOYEE_ID);

Page 754

Analyzing Queries to Improve Efficiency

To no surprise, this general field of attempting to reformulate or rewrite queries to improve their
efficiency is known as query rewriting. Query rewriting is covered in more detail in the sections
"Identifying Typical Problems" and "Rewriting Queries." Our previous examples are standard fare and
easy to understand. For example, to get the maximum (MAX) of a set of values in a column, it would
seem to take close to the amount of time of a full-table scan—regardless of whether or not the column
was indexed. And, as you can see by the rank ordering of the MAX access path, this seems to be the
case. However, there are far less understandable and more exotic ways of rewriting queries that are not
as obvious.

Now that you've studied rule-based optimization, what about cost-based optimization? Take a look at the
two queries in Listings 30.4 and 30.5.

Listing 30.4 First of Two Similar Queries on the Same Table

SQL> SELECT EMPLOYEE
 2> FROM EMPLOYEES
 3> WHERE EMPLOYEE_TYPE='VICE PRESIDENT';

Listing 30.5 Second of Two Similar Queries on the Same Table

SQL> SELECT EMPLOYEE
 2> FROM EMPLOYEES
 3> WHERE EMPLOYEE_TYPE='PROGRAMMER';

Now, suppose you have a relatively large software company with six vice presidents and about 2000
programmers out of about 6000 total employees. The two preceding queries will explain the difference
between rule-based and cost-based query optimization and why cost-based optimization is preferred.
Assuming you have a non-unique index on the column EMPLOYEE_TYPE, rule-based optimization
chooses access path #9 (single-column indexes) for both queries. On the other hand, cost-based
optimization—given the data distributions that programmers account for 1/3 of the total number of rows
and that vice presidents account for only 1/1000—chooses to use the non-unique index for the query in
Listing 30.4, yet is intelligent enough to opt for the full-table scan (the worst case access path #15) for
the query in Listing 30.5. The intelligence comes from the stored knowledge of the data distribution.

If the optimizer must access a significant fraction of all the rows of a table, a full-table scan is actually
more efficient than an index scan. This is because scanning an index for a row and then retrieving that
particular row requires at least two read operations per row, and sometimes more—depending on how
many distinct data values are in the index. However, the full-table scan only needs one read operation
per row. Multiplied times many rows, it is pretty clear why an index is slower when accessing a large
amount of a table, compared to just reading through the entire table, as with the query in Listing 30.5.
Aside from the total number of read operations, another major reason why a full-table scan is better than
an index on retrieving large parts of a table is that most of the necessary reads are sequential or nearly
sequential.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 755

Obviously, to read from an index, then read from a table, then back to the index, then back to the table,
and so forth cannot be sequential, whether the table and index are on the same disk or are spread out in
good tuning fashion. The index slows things down for queries and data like the query in Listing 30.5.

The index clearly outperforms a full-table scan for the queries and data like in Listing 30.4. This is
because you only need to retrieve a small number of rows (6), and our total number of read operations is
only 12 (2¥6). You still must perform 6,000 read operations (the entire table) with a full-table scan,
because a full-table scan has no knowledge of where individual pieces of data are stored. It must check
every row. In fact, the queries and data in Listing 30.4 are classic examples of the need for an index,
especially if executed often enough. The best way to sum up the discussion of these two similar queries
with different data counts is that these queries show how a user or programmer could not know that,
given rule-based optimization, query and data like that in Listing 30.5 could perform better by using cost-
based optimization.

Specifying Optimizer Mode

The next obvious question is "How do I specify the optimizer mode in Oracle?" You have learned about
rule-based and cost-based optimization so far. You can specify your desired form of optimization at the
instance, session, or statement level. To specify at the instance level, set the init.ora parameter
OPTIMIZER_MODE to one of the following values:

CHOOSE—When set to this value, the optimizer chooses the cost-based mode if statistics
are available (have been run by the DBA). Otherwise, it resorts to rule-based optimization.
RULE—The optimizer uses the rule-based approach.
FIRST_ROWS—The optimizer chooses cost-based (again if statistics are available) to
minimize response time, that is, to minimize the time to present the first rows to the
screen. Use this mode if you have a highly interactive, screens-based application, as many
OLTP and smaller DSS systems are.
ALL_ROWS—The optimizer chooses cost-based (again if statistics are available) to
minimize throughput, that is, to minimize the total number of rows passing through the
system per unit of time (transactions per second). Use this if you have a batch or large
DSS system.

To specify at the session level, issue the following DDL statement:

SQL> ALTER SESSION SET OPTIMIZER_GOAL=<value>;

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch30/0758-0759.html

where value is one of the previously mentioned optimizer modes (CHOOSE, RULE, FIRST_ROWS,
ALL_ROWS). The result is only good for the session and hence must be reissued in a future session if
desired.

To specify at the statement level, use hints as discussed earlier. The hints may be any of the optimizer
mode values (CHOOSE, RULE, FIRST_ROWS, ALL_ROWS), or they may be one of the access paths
shown in Table 30.2.

Page 756

Table 30.2Access Paths for Hints

Access Path Description

ROWID
The optimizer uses ROWID scan for
retrieval.

CLUSTER Uses a cluster key scan.

HASH Uses a hash index scan.

INDEX Uses an index scan.

INDEX_ASC
Uses an index scan and scans in ascending
order.

INDEX_DESC
Uses an index scan and scans in descending
order.

AND_EQUAL
Uses multiple indexes and merges their
results.

ORDERED
Uses the order of the tables in the FROM
clause as the order of the join.

USE_NL
Uses the nested loops method for joining
tables.

USE_MERGE
Uses the sort-merge method for joining
tables.

FULL Uses a full-table scan.

Table 30.3 Access Paths for Hints in Version 7.3 and Later

HASH_AJ

Access Path Description

CACHE

Tells Oracle to treat the
table as a cached table,
keeping its blocks in the
SGA after a full scan for
later quick access.

Specifies type of join to use during
an antijoin (Oracle 7.3 and later).

MERGE_AJ
Specifies type of join to
use during an antijoin.

NO_MERGE

Tells Oracle not to merge
the view's SQL syntax
with the syntax of a
query that uses the join.

NO_CACHE

Marks blocks as "least
recently used" so they
get removed from SGA
soon.

NONPARALLEL
Allows the disable of a
parallelism query.

ROWID
Uses TABLE ACCESS
BY ROWID operation.

STAR

Uses a composite key/
start query execution
path when resolving a
join.

USE_CONTACT

Forces OR conditions in
the WHERE clause to be
compounded as UNION
ALL.

USE_HASH Uses a hash join.

Page 757

Also, to use any of the cost-based optimization modes (FIRST_ROWS, ALL_ROWS), the DBA must
run the statistics periodically to keep the stored data distributions up-to-date. A DBA can either take all
statistics or take some statistics with a (simple random) sample. To take all statistics means to do a full-
table scan. To take a sample means to access some fraction less than the total number of rows. A DBA
issues the following DDL statement to take all statistics:

SQL> ANALYZE TABLE <table_name> COMPUTE STATISTICS;

This works fine for relatively small tables—fewer than a million rows. But for large tables, DBAs may
want to opt for taking a sample. Statistically, as long as the sample is large enough relative to the total
number of rows, it is sufficiently accurate not to require taking all statistics. To take a sample, a DBA
issues the following DDL statement:

SQL> ANALYZE TABLE <table_name> ESTIMATE STATISTICS;

This statement causes the sampling (by default) of up to 1,064 rows, regardless of how large the actual
table may be. A DBA may specify percent by issuing:

SQL> ANALYZE TABLE <table_name> ESTIMATE STATISTICS SAMPLE 10 PERCENT;

This samples 10 percent, rounded to some whole number of rows, of the total number of rows in the
table. For example, this samples 600 rows to use for estimates out of your 6,000-row EMPLOYEES
table. A DBA may also specify the actual sample size, by issuing something like:

SQL> ANALYZE TABLE <table_name> ESTIMATE STATISTICS SAMPLE 1000 ROWS;

Clearly, this samples precisely 1,000 rows of the specified table.

CAUTION

If you specify a percentage greater than 50 (or a number of rows greater than 50 percent),
the ANALYZE command resorts to a full-table scan COMPUTE rather than your
specified ESTIMATE.

With Oracle versions 7.3 and later, the ANALYZE command has added a FOR clause. With this clause,
you can name specific columns with FOR COLUMN. For example, if only a few columns have changed
since the last ANALYZE run—or you want to reduce the ANALYZE run time—specify FOR
INDEXED COLUMNS ONLY, which does exactly what it says by not taking statistics on non-indexed
columns.

A DBA should run ANALYZE on a regular, periodic basis. However, what might be sensible for one
application might not be for another. For example, a DSS, which is uploaded from three feeder batch
systems on a monthly basis, only needs to have those tables analyzed (with COMPUTE) that have been
loaded, and then only immediately following the load or at some reasonable time before their next
usage. In contrast, a high-activity OLTP system—like flight reservation information—might need to
have nearly all its tables, which may be modified on a minute-by-minute basis, analyzed (with
ESTIMATE) on a short interval, such as every hour or less. These types of systems are probably
mirrored, and one production copy should be analyzed offline while the other continues to serve, and
then vice versa. In general, ANALYZE your tables as frequently as possible or at intervals when your

tables change most, so that the

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch30/0758-0759.html

Previous | Table of Contents | Next

Page 773

Chapter 31

Tuning Memory

In this chapter

● Introduction
● UTLBSTAT/UTLESTAT
● Tuning the Shared Pool
● Tuning the Database Buffer Cache
● Tuning Sorts
● Tuning the MultiThreaded Server (MTS)
● Tuning Locks
● Operating System Integration Revisited

Page 774

Introduction

In Oracle, "tuning memory" usually means tuning the SGA. This includes monitoring and tuning the
shared pool (the data dictionary and library caches) and the database buffer cache. Tuning memory is
closely intertwined with tuning the application and tuning I/O because one of the primary goals in
tuning—reducing or eliminating contention—must involve all aspects of the tuning process. For
example, this book covers tuning rollback segments and redo logs under tuning I/O, yet both have
memory components that must be tuned, such as the rollback buffer area and the redo log buffer.
However, because the major emphasis with each is I/O contention, they are covered under tuning I/O.
You must also tune other memory-based structures such as locks and latches, and some of those are
covered in this chapter. Sorting is another memory issue. When you sort anything, whether it is as a
result of a CREATE INDEX, an ORDER BY, a join, or so forth, the ideal situation is to do as much as
possible in memory and then resort to disk only as necessary. Finally, as a DBA, you must be an active
participant in the integration with and tuning of the operating system (OS).

Unless it comprises part of a specialized database machine, any RDBMS, Oracle included, must request
memory from the OS. The OS handles most of the memory management at the lower level, such as
shared memory, for the RDBMS. Depending on the RDBMS, it may handle some more of the higher-
level functions, such as locking. As examples, consider Sybase and Oracle with regard to memory

management. Sybase opts for using a large shared memory segment and managing itself through low-
level OS system calls. Oracle chooses this same approach. Sybase handles its own locking and
interprocess communications natively, within its multithreaded process. Oracle, on the other hand,
manages some of its locking and interprocess communications internally, yet also relies on the OS to do
some of the work. These methods of handling memory are a direct result of the architecture of the
RDBMS. In either case, the RDBMS, in and of itself a micro-operating system, must integrate closely
with the OS for it to have its resource requests handled efficiently. This not only holds true for memory,
but for all resources, including I/O. There are few exceptions. Raw disk in UNIX is one notable
exception (see Appendix A, "Oracle on UNIX"). For now, let's turn our attention to actually collecting
data and diagnosing memory problems.

UTLBSTAT/UTLESTAT

As you learned in Chapter 29, "Performance Tuning Fundamentals," the UTLBSTAT and UTLESTAT
scripts lay the foundation for all your diagnostic work. You often supplement these with manual queries
or customized scripts of the V$ dynamic performance views, such as V$SYSSTAT, but this is precisely
where (along with the X$ tables) these two scripts gather their information in the first place. By using
these from one job to the next, you help ensure a common denominator to communicate with other
Oracle DBAs and consultants regarding the performance of a particular system.

Page 775

As you've seen, these scripts are usually found in the $ORACLE_HOME/rdbms/admin subdirectory.
Before you actually use them, set TIMED_STATISTICS=TRUE in your init.ora parameter file or
ALTER SESSION SET TIMED STATISTICS=TRUE at your session level. Then, follow these steps:

1. Log in to svrmgrl (server manager line mode, versions 7.1 and later).
2. CONNECT / AS SYSDBA (or CONNECT INTERNAL).
3. Run utlbstat.sql.

This creates your beginning collection tables and views (in the SYS schema); these objects will have
names with BEGIN in them. The beginning statistics are then selected and stored there. Next, run your
application, if it is not already running. Your goal as a DBA is to capture your system statistics during its
peak activity. When the peak has tapered, or after some reasonable period of time, run utlestat.sql. This
interval of time need not be overly long, but should be sufficient. For example, if your peak load activity
lasts 2 hours (120 minutes) each day, sample at least 20 percent of this, or about 24 minutes, preferably
toward the middle of the interval. (Also, remember, your database must remain up at all times during
this sample run. This should not be a problem, however, since you are trying to sample from a live, peak-
loaded, production database, and one hopes the database stays up anyway!) This creates your ending and
differences collection tables and views. The ending objects will have names with END in them. The
ending statistics are then selected and stored there. The differences between the beginning and ending
statistics (the deltas) are stored in the differences tables. Finally, utlestat.sql selects from the differences

objects, formats the data, and stores the information in the file report.txt. Then, the hard work
begins—interpretation.

Interpreting Results

No two consultants will agree on every last detail when it comes to tuning Oracle, but they should agree
on most things. It has often been said that performance tuning is part science, part art. I generally agree
with this assessment, but try not to turn this type of work into a priesthood. In other words, yes, the part
that is most art is the interpretation part because it part requires human beings to make value judgments
on the relative strengths and weaknesses of a system.

Interpretation can be, and has been, semi- or fully automated, using sophisticated parsers and programs.
However, the undeniable reality is that despite how programmed this process can be, it nevertheless
remains partly subjective. Although it may be programmed, will the same two tuners or programmers
use the same rules or guidelines as to what level of performance is "good" or "bad"? Most assuredly not.
Furthermore, this considers only general-purpose tuning, if there is such a beast. When you bring to bear
the problem of application specifics, these so-called fully automatic performance-tuning software
programs quickly lose their usefulness.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 772

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 769

Using Set Operators

You've already seen that UNION can be a performance hit. What you should be more interested in is
using MINUS or INTERSECT. These can actually help performance. The following query:

SQL> SELECT ACCOUNT_ID
 2> FROM JOBS_COMPLETED
 3> WHERE ACCOUNTS_ID NOT IN(ACCOUNTS_PAID);

can be rewritten as:

SQL> SELECT ACCOUNTS_ID FROM JOBS_COMPLETED
 2> MINUS
 3> SELECT ACCOUNTS_ID FROM ACCOUNTS_PAID;

Both of these queries give the same functional result: They return those accounts that have their jobs
completed but have not been fully paid. However, using EXPLAIN PLAN will likely reveal that the
total logical reads for the first are much higher than for the second. In Oracle, at least, using the MINUS
operator is very efficient.

INTERSECT is the complement of MINUS, except that MINUS is an asymmetrical (one-way) and
INTERSECT is a symmetrical (two-way) operator. That is, a symmetrical operator works the same in
both directions. UNION is symmetrical. If you reversed which table you selected from using MINUS in
the previous example, you would get a different answer. You would get all the accounts that have been
paid but have not had their jobs completed (which may or may not be a typical business practice). For
another example, to find all accounts that have had their jobs completed and have been fully paid, use:

SQL> SELECT ACCOUNTS_ID FROM JOBS_COMPLETED
 2> INTERSECT
 3> SELECT ACCOUNTS_ID FROM ACCOUNTS_PAID;

Using Boolean Conversions

A Boolean expression is one that evaluates to TRUE or FALSE. The WHERE clause of an SQL
statement is an example of a Boolean expression. You can take advantage of this fact by coming up with
functions that convert WHERE clauses (Boolean expressions) to numeric values, such as 1 for TRUE

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch30/0766-0768.html

and 0 for FALSE. How can this help? Consider the following queries to obtain varying tax rates given
four types of marital status (S=Single, M=Married, D=Divorced, and W=Widowed):

SQL> SELECT SINGLE_TAX "TAX" FROM TAXES WHERESTATUS='S';
SQL> SELECT MARRIED_TAX "TAX" FROM TAXES WHERE STATUS='M';
SQL> SELECT DIVORCED_TAX "TAX" FROM TAXES WHERE STATUS='D';
SQL> SELECT WIDOWED_TAX "TAX" FROM TAXES WHERESTATUS='W';

Again, putting aside the issue of database design, because this may be a poorly designed table, you can
see that you must make four full-table scans of the TAXES table to get the information you need. This is
a good example because you're dealing with more than two distinct values. Can you do better? First, you
need a Boolean conversion. In other words, you need a function to return SINGLE_TAX when
STATUS=`S', MARRIED_TAX when STATUS=`M', and so forth.

Page 770

Oracle provides just such a function, DECODE. If you carefully walk through the following query, you
see that it fully replaces the previous four queries, provides the same functional result, and yet requires
only one table scan.

SQL> SELECT DECODE(STATUS, `S', 1, 0)*SINGLE_TAX+
 2> DECODE(STATUS, `M', 1, 0)*MARRIED_TAX+
 3> DECODE(STATUS, `D', 1, 0)*DIVORCED_TAX+
 4> DECODE(STATUS, `W', 1, 0)*WIDOWED_TAX
 5> "TAX"
 6> FROM TAXES;

This is an incredible efficiency gain. However, as you can tell, the readability and maintainability suffer.
In addition, using the DECODE function may not always work. You may have to use other contrived
functions. In this case, what you needed was an associative array, and DECODE just happened to
provide that type of functionality. Obviously, the hard work is reviewing the original query to come up
with a function that gives you an equivalent answer.

Introducing New Index Features for Oracle8

A few new features have been added to Oracle8 regarding indexing that will no doubt be useful for
future applications development. These are discussed in the remainder of this chapter.

Using Index Partitioning

Oracle8 enables you to partition, or physically divide, indexes along a partition key. This means
partitioning an index along the same column(s) that make up the index. Partitions can be stored on

separate tablespaces with separate storage parameters. Hence, partitions are sub-tablespaces. The
following is an example:

SQL8> CREATE INDEX EMPL_IDX ON EMPLOYEES(EMPLOYEE_ID)
 2> PARTITION BY RANGE (EMPLOYEE_ID)
 3> (PARTITION ip1 VALUES LESS THAN (499999)
 4> TABLESPACE empl_id[ts]1,
 5> (PARTITION ip2 VALUES LESS THAN (1000000)
 6> TABLESPACE empl_id[ts]2);

Using Equi-Partitioned, Local Indexes

In Oracle8, if you create an index as local, Oracle automatically equi-partitions it. That is, it uses the
same partition key, the same number of partitions, and the same partition boundaries as the table it
references. A local index is one in which all the index keys in one partition point to all the data in one
table partition. There is a one-to-one mapping. A global index is one in which this does not hold true.
This ensures that a table and its index are equi-partitioned. Aside from higher availability similar to
striping, equi-partitioning with a local index enables the optimizer to be partition aware. The following
is an example:

SQL8> CREATE INDEX EMPL_IDX ON EMPLOYEES(EMPLOYEE_ID)
 2> LOCAL
 3> (PARTITION ip1 TABLESPACE empl_id[ts]1,
 4> PARTITION ip2 TABLESPACE empl_id[ts]2);

Page 771

Using a Partition-Aware Optimizer

As just mentioned, if you create equi-partitioned, local indexes, the optimizer can generate query plans
by using partition knowledge. Therefore, it can parallel some operations.

Using Index-Only Tables

In Oracle8, you can now create an index-only table. This is also known as an in-place index. Essentially,
the table is physically sorted, rather than logically sorted with a B*Tree. This has the obvious
performance benefit of removing the logical reads from the B*Tree to the table because the data and the
index are one and the same. Again, you would normally use the primary key as the indexing column. An
example is as follows:

SQL8> CREATE TABLE EMPLOYEES
 2> (EMPLOYEE_ID NUMBER(6) CONSTRAINT empl_pk PRIMARY KEY,

 3> <column, column, ...>)
 4> ORGANIZATION INDEX TABLESPACE empl_dat1;

The ORGANIZATION INDEX clause tells Oracle8 this is an index-only table.

Using Reverse Key Indexes

A Reverse key index is one in which the order of the individual column bytes is reversed (not the
column order). Reverse key indexes have proven useful in improving Oracle Parallel Server (OPS)
performance. Use the REVERSE keyword on CREATE INDEX to create one for OPS usage.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch30/0766-0768.html

Previous | Table of Contents | Next

Page 776

Let's sum up how to use utlbstat/utlestat properly and tune your database system:

1. Set TIMED_STATISTICS=TRUE either at the instance or session level.
2. Log in to svrmgrl (server manager line mode) and CONNECT / AS SYSDBA (or CONNECT

INTERNAL).
3. Run $ORACLE_HOME/rdbms/admin/utlbstat.sql at the beginning of your monitoring period,

which should be some duration of normal, peak activity.
4. Run $ORACLE_HOME/rdbms/admin/utlestat.sql at the end of your monitoring period.
5. Interpret your results in report.txt by using reasonable guidelines (which we'll cover soon).
6. Make recommended changes or fixes (if any); this could be anything from changing an init.ora

parameter to reorganizing your physical design.
7. Repeat the process beginning with step 2.

