To access the contents, click the chapter and section titles.

Special Edition Using Oracle8

(Imprint: Que)

(Publisher: Macmillan Computer Publishing)
Author: Nathan Hughes; Willia

|SBN: 0789713454

CONTENTS
Acknowledgments
Credits

About this book

PART I - Principles of Database M anagement Systems

Chapter 1 - Databases, DBMS Principles, and the Relational Model
Chapter 2 - Logical Database Design and Normalization

Chapter 3 - Physical Database Design, Hardware, and Related |ssues
Chapter 4 - Chapter not available

PART Il - The Oracle Database Server

Chapter 5 - The Oracle Instance Architecture
Chapter 6 - The Oracle Database Architecture
Chapter 7 - Exploring the Oracle Environment

PART |1l - Oracle I nterfaces and Utilities

Chapter 8 - SOL*Plus for Administrators

Chapter 9 - Oracle Enterprise Manager

Chapter 10 - PL/SQL Fundamentals

Chapter 11 - Using Stored Subprograms and Packages
Chapter 12 - Using Supplied Oracle Database Packages
Chapter 13 - Import/Export

Chapter 14 - SOL* L oader

Chapter 15 - Designer/2000 for Administrators

PART IV - Oracleon theWeb

file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522
file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522
file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522
file:///E|/barnesandnoble.bfast.com/booklink/click@sourceid216514&ISBN0789713454_2522

Chapter 16 - Oracle Web Application Server 3.0
Chapter 17 - Web Application Server Components
Chapter 18 - Installing and Configuring the OracleWeb Application Server

PART V - Oracle Networking

Chapter 19 - Oracle Networking Fundamentals
20 Chapter - Advanced Oracle Networking

PART VI - Managing the Oracle Database

Chapter 21 - Managing Database Storage
Chapter 22 - |dentifying Heavy Resource Users
Chapter 23 - Security Management

Chapter 24 - Backup and Recovery

Chapter 25 - Integrity Management

PART VII - Parallel and Distributed Environments

Chapter 26 - Parallel Query M anagement
Chapter 27 - Parallel Server Management
Chapter 28 - Distributed Database M anagement

PART VIII - Performance Tuning

Chapter 29 - Performance Tuning Fundamentals
Chapter 30 - Application Tuning

Chapter 31 - Tuning Memory

Chapter 32 - Tuning 1/0O

APPENDIX A Oracle on UNIX

APPENDIX B Oracle on Windows NT
APPENDIX C New Features of Oracle8
APPENDIX D Oracle Certification Programs

Table of Contents | Next

Page 5
Contents

Contentsat a Glance

Introduction 1

| Principles of Database Management Systems

1 Databases, DBMS Principles, and the Relational Model 9

2 Logical Database Design and Normalization 19

3 Physical Database Design, Hardware, and Related |ssues 29
4 The Oracle Solution 43

[I The Oracle Database Server

5 The Oracle Instance Architecture 53
6 The Oracle Database Architecture 73
7 Exploring the Oracle Environment 93

[l Oracle Interfaces and Utilities

8 SQL*Plus for Administrators 119

9 Oracle Enterprise Manager 147

10 PL/SQL Fundamentals 173

11 Using Stored Subprograms and Packages 239
12 Using Supplied Oracle Database Packages 271
13 Import/Exportv 305

14 SQL* L oader 329

15 Designer/2000 for Administrators 351

IV Oracle on the Web

16 Oracle Web Application Server 3.0 393
17 Web Application Server Components 401
18 Installing and Configuring the Oracle Web Application Server 423

V Oracle Networking

19 Oracle Networking Fundamentals 445
20 Advanced Oracle Networking 467

Page 6

VI Managing the Oracle Database

21 Managing Database Storage 487

22 ldentifying Heavy Resource Users 531
23 Security Management 567

24 Backup and Recovery 585

25 Integrity Management 621

VIl Paralel and Distributed Environments

26 Paralel Query Management 649
27 Pardlel Server Management 661
28 Distributed Database Management 703

V111 Performance Tuning

29 Performance Tuning Fundamentals 727
30 Application Tuning 749

31 Tuning Memory 773

32 Tuning 1/0 795

Appendixes

A Oracleon UNIX 815

B Oracle on Windows NT 829

C New Features of Oracle8 847

D Oracle Certification Programs 863

Index 879
Page 7
Table of Contents
I ntroduction
Who Should Use This Book? 2
What'sin This Book 2
| Principles of Database M anagement Systems
1 Databases, DBM S Principles, and the Relational Model 9
Understanding Databases 10
Understandinga DBMS 11
Securing Data 11
Maintaining and Enforcing Integrity 12
Understanding Transactions 12
Communicating with the Database 13