Reviewing the Report File

The file report.txt contains a large variety of information to help you tune the application, memory, and I/
O. At the high level, it has statistics on the shared pool (the data dictionary and library caches), the
database buffer cache, per transaction/login data, per tablespace/file I/O, and wait events. You can use
all these statistics or some of them.

TIP

Make sure the individual statistics you use are relevant to your application. In the final
analysis, your users are the true test of whether your application's performance is "good."

Some statistics offer different views on the performance of the same item and should agree. When they
don't agree, interpretation becomes more subjective and application-specific. For example, suppose you
have three statistics that report the performance of the library cache in different ways. Furthermore, what
if two out of three show "good" performance according to accepted guidelines, but the remaining one
shows "poor" performance? Does this mean your application's performance is good? It truly depends on
what type of application you have and what each statistic means in relation to it. For example, if the two
statistics showing good performance mean more to a batch system, and you have an OLTP system, those
particular measures are misleading.

Tuning the Shared Pool

As you learned in Chapter 6, "The Oracle Database Architecture," the shared pool consists largely of
two main structures:

● The data dictionary cache
● The library cache

The areas that store parsed SQL statements for later reuse are the shared SQL areas. The private SQL
areas are those areas associated with cursor durations within applications.

Page 777

Tuning the shared pool is where tuning memory and tuning the application overlap considerably. This
chapter augments Chapter 30, especially from the viewpoint of the DBA, or server, rather than the
developer, or client. The shared pool is a cache structure. Like all cache structures, it is a memory-
resident data structure.

A cache is a special type of buffer. Whereas a buffer is a "dumb" mechanism, simply providing
temporary storage for data on its way between fast memory and slow disk, a cache is a "smart"
mechanism, retaining memory as to whether it has that information, or part of it, so that it may avoid as
many unnecessary trips to the disk as possible. When an I/O request is made, the cache checks to see
whether it already has it in memory. If it does, it answers the request itself, returning the requested data.
This is known as a hit. If it does not, a trip to the disk is warranted. This is known as a miss.

For almost all cache mechanisms, the guideline for effective performance is to have a 90 percent+ hit
ratio, which may be defined as 1 _ (sum(misses) / sum(requests)), where sum(requests) = sum(misses) +
sum(hits). For example, if your cache has 4 misses and 46 hits, your hit ratio is 100 _ (4/50) = 100 _
(.08), or 92 percent, which is very good. Caches are generally managed by a Least Recently Used (LRU)
algorithm, which ensures that, at any given time, the Most Recently Used (MRU) data is held in cache,
and the LRU data is aged out.

When Oracle parses a SQL statement, it allocates a SQL area in the library cache for it by applying a
mathematical formula to the alphanumeric text of the SQL statement and using the result to store (and
later find) it in the cache. In other words, it uses a hash function. As you might expect, in order for a
statement to be reused by another, they must be identical. For example, the following are not identical in
the eyes of Oracle when storing them in the library cache:

SELECT * FROM EMPLOYEES;

SELECT * FROM EMPLOYEES;

SELECT * FROM employees;

Although to you and me, they are functionally identical, they are not hash-identical. In order for them to
be hash-identical, there can be no whitespace (spaces, tabs, indents, nonprintable control characters) or
differences in case. Furthermore, the following two statements cannot reuse the same hashed SQL area
parse plan:

SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=927354;

SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=746293;

This is true because of the use of the literals 927354 and 746293 in the WHERE clause. Because the
input of the alphanumeric statement in the hash function is different, they cannot possibly hash to the
same library cache location. How to win? Well, except for DSS as discussed earlier, you should use bind
variables. Bind variables enable SQL statements to be general enough to be reused and yet have
parametric values rather than constants:

SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID=:EMPID;

This type of statement can be reused and is typically found in embedded SQL application code, where :
EMPID is the bind variable—in this case, a host 3GL variable, such as a C integer.

Page 778

The value of the C variable can now take on 927354, 746293, and so forth, and yet be reused in the
library cache.

Guidelines for Improving the Performance of the Library Cache

Minimize unnecessary parse calls from within applications. Parsing is CPU-intensive. Because caching
and buffering are involved, it is also memory-intensive as a by-product. Cursor opening and closing
should be carefully placed in the application to facilitate reuse of the private SQL areas for multiple SQL
statements. The DBA may have to increase the init.ora parameter OPEN_CURSORS as necessary to
allow for the sufficient allocation of cursor space (private SQL areas). To determine whether your
application may be inefficient in this regard, run SQL TRACE/TKRPOF (see Chapters 29 and 30) and
examine whether the count column for Parse is near the value for Execute (or Fetch). If so, the
application is then reparsing for almost every execute (or fetch).

Maximize reuse of those statements that must be parsed. As mentioned, SQL statements must be
identical to be reused. One way to help do this is to adopt a standard way of coding that all application
developers must follow, such as "always code SQL statements in uppercase." You could go one step
further and have a program pass through all your development code and enforce such a thing, in case
developer compliance was poor. Further, except for DSS applications, use bind variables when

appropriate. These almost always make sense because they generalize your application, as opposed to
having literal values hard-coded. This pays for itself in maintainability, if not library cache reuse.

Pin frequently used program objects in memory. In Oracle, a cursor, trigger, procedure, or package may
be held in memory using a special shared pool package, DBMS_SHARED_POOL. To create this
package, run the $ORACLE_HOME/rdbms/admin/dbmspool.sql script. You may also need to run
$ORACLE_HOME/rdbms/admin/prvtpool.sql. Check the version on your platform to see whether this is
the case. To pin a program object in memory, use the following:

SQL> EXECUTE DBMS_SHARED_POOL.KEEP(`<object_name>');

To unpin it:

SQL> EXECUTE DBMS_SHARED_POOL.UNKEEP(`<object_name>');

To determine whether the object was successfully pinned:

SQL> SELECT SUBSTR(NAME,1,25), KEPT FROM V$DB_OBJECT_CACHE;

If the object was pinned, the KEPT column will have a YES value; otherwise, it will say NO.

Minimize fragmentation in the library cache. Your application will suffer ORA-04031 errors (not
enough contiguous free space) unless you guard against fragmentation. One way is to pin frequently
used large objects in memory. For less frequently used objects, which may be large, reserve some space.
You can do this by setting the init.ora parameters SHARED_POOL_RESERVED_SIZE and
SHARED_POOL_RESERVED_MIN_ALLOC. You set aside a shared pool "reserved area" for your
large objects. Essentially, you are guaranteeing that your necessary large objects will find space. Set
SHARED_POOL_RESERVED_SIZE to what would be the

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 779

maximum number of bytes of your largest objects simultaneously loaded. Set SHARED_POOL_
RESERVED_MIN_ALLOC to the minimum number of bytes an object can be in order to use your
reserved area specified by SHARED_POOL_RESERVED_SIZE. To determine the size of a particular
object you want to include in your reserved area, use the following:

SQL> SELECT SUBSTR(NAME,1,25) "NAME", SHARABLE_MEM
 2> FROM V$DB_OBJECT_CACHE
 2> WHERE NAME='<object_name>';

Also, to determine the size you need to set SHARED_POOL_RESERVED_SIZE, use this:

SQL> SELECT SUM(SHARABLE_MEM)
 2> FROM V$DB_OBJECT_CACHE
 3> WHERE SHARABLE_MEM > <SHARED_POOL_RESERVED_MIN_ALLOC>;

Hence, to execute the previous query, you must have some rough idea as to what classifies, at a
minimum, as a "large object." So, you want to take the following steps:

1. Set SHARED_POOL_RESERVED_MIN_ALLOC to your specification.
2. Set SHARED_POOL_RESERVED_SIZE to the output of the last query, plus some additional

percentage (for example, 10 percent).

Also, you may set CURSOR_SPACE_FOR_TIME to TRUE to prevent SQL areas associated with
cursors from aging out of the library cache before they have been closed by a program.

CAUTION

Do not change CURSOR_SPACE_FOR_TIME from its default value of FALSE if any
of the following apply to your situation:
l RELOADS in V$LIBRARY_CACHE always shows a 0 value.
l You are using Oracle or SQL*Forms.
l You use any dynamic SQL.

Aside from the many application-based memory issues and tuning methods that you have just learned,
you can look at what utlbstat.sql/utlestat.sql (report.txt) offers. In particular, you can look at the first
section in report.txt, Library cache statistics. Specifically, ensure that the GETHITRATIO for the SQL

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch31/0782-0784.html

AREA LIBRARY is in the 90s, preferably the high 90s. If you didn't run utlbstat.sql/utlestat.sql, you can
also use:

SQL> SELECT GETHITRATIO
 2> FROM V$LIBRARYCACHE
 3> WHERE NAMESPACE='SQL AREA';

However, this method is a running average since the last instance startup and includes ramp- up times.
Ramp up is the initialization process any system goes through when it first starts up. The statistics
gathered during this period are misleading and not useful because they will largely reflect the physical
reads necessary to fill all the various Oracle buffers and caches.

Page 780

Hence, sometimes this is also called caching up. As you learned earlier, you want to sample statistics
during your peak load times. When a system is running at peak activity for some time, that system is
said to be in equilibrium. If you run utlbstat.sql after peak activity has been reached and then run utlestat.
sql just before peak activity ceases, you have a valid sample. Hence, selecting from the V$ dynamic
performance views can be misleading, especially if you sample them early in the instance lifetime. The
longer the instance remains up, the better the V$ views' statistics are because the peak and normal
activities outweigh the initial startup period more and more. To be fair, the same can be said of utlbstat.
sql/utlestat.sql.

NOTE

Guideline: If the GETHITRATIO is less than .90, then apply the guidelines for
improving the performance of the library cache. This typically means application code
may be rewritten more efficiently.n

Again, from the first section of report.txt, the Library cache statistics, calculate the RELOADS/PINS
ratio for the SQL AREA LIBRARY. If the RELOADS/PINS ratio is greater than .01, increase the size
(in bytes) of the total shared pool by setting the init.ora parameter, SHARED_POOL_SIZE. Remember,
this sets the entire shared pool, including not just the library cache but also the data dictionary cache.

NOTE

Guideline: If the RELOADS / PINS ratio is greater than .01, then increase the size (in
bytes) of the total shared pool, by setting the init.ora parameter, SHARED_POOL_SIZE.
Remember, this sets the entire shared pool, including not just the library cache but also
the data dictionary cache.n

From the Latch statistics section of report.txt, ensure that the HIT_RATIO for LATCH_NAME =
`library cache' is in the high 90s. Other measures for measuring high latch contention, which may be an
indication of poor library cache (and total shared pool) performance, are the following:

From the System wide wait events section of report.txt, check the (wait) Count column for Event Name
= `latch free'.

Also run the following query:

SQL> SELECT COUNT(*) "LIBRARY_LATCH_WAITS"
 2> FROM V$SESSION_WAIT W, V$LATCH L
 3> WHERE W.WAIT_TIME = 0
 4> AND W.EVENT='latch free'
 5> AND W.P2 = L.LATCH#
 6> AND L.NAME LIKE `library%';

NOTE

Guideline: If any of the following are true:
l The HIT_RATIO for LATCH_NAME = `library cache'is < .98
l The (wait) Count for Event Name='latch free' is > 10
l The LIBRARY_LATCH_WAITS is > 2

apply the guidelines for improving the performance of the library
cache, and if necessary, increase
the SHARED_POOL_SIZE setting.n

Page 781

The data dictionary cache portion of the shared pool, as you might
expect, holds the
caching structure for the Oracle data dictionary. The
SHARED_POOL_SIZE parameter is the only way to indirectly size the
data dictionary cache itself. The following are the objects held in
the
SYS and SYSTEM schemes (the SYSTEM tablespace):

● X$ tables
● V$ views
● DBA_ views
● User_ views

Sizing, diagnosing, and tuning the library cache so that it performs
well should have the
side effect of helping the performance of the data dictionary cache
because they coexist in
the shared pool. They are not separately configurable.

There are a couple of ways to measure data dictionary cache
performance. One is to query
the V$ROWCACHE view:

SQL> SELECT SUM(GETMISSES)/SUM(GETS) "DC_MISS_RATIO"
 2> FROM V$ROWCACHE;

The other way is to use the data dictionary section of
report.txt. Compute the sum of all the GET_MISS and divide that by
the sum of all the
GET_REQS to get a similar DC_MISS_RATIO. If either of these two
methods yields a
DC_MISS_RATIO > .15, increase the
SHARED_POOL_SIZE (and retest).

NOTE

Guideline: If either of these two methods yield a
DC_MISS_RATIO > .15, increase the SHARED_POOL_SIZE (and
retest).n

MultiThreaded Server Issues

You should also briefly consider the MultiThreaded Server (MTS) and
the allocation of
server memory versus client (user) memory. Just as there is an SGA,
there is a User Global
Area (UGA), which contains user session information, sort areas, and
private SQL areas.
Normally, the default Oracle RDBMS instance (referred to as the
dedicated server) results in a one-to-one mapping of user processes
to server processes. With MTS, the UGA is moved up into
the shared pool. The remaining process-specific memory is retained in
the Process Global
Area (PGA) and holds information that cannot be shared. In this way,
the total amount of
memory required in using MTS is not really more than the dedicated
server, just redistributed.
However, you will have to increase
SHARED_POOL_SIZE. To help size the UGA that will be
relocated to the SGA, run the following query:

SQL> SELECT SUM(VALUE)
 2> FROM V$SESSTAT SE, V$STATNAME SN
 3> WHERE SN.NAME = `max session memory'
 4> AND SE.STATISTIC# = SN.STATISTIC#;

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch31/0782-0784.html

Previous | Table of Contents | Next

Page 795

Chapter 32

Tuning I/O

In this chapter

● Tuning Tablespaces and Datafiles
● Tuning Blocks and Extents
● Tuning Rollback Segments
● Tuning Redo Logs
● Oracle8 New I/O Features

Page 796

In general, tuning I/O may be thought of simply as an extension, or refinement, of physical design.
When you initially do your physical design, you are working from your best quantitative estimates. If
you reach the stage in which you must tune I/O because performance is unacceptable, you work from
actual measurements of your application as it runs for some peak periods of time. Tuning I/O in Oracle
consists mainly of tuning the underlying physical structures of the segments (tables and indexes) that
make up a database. These include tablespaces—made up of extents, in turn made up of blocks—and
datafiles, which are the operating system (OS) entities supporting these Oracle physical structures. These
and other Oracle structures are covered in depth in Part VI, "Managing the Oracle Database," so this
chapter won't go too deeply into their definitions and functions in this chapter, except to reemphasize
certain relevant concepts along the way.

I/O (Input/Output) means reads and writes. In database terms, more specifically for DML, SELECTs are
the reads and INSERTs, UPDATEs, and DELETEs are the writes. A DDL, (a CREATE, ALTER, or
DROP) is always a writing operation. Hence, reading from and writing to any Oracle structure is
considered an I/O issue for the purposes of this chapter. For example, issuing a SELECT statement
generates a read from one or more index and/or from one or more table. It also generates some minimal
redo log information. Issuing an INSERT, UPDATE, or DELETE will generate reads and writes from
one or more index and/or table, roll back data, and redo log information. This last fact leads to a more
subtle, general fact: Reading is simply reading but writing is reading and writing. How can you write
information to a block that has yet to be read into the database buffer cache? Aside from the direct path
capability of SQL*Loader, you can't.

So, when you consider tuning I/O in Oracle, not only do you consider tuning tablespaces, extents,
blocks, and datafiles, but you also consider tuning rollback segments and redo logs (because user DML
generates all these kinds of I/O). Hence, the following sections cover each of these kinds of I/O:
tablespaces and datafiles, extents and blocks, rollback segments, and redo logs. Similar to previous
tuning chapters on memory and application issues, you will encounter overlaps of tuning I/O with tuning
memory and tuning I/O with tuning the application.

Remember, any I/O operation requires reading Oracle data blocks into the database buffer cache first,
before any further activity can take place. This is an example of where tuning memory and tuning I/O
overlap. Let's consider a different idea. Suppose you have an OLTP application that heavily reads and
writes from only a few tables out of several. Those tables need to be placed in separate tablespaces, and
further, on separate disks. This is an example of where tuning the application and tuning I/O overlap. A
high-level look at tuning tablespaces and datafiles is a good place to start your study.

Tuning Tablespaces and Datafiles

As you know from Part VI, tablespaces are Oracle structures for physical storage. A tablespace stores a
collection of segments: tables and indexes. A tablespace maps to one or more datafiles at the OS level.
You learned the concept of application typing in Chapters 3, "Physical Database Design, Hardware, and
Related Issues," and 30, "Application Tuning," and how this affects your physical design. Recall that in
order to have a proper physical layout, tablespaces

Page 797

(and their datafiles) are separated as much as possible on different disks. Separating tablespaces on
different disks can eliminate, or at least reduce, disk contention.

Disk contention occurs when you have multiple users or programs attempting to access the same disk at
the same time. For example, if you have two tables that must be joined together very often, such as
DEPARTMENTS and EMPLOYEES tables, their tablespaces should usually be separated on two
different disks. So should their indexes, because attempting to access either the tables or the indexes on
the same disk results in the same contention for the resource. Ideally, then, these four segments will exist
in four tablespaces residing on four different disks. Other methods, such as clustering, allow these
segments to coexist on the same disk. You explore Oracle's version of the clustering technique, referred
to as one of the exotic solutions, in Chapter 29, "Performance Tuning Fundamentals."

Partitioning Tablespaces

As you learned in Chapters 3 and 29, you want your Oracle physical layout so that

● SYSTEM resides on a separate disk.
● TEMP resides on at least one separate disk.

● DATA1 to DATAN reside on up to N separate disks.
● INDEX1 to INDEXN reside on up to N separate disks.
● ROLLBACK resides on at least one separate disk.
● redo log1 to redo logN reside on up to N separate disks.

Remember that on initial creation, a user's default tablespace and default temporary tablespace point to
SYSTEM. Change these if they were not CREATEd properly by doing the following:

SQL> ALTER USER <user>
 2> DEFAULT TABLESPACE <tablespace>
 3> TEMPORARY TABLESPACE TEMP;

To determine whether DATA (or INDEX) tablespaces can coexist, you need to classify tables by their
level of activity, in addition to typing the application.

For example, suppose you have a DSS application, in which during normal operation all tables are read-
only (except when they are bulk loaded). Does this mean that you can put all the tables on only one
disk? Not at all! In fact, consider that there might be, for the sake of illustration, 10 tables that are
heavily read out of, for example, 40 tables. Of those 10, 7 are accessed concurrently, and 4 are almost
always joined in usage. You should ideally have at least 9 disks for the data alone!

How do you arrive at this figure? You need 7 separate disks, because 7 are accessed concurrently,
including the 4 tables frequently being joined. You need at least one more for the remaining three (10_7)
heavily read tables that are not concurrently accessed, and at least one more for the remaining 30
(40_10) tables—that is, if one disk could hold all those 30 tables! In any case, like application typing,
this is activity classification: classifying tables by their frequency of access, or in other words, how
active they are. If a table is very active,

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 793

NOTE

Guidelines: This is where Tuning Locks overlaps with Tuning the Application. When
coding, ensure (1) hold locks only when necessary, (2) hold locks at the lowest possible
level, (3) keep transactions short as possible, (4) commit (or rollback) as frequently as
possible, and (5) chop client/server transactions where possible. n

TIP

Create indexes on all your foreign keys to eliminate unnecessary parent-child
locking.

To monitor locking, run the $ORACLE_HOME/rdbms/admin/catblock.sql as SYS to create locking
views. Then you may gather session wait information from the tables DBA_OBJECTS,
DBA_WAITERS, DBA_BLOCKERS, V$SESSION, and V$LOCK. What you can also do is run the
$ORACLE_HOME/rdbms/admin/utllockt.sql script to get most of this same information. Examine
Count for Event Name = `enqueue' under System wide wait events. If any of these sources of
information suggest that locking is unnecessarily high, apply the above guidelines. Use the ALTER
SESSION KILL syntax to kill sessions if necessary. If deadlock occurs, a trace file is dumped. Examine
it to determine which sessions and what types of locks caused the deadlock. Then eliminate unnecessary
locking and reorder your processing if necessary.

If it appears you need to increase the number of locks to alleviate lock waits or because you have already
hit the default ceiling, then you may need to increase ENQUEUE_RESOURCES.
ENQUEUE_RESOURCES is a function of DML_LOCKS, DDL_LOCKS, other parameters, and
platform specifics. You can ALTER TABLE DISABLE LOCKS to speed up certain guaranteed
exclusive runs, but I wouldn't normally recommend it. Also, you can set DML_LOCKS = 0 to help
speed up an overall instance, but this may have undesirable side effects. Oracle apparently still somehow
manages concurrency without the use of heavyweight locks, but the mechanism may be subject to
integrity problems; therefore, I again would not recommend this.

TIP

Set DML_LOCKS = (the maximum number of concurrent users) x (the number of
tables). You can also explicitly set ENQUEUE_RESOURCES, but this will reset upon
resetting DML_LOCKS anyway. For example, if you have U users and T tables, you
should set DML_LOCKS = (U x T), plus perhaps some additional percentage, such as 10
percent.

Operating System Integration Revisited

Without getting too platform-specific, let's look briefly at some of the common operating system
memory issues associated with tuning memory in Oracle. Platform specifics may be found in Appendix
A, "Oracle on UNIX," and Appendix B, "Oracle on Windows NT." The major operating system
integration memory issues are

● Shared memory
● Semaphores
● Interprocess communication

Page 794

● Virtual memory
● Memory file systems

Shared memory is a mechanism used by virtually all RDBMS vendors, particularly on UNIX. Shared
memory permits multithreading and memory sharing among processes. Oracle uses the latter approach
with its SGA, by sharing it among all sessions for that instance. The MTS also depends heavily on this
resource to simulate multithreading at the interprocess level.

CAUTION

The Oracle SGA should fit comfortably well within the shared memory given to it by the
operating system. Otherwise, you will have unnecessary paging and swapping, which can
cripple a system.

Semaphores are true locking mechanisms. Oracle uses them as the basis for enqueue resources, such as
DML locks. Again, they are made up of a (global memory) gate and a queue, along with a set of queuing
operations. Oracle's locking operations map to operating system low-level semaphore operations.

Interprocess communication refers to the native operating system communication protocols that allow
processes to communicate. These may be implemented as sockets, streams, named pipes, or other
mechanisms. Because Oracle is not fully multithreaded, it depends heavily on the operating system

interprocess operations. Oracle's intersession communications are mapped to these low-level operations.
When using SQL*Net, the IPC protocol refers to and uses the default operating system interprocess
communication method.

Virtual memory is a special type of cache. It is an extension of real memory to the disk. The hit ratio of
virtual memory can be calculated just as with any cache. Virtual memory must be sufficient to handle all
the total memory needs of the operating system itself and all applications, including Oracle. When real
memory is paged or swapped, it is sent to virtual memory (disk). The actual disk supporting virtual
memory is called the backing store. Again, you don't want the Oracle SGA to be paged or swapped
there, nor any of the major Oracle background processes to be swapped out.

Memory file systems are file systems held entirely in real or virtual memory. Sometimes these are called
RAM disks (as with DOS) or temporary file systems (as with UNIX). In any case, they, of course,
outperform ordinary disk file systems by some orders of magnitude. Because they can be at least partly
held in memory and take advantage of virtual memory caching, at least some, if not most, of their
operations are to and from memory. Oracle can sometimes use these as an exotic performance tuning
solution. For example, you could create an Oracle temporary tablespace (or permanent tablespace) on an
operating system memory file system. They could also be used, for example, to store lookup tables.l

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 790

The init.ora parameter, SORT_DIRECT_WRITES, determines the sorting behavior regarding using the
database buffer cache or not. If set to AUTO, the default, and if SORT_AREA_SIZE >= 10 x Sort
Direct Writes Buffer, the Sort Direct Write Buffer is used. If set to FALSE, sort writes are buffered in
the database buffer cache before being written back out to disk. These are normal sort buffer writes. If
set to TRUE, sort writes are always sort direct writes. VLDBs, DSSs, and Data Warehouses should
normally have this set to TRUE (or at least left at the default AUTO).

Other Fine-Tuning Parameters for Sorts

The following are other fine-tuning parameters that impact sort performance:

● SORT_READ_FAC
● SORT_SPACEMAP_SIZE

SORT_READ_FAC is a ratio representing the amount of time to read one Oracle block divided by the
block transfer rate. It must be <= DB_FILE_MULTIBLOCK_READ_COUNT. The formula to set it is

 (average seek time + average latency time + block transfer time) /
block
transfer rate

This parameter takes into account operating system and hardware (disk) device characteristics for sort
reads. However, what if you used mixed disks having, of course, mixed access times (access time = seek
time + latency time)? Do you take the least common denominator approach and set this to the
characteristics of the slowest disk?

CAUTION

Unless you have a very homogeneous hardware (disk) configuration, and have intimate
hardware expertise, I would advise you to not set this parameter. If done improperly, it
can hurt much more than help.

SORT_SPACEMAP_SIZE represents the size in bytes of the sort space map, which is a map per sort
(per context) of the multiple sort run addresses. The formula to set it is

(total sort bytes / SORT_AREA_SIZE) + 64

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch31/0787-0789.html

total sort bytes requires that you need to know the size in bytes of the columns being sorted, multiplied
by the number of rows. You can use the entire table size in bytes, but this will be an overestimate (not
necessarily a bad thing).

Query the V$SYSSTAT view as follows:

SQL> SELECT M.VALUE / D.VALUE "Memory Sort Ratio"
 2> FROM V$SYSSTAT M, V$SYSSTAT D
 3> WHERE M.NAME = `sorts (memory)'
 4> AND D.NAME = `sorts (disk)';

From report.txt, the Statistics section, compute the Memory Sort Ratio as the total of `sorts (memory)'
divided by the total of `sorts (disk)'.

Page 791

NOTE

Guideline: If either method of computing Memory Sort Ratio yields a ratio less than .95,
you need to increase SORT_AREA_SIZE (and SORT_AREA_RETAINED_SIZE) by at
least the deficit percentage, which is calculated as .95 minus Memory Sort Ratio. For
example, if your Memory Sort Ratio is .78, your deficit percentage is .95 _ .78 = .17.
This implies you need to increase your sort parameters by at least 17 percent.n

Tuning the MultiThreaded Server (MTS)

This section, rather than rehashing the architecture of the MTS, offers a series of brief explanations and
guidelines to help you tune your MTS configuration, especially regarding memory performance
optimization. As a refresher, recall that the MTS relocates session user memory, the User Global Area
(UGA), to the SGA shared pool, where it is shared by many sessions. Generally, you would use the
MTS when you want to increase the throughput (for example, in terms of transactions per second) of a
database system, and specifically when the system is under heavy (concurrent) load. In other words,
MTS is intended for an OLTP system with many hundreds of concurrent users, at least greater than 200.

CAUTION

If you were to use MTS for a system that is not as heavily loaded as described, the
overhead of using MTS would outweigh its minimal benefits. That is, for lightly loaded
systems, MTS can actually hurt performance. So, use MTS as advised mainly for heavily
loaded OLTP systems.

TIP

Set MTS_SERVERS = 1/100 (the number of concurrent transactions), where the number
of concurrent transactions equals the number of concurrent users times the number of
transactions per user. Set MTS_MAX_SERVERS = 1/10 (MTS_SERVERS). Increase
these in increments of magnitude. Similarly, set MTS_DISPATCHERS =
MTS_SERVERS and MTS_MAX_DISPATCHERS = MTS_MAX_SERVERS.

To monitor and tune shared servers, use the following:

SQL> SELECT BUSY / (BUSY+IDLE) "Shared Servers Busy"
 2> FROM V$SHARED_SERVER;

SQL> SELECT SERVERS_HIGHWATER
 2> FROM V$MTS;

For dispatchers:

SQL> SELECT BUSY / (BUSY+IDLE) "Dispatchers Busy"
 2> FROM V$DISPATCHER;

SQL> SELECT SUM(WAIT)/SUM(TOTALQ) "Dispatcher Waits"
 2> FROM V$QUEUE
 3> WHERE TYPE = `DISPATCHER';

SQL> SELECT COUNT(*) "Number of Dispatchers"
 2> FROM V$DISPATCHER;

Page 792

NOTE

Guideline: If Shared Servers Busy is greater than .50, or SERVERS_HIGHWATER is
close to or equal to MTS_MAX_SERVERS, increase MTS_MAX_SERVERS. If the
Dispatchers Busy is greater than .50, the Dispatcher Waits is greater than 0, or the
Number of Dispatchers is close to or equal to MTS_MAX_DISPATCHERS, increase
MTS_MAX_DISPATCHERS. Usually, if you increase one, you should probably also
increase the other.n

Tuning Locks

As with the "Tuning the MultiThreaded Server (MTS)" section, this section won't go into much detail
rehashing the software engineering and functional details of Oracle's locking mechanisms. (See Chapter
25, "Integrity Management," for the background information on Oracle locking.) Rather, you will look at
some brief background and useful tuning advice. Locks in Oracle, as with any RDBMS, are memory-
based structures. Like latches, they are made up of two basic logical structures: a gate and a queue. If
you have only the gate, you have a latch. If you have a gate and a queue, along with a queuing process,
you have a lock.

The central goals of tuning are to not have unnecessary waiting, not experience deadlock, and not
actually run out of locks during critical processing. The granularity of Oracle's locks is row level. That
is, for INSERT, UPDATE, and DELETE statements, locks are held at row level by default. SELECT
statements (queries) hold no locks by default, unless explicitly specified in the code. DDL also holds
locks, but the ability to performance-tune them is limited; so instead, let's concentrate on the dominant
issue of performance-tuning DML locking.

NOTE

Transactions hold locks until they commit or roll back.
n

Locks may cause unnecessary waits as a direct result of poor application coding with regard to locking.
Unnecessary lock waits may be caused by coding locks at unnecessarily high granularity—for example,
locking a table when you need only a row. If the code involves unnecessarily long transactions, this will
cause undue lock waits. An example is a persistent client/server connection held for the duration of a
transaction. Many times, this type of coding can be chopped into two or more transactions of shorter
duration. Finally, if code is not committed (or rolled back) on a regular basis, the locks remain unduly
held. When coding, ensure the following:

● Hold locks only when necessary.
● Hold locks at the lowest possible level.
● Keep transactions as short as possible.

● Commit (or roll back) as frequently as possible.
● Chop client/server transactions where possible.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch31/0787-0789.html

Previous | Table of Contents | Next

Page 798

it is said to be hot. The same holds true for active columns within a table, which are also called hot. A
warm table or column is one that is simply less active, relative to a hot component. Thus, cold
components are those that are infrequently accessed. You might also see the nomenclature Low/Medium/
High activity used. In summary, in addition to typing your application, classify your tables as the
following:

H High activity, or hot
M Medium activity, or warm
L Low activity, or cold

Although a simple classification, this will help immensely with your physical layout and performance
tuning. For example, high DML activity tables will cause high fragmentation. If stored on their own,
separate tablespaces or disks, this isolates them from causing unnecessary fragmentation of lower
activity tables. When your classification job is done, follow these simple guidelines for tablespace
partitioning and table/index placement:

● Place each of the hot tables/indexes on its own, separate tablespace/disk.
● Place each of the warm tables/indexes on its own, separate tablespace/disk.
● Place each of the cold tables/indexes on its own, separate tablespace/disk.
● Always place joined tables/indexes on their own, separate tablespace/disks.
● Keep data and index tablespaces separate.
● Put your hottest tablespaces on your fastest disks and your coldest on the slowest.
● If necessary, because of disk space limitations, place warm and cold tables/indexes on the same

tablespaces/disks, taking into consideration concurrent access issues. (For example, you might
not want to place a warm, interactively accessed table on the same tablespace as a cold, batch-
accessed table that is used for a long processing duration of several hours.)

● If not concurrently accessed, place "like" tables/indexes on the same tablespaces/disks.
● An elaborate extension of the previous guideline: If necessary, because of disk space limitations,

interleave hot, warm, and cold table placements. In other words, know your access patterns, types
of usage, and concurrency levels for all your tables. Armed with this knowledge, if you're tight
on disk, you may, for example, place two hot tables not concurrently accessed together on the
same tablespace/disk, place a hot index with a cold table in different tablespaces on the same
disk, or place all three types of tables and indexes in six different tablespaces on the same disk
under the right conditions! Recommendation: Don't do this unless you absolutely have to. This is
a last ditch effort for database systems extremely low on disk.

Clustering provides an optional storage method for storing frequently joined tables.

Clustering

A cluster is a special type of tablespace in which parent-child, or master-detail, types of hierarchical
relationships may be physically nested. For example, if an employee can work in only one

Page 799

department, it is a logical, one-to-many relationship from a DEPARTMENTS table to an EMPLOYEES
table. The EMPLOYEES table has a foreign key, DEPTID, back to the DEPARTMENTS table primary
key, DEPTID. You can create a cluster like so:

SQL> CREATE CLUSTER DEPTS_EMPS (DEPTID NUMBER (9))
 2> SIZE 256
 3> TABLESPACE DATAn
 4> STORAGE (...);

SQL> CREATE TABLE DEPARTMENTS
 2> (DEPTID NUMBER(9) PRIMARY KEY, ...)
 3> CLUSTER DEPTS_EMPS (DEPTID);

SQL> CREATE TABLE EMPLOYEES
 2> (EMPID NUMBER (9) PRIMARY KEY, ...
 3> , DEPTID NUMBER (9) REFERENCES DEPARTMENTS)
 4> CLUSTER DEPTS_EMPS (DEPTID);

The optional SIZE argument specifies how many bytes are expected to be exhausted by the cluster key
(in this case, DEPTID) and all its associated rows. Table 32.1 is a textual representation of how the
DEPTS_EMPS cluster is physically organized:

Table 32.1The DEPTS_EMPS Cluster

The DEPARTMENTS and EMPLOYEES tables before clustering:

DEPTID DEPTNAME etc.

1 PERSONNEL

2 ACCOUNTING

EMPLOYEES (before clustering):

EMPID EMPNAME DEPTID etc.

1 William Day 1

2 James Hutch 1

4 Ely Jones 1

4 Ely Jones 1

5 Tom Edwards 2

Page 800

The DEPARTMENTS and EMPLOYEES tables after clustering:

DEPTID DEPTNAME etc.

EMPLOYEES

EMPID EMPNAME etc.

1 PERSONNEL

1 William Day

2 James Hutch

4 Ely Jones

2 ACCOUNTING

4 Ely Jones

5 Tom Edwards

The etc. refers to other nonkey columns in the DEPARTMENTS and EMPLOYEES tables. As you can
see, the EMPLOYEES table is physically nested within the DEPARTMENTS table so that whenever
these two tables are accessed by a join on DEPTID, the data is already organized in that fashion and
much more readily available than would ordinarily be the case with two nonclustered tables. Use
ordinary indexes (B*Tree structures) for most cases, in particular those involving any substantial range
retrievals (bounded or not). However, if your application queries are almost always point queries (exact
matches, equality comparisons), you may want to use hash indexing.

A hash index is one that takes as input a column value, and using a specialized internal hash function,
computes an output that is the physical address of that row (in effect, ROWID). If a column is of a
NUMBER datatype, is uniformly distributed, and is not composite, you may choose to use it, rather than
the internal hash function, to create the hash index. For example, if you re-create the DEPTS_EMPS
cluster using a hashed index, the syntax would be

SQL> CREATE CLUSTER DEPTS_EMPS (DEPTID NUMBER (9))
 2> SIZE 256

 3> HASH IS DEPTID HASHKEYS 29
 3> TABLESPACE DATAn
 4> STORAGE (...);

The HASH IS option tells Oracle to use the DEPTID column instead of the internal hash function. The
HASHKEYS argument tells how many hash buckets to create to hold the hash cluster key index
(DEPTID) output values. This argument should be set equal to the number of distinct cluster key values,
rounded up to the next highest prime number. In this case, suppose you have 25 departments
(DEPTIDs). You round up to 29, the next highest prime number. For further information on how to size
and manage hash clusters and indexes, please refer to the Oracle Server Administrator's Guide.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 801

Monitoring

You have seen guidelines and clustering to help alleviate contention for hot tablespaces, but how do you
tell which tablespaces are hot? You learned in Chapter 3 that if you have good quantitative estimates
from your early modeling specifications, namely good transaction analysis figures, you have a head start
and should use those figures to guide your initial physical layout.

If, for example, 3 tables out of 20 incur 150 transactions per second (tps) on average, and your
remaining tables incur less than 30 tps, you can safely say that those first 3 tables are your hot tables,
relative to the others, and therefore should be separated from the rest, along with their indexes. After
you're past deployment, however, and into production usage, you need monitoring techniques that give
you actual, low-level I/O figures, such as physical reads and writes per second, rather than high-level
estimates, such as tps.

You have your usual two Oracle standbys to help do the monitoring: the V$ dynamic performance views
and the report.txt output from properly "bookended" utlbstat.sql/utlestat.sql runs. These utilities are
explained in Chapters 30 and 31. You can also use OEM/PP to examine FILE I/O. You need to examine
V$DATAFILE and V$FILESTAT views:

SQL> SELECT NAME, PHYSRDS, PHYSWRTS
 2> FROM V$DATAFILE DF, V$FILESTAT FS
 3> WHERE DF.FILE# = FS.FILE#;

Also examine PHYS_READS and PHYS_WRITES from the I/O section of report.txt. The sum of the
physical reads and the physical writes is the total I/O for that file or tablespace. Consider the sum of all
the files for all the tablespaces by each disk. If using the V$ views method, select the information twice,
bookending your statistics collection: first, after your application has reached peak capacity, and last,
just before your application would be expected to decline. This will mimic the utlbstat.sql/utlestat.sql
approach. Using either method, sum your beginning and ending total I/Os by disk. Subtract the
beginning I/Os from the ending. Subtract your beginning time from the ending time of your statistics-
gathering runs. Convert your time figure to seconds. Divide your deltas, the elapsed I/Os, by the elapsed
time between the beginning and the ending.

Here's an example: Disk #3 contains Files #6 and #7 and shows beginning figures of 1,200 physical
reads, 400 physical writes at 11:00 a.m. Its ending figures are 31,000 physical reads, 17,000 physical
writes at 11:20 p.m. This is equal to

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch32/0804-0805.html

((31000_1200) + (17000_400)) / (11:20_11:00) =
(29880 +16600) / (20 minutes) =
(46400) / (1200 seconds) =
38.67 I/Os per second

This shows less than 40 I/Os per second for this disk, which is desirable because this is widely
considered a saturation point for most modern disks. However, if all the other disks, for example, are
much less than 40 I/Os per second, you would still want to offload this disk to help balance the I/O. You
don't want simply to reduce each disk in isolation, but also to balance the I/O as much as possible—in
effect, spread it out across all disks.

Page 802

NOTE

Guideline: If any given disk approaches or exceeds 40 I/Os per second, you will likely
need to offload some of its burden to other disks. In the best case, this will mean moving
tables, or, worse, possibly moving tablespaces and their corresponding datafiles. After
that, you would need to consider interleaving, clustering, striping, or, if necessary,
buying more disks. Your goal is to even out all the disk I/Os so that they are each at 40 I/
Os per second or less, given your application's peak load requirements, and to equalize
all the disk I/Os per second as much as possible, so that all disks are evenly burdened.n

Tuning Blocks and Extents

Oracle blocks are organized by extents, and extents comprise tablespaces. They are the physical
foundation of the storage of tablespaces. Hence, the more efficiently we can access the data in them and
manage their growth, the better our performance will be.

Using Preallocation

From Chapter 29 you learned that dynamic allocation incurs too much overhead and hurts I/O
performance. Static preallocation is preferred in almost all cases. You can statically preallocate a
segment (table or index) or a tablespace. Generally, you choose one way or the other. If you preallocate
the tablespace, you should already have a good idea of the sizes of your tables and how they will map to
the extents. If you set tablespace defaults and then preallocate your tables, you have a little more
flexibility in mixing tables of different extent requirements in the same tablespace. However, remember
that you don't want to mix tables of too many different extent sizes (not more than three, as a general
guideline), because this effectively engineers fragmentation, which is undesirable.

Rather than recover all the storage parameters given in Part VI, let's briefly look at the two different

approaches for the same tablespace storing the same two tables. Suppose you have two tables requiring a
maximum of 100MB each. Let's create a tablespace of 256MB to enable some additional growth, with a
single datafile. The first approach, preallocating the tablespace, would look like:

SQL> CREATE TABLESPACE TS1
 2> DATAFILE `/data1/file1.dat' SIZE 256M
 3> STORAGE (INITIAL 100M NEXT 100M
 4> MINEXTENTS 2);

SQL> CREATE TABLE T1 (a number(9), ..., z number(9))
 2> TABLESPACE TS1;

SQL> CREATE TABLE T2 (a number(9), ..., z number(9))
 2> TABLESPACE TS1;

The second approach, preallocating the tables, would look like:

SQL> CREATE TABLESPACE TS1
 2> DATAFILE `/data1/file1.dat' SIZE 256M;

Page 803

SQL> CREATE TABLE T1 (a number(9), ..., z number(9))
 2> TABLESPACE TS1
 3> STORAGE (INITIAL 100M NEXT 10M
 4> MINEXTENTS 1);

SQL> CREATE TABLE T2 (a number(9), ..., z number(9))
 2> TABLESPACE TS1
 3> STORAGE (INITIAL 100M NEXT 10M
 4> MINEXTENTS 1);

Preallocating the tables individually gives us a finer-grained control not only over the growth, but also
over the performance associated with this tablespace. Why allocate 100MB if one of the tables happens
to extend when we need only allocate 10MB? In general, the finer the unit of storage preallocated, the
better the performance, for many of the reasons discussed in Chapter 29.

Using Oracle Striping

You've encountered striping before in the discussions regarding physical design and RAID in Chapter 3.

This section shows you how to do manual striping, also known as Oracle striping.