Understanding an RDBMS 13

Using the Relational Model 14
Using Codd's Twelve Rules 16

2 L ogical Database Design and Normalization 19

Entity-Relationship Modeling 20
Mapping ERDsto the Relational Model 23
Understanding Normalization 23

Using a Normalization Example 24
Continuing the Normal Form 27

3 Physical Database Design, Hardwar e, and Related | ssues 29
Understanding Application Types 30
Using Quantitative Estimates 31

Transaction Analysis 31
Sizing Analysis 32

Denormalizing 32

Understanding the Storage Hierarchy and RAID 34

Understanding RAID 35

Understanding Bottlenecksin aDBM S 36

Making Y our Platform Selection 37

Operating System Integration and General Memory/CPU Recommendations 38

Physical Design Principles and General Hardware Layout Recommendations 39
4 The Oracle Solution 43

Reviewing Oracle History 44

OraclelsaDBMS 44

|s Oraclean RDBM S? 45

Revisiting the Physical Layout 46

Sizing for Oracle 48
Oracle's Future 48
Il The Oracle Database Server
5 The Oracle Instance Ar chitecture 53
Introduction 54
Defining the Instance 54
Creating the Instance 55
Understanding the Oracle Instance 55

The System Global Area (SGA) 57
The Oracle Background Processes 60

Understanding the Anatomy of a Transaction 66
Monitoring the Instance 67

Using the Trace Files 67 Tracking Through the Operating System 67

Page 8

Using the v$ Tables to Monitor Instance Structures 638
6 The Oracle Database Architecture 73
Defining the Database 74
The SYS and SYSTEM Schemas 74

Understanding the Components of the Database 75

System Database Objects 75
User Database Objects 84

Understanding Database Segments 85

Tables 85

Indexes 86

Rollback Segments 87
Table Clusters 88

Hash Clusters 88
Using the Oracle Data Dictionary 89

Internal RDBMS (X$) Tables 89
Data Dictionary Tables 90

Dynamic Performance (V$) Views 90
Data Dictionary Views 90

Other Database Objects 90

Views 90

Sequences 91

Triggers 91

Synonyms 91

Database Links 92

Packages, Procedures and Functions 92

7 Exploring the Oracle Environment 93
Creating the Oracle Environment 94
Designing an Optimal Flexible Architecture 94

Creating Top-Level Directories 94
Using Application Directories 95
Managing Database Files 96
Naming Conventions 98

Putting It All Together 99

Configuring the Oracle Environment 101

Understanding the Oracle Software Environment 101

ORACLE_HOME Sweet Home 102
The ORACLE_HOME Directories 104
Other Important Configuration Files 105

Creating Your First Database 106

Creating the Initialization Parameter File 106
Creating the Instance 106

Creating the Database 108

Running Post-Database Creation Procedures 109
Creating the Supporting Database Objects 110
Securing the Default Accounts 111

Updating the System Configuration Files 111

Exploring the Oracle Database 111
Looking at the Database 112
L ooking at the Database Segments 114
Looking at Miscellaneous Database Objects 114

Exploring an Unfamiliar Environment 115

Exploring the UNIX Environment 115
Exploring the Windows NT Environment 116

[11 Oracle Interfacesand Utilities
8 SQL*Plusfor Administrators 119
Administering SQL*Plus 120

Using SQL*Plus Environment Variables 120
Invoking/Accessing SQL* Plus 122

Editing SQL Commands 122

Entering and Editing SQL* Plus Commands 124

Using Y our Operating System Editor in SQL*Plus 125
Running SQL* Plus/SQL Commands 126

Page 9

Using the SQL*Plus COPY Command 130

Using SQL to Create SQL 132

Restricting a User's Privilegesin SQL* Plus 135
Disabling a SQL Command 136
Reenabling a SQL Command 137
Disabling SET ROLE 139
Disabling Roles 139

Tracing SQL Statements 139

Understanding the Execution Plan 142
Using the AUTOTRACE Feature 143

9 Oracle Enterprise Manager 147
Understanding the Enterprise Manager Architecture 148
Getting Started 150
Using the Console Functions 152