Oracle striping is essentially a form of preallocation of extents so that each extent takes up (nearly) all
its corresponding datafile, which is conveniently located on a separate disk. Of course, the drawback is
that you should have a very good idea of what your maximum growth might be for the long term, or at
least know what your peak size is for the medium term. However, the benefits are generally worth the
effort, helping to parallel many of your I/O operations to your high-activity tablespaces. Suppose you
have one very high activity table that you want to stripe. It has a peak size of less than 600MB, and you
have three available disks with which to stripe it. The syntax would look like the following:

SQL> CREATE TABLESPACE TS1
 2> DATAFILE `/data1/file1.dat' SIZE 200M,
 3> DATAFILE `/data2/file2.dat' SIZE 200M,
 4> DATAFILE `/data3/file3.dat' SIZE 200M;

SQL> CREATE TABLE T1 (a varchar2(25), ..., z varchar2(25))
 2> TABLESPACE TS1
 3> STORAGE (INITIAL 198M NEXT 198M
 4> MINEXTENTS 3 PCTINCREASE 0);

Setting PCTINCREASE to 0 is necessary to override the default setting (50). Now you have a table
stored across three different disks, by manually preallocating the necessary (maximum) extent sizes at
slightly less (1 percent as a general guideline) than the corresponding datafile sizes. The table is
effectively striped across the disks. The stripe unit is one Oracle extent of 198MB each. Compared to
RAID striping, this is a very large stripe unit because RAID stripe units are usually measured in
multiples of KB or less. However, it is nonetheless effective and requires no additional hardware or
software. On the other hand, if you have incorrectly sized the table, or especially if the grow-shrink
behavior of the table is erratic, the maintenance for this approach quickly becomes unwieldy. This is
when you want to turn to RAID as a replacement for Oracle striping, if striping is still desired despite all
else.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch32/0804-0805.html

Previous | Table of Contents | Next

Page 815

APPENDIX A
Oracle on UNIX

In this appendix

● Solaris
● A UNIX Primer for Oracle DBAs
● The SA and DBA Configuration on UNIX
● Configuring Shared Memory and Semaphores
● Understanding the OFA
● Comparing Raw Disk and UFS
● Using Additional UNIX Performance Tuning Tips

Page 816

Oracle exists on many platforms and primarily exists on UNIX (in most of its incarnations), VMS, NT,
and Novell. Oracle has also been moving into the relational mainframe market, which has always been
dominated by DB2/MVS. However, Oracle's presence has always been, and still remains, strongest on
UNIX. Hence, here is this UNIX-specific appendix.

Solaris

Currently, Solaris is Oracle's number one platform to which they port. Solaris, the modern Sun operating
system, is the successor to SunOS. Since Solaris 2.0, Solaris has been predominantly System V Release
4 (SVR4) based and compliant with numerous UNIX standards that proliferated in the early '90s. At the
time of this writing, Solaris is currently up to version 2.6. SunOS, on the other hand, a long-time favorite
of the academic and scientific communities, was Berkeley Systems Distribution (BSD) based. Most
modern UNIX operating systems today are largely SVR4 based, except for some particularly proprietary
High Performance Computing (HPC), Massively Parallel Processor (MPP) machines, BSD itself, and
some shareware operating systems such as Linux. This means that, believe it or not, UNIX has become
more standardized over the years. This is good news, because UNIX has long been largely divided along
the major System V and BSD fronts, further divided down vendor lines, and further still divided by the
actual shells (command interpreters). Aside from some of the rarer exceptions, today the shell
differences are what an Oracle DBA worries about most often. Because Solaris is currently the market-
leading UNIX operating system and Oracle's number one port, this appendix uses mainly Solaris
examples to illustrate the general UNIX issues.

A UNIX Primer for Oracle DBAs

Before launching too quickly into the more advanced Oracle on UNIX topics, it is useful to review some
UNIX basics that are often used by Oracle DBAs working on UNIX platforms. Skip this section if you
are a UNIX veteran; otherwise please read it before continuing.

Shells and Process Limits

As you will run across in the SA and DBA setup, there are three main UNIX command interpreters, or
shells: Bourne, Korn, and C. These shells are not only interactive command interpreters, but are also
used to write noninteractive programs called scripts. The Bourne shell was the first UNIX shell, and its
backward compatibility makes it the shell of choice for portability. However, it lacks several important
features, such as job control and command-line history. Next came the C shell, developed with the BSD
UNIX. It offered a simplified command C-like language, job control, and other features. Last came the
Korn shell, which is a superset of the Bourne shell. Hence, Korn can run any Bourne or Korn shell
script. Korn also incorporated many C shell features, such as job control. C shell remains the
predominant user choice of interactive shell, although administrators tend to use Bourne more often.
Korn, however, gained some popularity with the POSIX standard.

Page 817

In any case, because Oracle runs so many UNIX processes, many Oracle environment configurations are
shell specific. A good example is process limits. Processes are limited in the C shell by using the limit/
unlimit commands. In Korn or Bourne, processes are limited by using the ulimit command. Remember,
you use these commands when logged in as Oracle. For example, in C shell, you might want to unlimit
the number of file descriptors by doing the following:

% limit -f
% 1024
% limit -f unlimited
% limit -f
% unlimited

This is similar in the Korn/Bourne shells, except you use a different command (ulimit) and different
options. See the man pages for csh, ksh, or sh for further information.

Soft and Hard Links

A link in UNIX is a filename that contains nothing more than a pointer to the actual file. That is, a link is
an alternate name for the same file. With a hard link, you see only the filenames and cannot tell if indeed
two files are the same, unless you inspect the inodes:

% ls
% file1
% ln file1 file2
% ls -l file2
% -rwxr-xr-x user1 group1 10000 file2
% ls -f
% 1234 file1 1234 file2

With a soft link, on the other hand, you can see the link you make:

% ls
% file1 file2
% ln -s file1 file3
% ls -l file3
% -rwxr-xr-x user1 group1 10000 file3 -> file1

In general, for this reason, it is better to use soft links, because unless your system is well-documented,
you will likely forget which files are hard linked. It's not that you can't figure it out again, but the
maintenance of doing so outweighs most any benefit as your system size increases. See the man pages
for ls for further information.

Named Pipes and Compression

A pipe in UNIX is a program that has its standard output connected to file descriptor #1, stdout, and its
standard input connected to file descriptor #0, stdin. Hence, multiple commands can be "piped" together
to form a pipeline. In the following example, the ls (list directory contents) command is run first, then
piped to lp (the print client process) to print it:

% ls
% file1 file2 file3
% ls | lp
% standard input accepted by printerque1

Page 818

Notice that to pipe programs together, you use a vertical bar |. A named pipe in UNIX is a user-defined
filename whose purpose is to accept input to stdin and produce output to stdout. It is a passthrough with
a name. The named pipe is memory resident. For Oracle DBAs, the most useful example is

% mknod pipe1 p
% export file=pipe1 &

% dd if=pipe1 | compress | tar cvf /dev/rmt/0

This series of commands creates the pipe pipe1; starts an export to that file in the background; and then
reads the pipe, compresses it, and sends it to tape. You could of course export directly to tape (or first to
a file), compress it, and then go to tape, but this is the only way to get a compressed file to tape without
having to store it first on disk. With regard to Oracle, this is extremely useful for those who must export
very large tables to tape and have little extra disk space to use as a staging area.

Temporary Directories

In UNIX, there are at least three kinds of temporary directories: system volatile, user-defined volatile,
and system nonvolatile. The /tmp directory is system volatile, any tmpfs directory is user-defined
volatile, and the /var/tmp directory is system nonvolatile. The commonly known one is /tmp. The
directory /tmp is mounted to the UNIX virtual memory area known as swap. It is a special kind of
temporary file system (tmpfs), known as swapfs. Its contents are cleaned out on reboot. An SA might
create other nonswap directories that are tmpfs. These are memory-based file systems. As mentioned,
they are volatile. That is, their contents are lost at shutdown or power loss. However, these special file
systems offer increased I/O, because the information that is written to/read from these directories is less
than that required, per file, for normal UNIX file systems (ufs). Performance is further enhanced,
because you are reading from/writing to either main memory or virtual memory at any given time.
Obviously, main memory is fastest, but virtual memory is faster overall than ordinary disk, because it is
cached in memory. One last type of temporary directory in UNIX is /var/tmp (Solaris), sometimes /usr/
tmp. This directory is typically smaller than /tmp but is nonvolatile. That is, it does not lose its contents
at shutdown or power loss. The /var/tmp directory is used for many things. For example, it is the default
sorting location for the UNIX sort program, and it stores temporarily buffered editor (vi) files. The main
thing is that it retains its contents, unless a program cleans up after itself.

Oracle uses these directories for various purposes. For example, SQL*Net listener files are found in /var/
tmp/oracle, and temporary installation files are sometimes stored in the /tmp directory.

The SA and DBA Configuration on UNIX

The DBA should actually know quite a bit about UNIX System Administration (SA) in order to
effectively manage an Oracle RDBMS and instance/database on a UNIX system. In many companies,
the SA and DBA were one and the same. For example, I was a UNIX SA, a Sybase

Page 819

DBA, and an Oracle DBA. Other companies, more often than not, separate the SA and DBA jobs.
Although this provides more jobs and truly does enable technical people to specialize fully in one or the
other, it also winds up being a largely segregated working situation, especially if the SA and DBA work
for different bosses. In this type of situation, clear, concise, and timely communication is of the utmost

importance. In any case, I encourage DBAs to learn as much as possible about their particular variant of
the UNIX operating system, specifically basic SA tasks. This means having root access. You should be
able almost to act as a backup for the SA! This extra effort will reward you in being able to take full
advantage of your operating system with the Oracle RDBMS. Many of the following issues are covered
in your Operating System Specific Installation and Configuration Guide (ICG) or Server Administrator's
Reference Guide (SARG). These are the purple-striped hard-copy books, or you can also use the online
documentation.

Setting Up the dba Group and OPS$ Logins

In UNIX, in order to Connect Internal (in svrmgrl), you must be a member of the UNIX dba group,
specified in /etc/group. An example entry in /etc/group might look like this:

dba:*:500:oracle, jdoe, jsmith, bfong, ppage

In order to add this group, you must be the root user. Once done, to connect with DBA privileges
without a password, you can do either

SVRMGRL> CONNECT INTERNAL;

or

SVRMGRL> CONNECT / AS SYSDBA;

The latter is preferred and the former obsolete, although both currently work. A related mechanism for
any Oracle user account is OPS$. This enables the user to use the same login that he or she has at the
UNIX level for the Oracle account. A recommendation is to set the init.ora parameter
OS_AUTHENT_PREFIX="" (the null string) so that you can use names such as jdoe and not OPS$jdoe.
Remember, on UNIX, everything is case sensitive, so use the same case everywhere. To create your
Oracle user, do the following:

SQL> CREATE USER jdoe
 2> IDENTIFIED EXTERNALLY;

Of course, you would probably specify tablespace defaults, quotas, and maybe a profile. If the user
already exits, use an ALTER rather than a CREATE. There are some SQL*Net catches, however. OPS$
logins are not supported by default. To enable them, set the init.ora parameter
REMOTE_OS_AUTHENT=TRUE. Also, the daemon user must exist in /etc/passwd, and it must not be
an OPS$ login.

Using the oratab File and dbstart/dbshut Scripts

When you finish running the install, one of the most important post-installation steps is running the root.
sh script (as root, of course). When complete, you will have a /var/opt/oracle/oratab (or /etc/oracle/
oratab) file, which is a list of ORACLE SIDs and some other information. An installation with two
(instance) entries might look like this:

Page 820

SID1:/dir1/dir2/dir3/oracle:Y
SID2:/dir1/dir2/dir3/oracle:N

where the Y specifies that, Yes, start this instance (SID) up when dbstart is run. The dbstart and dbshut
programs are Oracle-supplied UNIX shell scripts. You must create your own script to wrap around these
scripts and run as Oracle, at boot time for dbstart and at shutdown for dbshut. Create a Bourne shell
script like the following:

#! /bin/sh
ora.server
ORACLE_HOME=/dir1/dir2/dir3/oracle
start
case "$1" in
`start')
su - oracle $ORACLE_HOME/bin/dbstart &
stop
`stop')
su - oracle $ORACLE_HOME/bin/dbshut &
;;
esac

Save this file to the /etc/init.d directory. Then (soft) link this ora.server script like so:

ln -s /etc/init.d/ora.server /etc/rc0.d/K99ora.server
ln -s /etc/init.d/ora.server /etc/rc2.d/S99ora.server

At boot or reboot (# init 6) time, Solaris will call all the S* scripts in the /etc/rc?.d directories, including
S99ora.server, and pass each start as the $1 parameter. Similarly, at shutdown (# init 0), all the K*
scripts will be called, including K99ora.server, and pass each stop as the $1 parameter.

Using the oraenv Scripts and Global Logins

Oracle supplies an oraenv shell script for Bourne and Korn shells and a coraenv shell script for C shell.
When placed in the user's startup file or read interactively into the current shell, they will set the proper
Oracle environment for that user, in particular, the SID value. Add the oraenv file to a user's startup file.

The user's startup file depends on the shell used. If using the Bourne or Korn shells, add the following
lines to the user's .profile file (or alternatively, the ENV file for Korn):

ORAENV_ASK=NO
. /opt/bin/oraenv
ORANEV_ASK=

For C shell, add the following lines to the user's .login (or .cshrc if preferred):

set ORAENV_ASK=NO
source /opt/bin/coraenv
unset ORAENV_ASK

Notice that the oraenv files are located in the /opt/bin directories. This is true for Solaris. For other
machines, it might be /usr/local/bin. There are a few variations on this setup. Adding these lines to each
user's local login (and maintaining them) can be tedious. An alternative is to add them to the global login
files. For Bourne and Korn shells, this is /etc/profile, and for C shell, this is /etc/.login. When a user logs
in, the global login file is read first and then the

Page 821

user's local login. Hence, local overrides global. By adding these lines to the global login files, you need
only add them to, at most, two files, rather than to all users' files. In addition, you are guaranteed a
common Oracle environment for all users, unless users override it. It's a policy question as to whether
different users might need different environments. A last variation exists on using the oraenv files: If
you have multiple instances and have the need to change the SID at login time, simply don't set the
ORAENV_ASK variable before reading the oraenv. Each user will then be asked what SID he or she
wants, like, for example:

ORACLE_SID = [SID1] ?

Then you may enter another SID to override the default SID, SID1 in this case. Further, after login, each
user may rerun the oraenv to change to another instance, by doing

. /opt/bin/oraenv for Bourne or Korn shells, or
source /opt/bin/coraenv for C shell.

Configuring Shared Memory and Semaphores

Shared memory is, of course, memory that is shared among many processes or threads. An Oracle
instance's SGA resides in shared memory. If your total SGA size exceeds that which you configure for
your UNIX OS, your instance cannot start. Shared memory is segmented and can be allocated according

to three models: one segment, contiguous multi-segment, or noncontiguous multi-segment. Oracle will
try to allocate the SGA memory requested in the order of these models as listed. If all three possible
models fail to allocate enough shared memory for the requested Oracle SGA, Oracle will raise an ORA
error, and the instance will fail to start. The values that control the SGA size, of course, are mostly
DB_BLOCK_SIZE, DB_BLOCK_BUFFERS, SHARED_POOL_SIZE, and LOG_BUFFER. Sorting
parameters affect SGA and non-SGA memory, too.

The Solaris (and most SVR4 systems) shared memory parameters that you would set are

SHMMAX Maximum size (bytes) of a single segment

SHMSEG
Maximum number of segments for a single
process

SHMMNI Maximum number of segments, system-wide

The most critical of these are SHMMAX and SHMSEG. Let's work through an example and set the init.
ora and UNIX parameters. Your system supports one instance, and the machine has 1GB of main
memory. There are no other really competing applications with Oracle, and especially none that would
use shared memory. In other words, this is a "dedicated" database (hardware) server. You could start
with 1/2 or 3/4 main memory. Let's start with 3/4, or 768MB, main memory. Your init.ora parameters
might look like the following:

DB_BLOCK_SIZE=16384 # 16KB

DB_BLOCK_BUFFERS=45056 # ¥ 16KB = 704MB

SHARED_POOL_SIZE=
16777216

16MB

LOG_BUFFER= 8388608
8MB = size of 1 redo
log

Page 822

The database buffer cache (704MB), plus the shared pool (16MB), plus the log_buffer (8MB) take up
728MB, 40MB shy of 768MB. Now, set your shared memory to exactly 768MB. Your Solaris shared
memory parameters might be set as follows (in the file /etc/system):

set shmsys:shminfo_shmmax= 805306368
set shmsys:shminfo_shmseg=10

As long as Oracle is starting up with no competition from other applications for the shared memory, it
will allocate exactly one shared memory segment of something less than 768MB—and use most of it.

Semaphores are global (shared) memory locking mechanisms. They are "true" locks in that they are
made up of a "gate" and a queue. Sometimes they are referred to as queued locks, as opposed to
nonqueued ones, such as latches or spin locks. Oracle will use at least one semaphore per Oracle
process. Set your maximum number of UNIX semaphores greater than your PROCESSES parameter in
init.ora for all your instances combined, if you have multiple instances running concurrently. Suppose
you expect to have no more than 100 concurrent users, and then add your Oracle background processes
(these can vary considerably by the other init.ora parameters and RDBMS options that you run) to this
number. Suppose you have 15 Oracle background processes. Then you might set

PROCESSES=120

in your init.ora to have a little room for error. In Solaris (and most SVR4 systems), you might then set
the following in the /etc/system file:

set semsys:seminfo_semmsl=150

to be safely higher than 120. SEMMSL sets the maximum number of semaphores per set. As shared
memory is allocated in segments, semaphores are allocated in sets. Two other parameters you could also
set, but which are not as critical as the previous ones, are

SEMMNI Maximum number of sets, systemwide

SEMMNS Maximum number of semaphores, systemwide

There are other Solaris (SVR4) kernel parameters, which can also be set in the /etc/system kernel file,
that affect shared memory, semaphores, and other memory-based structures. Please refer to the Solaris
system configuration reference manuals for further details.

Understanding the OFA

The Optimal Flexible Architecture (OFA), offered by Oracle with the release of version 7, provides a set
of installation recommendations and guidelines. The OFA was developed with UNIX in mind. The OFA
white paper is free and downloadable from www.oracle.com. Remember, these aren't requirements.
Further, suggested naming conventions are just that: suggestions, not requirements. Hence, the OFA is
flexible in this respect, too. Primarily, though, the flexibility the OFA gives is the capability of coping
with large installations, many instances, and many versions. Also, OFA helps when you have instances
moving through many stages, or phases, such as development, integration, testing, and production.

Page 823

Maintaining separate environments can be a challenge, but using an OFA-like setup can help ease the
administration of your implementation. The OFA offers more than just directory and file organization

and naming suggestions; it also deals with tablespace naming and separation, for example. In any case,
an example of a two-version, two-instance (production and development) configuration might have the
following environment variable settings and OFA structure:

$ORACLE_BASE=/u01/oracle.

$ORACLE_HOME=$ORACLE_BASE/product/7.3.3 for the production SID.

$ORACLE_HOME=$ORACLE_BASE/product/8.0.3 for the development SID.

$TNS_ADMIN=$ORACLE_HOME/network/admin; note that, like
$ORACLE_HOME, this can only belong to one instance at a
time.

oratab is located in /var/opt or /etc.

oraenv files are located in /opt/bin or/usr/local/bin.

datafiles, control files, redo log files, and rollback datafiles are
located in
/u0[1-n]/oracle/<sid> subdirectories, where
n represents the number of root /u0 directories; soft links may be
used as necessary.

administrative files are stored in $ORACLE_BASE/admin/<sid>, such as
bdump, cdump,
udump, pfile, and exp subdirectories.

Please refer to the OFA White Paper for further details on its guidelines. Even though OFA grew out of
Oracle on UNIX, it can be retrofitted for Windows NT, Netware, VMS, and other platforms. Figure A.1
shows a graph of the sample OFA structure, using DEV as the name of the development SID and PROD
for production.

FIG. A.1
An OFA directory
structure for the two-
version, two-instance
configuration.

Page 824

Comparing Raw Disk and UFS

This comparison is a classic debate between Oracle and other RDBMS DBAs that has no resolution. In
other words, there is no blanket statement anyone can make that will hold true for all applications. A raw
partition in UNIX is a disk partition on which a UNIX file system (ufs) is not created. Hence, there is no
file system (or general UNIX I/O) buffering for that partition. In fact, aside from its device filename at
the UNIX level, UNIX otherwise has nothing to do with a raw partition. Why use raw partitions? If near
random I/O is the characteristic usage pattern of your application type (for example, OLTP), a raw
partition can help by bypassing the UNIX buffer. If your application type involves heavy sequential I/O
(for example, DSS and DW), buffering helps minimize the electromechanical disadvantage. In other
words, the UNIX (read-ahead) buffer will outperform raw partitioned access when I/O is the bottleneck.
However, other factors come into play, such as think time and computational time. Think time is the
time a user needs between interactions in an interactive system such as OLTP. Computational time is the
batch analog of think time. It is the time a program uses in computing between significant functional
tasks. In either case, if think or computational time is high under heavy I/O, the benefit of the UNIX
buffering might be negated, and hence, a raw partition could yield better results. Here are some of the
major advantages and disadvantages of using raw partitions.

The advantages are as follows:

● Decreased I/O overhead (no UNIX buffer/file system buffer)
● Increased performance for random I/O or heavy think/computational time
● Writes guaranteed (Oracle -> disk instead of Oracle -> UNIX -> disk)

The disadvantages are as follows:

● Decreased performance for heavy sequential I/O
● Decreased performance (less than file system) if used improperly
● Harder to manage

Let's briefly look at the last disadvantage, because there are many inherent administrative problems with
using raw partitions, including the following three:

● To create or change one partition requires a complete disk dump/reload. For example, suppose

javascript:displayWindow('images/ch00fg02.jpg',484,343)

you have set up your raw partitions and your database. Then you see the need to increase the size
of one of the raw partitions. If no others are available and you must increase a particular one, you
have to dump the entire disk contents, repartition, and reload.

● There are fewer I/O utilities (only dd), especially for backup. The dd utility can back up only one
partition at a time and cannot span tapes (is not a multivolume utility). Also, dd cannot sense the
end of a tape, so you must be sure that your raw partition can fit. You don't want to find out it
didn't when you are in the middle of a recovery.

Page 825

● The allocation of datafiles is less flexible, and you potentially waste space, especially
cumulatively over time. Suppose you need to move datafiles around for performance-tuning
reasons (that is, to balance I/O). This would not be too complicated using file system files.
However, moving two raw partitions, unless they are the same size, can require the complete
dump/reload of the two disks on which they reside.

Final notes: If opting to use raw disks, before you do so, do complete disk checks (bad sector checks) on
all disks that might be used. Make sure you have enough disk space—plus some. Make all your raw
partitions the same size, or choose 3 or 4 fixed raw partition sizes, such as 256MB, 512MB, 768MB, and
1024MB (1GB), and this will mitigate the inflexibility of managing them. This latter solution of using a
few classes of sizes is better for most installations. For example, it will increase the likelihood of having
a properly sized partition at the expense of some internal fragmentation (wasted space). Even so, this is
nearly unavoidable when using raw disks.

CAUTION

When formatting your raw disks, always skip cylinder 0 to leave room for the disk label.
Otherwise, the Oracle DBMS will likely overwrite it at the worst possible time. (By
comparison, the high-level ufs I/O access routines have the knowledge to skip it built in.)

Using Additional UNIX Performance Tuning Tips

Use asynchronous I/O if supported. Normally, a DBWR/LGWR process must write, wait, write, wait,
and so forth. Although buffer transfers are involved, this is not real time. It is, however, synchronous
(serial) I/O. Asynchronous (parallel) I/O (AIO) reduces wait times between buffered read/write
acknowledgments. AIO works for either ufs or raw disks. If supported, use KAIO, which is an additional
enhancement of AIO residing within the kernel, rather than above it. Hence, it is even faster. Ensure that
the following init.ora parameters, enabled by default, are set:

ASYNC_WRITE=TRUE

ASYNC_READ=TRUE

or ASYNC_IO=TRUE in place of the previous two for some platforms.

Use multiple database writers (DBWRs). If you are not using AIO, set the following init.ora parameter:

DB_WRITERS=<the number of distinct disks containing datafiles>

Increase this up to twice the number of distinct disks containing datafiles as necessary. This will
parallelize I/O without using asynchronous I/O, because I/O is synchronous by default for each DBWR.
Use KAIO first, AIO second, and multiple DBWRs last, but none of these together.

Page 826

Use the readv() system call. For heavy sequential I/O, readv() reduces buffer-to-buffer transfer times.
The readv() system call is disabled by default. Enable it by setting

USE_READV=TRUE

Use outer disk cylinders first. Because of the Zone Bit Recording (ZBR) technology used by Sun, outer
cylinders tend to outperform inner cylinders. The outer cylinders would be cylinders 0, 1, and 3, as
opposed to 4, 5, 6, and 7.

CAUTION

Remember, don't use cylinder 2, the overlap cylinder, because it retains the total size of
the disk. Some programs are baffled when this cylinder gets changed.

Use the Oracle post-wait driver if available on your platform. The Oracle post-wait driver provides a
substitute mechanism for using semaphores that is faster and provides the same functionality of
semaphores for Oracle usage.

Use the UNIX interprocess communication status (ipcs) command to monitor shared memory and
semaphores. To monitor shared memory, use ipcs -mb, or use the Oracle shared memory utility (tstshm)
if you have it. To monitor semaphores, use ipcs -sb. These utilities will help you determine how much
shared memory and how many semaphores are being used. They can also help you determine the
fragmentation of your shared memory. See the man page on ipcs for further details. Here is one example
run of each utility:

ipcs -mb

IPC status from <running system> as of Tue Nov 18 11:59:34 1997
T ID KEY MODE OWNER GROUP SEGSZShared Memory:
m 500 0x0898072d --rw-r---- oracle dba 41385984
m 301 0x0e19813f --rw-r---- oracle dba 38871040
m 2 0x0e3f81dc --rw-r---- oracle dba 4530176

hostname:oracle> tstshm

Number of segments gotten by shmget() = 50
Number of segments attached by shmat() = 10
Segments attach at lower addresses
Maximum size segments are not attached contiguously!
Segment separation = 4292345856 bytes
Default shared memory address = 0xeed80000
Lowest shared memory address = 0xfff00000
Highest shared memory address = 0xeed80000
Total shared memory range = 4010278912
Total shared memory attached = 20971520
Largest single segment size = 2097152
Segment boundaries (SHMLBA) = 8192 (0x2000)

ipcs -sb

IPC status from <running system> as of Tue Nov 18 11:59:39 1997
T ID KEY MODE OWNER GROUP NSEMS

Page 827

Semaphores:
s 327680 00000000 --ra-r---- oracle dba 25
s 327681 00000000 --ra-r---- oracle dba 25
s 196610 00000000 --ra-r---- oracle dba 20
s 4 00000000 --ra-r---- oracle dba 25
s 5 00000000 --ra-r---- oracle dba 25

Use direct I/O if supported. Some UNIX systems support direct I/O with ufs, effectively bypassing the
UNIX buffer caches. This negates the need to use raw partitions as an option. Enable this facility if your
platform supports it. Use it in place of raw partitions.

Don't use processor binding or change the scheduling classes for processes. Because SMP machines
have most of the market share of Oracle database servers, I make this recommendation. Programs
written to run on SMP machines are most efficient when their processes are processor independent,
hence the S for Symmetric in SMP. Available facilities exist (tcpctl, pbind, nice/renice, and prioctl) that

enable reformulation of processor affinity and process priority. In general, on SMP machines, it is a bad
idea to mess with these parameters for Oracle system (background) processes.

Don't modify the general UNIX buffer cache or the file system buffer, unless you have a really good
idea of what you're doing. In general, modifying these UNIX kernel and ufs parameters has little effect
on Oracle performance. For example, the kernel parameter bufhwm is the maximum KB that can be
used by the general UNIX I/O buffers. By default, the UNIX buffer grows to up to 2 percent of available
memory. The program tunefs controls the ufs logical block (or buffer), which is 8KB by default. Be
careful in changing these. Have a good reason for doing so. For example, if you have heavy sequential I/
O and are using ufs, you could increase bufhwm in /etc/system.

Keep your ufs file systems below 90 percent full. Unless you changed it, your minfree for each of your
ufs is 10 percent. At less than 90 percent capacity, a ufs is speed optimized. At greater than 90 percent,
the ufs optimization strategy switches to space-optimization. Hence, attempt to keep your ufs housing
Oracle datafiles and other Oracle components at 89 percent or less.l

Page 828

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 814

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 813

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch32/0812-0812.html
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch32/0812-0812.html

Previous | Table of Contents | Next

Page 829

Appendix B
Oracle on Windows NT

In this appendix

● Why Choose Oracle on Windows NT?
● Windows NT File Systems
● Understanding Windows NT Administration
● Installing Oracle Server on the Windows NT Server
● Creating an Instance on Windows NT
● Tuning and Optimizing Oracle on Windows NT
● Learning from Oracle Windows NT
● Supporting Oracle8 on Windows NT

Page 830

This appendix covers Oracle's relationship with Microsoft's Windows NT operating system platform.
For references to non-platform specific Oracle database issues, please refer to the rest of the book.
Because this publication is dedicated to providing information on the latest and most used versions of
software, the information provided in this section is specific to version 7.3xx of the Oracle Relational
Database and mainly version 4.0 of the Windows NT 4.0 Server operating system.

Table B.1 lists the supported versions (for versions 7.3xx only) for Windows NT Server, as published
and released by Oracle Worldwide Customer Support, July 1997 (latest available).

Table B.1 Version Availability

Oracle
Version

Windows
NT 3.1

Windows
NT 3.5

Windows
NT 3.51

Windows
NT 4.0

7.3.2.1.1 no no yes yes

7.3.2.2.1 no no yes yes

7.3.2.3.1 no no yes yes

7.3.3.0.0 no no no yes

The latest 7.3xx version of Oracle released on Windows NT to date is version 7.3.3.0.0 (there is a
7.3.3.3.0 patch). A version 7.4 will not likely be released. Oracle8 was released instead. The latest
version of Oracle8 for Windows NT available (as of September 1, 1997) is version 8.03.

Why Choose Oracle on Windows NT?

There is no doubt that businesses today are looking for less expensive alternatives to provide quality
service information systems. As a result, a market has grown for an operating system that is capable of
supporting a small to midsize business. Smaller businesses don't necessarily want or need to put out the
money for large platforms when their needs don't require all the options of a larger system. Microsoft
Windows NT was created to provide this exact service.

Windows NT is becoming more and more robust every day, which enables consumers to consider
Windows NT as a viable platform consideration. Because consumers are interested in cutting costs
wherever possible, Windows NT is taking over a bigger and bigger share of the operating system
market. Oracle has seen the growth of this particular operating system and has moved Windows NT up
to its developmental platform level. This means that Oracle will be developing its software on Windows
NT at the same level as Sun Solaris, HP/UX, and other developmental platforms.

Oracle on Windows NT is a fully functional RDBMS (Relational Database Management System). The
Oracle software, on Windows NT, is a single process with multiple operating system threads. This is
different from some versions of UNIX. Because of its development level status, Oracle has been
integrated tightly with the Windows NT operating system, including relationships between Oracle and
Windows NT's Performance Monitor, Event Viewer, and its Registry.

Page 831

Windows NT also provides security capabilities, which is a much desired option in the database world.
Of course, the added advantage of Oracle's single point-of-control GUI (Graphical User Interface)
administration tool—Oracle Enterprise Manager (OEM) (see Chapter 9, "Oracle Enterprise
Manager")—is also an added user-friendly product.

The main concern on most DBAs' minds is how well Windows NT can really handle large, DSS
(Decision Support System) or OLTP (Online Transaction Processing) databases. Well, the answer is
simply this: Windows NT has come a tremendously long way with its capabilities to handle multiple
users and large amounts of data. There is no doubt that it is incapable of handling the multi-user,
terabyte-sized systems that are being handled by large UNIX platforms at present. Oracle is being
limited only by Windows NT's limitations. However, Windows NT's capabilities are growing every day
and eventually it will be a serious competitor for the current large systems. In the meantime, Windows
NT provides a cheaper and often satisfactory solution for many situations that arise in small to mid-size
businesses. Given the speed of its development at Microsoft, it is useful to note that several years down
the road, Windows NT may possibly be the solution of choice.

Windows NT File Systems

Before installing the Windows NT operating system, the administrator needs to decide which file system
is going to be appropriate for the database server. The Windows NT operating system provides two
systems: FAT (File Allocation Table) and NTFS (NT File System). This section describes both the
advantages and disadvantages of each file system so that you can make an educated decision on which
file system will be appropriate for your particular situation.

FAT Features

The File Allocation Table (FAT) is a file system that has been used on DOS, Windows 3.x, OS2, and
Windows 95 PCs. Table B.2 lists the features of the FAT.

Table B.2File Allocation Table (FAT) Features

Feature Details

Operating systems that can
access FAT

Windows NT, Windows
95, MS DOS, OS/2

Partition size limit 4GB

Filename length limit 255 characters

File size limit 4GB

File types
Read Only, Archive,
System, Hidden

Local security None

File compression capability None

Page 832

Advantages The main advantage to the FAT file system is that the system overhead is very low (less
than 1MB per partition). This is a good choice for drives/partitions that are less than 400MB. Also,
because FAT has been present on previous operating systems (as listed in the introduction to this table),
FAT is backward compatible and capable of performing multiple operating system boots.

Disadvantages Security is the main issue with the FAT file system. The only security on FAT is
directory-level sharing. Outside of that, FAT has no local security. Even the directory-level sharing
allows users that log on locally access to the physical directories. This is a serious issue for databases
who contain sensitive information. Another issue with the FAT file system is that once the drives/
partitions grow to greater than 400MB, file access becomes much slower and database performance will
decrease significantly. This is due to the fact that FAT uses a linked list folder structure. Therefore, as a

file gets larger and larger—as a result of inserts and updates, for example—it becomes fragmented on
the hard disk.

NTFS Features

The NT File System (NTFS) can be accessed only by the Windows NT operating system, allowing for
higher security. Table B.3 lists the features for the NTFS file system.

Table B.3NT File System (NTFS) Features

Feature Detail

Operating systems that can
access NTFS

Windows NT

Partition size limit
2 terabytes actually (16
exabytes theoretically)

Filename length limit 255 characters

File size limit
4GB_64GB actually (16
exabytes theoretically)

File types Further extended, extensible

Local security Yes

Compression capability
Yes: on files, on folders, and
on drives

Advantages NTFS is a much more robust file system than FAT mainly because of its security features.
Local security is required. NTFS allows for file-level (versus directory-level) security. This gives the
administrator the ability to control access to all the information stored in the file system. Also security is
added because the NTFS file system can be accessed only by Windows NT; therefore, someone cannot
start the computer with any other operating system and access information on the NTFS partition. In
addition to its security features, NTFS is a better choice for drives/partitions greater than 400MB due to
performance advantages over the FAT file system dealing with larger drives/partitions.

Page 833

Disadvantages The overhead for an NTFS drive ranges from 1MB_5MB (or more), depending on the
size of the partition. This is fine for large volumes, but for smaller volumes (less than 400MB), the
overhead is a disadvantage.

TIP

Make sure that you install Service Pack 3 for Windows NT. This will work out a lot of
kinks with the operating system, one being the Windows Explorer tool. Without the
service pack, Explorer can give you misleading file size numbers if you are pushing file
size limits. You can download this service pack from the Microsoft Web site at www.
microsoft.com.

Understanding Windows NT Administration

Administering Oracle from a Windows NT machine can be an easy task once the administrator is
familiar with the NT atmosphere. There are a number of tools and utilities that Windows NT provides
that are integrated with the Oracle software. In this section, you will find some basic information about
the Windows NT operating system as it pertains to Oracle, which will provide the administrator with a
clear mapping of the interaction between a Windows NT server and an Oracle database.

Associated Windows NT Tools

There are many ways to access and monitor your Oracle database using Windows NT Tools, including
creating, editing, and starting Oracle services and instances, user management, and backup utilities. In
this section, you will find descriptions of the Windows NT Tools that you will be using as an Oracle
DBA.

Control Panel The Windows NT Control Panel is found by going to the Start menu and selecting
Settings, Control Panel. The screen that appears will look like Figure B.1.

You will find several tools within this panel. A tool used often in conjunction with Oracle is the Services
tool. NT Services includes both a listing of executables on the NT server that is identified in the Registry
(for example, FTP, third-party backup software, Oracle instances, and so on) and their availability status
on the machine. Look to a following section "Windows NT Services and Oracle Instances" for more
information regarding the definition of a Windows NT Service.

User Manager for Domains User Manager is Windows NT's administrative tool for managing user,
group, and network security (see Figure B.2). It is important to note that user security on the Windows
NT Server will be mapped to Oracle security. For example, if a user on the Windows NT Server is not
allowed to access the directory where a data file is, then that same user will not be able to query the
tables that store data in that directory. This tool is opened by going to the Start menu and selecting
Programs, Administration Tools, User Manager for Domains.

Page 834

FIG. B.1

Control Panel is the
Windows NT computer
configuration interface.

FIG. B.2
User Manager for
Domains is Windows NT
Server's administrative
tool for managing user,
group, and network
security.

Windows NT Backup Windows NT's Backup utility is used to take backups of anything residing on the
machine (see Figure B.3). Windows NT Backup is good for taking cold physical backups of the Oracle
database. It allows you to select which drives you want to back up and where you want to send the
backup and offers verification upon completion of the backup. This tool is activated by going to the Start
menu and selecting Programs, Administration Tools, Backup.

Page 835

FIG. B.3
The Backup utility is
Windows NT Server's
tool for performing cold
physical backups.

javascript:displayWindow('images/ch00fg03.jpg',800,600)
javascript:displayWindow('images/ch00fg04.jpg',649,519)
javascript:displayWindow('images/ch00fg05.jpg',800,600)

Windows NT Instance Manager The Windows NT Instance Manager can be used to create a SID
(instance), Service, Database, and Data Dictionary for Oracle (see Figure B.4).

FIG. B.4
Instance Manager is the
Windows NT Server's
tool for creating and
monitoring instances,
services, the database,
and the data dictionary
for Oracle.

Windows NT Services and Oracle Instances

When working with Oracle on Windows NT, you, the Oracle DBA, may find that the difference between
a Windows NT service and an Oracle instance is very confusing. This section will clear up this
confusion.

A service in Windows NT is an executable that was installed in the Windows NT Registry. The
Windows NT Registry tracks security information for each service created. An Oracle instance is a word
used to describe a unique SGA (System Global Area) paired with an Oracle service.

At least one Oracle service is created for each specific database: one that runs the database and a
possible other that starts the database whenever the operating system itself is started. When an Oracle
service is created, it can be found under Control Panel, Services and is named in the

Page 836

format OracleServicesid (see Figure B.5). The sid (system identifier) identifies which instance the
service refers to. Also, you may find the OracleStartsid service if the service was created in Automatic
start mode by the Windows NT Instance Manager.

TIP

javascript:displayWindow('images/ch00fg06.jpg',339,240)

When Oracle is installed, there are also services created for the Oracle Listener for
NamedPipes (nmp) and the Oracle Listener for TCP/IP (tcp). An Oracle Listener literally
acts like an ear on the Oracle server, listening for clients who want to contact the Oracle
server.

FIG. B.5
Windows NT Services is
an administrative tool
that can be used to
monitor Oracle services.

When you first install Oracle on Windows NT, you will find that the installation already has created an
Oracle instance named orcl. The orcl instance is the default database provided by Oracle. If you open up
Services in the Control Panel, you will find two things: the Oracle service OracleServiceorcl and another
service called OracleStartorcl. You'll also notice that next to the name of the service, the service is
identified as being Automatic. There are three different start modes for a service, as described in Table
B.4.

Table B.4Windows NT Service Start Modes

Mode Description

Automatic
Service starts automatically every time the
operating system is started.

Manual
Service can be started manually, by a user, or by a
dependent service.

Disabled Service cannot be started.

TIP

If there is an OracleStartsid service, the Oracle database service will not only be started,
but the actual database will open as if a startup command had been issued by the
database's internal user. The OracleStartsid service creates a strtsid.cmd file in the
ORANT\DATABASE\ directory. Therefore, when the operating system starts, the
database is also started, and there is no need to start each separately.

javascript:displayWindow('images/ch00fg07.jpg',506,280)

Page 837

CAUTION

As always, make sure to shut down the database first before shutting down the operating
system, because this will not be done automatically.

Installing Oracle Server on the Windows NT
Server

There are some things you must consider when you install Oracle on the Windows NT Server. Previous
lessons with other software may have taught you to be prepared for any new installation onto a
computer. Well, Oracle is, by far, no exception. In the following sections you will find some basic
installation checklists.

Before Installing

Before you install Oracle on the Windows NT Server, it is important to use the following as a basic
checklist:

● Make sure to read through the Installation Guides and Readme files that Oracle provides with its
software. This information will prevent you from making some wrong turns in the process.

● Test all network connections and hardware, if necessary.
● Make sure you have enough disk space for the software and a CD-ROM drive.

Installation Instructions

Installation begins by putting the Oracle7 Server CD-ROM into the CD-ROM drive. The Oracle Installer
should start up immediately; but if it doesn't, go to Windows Explorer (or My Computer) and select the
CD-ROM drive and then select SETUP.EXE. After that, simply follow the directions and enter
information as you are prompted for it. It is highly suggested that you choose the defaults during
installation. If you decide to use your own selection instead of a default, make sure to take note and be
aware of the effect it may have on a successful instal-lation.

CAUTION

For some reason, the Oracle Installer for Workgroup Server 7.3.2 (and maybe other
versions) seems to attempt to install Enterprise Manager and its repository before it has
even installed the database itself. You can either skip over the repository parts of the
installation by not choosing to create or drop, or you can do a Custom Install of the
database and leave Enterprise Manager to be installed after the database.

Page 838

Before Upgrading

The following general instructions are for upgrades of previous versions of Oracle7 to Oracle 7.3xx:

● Have a complete cold backup or a full export before upgrading.
● Shut down each database instance.
● Remove all previous versions of SQL*Net.
● Check for at least 8MB of free space in your present SYSTEM tablespace by using information

found in the table DBA_FREE_SPACE. If there isn't enough space, you must add a datafile to
the SYSTEM tablespace.

● Make a list of all the names and locations of all the control files, datafiles, and redo logfiles for
reference.