Understanding the Integrated Console Functions 153
Surfing Databases with Navigator 154

Visualizing the Database World with Map 155
Automating Administration Tasks with Job 155
Responding to Change with Event Management 157

Using the Database Administration Tools 159

Managing Instances 160
Managing Schemas 161
Managing Security 163
Managing Storage 163
Executing SQL 165

Managing Recoverability 165
Managing Data 165
Managing Software 166

Using the Performance Pack 166

Monitoring and Tracking Performance 166
Tracing Database Activity 167

Managing Tablespaces 168

Monitoring Sessions 169

Using Oracle Expert 170

Using the Enterprise Vaue-Added Products 172
10 PL/SQL Fundamentals 173

Understanding PL/SQL 174
Understanding the PL/SQL Engine 175

Fitting into the Client/Server Environment 175
Fitting into the Client Environment 178
Server-Side Versus Client-Side Development 178

Adding PL/SQL to Your Toolbox 179

Energize Y our SQL Scripts 180

Simplifying Database Administration 180
Getting Better Information With Less Hassle 180
Designing Better Database Applications 181

Getting Started with PL/SQL 181

Understanding the Schema of Things 182
Y our Basic PL/SQL Development Environment 183
Accessing the Data Dictionary 184

Language Tutorial 185

Coding Conventions 185
Specia Characters 186
PL/SQL's Block Structure 187
Declaring Variables 200

Assignment 214
Looping 214
Using Cursors 217
Handling Exceptions 224
Using Subprograms 230
11 Using Stored Subprograms and Packages 239
Defining Stored Subprograms and Packages 240
Page 10
Building and Using Stored Programs 240

Calling Stored Programs from SQL 244
Calling Stored Programs from PL/SQL 247

Debugging with Show Errors 248
Checking the State of a Stored Program or Package 255
Building and Using Packages 256

Using Package Parts 257

Comparing Public and Private Declarations 260
Knowing when To Use Packages 261
Referencing Package Elements 262

Creating a Real-World Example 263

Designing the Package Header 263
Designing the Package Body 266
Designing the Procedures 269
Wrapping Up the Package 269

12 Using Supplied Oracle Database Packages 271
About the Supplied Oracle Database Packages 272

Interaction Within the Server 272
Interaction Beyond the Server 272

Getting More Information from Y our Server 272
Describing Supplied Packages 272
Getting Started with the Oracle-Supplied Packages 274

L ocating the DBM S Packages 275
Making Sure the Packages Are Installed Correctly 276

Hands-On with the Oracle-Supplied Packages 277

Monitoring Programs with DBMS_APPLICATION_INFO 277
Recompiling Packages with DBMS _DDL 279

Formatting Output with DBMS OUTPUT 282

Sharing Datawith DBMS_PIPE 284

Altering the Session with DBMS_SESSION 287

Managing the Shared Pool with DBMS SHARED_ POOL 289
Obtaining Segment Space Information with DBMS_SPACE 290
Enabling Dynamic SQL with DBMS_SQL 293

Running a Trace with DBMS_SY STEM 297

Using Miscellaneous Utilitiesin DBMS _UTILITY 299

13 Import/Export 305
Understanding the Purpose and Capabilities of Import/Export 306
Understanding Behavior 307
Controlling and Configuring Import and Export 309
Taking Walkthroughs of Import and Export Sessions 319

| dentifying Behavior When a Table Exists 319

Reorganizing a Fragmented Tablespace 320

Moving Database Objects from One Schemato Another 323
Multiple Objects and Multiple Object Types 324

| dentifying Behavior When Tablespaces Don't Match 325
Moving Database Objects from One Tablespace to Another 325

Using the SHOW and INDEXFILE Options 326

14 SQL*L oader 329
Running SQL* Loader 330
Components of SQL*Loader 331

The Control File 331
SQL*Loader Input Data 332
SQL*Loader Outputs 332
Control File Syntax 333

Page 11
Looking at SQL* L oader Examples 334

Example 1—L oading Fixed-Length Data 337
Example 2—L oading Variable-Length Data 339
Example 3—L oading with Embedded Data 341
Example 4—L oading with Conditional Checking 342
Example 5—L oading into a Table Partition 345

Conventional and Direct Path Loading 347

Using Conventional Path Load 348
Using Direct Path Load 349
Using SQL*Loader Performance Tips 350