● Delete any database services (oradim7x -DELETE -SID sid).
● You must back up your %ORACLE_HOME% directory, making sure to include the INIT*.ORA

files. This can be done by simply copying the home directory and all its subdirectories.
● In the INITsid.ORA file, you must set the value COMPATIBLE equal to the upgraded version

(COMPATIBLE=7.3.0.0).
● Using the Oracle Installer, remove the Oracle Server, SQL*NET Server, and Oracle7 utilities.

Now that you have prepared for installation, you can enter the installation phase.

Upgrade Instructions

Follow these steps in order to perform the upgrade:

1. Make sure you complete everything in the previous section.
2. Follow the instructions in the section "Installation Instructions."
3. Create an instance using the command-line version of Instance Manager by opening up a DOS

window and typing the following:

>ORADIM73 -new -sid SID -intpwd PASSWORD -startmode AUTO -pfile
C:\ORANT\DATABASE\INITsid.ora.

4. Start up the instance, also using the command-line version of Instance Manager:

>ORADIM73 -startup -sid SID -pfile C:\ORANT\DATABASE\INITsid.ora.

5. Move all database files to the \ORANT\DATABASE directory (or wherever) and all archive files
to the \ARCHIVE directory.

6. Edit the new INITsid.ora parameter file to indicate the location of all the files and make sure the
REMOTE_LOGIN_PASSWORDFILE is set properly.

7. Start up the instance in Exclusive Mount mode.
8. Alter the database to specify any file naming/path changes.

Page 839

9. Run all SQL scripts that are needed for the database (refer to Oracle documentation), including
UTLXPLAN.SQL for any schema in which you want to use EXPLAIN PLAN.

10. Shut down and restart the databases.
11. Shut down the databases. Shut down and restart the computer.

Now you have completed installation of the Oracle software. At this point, you can continue to create an
instance in the next section.

Creating an Instance on Windows NT

Although Oracle provides a default instance (orcl), it is suggested that you create an instance that is
specially designed for your database's needs. The following section shows you how.

Creating INITsid.ora

When creating a new instance, the first thing you need to do is determine all the parameters you need to
delineate the shape and size of your database. The parameter file, called the INITsid.ora file (where sid
is the name of the instance), is used to start up the database with all the proper configurations. The
simplest way to create your new INITsid.ora file is by making a copy of the INITorcl.ora file and
modifying it. This file is the parameter file for the default database created on installation. You can find
the INITorcl.ora file in the \ORANT\DATABASE directory. Make sure to rename the copy to INITnsid.
ora (where nsid is the name this section will use for the new instance) and change, at the very least, the
following parameters:

● Set DB_NAME =nsid.
● Specify the new names for your control files by altering the filename(s) next to the

CONTROL_FILES parameter. If you don't rename them, you will overwrite the control files for
the orcl instance, which will destroy the orcl instance.

You can alter all the other parameters in the file also, but the two noted above are mandatory changes
that must be made. In addition, make sure the INITnsid.ora file is in the \ORANT\DATABASE
directory before making a service for the new instance.

Creating a Service

After completion of the INITnsid.ora file, it is necessary to create a Windows NT service for the new
instance (for a description of a Windows NT service, see the previous section, "Windows NT Services
and Oracle Instances"). You can create a service by using either the Instance Manager (GUI tool) or by
using Line mode.

Using Instance ManagerFollow these steps in order to create an Oracle instance:

1. To open the Instance Manager, go to Start, choose Programs, Oracle for Windows NT, NT
Instance Manager (refer to Figure B.4).

2. Click the New button. The New Instance dialog box appears (see Figure B.6).

Page 840

FIG. B.6
The New Instance
window allows the
administrator to create
a new sid.

A description of each field within the New Instance window is as follows:

SID—This is the name of the instance. It should be four characters or less.
DBA Authorization Password—This will be used as the internal password for this
instance.
Confirm DBA Authorization Password—Same as DBA Authorization Password.
Maximum Number of DBA/Operators (optional)—This field limits the number of
operators allowed on the instance. The default setting is 5.
Instance Startup Mode (optional)—There are three modes: Automatic, Manual, and
Disabled. Automatic is the default. (For descriptions of startup modes, see the
section "Windows NT Services and Oracle Instances.")

javascript:displayWindow('images/ch00fg08.jpg',513,292)

3. Now click the Advanced button. Enter the instance name in the Database field. You will most
likely leave the character set at the default.

4. Apply all the information. To make sure that the instance was created, go to the Control Panel
and open Services.

Using Line Mode To use Line mode, you need to open a DOS command prompt. Go to Start and
choose Programs, MS-DOS Prompt. Type the following at the prompt:

> oradim73 -new -sid NSID -intpwd ORACLE -startmode AUTO
-pfile Âc:\ORANT\DATABASE\INITnsid.ora

where NSID is the name of the new instance and ORACLE is the internal password for that instance.

After you are done creating the instance, open Server Manager. Connect internal and try to start the
database as follows:

>CONNECT INTERNAL/ORACLE@2:NSID
>STARTUP PFILE=C:\ORANT\DATABASE\INITnsid.ora

TIP

If the new SID is not the default database, you need to use the @2 operator for version
7.3 when connecting internal. If the new SID is the default, you don't need to use the @
operator at all.

This will verify that the instance has been created.

Page 841

Tuning and Optimizing Oracle on Windows NT

Hopefully, if your database is properly designed, it will need little or no tuning and optimizing.
However, more often than not, unexpected situations arise, causing your database to need some
tweaking. In the following sections you will find several causes and solutions for adjusting your
database into a well-oiled machine.

Adjusting Windows NT Configurations

There are several default configurations of a Windows NT server that can be adjusted if necessary. The
following are some examples:

● If you are using raw partitions to improve I/O performance, Oracle recommends that you make
all raw disk partitions the same size. (This is according to "Performance Tuning Tips for Oracle7
RDBMS on Microsoft Windows NT," released by Oracle Desktop Performance Group, Feb.
1995.)

● For optimal performance, you want to make sure that your machine has enough memory to
accommodate the entire SGA (System Global Area) and still have some memory left for the
operating system to perform well.

● Windows NT optimizes its server, by default, for file sharing. You can change this optimization
if your machine is mainly for database usage by going to the Control Panel and opening Network
and Server. Change optimization from Sharing to Maximize Throughput for Network
Applications. You will have to restart the machine in order for these changes to take place. (This
is according to "Performance Tuning Tips for Oracle7 RDBMS on Microsoft Windows NT,"
released by Oracle Desktop Performance Group, Feb. 1995.)

● On the average machine (32MB of RAM), Windows NT allocates 4MB of memory to its system
cache. However, the system cache can set the configuration LargeSystemCache (located in the
Registry under \HKEY_LOCAL_MACHINE\SYSTEM\CONTROL\ SESSION MANAGER
\MEMORY MANAGEMENT) equal to zero in order to favor the working set size of the Oracle7
process over that of the system cache. (This is according to "Performance Tuning Tips for
Oracle7 RDBMS on Microsoft Windows NT," released by Oracle Desktop Performance Group,
Feb. 1995.)

● Use Window NT's Performance Monitor (which you can find by choosing Start, Programs,
Administrative Tools) to evaluate where the system has bottlenecks. This tool allows you to
monitor the CPU(s). Windows NT uses process boundaries to separate different subsystems. If
you want to monitor a user's application, use the Performance Monitor's breakdown of CPU
usage for the user process. If the percent user time is high, then the system is doing well. (This is
according to "Performance Tuning Tips for Oracle7 RDBMS on Microsoft Windows NT,"
released by Oracle Desktop Performance Group, Feb. 1995.)

Page 842

Storing Oracle Configurations

Configurations for Oracle are stored in the Windows NT Registry. To open the Registry, go to the Start
menu, choose Run, and then type regedt32. You can find all the information for Oracle stored under the
Registry key \HKEY_LOCAL_MACHINE\SOFTWARE\ORACLE. In order for the changes to take
place, the Oracle services and instances must be restarted.

Some configurations to consider are as follows:

● Mainly for OLTP purposes, Oracle has set the ORACLE_PRIORITY to normal priority class.
You can change the priority class for each background process to higher priorities according to

your unique situation. This may cause some instability problems, however. If so, change back to
the default value. Oracle recommends that all threads be set at the same priority level. (This is
according to "Performance Tuning Tips for Oracle7 RDBMS on Microsoft Windows NT,"
released by Oracle Desktop Performance Group, Feb. 1995.)

● If DBA_AUTHORIZATION is set to BYPASS, there is no password required when logging as
the user internal. This may be okay during development, but you may want to increase security in
a production system. To require a password to be entered upon logging in as internal, set
DBA_AUTHORIZATION to "" (zero-length string).

● If your system has more than one database instance, you may want the default database to be set
to a particular instance. You can specify this with the ORACLE_SID value. Oracle sets this value
to ORCL (the default database) upon installation.

● You can also set ORACLE_HOME to whatever directory you prefer. For desktop, Oracle sets
this configuration to C:\ORANT (or whichever drive Oracle was installed on).

For more performance tuning tips, please refer to Chapter 29, "Performance Tuning Fundamentals,"
found earlier in this book.

Learning from Oracle Windows NT

I have often found that the most valuable information is that learned from previous experiences. In the
following sections I have listed some of my personal encounters and struggles with Oracle on Windows
NT.

Knowing the Limitations

It is important to be aware of any limitations that may affect your database design. Oracle often puts this
information in obscure places, so for your convenience I have added some of the limitations that I've run
across:

● The maximum DB_BLOCK_SIZE in Oracle version 7.3xx for Windows NT is 8KB. This
maximum is supposed to be raised to 16KB in Oracle8.

Page 843

● The maximum size for any extent (initial, next, optimal, and so on) is less than 2GB in Oracle
version 7.3xx for Windows NT. This may be increased in future versions of Oracle8.

Installing Enterprise Manager

When installing Enterprise Manager on the server (realize that Enterprise Manager is mainly used for
remote administration), make sure that your Windows NT server has the TCP/IP option installed. If you
don't install TCP/IP, set to NETBUI and make sure Oracle's Bequeth is identified with a unique alias.

Accessing Large File Sizes on Windows NT

Oracle is capable of working around Windows NT in order to access files larger than 4GB. However,
you need to note that the Backup utility provided by Windows NT will most likely have trouble backing
up these files. You may need to obtain a third-party software package (such as Seagate, Arcserve, and so
on) to use for backup or you can make several smaller files to replace the one large file.

Exporting Directly to Tape on Windows NT

Exporting directly to tape, unfortunately, cannot be done. There is no way in the command line to name
the tape drive. It is expecting a filename or drive name, but there is no name associated with a tape drive
on a Windows NT system. I have tried alternative methods: named pipes (not available on NT, too low
level), third-party software (Seagate, MKS Toolkit, Perl, C). Nothing has worked. This is an unresolved
issue with Oracle, and it is not fixed in version 8.03.

Trying Automation on Windows NT

When trying to automate in UNIX, you are able to use the shell (utilities like awk, and so on) to
automate most anything. In Windows NT, there is a tool called the Windows AT command that can be
used along with the DOS batch language. The AT command is not very robust and is rather inflexible,
and the lack of a proper scripting language is one of Windows NT's biggest shortcomings. It is nearly
impossible to automate procedures, exports, and the like using the AT command. This can be aided with
some third-party software (Arcserve, MKS Toolkit, and so on).

The UTL_FILE Package

The UTL_FILE package was first introduced in version 7.3xx of the Oracle database. This package
provides capabilities for PL/SQL programs to access files and write output to them. It also has its own
error handling and debugging. The UTL_FILE package is not automatically installed on the system
during installation, but the script is included with Oracle7.3xx and can be found in the \ORANT
\RDBMS73\ADMIN directory. The documentation for this package can be found

Page 844

in Chapter 8 of the Oracle7 Server Application Developer's Guide (which is provided as a part of the
Oracle Server documentation).

If you choose to use this package, make sure you put the name of the directories in the INITsid.ora file.
This requirement ensures security in accessing files. To set the directory (and you can put in multiple
directories) in the parameter file:

UTL_FILE_DIR = directory name

Make sure the directory name does not end in a /, because it will cause a UTL_FILE.INVALID_PATH
error. Also make sure to give the Oracle owner permissions in the UTL_FILE directories in order to
provide security against overwriting system files. Remember that in order for the database to recognize
any change in the INITsid.ora file, the database must be shut down and restarted.

The following sample code shows a message being written to a log file:

DECLARE
 al UTL_FILE.FILE_TYPE;
 linebuff VARCHAR2(80);
BEGIN
 al := UTL_FILE.FOPEN(`C:\LOG\dbproc.log','w');
 linebuff := `SUCCESSFUL COMPLETION `||TO_CHAR(SYSDATE,'mm/dd/yyyy
hh:mi:ss');
 UTL_FILE.PUT_LINE(al,linebuff);
 UTL_FILE.FCLOSE(al);
END;

The maximum buffer size for a UTL_FILE.PUT_LINE or UTL_FILE.GET_LINE is 1,023 bytes.
The file size limit is dependent on the operating system (see the section "Windows NT File Systems" at
the beginning of this appendix).

Although it does provide a much needed programming capability, there are a couple of bugs in the
UTL_FILE package:

● Documentation will tell you that there are three modes in which you can access a file: Read,
Write, or Append. However, if you attempt to use the Append mode, you will receive a
UTL_FILE.INVALID_OPERATION error. There is no fix for this bug in any version of
Oracle7.3, nor is there a fix in the present version of Oracle8 (version 8.03). No workaround is
provided. The only way to append is to write out several files and use DOS (or some other
programming language such as C) to append them into one file. You cannot make a system call
from a PL/SQL program in order to do this.

● You cannot, at least not in Windows NT, use the UTL_FILE package to write files across a
network. This has also been reported as a problem and there is no fix to date. There is no
workaround. The only solution is to write the file to the local machine and use some other tool or
programming language to transport it across the network.

Hopefully, the above information has provided you with knowledge that you will be able to use in the
future, if not today. Remember, no software package is bulletproof.

Page 845

Supporting Oracle8 on Windows NT

Oracle version 8 on Windows NT promises to make the database more enterprising by making many of
its sizing limits much bigger. Support for Oracle7 will continue until at least December 31, 1999 (this is
according to Oracle's World Wide Customer Support Services announcement by Randy Baker, August
1997). Version 8.03 of the Oracle database is the most current release for the Windows NT platform as
of September 1997.

Here are some features and changes to be expected in Oracle 8.0xx:

● A whole new version of the Oracle network. It will be called Net8 and will eventually totally
replace SQL*Net.

● The Server Manager GUI (graphical user interface) will not be included in the Oracle8 Server
bundle.

● The database blocksize limit for Windows NT will be increased from 8KB to 16KB.
● New DBA features include partitioning, connection pooling, multiplexed user connections, larger

databases, and more datafiles.

Some changes that were expected in the 8.0xx releases have been moved to 8.1xx releases and later.
More object-oriented features will be included, such as Java stored procedures.l

Page 846

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 847

APPENDIX C
New Features of Oracle8

In this appendix

● Changing from Oracle7 to Oracle8
● Supporting Large Databases
● Supporting Object-Relational Features
● Administering Oracle8
● Developing Applications

Page 848

Release 8 of the Oracle RDBMS adds new functionality to all aspects of the database environment. The
first step in taking advantage of these new features is to know they exist. The following sections present
a concise overview of the major changes in the database. Most of the topics mentioned here are covered
in greater detail in other chapters of the text, but by going over the material covered in this appendix,
you will know what to look for and expect from your Oracle8 database.

You will soon realize from looking at Oracle8 that Oracle has revamped its object relational strategy.
Oracle8 has been optimized for large database support and operations, and the new features focus on this
aspect of the database environment. Although it does introduce the beginnings of object-oriented
database support, taking advantage of the new features for support of larger and more active database
environments is the real reason to move to Oracle8. Oracle's own documentation describes this release
as "evolutionary rather than revolutionary." This comes as a relief to many, who want a powerful, robust
database engine to crunch huge amounts of data, rather than support for the newest bells and whistles to
come out of the computer science departments. Oracle is moving cautiously into the object database
arena, slowly introducing object-oriented features and capabilities for the early innovators, while
concentrating on core relational database features and the backward compatibility that current customers
need.

Changing from Oracle7 to Oracle8

Many familiar database components have been reworked and changed in Oracle8. The following
sections will summarize the major changes.

Enhanced Database Datatypes

Oracle8 extends the maximum size of many database datatypes, as well as adding a few new ones. Table
C.1 summarizes the database datatype changes from version 7 to version 8.

Table C.1Changes of Oracle7 Datatypes in Oracle8

Datatype Oracle7 Range Oracle8 Range

CHAR 1_255 bytes 1_2,000 bytes

VARCHAR2
up to 2,000
bytes

up to 4,000 bytes

VARCHAR
up to 2,000
bytes

up to 4,000 bytes

LONG up to 2GB up to 2GB

NUMBER up to 21 bytes up to 21 bytes

RAW up to 255 bytes up to 2,000 bytes

LONG RAW up to 2GB up to 2GB

ROWID 6 bytes
10 bytes (extended) or 6
bytes (restricted)

Page 849

Datatype Oracle7 Range Oracle8 Range

BLOB N/A up to 4GB

CLOB N/A up to 4GB

BFILE N/A up to 4GB

NCLOB N/A up to 4GB

NCHAR N/A up to 2,000 bytes

NVARCHAR2 N/A up to 4,000 bytes

DATE
Jan 1, 4712 B.C. to
Dec 31, 4712 A.D.

Jan 1, 4712 B.C.E. to
Dec 31, 4712 C.E.

New Database Datatypes

As Table C.1 shows, there are several new additions to the core database datatypes. There are two
categories of new datatypes:

● LOB (Large Object) datatypes

● NLS (National Character Set) datatypes

The LOB datatypes solve a common problem that plagued application developers and DBAs throughout
the Oracle7 days. Previously, in order to store binary or large amounts of data in a single table column, it
was necessary to use the LONG, RAW, or LONG RAW datatype. These datatypes worked, but they
were inherently difficult to work with and manage, in most cases requiring custom application code to
manipulate and handle them. They also provided limited functionality; for example, you could not have
more than one LONG column per table.

Oracle8 attempts to address these problems with the addition of three new datatypes:

● CLOB
● BLOB
● BFILE

CLOB is the character large object, BLOB is the binary large object, and BFILE is the binary file.
CLOBs hold character values, BLOBs hold binary data, and BFILEs implement within the database
kernel a common workaround for storing large columns. The BFILE is a pointer to a file stored
externally to the database and managed by the database server OS. The LOB datatypes can be stored
inline with the rest of the table's rows, or you can specify separate storage parameters for them.

The National Character Set datatypes (NCHAR, NVARCHAR2, NCLOB) are stored in the database
according to the value of the National Character Set parameter value. By using National Character Set
datatypes, the database can store data in a character set other than the database character set. The
National Character Set value is controlled by the value of the NLS_NCHAR parameter. If this parameter
is not specified, it will default to the value of the NLS_LANG parameter.

Page 850

Enhanced ROWID Format

Oracle8 has changed the format of the ROWID to support new features of the database. This is
important to application developers who explicitly use the ROWID in applications. Oracle8 introduces
the extended ROWID, which is a 10-byte format containing the data object number, data block address,
and row number of the row the ROWID references. The digits in the extended rowids are represented as
base 64 and are similar in structure to the rowids in Oracle7. Extended rowids are defined as:

000000
The data object number. This identifies the
segment the row is in.

FFF The datafile the row is contained in.

BBBBBB The block in the datafile the row is contained in.

RRR The row in the block.

An extended rowid may look like the following: AAAAaoAATAAABrXAAE, where AAAAao is the
object identifier, AAT is the datafile, AAABrX is the block in the datafile the row is contained within,
and AAE is the row in the block. To support backward compatibility of Oracle7 applications, Oracle8
also supports a restricted ROWID, which is a 6-byte ROWID that is compatible with the Oracle7
ROWID format. The DBMS_ROWID is also packaged with the database and contains routines to
provide the same information that would be available from the Oracle7 ROWID format.

Heterogeneous Services

The transparent gateways of Oracle7, which allowed access to non-Oracle data sources through the
Oracle interface, have been revamped in Oracle8 and are now referred to as heterogeneous services.
Many of the open gateway features have been pulled into the database kernel, and administration of
different gateways is accomplished using the same administrative tools.

With heterogeneous services, agents running on any computer between the Oracle and target database
translate Oracle requests into language that the foreign database can understand. Oracle as well as third-
party vendors can provide agents to interact with heterogeneous services.

Internal Changes to the Database Engine

Several other changes to the internal database structure have been implemented in Oracle8. These
include the complete reworking of Oracle Replication (Advanced Replication Option) that implements
replication internally using kernel operations, rather than through the triggers used in Oracle7. Table
column restrictions have also been relaxed. You can now have 1,000 columns per table, up from the
limit of 254 in Oracle7.

NOTE

Although the first reaction to 1000-column tables may be that any table needing more
than 254 columns should go back to the drawing board, some mainframe migrations and
data warehousing implementations have the possibility of running up against this
limitation.

Page 851

Oracle has also promised significant reductions in memory overhead for user connections in the
database. Coupled with the 65,535 unique names restriction, this supports the "more data, more users"
promise of Oracle8.

Supporting Large Databases

For most Oracle shops, the added features supporting large database installations are the most important
reasons to consider upgrading to Oracle8. As you will see, this is one of the greatest areas of
improvement. Oracle8 provides many new features that will help many administrators cope with the
ever-growing mountain of data that needs to be "immediately available."

Partitioned Tables and Indexes

Mainframe databases have long had the capability of separating a large table into smaller pieces, each of
which can be handled separately and thus managed easier. In Oracle7, many shops used table views to
implement this functionality, creating separate tables and using a UNION ALL view to handle them.
Oracle8 brings this functionality under the control of the database kernel, in the form of partitioned
tables and indexes.

A table is partitioned by specifying a number of discrete files (partitions) in which to store the table data.
Each partition of a table holds a certain range of data, as determined by a key value. To use an obvious
example, consider a table that stores order information. The table holds the order line items for a year's
worth of orders. A possible partitioning scheme would partition the table into four portions based on the
quarter in which the sale was made. Here is the SQL to create this table:

CREATE TABLE line_item (
 invoice_id NUMBER NOT NULL,
 stock_id VARCHAR2(45) NOT NULL,
 quantity NUMBER,
 order_date DATE)
PARTITION BY RANGE (order_date) (
 PARTITION order_q1
 VALUES LESS THAN (`04-01-1998')
 TABLESPACE order_q1,
 PARTITION order_q2
 VALUES LESS THAN (`07-01-1998')
 TABLESPACE order_q2,
 PARTITION order_q3
 VALUES LESS THAN (`10-01-1998')
 TABLESPACE order_q3,
 PARTITION order_q4
 VALUES LESS THAN (`01-01-1999')
 TABLESPACE order_q4
);

The value of partitioned views lies in the fact that each partition of the table can be maintained

separately from its related partitions. Each partition can be stored in separate tablespaces, and they can
be taken off- and online independently of each other. Although each partition has the

Page 852

same logical attributes—such as columns and column constraints—the specific storage characteristics of
each, such as PCTFREE, PCTUSED, PCTINCREASE, and so on, can differ.

Indexes can also be partitioned, in much the same way as tables. When an index is partitioned in the
same way that the referencing table is partitioned, it is called a local index. An index that is partitioned
differently than its referencing table is called a global index. A partitioned index can be created on a
nonpartitioned table, and vice versa. The benefits of using partitioned indexes are the same as those of
using partitioned tables.

Oracle8 has expanded its DML syntax to include partition-specific operations, as well as making many
of its tools aware of partitions. You can specify inserts, updates, and deletes on specific partitions, as
well as specify a specific partition to use in SQL*Loader or Export/Import. DML operations have been
expanded to easily enable select, insert, update, and delete operations to be performed on partitions in
parallel. Finally, the ALTER TABLE command has been modified to enable partitioned table
maintenance and support operations, such as adding a partition, merging adjacent partitions, converting
a partition to its own nonpartitioned table, and converting a table into a partitioned table.

Direct Load Insert and NOLOGGING

The bane of the DBA that must support large warehousing and OLTP applications in the same database
is managing the redo and archive logs. During the day, it is essential that archived redo logs are
generated and kept safe, to ensure that recovery of all online transactions is possible. At night, when the
batch jobs that refresh your data tables or load data from other sources are running, the time involved
with logging redo as well as the space taken up by archived redo logs is a pain.

In Oracle8, you have the option of inserting data directly into database blocks, similar to using the direct-
load option of SQL*Loader. This avoids the overhead involved in transferring blocks to the block cache
and back into the datafiles, as well as keeping cached data blocks in the block cache. Direct-load inserts
are specified by using the APPEND hint in the INSERT statement, as in the following example:

INSERT /*+ APPEND */
INTO emp
SELECT * FROM big_emp;

Using a direct-load insert with NOLOGGING enabled maximizes insert performance. NOLOGGING is
a new table, index, and partition attribute specified on object creation or with the ALTER command. It
specifies that minimal redo information should be written when transactions affect the object. Only

certain operations, including direct load INSERTs, index creations, CREATE TABLE AS SELECT, and
index rebuilds can be performed as NOLOGGING. Unfortunately, transactions that make use of
distributed database objects cannot be performed as NOLOGGING. The combination of a direct load
INSERT with NOLOGGING will prove invaluable to those running databases as described previously
or any shop that frequently inserts data that does not need to be logged to redo.

Page 853

Enhanced Parallel Processing Support

Oracle8 extends the capability of working with very large data sets with parallel DML support of
INSERT, UPDATE, and DELETE operations. In Oracle7, you were given a taste of parallel support
with index creations and select statements. In Oracle8, parallel operations are supported for the
following:

● Most SQL queries
● CREATE TABLE AS SELECT
● Index creations and rebuilds
● Many partition operations
● INSERT SELECT
● Updates
● Deletes
● Enabling constraints

To make use of the enhanced parallel processing of Oracle8, the ALTER SESSION ENABLE
PARALLEL DML statement must be issued at the beginning of the transaction. Configuring parallel
execution is specified as it was in Oracle7, with the init.ora parameters and with the PARALLEL hint or
PARALLEL table clause used to specify the degree of parallelism to use in the operation. When parallel
DML is coupled with other Oracle8 enhancements (direct load INSERTs, NOLOGGING, and
partitioned tables and indexes in particular), significant time and resource savings can be realized when
compared to previous methods of execution.

Index Fast Full Scan

Finally, an alternative to the full table scan is introduced with Oracle8: the index fast full scan (FFS). An
index fast full scan can be performed on a table when the index contains all the columns requested in the
query. The entire index will be read using multiblock reads, which can be significantly faster than the
related full table scan. An index fast full scan is specified using the INDEX_FFS hint, and it should be
used when the size or number of columns in the index is significantly less than the size or number of
columns in the table. To specify that an index fast full scan should be performed, include a hint as shown
in the example below:

SELECT /*+ INDEX_FFS(emp, emp_idx) */ emp_id, lname, first_name
FROM emp;

Supporting Object-Relational Features

For all the hype and anticipation, the initial object relation support offered by Oracle 8.0 is fairly tame
and thankfully easy for the DBA to grasp. In the following sections, you look at the object relational
support bundled with the first release of the Oracle8 server.

Page 854

Abstract Datatypes

As has been said before, Oracle release 8.0 is Oracle's first tentative step into the realm of the object-
oriented database. The focus of the object features in this release concerns the capability of creating
abstract and user-defined objects and using these objects to build other more complex database
constructs. The creation of these objects is accomplished by creating types or descriptions of the objects,
which are then stored in the data dictionary and used as column and variable datatypes. This enables the
developer to conceptualize business rules into formal database constructs, which can be used in a natural
way to create applications and implement business logic.

An object must be defined before it can be used. The syntax to create the object structures uses the
CREATE TYPE command, as illustrated in the following:

CREATE OR REPLACE TYPE person_object AS OBJECT (
 ssn NUMBER,
 last_name VARCHAR2(50),
 first_name VARCHAR2(50));

Once defined, a type can be used in a table declaration as a reference (REF) to an instance of the object.
You create an instance of a type using the CREATE TABLE command, as in the following:

CREATE TABLE person_table OF person_object;

CREATE TABLE hr_detail (
 emp_id NUMBER,
 dept NUMBER,
 supervisor NUMBER,
 hired DATE,
 person REF person_table

Objects can also have methods or procedures that perform logical functions based on the contents of the

object. An example could be a work ticket object that contains the problem type, start time, end time,
and person assigned to. A method could be assigned to the object to determine the amount of time a
work ticket was open. The DDL to create this example is shown in the following:

CREATE OR REPLACE TYPE work_ticket_o AS OBJECT (
 ticket_id number,
 open_date date,
 close_date date,
 assigned_to varchar2(50),
 dept_id number);

CREATE OR REPLACE TYPE BODY work_ticket_o IS
 MEMBER FUNCTION time_open RETURN NUMBER IS
 BEGIN
 RETURN (open_date _ close_date);
 END;
END;

Page 855

Variable Arrays

Variable arrays, or VARRAYs, are an Oracle8 datatype created to support the storage of repeating
groups in the parent table. They enable arrays of data, as specified by the type declaration of the
VARRAY, to be stored inline with table data. A VARRAY is specified in the same way an object is
declared, as in the following example:

CREATE TYPE students_varray
AS VARRAY(50) of student_object;

A VARRAY can be declared as one of the built-in Oracle datatypes or as a previously defined type.
After the type is created, the VARRAY can be used in table declarations, as follows:

CREATE class (
 class_id NUMBER,
 location VARCHAR2(15),
 attendants students_varray);

This table will now hold the class_id, location, and up to 50 student records for students attending the
class. In addition to table columns, VARRAYs can be used as object type attributes or PL/SQL
variables.

Nested Tables

Another new method for storing table data is in the form of the nested table. A nested table is merely a
table stored within another table. The nested table exists only in the context of the parent table, and at
present time only one level of nesting is allowed. Future versions of Oracle may feature nested tables in
nested tables. The nested table is defined using a table of an object, as in the following example:

CREATE OR REPLACE TYPE class_o AS OBJECT (
 id NUMBER,
 semester VARCHAR2(10),
 name VARCHAR2(25),
 concentration VARCHAR2(25),
 professor VARCHAR2(50));

CREATE OR REPLACE TYPE class_t AS TABLE OF class_o;

CREATE TABLE student (
 id NUMBER,
 SSN NUMBER,
 lname VARCHAR2(50),
 fname VARCHAR2(50),
 classes class_t)
 NESTED TABLE classes STORE AS student_classes;

The decision to use nested tables should be made more from a design view. The only performance gain
we get from using nested tables comes from the fact that fewer disk blocks will need to be searched or
read for the data. On the other hand, because the data is stored together, if you are not retrieving data
from the nested table structure, you will still have to read the blocks. Thus, the performance gain you
might achieve on the one hand is canceled out on the other.

Page 856

DML operations on nested tables require you to reference the nested table in a subquery. The subquery
identifies the target nested table from the parent table. To perform these actions, Oracle has added a new
keyword to their SQL language: THE. Using the THE keyword, you can specify what nested table
object you are referencing in the DML statement and perform your desired action.

To understand this usage, consider the following example. Suppose you have a table CLASS, with the
following definition:

class_id number

class_name varchar2(45)

participant student_type

professor_id number

semester varchar2(10)

year date

The participant row in this table is actually a nested table of Student_type. Student_type is defined as:

student_id number,

major varchar2(35),

grade_level varchar2(15)

To update data within the participant nested table, it is necessary to refer to the nested table in terms of
its parent row. This is accomplished using a subquery that utilizes the THE keyword. The following
examples illustrate this point.

INSERT INTO THE
 (SELECT participant FROM class WHERE class_id = 42)
VALUES
 (12,'CIS','SENIOR');

The previous example shows how a new value would be inserted into the nested table. The nested table
is first selected from the parent table with the query identified by the THE keyword. The DML statement
modifying that table is issued as usual. Another example is shown below:

UPDATE THE
 (SELECT participant FROM class WHERE class_id = 23)
SET major = `ENGINEERING';

While the query itself makes little sense, the general format and method when working with nested
tables should be obvious. In this statement, all rows in the nested participant table for classes with a
class_id of 23 will have their major set to ENGINEERING.

Object Views

Object views are views that join relational tables and perhaps object tables into a view that is represented
as an object. This can be used by object-oriented development tools as an object,

Page 857

or as a first step in migrating an application to an object-oriented schema. Object views can help ease the

transition from relational to object-oriented thinking, as well as provide a physical means to view data in
an object-oriented manner—as well as relational.

To create an object view, you must first create a type that contains all the columns in the relational tables
on which you want to create the view. The syntax to create the object view is similar to normal view
creation, with the addition of the WITH OBJECT OID (unique_column) clause, which tells Oracle
which column in the view to use to uniquely identify each row.

Administering Oracle8

Oracle8 is not all about application enhancements. The administrator is also given quite a few new tools
and commands to help ease the ever-more-demanding job of administering the enterprise databases.

Enhancements to Password Administration

The Oracle8 release brings Oracle user and password maintenance out of the dark ages and provides
long-awaited features and functions critical to administering the enterprise database. The many
enhancements to password administration include automatic account locking when a specific number of
invalid login attempts are registered, password expiration, a password history that provides the ability to
enforce unique passwords, and the option of enforcing password complexity. All these options are
enabled through extensions of the user profile.

Backup and Recovery Optimizations

Often, the motto of the DBA is "back up or die." The database backup is the single most important
aspect of the database administrator's job. Oracle8 provides much needed support for backup and
recovery of the database, through kernel integration of many backup and recovery features as well as the
introduction of the Recovery Manager.

The Recovery Manager tool consists of a character or GUI front-end with its own command language
and provides an interactive interface to database backup and recovery. It is usually used with a recovery
catalog—a set of database objects that store information on all activities related to backup and recovery
performed against the databases. Using Recovery Manager, you can do the following:

● Automate recovery operations
● Schedule automatic datafile backups
● Display datafiles meeting specified criteria that signal backups
● Track all backup and recovery operations

The command language is powerful enough to enable you to script many common backup tasks, which
can be set to run at various times or when various thresholds are reached. Many DBAs will find
Recovery Manager an invaluable tool in easing the administrative workload associated with running an

Oracle database.

Page 858

shutdown transactional

Oracle8 adds one more method of shutting down an Oracle database: shutdown transactional. You can
use this method when you want to minimize client interruption and prevent the loss of data, while at the
same time not wait for users logged in to the database to exit.

When you issue the shutdown transactional command from Server Manager, no new clients will be
allowed to connect to the database, and no new transactions will be allowed to start. When currently
running transactions are completed or aborted, the database will shut down immediately—disconnecting
the remaining clients.

Disconnect Session Post Transactional

The ALTER SESSION DISCONNECT command has also been enhanced, with the addition of the
POST_TRANSACTION flag. When a disconnect command is issued with this flag, the disconnect will
occur only after the transaction currently executing has completed. This prevents any interruption of
current client activity from occurring.

Minimizing Database Fragmentation

An additional storage parameter, MINIMUM EXTENT, reduces fragmentation and space wastage in a
tablespace by forcing new extents to allocate space in multiples of the MINIMUM EXTENT value.

New Replication Options

Replication has had several major modifications to improve the performance and scalability of
distributed databases. Perhaps most important is that the replication logic is no longer handled with
database triggers, but has been encapsulated in the database kernel.

Replication can also be performed in parallel, which results in large performance improvements.
Replication has also been updated to allow new Oracle8 structures, such as LOBs and partitions, to be
replicated.

Developing Applications

Although not obvious from the items focused on so far, Oracle8 is not all about the database
administrators. There are several new items of particular interest to Oracle application developers. The

biggest change most application developers are going to face is learning how to deal with the new
objects, the syntax for referencing object types, and the right place to use these new features. The major
features of interest to application developers are described in the following sections.

External Procedures

With Oracle8's support of external procedures, code can be written in other languages and called from
within the database, through PL/SQL routines. External procedures give you the flexibility of writing
routines in external 3GL languages, while at the same time keeping all code internalized within the
Oracle database environment.

Page 859

Release 8.0.3 of the Oracle Server supports only procedures written in C, but future support of other
languages (including Java) is promised. External procedures must be stored in dynamic link libraries (.so
extension on UNIX, .dll on Windows NT). To use an external procedure, you must first create a PL/SQL
library, which is a pointer to the operating system file where the DLL is stored. Then you must register
the procedure you want to use by encapsulating the procedure within a PL/SQL block. The procedure
can be registered in an anonymous block, package, procedure, or trigger and in an object type's method.
An example of using an external procedure follows.

Consider the math utility library mathlib.so. You want to use several of the routines in this library,
because they are considerably faster than their counterparts written in PL/SQL. Before you can see any
of the procedures in this DLL, you must create a PL/SQL library, as shown in the following statement:

CREATE LIBRARY math_lib IS
`/usr/local/lib/mathlib.so';

Note that the complete path to the DLL must be specified. You decide that you want to use the SQRT
function in this package. You cannot call the function directly; you must register the function. The
following SQL shows this process:

CREATE FUNCTION SQRT (X BINARY_INTEGER)
RETURN BINARY_INTEGER AS
-- math_lib is the PL/SQL library name
 EXTERNAL LIBRARY math_lib
-- SQRT is name of procedure in library
 NAME "sqrt" LANGUAGE C;

Now, you can call the SQRT function in your PL/SQL programs, which will reference the sqrt
procedure in the external DLL.

Index-Only Tables

Index-only tables are new database segments introduced to eliminate the redundancy of lookup tables
and their indexes in the database. In a typical lookup table (for example, a STATE or ZIPCODE table),
there are only two (or maybe three) columns: the key you have, and the value you are looking up. Most
implementations will index all the columns in the table to maximize performance. In Oracle8, these
structures can be stored as index-only tables—tables stored only as index segments.

By storing lookup tables and the like in index-only table segments, you reduce the space usage of the
data as well as the complexity of the database design.

Reverse Key Indexes

A common problem in active tables that use sequences (or similar structures) to generate primary keys is
contention for the last free leaf block. This happens because everyone is inserting an index value at the
end of the index. Reverse order indexes attempt to solve this problem by storing the index key in reverse
byte order. For example, a column with a key value of ORACLE would be stored as ELCARO (or a
sequence value of 122 would be stored as 221, 123 as 321).

Page 860

Storing the key values in reverse order eliminates the contention for the last leaf block because values
are more likely to be distributed throughout the index. However, reverse order indexes can be used only
for equality lookups, because by storing the index in reverse order, the relationship or sequence of any
data (which would be used for range scans) is lost. For example, consider an index on first_name. The
index contains values for Janet, Richard, William, Janis, Russell, Jay, Tracy, and David. If these
columns are stored in a normal B*-Tree index, and you issue a query searching for all rows with
first_name columns that start with J, the first J entry could be found in the index, and the leaf blocks
would be traversed until the last J was found. In a reverse key index, however, the actual values stored
are tenaj, drahcir, mailliw, sinaj, llessur, yaj, ycart, and divad. Obviously, the algorithm above cannot
hold true for this data set!

Instead Of Triggers

Views have long been used to enforce security and data integrity rules that were impossible to
implement using built-in database functions. With release 7.3, you were given a taste of updateable
views; however, the conditions under which a view can be naturally updated is of such severity that the
actual application is of limited scope. Oracle8 attempts to address these shortcomings with the addition
of Instead Of triggers, which is a new class of triggers that are defined on views. These triggers intercept
any insert, update, or delete operation against the view and perform their actions, "instead of" the DML
statement affecting the view itself.

Instead Of triggers can be used to implement all manner of business logic at the database level. The
natural usage would be to allow a view to be updated where it does not meet the strict requirements for
an updateable view. Application developers as well as DBAs will no doubt find many creative uses for
these triggers.

Data Integrity Management

Oracle8 introduces two new ways for application developers and DBAs to manage data integrity:
deferred constraint checking, and the ENFORCE CONSTRAINT command. Deferred constraint
checking will come as a blessing to many application developers and solves a common problem arising
from using Oracle's methods to enforce data integrity—that of a relationship that is mandatory at both
entities.

To illustrate this problem, consider a publishing company that prints books. In this company, each book
must have one or more authors, but because it doesn't allow freeloaders, each author must also be
assigned to a book. The application has a book table and an author table. The problem arises when
creating the initial book and author records. Because of the mandatory one-to-many relationship, you
can't create the book record first and then the author (or vice versa), but you really don't care if this
situation occurs briefly as long as the final product fulfills the mandatory requirement. A deferred
constraint enables you to delay the constraint checking until the transaction is committed. So in the
example, the rows for the book and author tables could be inserted one after another, with the mandatory
relationship being enforced when you commit the transaction.

Page 861

The other addition to the DBA arsenal is minor, but provides welcome relief to those managing large
warehousing or online databases. The ENFORCE CONSTRAINT option of the ALTER TABLE
command allows you to enable a disabled constraint without checking the existing data for compliance
to the constraint. This is excellent for shops that disable constraints for data loads and refreshes and
enable them when finished, because checking the existing constraints is often a timely and resource-
intensive operation.

Page 862

Previous | Table of Contents | Next

Previous | Table of Contents |

Page 863

APPENDIX D
Oracle Certification Programs

In this appendix

● Benefiting from Technical Certification
● The Oracle Certified Professional Program
● Becoming an Oracle Certified Database Administrator
● The Certified Database Administrator Program

Page 864

Benefiting from Technical Certification

Information technology is evolving at an alarming rate. To stay competitive, corporations must offer
more comprehensive and diverse products and services to their customers. For many corporations, this
means implementing newer and more complicated technology in areas such as automated customer
services, online ordering and account checking, historical data tracking, and so on. In addition, company
needs and expectations in regards to the availability of their data are changing. Where once one-quarter
of online sales data was sufficient, corporations now need access to a full year. Where one year of
financial data was enough, we now need five. We're storing more data online, and more and more data is
expected to be instantly available.

To keep up with these changing needs, managers are under pressure to hire and retain top information
technology professionals. In many cases, the managers themselves are not able to judge the skill level of
applicants in specific technologies. Many companies turn to personnel management firms to supply
qualified candidates, hire third-party consulting firms to screen applicants, or buy canned testing
packages for specific technologies. The boom in demand for IT consultants can also be partly attributed
to the peace of mind their use gives managers. A third-party vendor, who can be easily replaced if the
product does not live up to expectation, fills requests for specific skills and abilities.

Technical certification is one way individuals and corporations can ensure that employee's skills and
abilities are given the value and recognition they deserve. To a corporation, technical certification is a
means of measuring an employee's skill level, or a way to establish a minimum level of qualification for
a position. For the employees, it is a way to establish their knowledge and expertise in their chosen
field—an unbiased verification of their worth and value.