15 Designer/2000 for Administrators 351
Designer/2000—Oracle's Popular CASE Solution 352

Systems Development Life Cycle (SDLC) 352
Upper CASE Versus Lower CASE 353

Designer/2000 Overview 353

Designer/2000 Components 354

Understanding the Repository 355

Using the Diagrammers 356

Diagramming Techniques Used by Designer/2000 357
Generators 359

Module Regeneration Strategy 362
Oracle CASE Exchange 362
Waterfall-Oriented Methodology Using Designer/2000 363

Designer/2000 Administration 365

Understanding the Repository 365

Repository Sizing 366

Protecting the Designer/2000 Repository 366

Sharing and Transferring Objects 367

Referential Integrity Using the Repository 368

Version and Change Control 369

Migrating Applications 370

Moving Primary Access Controlled (PAC) Elements 371
Placing Designer/2000 Diagrams in Documents 372
Reverse-Engineering Using Designer/2000 373

Data Administration Configuration Using Designer/2000 374

Enhancing the Performance of Designer/2000 377

Optimizing the Client Machine 377
Optimizing the Network 378
Optimizing Designer/2000 378
Optimizing the Database Server 378

Application Programming Interface 379

Using the API 379
API Views and Packages 380
API Limitations 381

Troubleshooting Designer/2000 381

Checking Common Errors 381

Using Diagnostics and Tracing 382

Tipsto Efficiently Generate Devel oper/2000 Applications from
Designer/2000 384

Designer/2000 R 2.0 Features 387

Designer/2000 and Oracle8 388

IV Oracleon theWeb

16 Oracle Web Application Server 3.0 393
Introducing the Oracle Web Application Server 394
Understanding the Network Computing Architecture (NCA) 394
Understanding the Oracle Web Application Server 395

The Web Listener 397
The Web Request Broker 397
Cartridges 397

Providing Basic Services with the Oracle Web Application Server 398
Page 12

Transaction Services 399
Inter-Cartridge Exchange Services 399
Persistent Storage Services 399
Authentication Services 399

17 Web Application Server Components 401
Examining the Web Listener 402

Getting Into More Details 402

Understanding Web Listener's Architecture 403
Memory Mapping of Files 403

Directory Mapping 403

Resolving the Domain Name 403

Web Listener Configuration Parameters 404

Examining the Web Request Broker 404

WRB Messaging 405

Third-Party Implementations 405

The WRB Dispatcher 406

IPC Support 407

The WRB Execution Engine (WRBX) 407
WRB Application Program Interface 407

Examining the Web Application Server SDK 408

The WRB Logger API 408
Understanding Cartridges and ICX 410
Using the PL/SQL Agent 421

18 Installing and Configuring the Oracle Web Application
Server 423

Installing Oracle Web Application Server for Sun Solaris 424
Hardware and Software Requirements 424
Understanding Web Application Server's Latest Installation Features 425
Relinking Y our Executables After Installation 425
| dentifying Product Dependencies 426
Implementing Pre-Installation Tasks 426
Setting Preliminary Environment Variables 427
Setting Permission Codes for Creating Files 428
Updating Y our Environment from a Startup File 428
Designing the Directory Structure 428
Installation Notes on the Web Agent 429
Inside the OWA.CFG File 431
Using the Web Administrative Server 432
Installing the Oracle Web Application Server Option 432
Configuring Web Server 433

Installing the Web Application Server Developer's Toolkit 434

Improving Performance for Multiple Web Agent Installations 435

Using the Oracle Web Application Server Administration Utility 436

Setting Up a New Web Agent Service 436

Defining Configuration Parameters for the Web Listener 438

Troubleshooting 439

Other Helpful Notes on Installation 440

Attempting to Install Oracle Web Application Server on Windows NT 441
V Oracle Networking
19 Oracle Networ king Fundamentals 445

Understanding Oracle Networking Product Features 446

Understanding the Administration and Management Components 447

Page 13

Network Naming Conventions 447
Understanding the Optional Security Extensions 448

SQL*Net and Net8 Architectures 448
Networking Protocol Stacks 449

Oracle Protocol Adapters 450
Transparent Network Substrate TNS) 450

Using the Open Systems Interconnection Reference Model 451

The Foundation 451

The Interface 452

The Protocol Stack 453

The TCP/IP Protocol Stack 453

Understanding SQL* Net Operations 456
Installing and Configuring SQL* Net 456

Planning the Network Design 456

Overview of Configuration Files 457

Preparing to Install SQL*Net 458

Installing 16-Bit SQL*Net (Non-OCSM)460

Installing 32-Bit SQL*Net 461

Using The Oracle Client Software Manager (OCSM) Component 463
Installing SQL* Net Using the Oracle Client Software Manager 464