The Oracle Certified Professional Program

The Oracle Certified Professional (OCP) program offers certification programs based on the different
job functions of Oracle professionals. The OCP program is sponsored, administered, and maintained
through Oracle corporation, and the material covered throughout the certification closely matches the
material in their education courses. The OCP program is similar to the Novell CNA/CNE or the
Microsoft MCSE program. Each certification track has a series of tests, each of which must be taken and
passed to earn the certification. Each test deals with a general aspect of the certification job role and is
further broken down to deal with the various subjects related to the test. With this breakdown of subject
matter, certification can take a deliberate and planned approach, concentrating on one subject area and
moving on when that area has been mastered. Currently, only the Certified Database Administrator track
is available, but look for more certification tracks in the coming year.

Each certification test consists of a series of multiple-choice questions that must be answered within a
certain time frame. The test is issued by computer and may use figures and charts as examples or
exhibits for a particular question. No two tests are the same—each test draws from a pool of thousands
of questions. Each question of the tests falls within one of the categories of the test topic and is given a
weight according to the difficulty or complexity of the

Page 865

question. To successfully complete a test, you must correctly answer questions of varying difficulty in
each of the testing areas the certification exam covers.

The tests themselves are similar in nature to the Novell or Microsoft certification tests. There is no
passing percentage for a test. Rather, it is required that you are able to satisfactorily answer enough
questions of different difficulty levels for each test category. Your certification is complete when you
have successfully passed all the required certification tests in a certification track. Oracle provides and
recommends classroom or computer-based training courses to prepare for certification tests, and the test
questions themselves are based on the curricula of their instructor-led training courses. Practical real-
world experience, however, is the most valuable test preparation of all. The tests are crafted in such a
way that mere book studying is rarely enough to earn a passing grade. Rather, the analytical and
judgment skills learned from real-world experience provide the knowledge necessary to pass the tests.

The tests can be taken at any authorized Sylvan Prometric Testing site and each test costs $150.00.
Failed tests can be retaken a month from the original testing date. While no limit is placed on the
number of times a test can be taken, the test fee must be paid for each test sitting. Test results indicate
which subject areas were missed, serving as guides as to what material needs to be revisited and learned
for subsequent attempts to pass the test.

Becoming an Oracle Certified Database

Administrator

Currently, the only certification track offered in the OCP program is for the Certified Database
Administrator. Database administration is a complex and diverse field, and a successful DBA must
possess a wide range of knowledge and skills to perform his or her job. The Certified Database
Administrator certification attempts to ensure that its recipients meet a high level of expertise and skill.

Currently, the DBA certification covers Oracle version 7.3. The test will be updated to include Oracle8
material in the first half of next year. It is expected that all persons holding DBA certification at that
time will take the necessary steps to upgrade their skills and keep their certification current. Special
program offerings will be available to help update Oracle7 certified professionals into the Oracle8
curriculum. The tests are currently platform independent, but certification exams on specific platforms
may be released in the future.

Describing the Program

The Certified Database Administrator program consists of the following four tests:

● Introduction to Oracle: SQL and PL/SQL using Procedure Builder
● Oracle7 Database Administration
● Oracle7 Backup and Recovery
● Oracle7 Performance Tuning Workshop

Page 866

To receive certification, you must successfully complete all four of these tests. The subject matter for
each test is covered in the Oracle training courses of the same name.

The first test, Introduction to Oracle: SQL and PL/SQL using Procedure Builder, covers the basics of the
Oracle database. This test concentrates on topics familiar to Oracle "power users," rather than database
administrators, and will pose little problem to the experienced Oracle DBA.

The second test, Oracle7 Database Administration, is an overview of the general aspects of database
administration. The remaining tests concentrate on two of the most important responsibilities of the
typical DBA: Database Backup and Recovery, and Database Tuning. An in-depth understanding of how
Oracle internally supports database fault tolerance and recoverability is crucial to passing this test.

For many participants, the Tuning exam may prove to be the most difficult test to pass. This is because
most of the topics in this test deal with the internal operation of the database—knowledge that is very
difficult to internalize through classroom or book training. A comprehensive knowledge of the init.ora
parameters and the data dictionary tables and views related to performance tuning is necessary, as well
as a solid understanding of how data is read from and written to the database. Because of the sheer

amount of material that must be understood to pass this test, expect this exam to be your most
intimidating.

Preparing for the Tests

The OCP certification tests have been designed so that book and classroom information provide only a
fraction of the total knowledge needed to pass the tests. Just as important to successfully passing these
tests is the problem-solving and "real-world" experience gained from working with the Oracle toolset,
day in and day out. Each test heavily concentrates on solving problems related to scenarios or situations,
rather than filling in the blank. While some people may be able to pass the tests through studying and
memorization, most of us won't be so lucky and will have to rely on an equal mix of what we've studied
as well as what we know. But for those with a great deal of Oracle experience, preparing for and
ultimately passing the tests should be much easier.

The most effective and thorough method to prepare for the DBA Certification tests is to take the
associated classes from Oracle. The material in each of the tests is based on the curriculum of the Oracle
class of the same name. This method, however, can be quite costly and depending on your experience
and expertise with Oracle, unnecessary. Computer-based training is also available from Oracle, as well
as classes through the Oracle Channel, and even over the Internet. Contact Oracle Education to tailor a
training program that fits your needs and abilities.

Oracle offers a training assessment program to help determine whether you are ready for the real tests
and what areas you might need help in. A free version of the program is available from the Oracle
Education Web site, and hundreds of sample questions for each test can be purchased for $99 per test.
The additional test questions can be ordered from Self Test Software (http://stsware.com) the makers of
the assessment test program. These self-tests are

Page 867

excellent resources to test your knowledge as well as to familiarize yourself with the testing
environment, because the self-test software program is modeled after the actual Sylvan Prometric tests.

The Oracle Education Web site (http://education.us.oracle.com) has a number of white papers and PDF
documents relating to the Oracle Certified Professional program, as well as the DBA Certification. This
site has the most up-to-date information on all of the technical and administrative issues relating to
certification, including the current test fees, authorized testing centers, and the latest OCP program
offerings. Be sure to check out the resources on this site before making any certification plans.

In addition to these resources, other Oracle texts can provide excellent reference material. The online
manual set shipped with each Oracle server set is an excellent source to look up specific topics and
testing areas. The next section will detail where in this book you can find material dealing with each test
area.

file:///E|/Computer%20Books/Oracle/using_oracle_8/(http:/stsware.com)
file:///E|/Computer%20Books/Oracle/using_oracle_8/(http:/education.us.oracle.com)

The following sections provide details on the topics covered in each Certified DBA Exam and the
chapters in this book that can help you with those topics. Although this book has not been specifically
written as a study guide for the certification exam, the material contained within will be of great value to
you as you prepare for certification.

Introduction to Oracle: SQL and PL/SQL Using Procedure Builder Neither SQL or Procedure
Builder is covered in this book—knowledge of basic SQL syntax and usage, such as issuing queries and
creating segments, is assumed, and Procedure Builder is outside the scope. Two chapters, however, will
be of help in regards to the PL/SQL and SQL*Plus questions in the test: Chapter 10, "PL/SQL
Fundamentals," and Chapter 8, "SQL*Plus for Administrators." In addition, Chapter 2, "Logical
Database Design and Normalization," covers the data modeling and database design questions that fall
within the scope of this test. Finally, this test also includes questions regarding user access to database
objects. Chapter 23, "Security Management," covers this material in depth.

According to Oracle's White Paper on the Certified Oracle DBA Track of the OCP program, topics
covered by this test include the following:

● Selecting Rows
● Limiting Selected Rows
● Single Row Functions
● Displaying Data from Multiple Tables
● Group Functions
● Subqueries
● Specifying Variables at Runtime
● Overview of Data Modeling and Database Design
● Creating Tables
● Oracle Data Dictionary

Page 868

● Manipulating Data
● Altering Tables and Constraints
● Creating Sequences
● Creating Views
● Creating Indexes
● Controlling User Access
● Summary of SQL and SQL*Plus
● Overview of PL/SQL
● Basics of Procedure Builder
● Modularizing Programming with Subprograms
● Developing a Simple PL/SQL Block

● Interacting with Oracle
● Controlling Flow in PL/SQL Blocks
● Processing Queries by Using Explicit Cursors
● Error Handling
● Summary of PL/SQL

The following are examples of the types of questions you may be asked when taking this test:

Q.) What type of relationship describes the situation in which an employee can have only one
department, but a department can have many employees?

A. recursive
B. one-to-one
C. one-to-many
D. many-to-one
E. many-to-many

Q.) In what queries would it be appropriate to use the keyword HAVING?

A. When you need to eliminate duplicate rows in the result set
B. When you need to order the result set by category
C. When you are performing a grouping calculation
D. When you need to restrict the groups of rows returned

Q.) What function would you use to find the position of an arbitrary search string in a string?

A. SUBSTR
B. TRANSLATE
C. INSTR
D. REPLACE
E. FSEEK

Page 869

Q.) Which of the following commands will end a transaction? (Choose one or more answers.)

A. SELECT
B. ROLLBACK
C. UPDATE
D. DELETE
E. CREATE TABLE
F. GRANT

Q.) What command would you enter to remove a primary key constraint?

A. ALTER TABLE
B. ALTER INDEX
C. DROP INDEX
D. DROP CONSTRAINT
E. DROP PRIMARY KEY

Q.) What keyword defines the PL/SQL block used for error-handling code?

A. IF ERROR
B. EXCEPTIONS
C. ON ERROR
D. ABEND
E. WHEN OTHERS

Q.) If a DELETE command is specified with no WHERE clause, what will happen?

A. The table will be deleted.
B. The first row will be deleted.
C. All rows will be deleted.
D. An error will be returned.
E. No rows will be deleted.

Q.) What database construct is used to group privileges?

A. System privilege
B. Object privilege
C. Table privilege
D. Role
E. Group

Q.) What objects are found in the USER_TABLES view?

A. Information on all tables in the database
B. Information on all tables the user can select from
C. Information on all tables the user owns
D. Information on all system tables

Page 870

Oracle7 Database Administration The topics covered in the Oracle7 Database Administration test are
well represented in this book. The Oracle7 architecture is covered in Chapter 6, "The Oracle Database
Architecture." Starting up and shutting down the database, as well as database creation procedures, are
covered in Chapter 7, "Exploring the Oracle Environment." Database administration and management
topics are covered in Part VI, "Managing the Oracle Database." The test covers all aspects of database
administration, and most of the information you will need can be found within the individual chapters of
Part VI. Finally, Chapter 14, "SQL*Loader," covers the material you'll need to answer questions on this
topic.

According to Oracle's White Paper on the Certified Oracle DBA Track of the OCP program, topics
covered by this test include the following:

● Overview of Oracle7 Architecture
● Startup and Shutdown of an Instance
● Create a Database
● Accessing and Updating Data
● Manage Transaction Concurrency
● Manage the Database Structure
● Manage Storage Allocation
● Manage Rollback Segments
● Manage Table and Index Segments
● Manage Cluster Segments
● Manage Constraints
● Manage Users
● Manage Resource Usage
● Manage Database Access
● Manage Roles
● Audit the Database
● Specify the National Language Support
● Advanced Architecture
● SQL*Loader

The following are examples of the types of questions you may be asked when taking this test:

Q.) What background process is updating database datafiles with the information in the data buffer?

A. LGWR
B. DBWR
C. CKPT
D. ARCH
E. SMON

Page 871

Q.) What background process must be running for online redo logs to be automatically copied to disk?

A. ARCH
B. SMON
C. DBWR
D. REDO
E. PMON

Q.) If a database is open, and you want to place it in mount stage, what command(s) must you issue?

A. ALTER DATABASE SHUTDOWN MOUNT;
B. ALTER DATABASE MOUNT;
C. SHUTDOWN; then STARTUP MOUNT;
D. SHUTDOWN MOUNT;
E. STARTUP MOUNT;

Q.) What parameter(s) determine the size of the next extent of a database segment?

A. INITIAL
B. NEXT
C. OPTIMAL
D. PCTINCREASE
E. ADJUST

Q.) In the following SQL statement, what line will generate an error?

1 Create rollback segment rbs01
2 Tablespace rbs
3 Storage (initial 512k
4 Next 512k
5 Minextents 6
6 Maxextents 119
7 Pctincrease 5
8 Optimal 3M);

A. 2
B. 4
C. 5
D. 6
E. 7

F. 8

Page 872

Q.) In the following series of statements, where all employees start with a salary of 0, what is the final
outcome?

update emp set salary = 500 where empid = 23;
savepoint a;
update emp set salary = 1000 where empid = 42;
savepoint b;
rollback to savepoint a;
update emp set salary = 750 where empid = 42;
savepoint c;
update emp set salary = 1250 where empid = 23;
rollback to savepoint c;

A. Employee 23 will have a salary of 500; employee 42 will have a salary
of 750.
B. Employee 23 will have a salary of 500; employee 42 will have a salary of
0.
C. Employee 23 will have a salary of 0; employee 42 will have a salary of 0.
D. Employee 23 will have a salary of 1250; employee 42 will have a salary
of 750.
E. Employee 23 will have a salary of 1250; employee 42 will have a salary
of 1000.

Q.) What construct is used to set database resource limits?

A. Quota
B. Profile
C. Allocation Role
D. Default Role
E. Cost Optimizer

Q.) A developer is granted the connect, resource, and select_any roles. She attempts to create a
procedure that utilizes information stored in the dba_tables view. When logged into SQL*Plus, she has
no problems selecting from dba_tables, but her procedure fails to compile. What is the most likely cause
of the problem?

A. Stored PL/SQL programs cannot access data dictionary views or tables.
B. You must be logged in as SYS to access data dictionary views or tables in stored PL/

SQL programs.
C. You cannot create stored PL/SQL programs using privileges that are granted from roles.
D. You must use the fully qualified sys.dba_tables name when accessing dba_tables in a
PL/SQL procedure.

Q.) A database has the audit_trail parameter set to DB. Where is the auditing information stored?

A. The background_dump_dest directory.
B. The dba_audit table.
C. The sys.audit$ table.
D. The sys.security$ table.
E. Auditing information is stored in memory when audit_trail is set to DB.

Page 873

Q.) What is the easiest way to move an index from one tablespace to another?

A. Export and Import
B. ALTER TABLE REBUILD INDEX
C. ALTER INDEX REBUILD
D. RENAME INDEX
E. SQL*Loader

Oracle7 Performance Tuning The tuning exam will test not only your knowledge of database and
application tuning, but also your understanding of the internal mechanisms of the Oracle database.
Chapters 5 and 6, which cover the workings of the database and instance, also cover the background
internal information you need to know. Part VIII, "Performance Tuning," is devoted entirely to tuning
topics and covers most of the pure application tuning issues that are covered in the exam. Chapter 22,
"Identifying Heavy Resource Users," provides information on tracking down database bottlenecks and
performance issues. You should also reference Chapter 25, "Integrity Management," for information on
locks and latching, both of which appear on the tuning exam.

According to Oracle's White Paper on the Certified Oracle DBA Track of the OCP program, topics
covered by this test include the following:

● Tuning Overview
● Diagnosing Problems
● Database Configuration
● Tuning Applications
● Tuning the Shared Pool
● Tuning the Buffer Cache
● Using Oracle Blocks Efficiently

● Tuning Rollback Segments
● Tuning Redo Mechanisms
● Monitoring and Detecting Lock Contention
● Tuning Sorts
● Tuning for Differing Application Requirements
● Optimizing Load

Oracle7 Backup and Recovery Workshop Finally, the DBA's nemesis: Backup and Recovery. For this
test, you will want to understand the use of rollback segments, redo logs, and the background processes
and memory areas that help support the recoverability of the Oracle database. This information can be
found in Chapters 5 and 6, but for your focus on this topic, look to Chapter 24, "Backup and Recovery,"
for coverage of Oracle backup and recovery principles and procedures. This chapter covers the different
types of backup strategies, methods for implementing strategies, as well as presenting the technical
explanation of the backup and recovery procedures.

Page 874

According to Oracle's White Paper on the Certified Oracle DBA Track of the OCP program, topics
covered by this test include the following:

● Backup and Recovery Motives
● Review of Oracle7 Architecture
● Backup Methods
● Recovery Theory
● Failure Scenarios
● Recovery Without Archiving
● Enable Archiving
● Complete Recovery with Archiving
● Minimizing Downtime
● Supporting 24-Hour Operations
● Incomplete Recovery with Archiving
● Logical Backups
● Troubleshooting
● Standby Database

The Certified Database Administrator Program

Another source of Oracle certification comes from the Certified Database Administrator (DBA) exam,
which is administered by the Chauncy group. This test differs from the OCP program in several key
areas: One, it was designed and developed by a committee of expert database administrators from the
"real world," two, it was developed in cooperation with and is an offering from the International Oracle
Users Group _ Americas, and three, it is not under the jurisdiction of the Oracle Corporation.

In practice, the difference you will find between these two programs is the subject matter and purpose of
the certifications. In the OCP program, the goal of certification is to prove that you have mastered the
content of the applicable Oracle Education courses and are prepared to implement or use the knowledge
within to solve real-world problems. The Certified DBA program, however, was developed without a
specific series of courses or topics in mind, and instead focuses on the actual day-to-day knowledge and
skills necessary for a DBA to perform his or her job well. The questions are therefore targeted at a
broader knowledge base, and the test cannot be passed with mastery of a set number of topics or
chapters from a book. The Certified DBA program is truly a certificate of real-world mastery over the
DBA job role.

Description of the Program

The following chapters are taken from the Candidate Bulletin of Information, provided by the Chauncey
group. You can order a copy of this bulletin by calling the Chauncey group at 800-258-4914, or by
visiting their Web site at www.chauncey.com.

Page 875

The Oracle7 Database Administrator (DBA) Examination measures an individual's mastery of the
knowledge, skills, and abilities necessary to perform the job of Oracle7 DBA proficiently. The Certified
Oracle7 DBA designation documents the attainment of this level of competence. It is useful to
candidates in assessing their qualifications and abilities and to employers in making hiring decisions and
evaluating the applicable technical skills of existing staff for diverse purposes.

The Oracle7 DBA Examination consists of 60 computer-delivered, multiple-choice or free-response
questions in a variety of formats. Candidates are asked to choose the best answer for each question. Each
question is scored separately and only correct responses will contribute to a candidate's final score.
Although no candidate is expected to obtain a perfect score, candidates are expected to have a high
degree of familiarity with Oracle7. Oracle7 DBA Examination candidates will be given 1 hour and 45
minutes to complete the examination and a brief biographical questionnaire. An additional 15 minutes is
allotted for a pretest tutorial and exit evaluation. The Oracle7 DBA Examination is available year-round
at participating Sylvan Prometric Centers. The fee is $195 each time you take the examination.

The Oracle7 DBA Examination offers multiple-choice questions in which a candidate selects one of
several displayed choices. It also features scenario questions in which a candidate is provided with a
variety of on-line exhibits as part of the testing process. There are also questions in which a candidate is
asked to identify incorrect information in a command or process. All the questions are designed to
measure knowledge of Oracle7, breadth of preparation, and both analytical and problem-solving skills.

The examination covers seven major content areas. The major emphasis is placed on the comprehension
and application of concepts, principles, and practices rather than on the recall of isolated facts. Some
questions, however, are based on knowledge of specific terms, tools, and techniques.

The content areas and a representative description of topics covered in each category are provided
below:

I. Oracle Architecture and Options (11_13%)

● Demonstrate an understanding of the logical and physical structures associated with an Oracle
database.

● Demonstrate an understanding of PL/SQL constructs (triggers, functions, packages, procedures)
and their processing.

● Demonstrate an understanding of distributed architecture and client server.
● Demonstrate an understanding of locking mechanisms.

II. Security (13_15%)

● n Create, alter, and drop database users.
● n Monitor and audit database access.

Page 876

● Develop and implement a strategy for managing security (roles, privileges, authentication).
● Demonstrate an understanding of the implications of distributed processing on the security

model.

III. Data Administration (11_13%)

● Manage integrity constraints.
● Implement the physical database from the logical design.
● Evaluate the implications of using stored procedures and constraints to implement business rules.

IV. Backup and Recovery (16_18%)

● Understand backup options.
● Develop backup and recovery strategies.
● Manage the implementation of backup procedures.
● Recover a database.

V. Software Maintenance and Operation (13_15%)

● Configure and manage SQL*Net.
● Install and upgrade Oracle and supporting products.

● Configure the Oracle instance using the initialization parameters.
● Distinguish among startup and shutdown options.
● Create a database.
● Demonstrate an understanding of the capabilities of underlying operating systems as they relate

to the Oracle database.

VI. Resource Management (13_15%)

● Create and manage indexes.
● Evaluate the use of clusters and hash clusters.
● Allocate and manage physical storage structures (for example, data files, redo logs, control files).
● Allocate and manage logical storage structures (for example, table spaces, schemas, extents).
● Control system resource usage by defining proper profiles.
● Perform capacity planning.

VII. Tuning and Troubleshooting (13_15%)

● Diagnose and resolve locking conflicts.
● Use data dictionary tables and views.

Page 877

● Monitor the instance.
● Collect and analyze relevant database performance information.
● Identify and implement appropriate solutions for database performance problems.
● Use vendor support services when necessary.
● Solve SQL*Net problems.

Page 878

Previous | Table of Contents |