20 Advanced Oracle Networking 467
Understanding Enterprise Networking 468
Configuring SQL*Net and Net8 468

Using the Oracle Tools to Configure Oracle Networking 469
Exploring the New Net8 Parameters 470

Administering the Oracle Listener 471

Troubleshooting the Client Configuration 472
Troubleshooting the Server 474

Understanding the Oracle Names Server 475

Names Server Configuration 475
Configuring Clients to Use the Names Server 476
Configuring the Names Server for Dynamic Discovery 477

Using the Advanced Networking Option 477
Enabling Data Encryption and Checksums 478
Understanding the Multi-Threaded Server 479

Multi-Threaded Server Architecture 480
Configuring the Multi-Threaded Server 480
Administering the Multi-Threaded Server 482

Using the Oracle Connection Manager 483

Configuring Connection Multiplexing 483
Configuring Multiple Protocol Support 484

VI Managing the Oracle Database
21 Managing Database Storage 487
Administering Database Objects 488
Managing Oracle Blocks 488
Understanding PCTFREE and PCTUSED 488
Managing Table Storage 489

Managing Indexes 491

Monitoring Temporary Tablespaces and Segments 492

Understanding Database Fragmentation 492
Understanding Fragmented Tabl espaces 492
Dealing with Fragmented Tablespaces 495

Understanding Object Fragmentation 496

Page 14

Managing Rollback Segments 499

Understanding Rollback Segment Operation 500

Sizing Rollback Segments 501
Avoiding Rollback Segment Contention 503
Using the OPTIMAL Parameter 504

Performing Load Tests to Obtain Rollback Estimates 505

|dentifying Storage Problems 506

Exploring Tablespaces 508

Checking on Tables 511

Optimizing Cluster Storage 512

Checking Indexes 513

Watching the Growth of Rollback Segments 513

Managing Temporary Tablespace 514
Administering a Growing Database 514
Monitoring Database Storage 515
Correcting Excessive Table Growth 518
Consolidating Clusters 518

Consolidating Indexes 519
Managing Tablespace Growth 519

Understanding Space Manager521
Knowing the Features of Space Manager 521
Using the Output of Space Manager 522
Configuring and Using Space Manager 525
22 | dentifying Heavy Resour ce Users 531
Resources That Make the Difference 532

Resource: CPU 533

Taking a CPU Overview 533
Finding Heavy CPU Users 536

Resource: File 1/O (Disk Access) 549

Taking an 1/0 Overview 550
Finding Heavy I/0 Users 555

Resource: Memory 557

Process Memory Breakup 559
Taking a Memory Overview 560

Finding Heavy Memory Users 562
23 Security M anagement 567
User Authentication 568

Database Authentication 568
External Authentication 570
Enterprise Authentication 571

Database Privilege Management 572

Understanding Security Roles 578
Understanding Administration 578

Monitoring Database Assets 579
Auditing Logins 579
Auditing Database Actions 580

Auditing DML on Database Objects 581
Administering Auditing 581

Protecting Data I ntegrity 582
Hardware Security 582
Recovering Lost Data 583

Operating System Backup 583
Logical Backup 584

24 Backup and Recovery 585
Backup Strategy 586
Understanding Physical and Logical Data Loss 587
Using Logical Backups 590

Full Logical Backups 593
Logical Backups of Specific User Schemas 594

Logical Backups of Specific Tables 594
Using Cold Physical Backups 595

Command-Line Driven Cold Physical Backups 595
Desktop-Driven Cold Backups 598

Using Hot Physical Backups 600

Understanding the Reasoning 600
Command-Line _Driven Hot Physical Backups 601
Desktop-Driven Hot Physical Backups 603
Restoring from Logical Backups 604
Page 15

Fully Restoring from a Logical Backup 607
Partial Restores with Logical Backups 608

Using Physical Recovery 609

Physically Re-creating a Database 609
Complete Recovery 611
Incomplete Recovery 614
Testing Strategies 618
25 Integrity Management 621
Introduction 622

| mplementing L ocks 622

Need for Locking 622
L ocking Concepts 623

Analyzing v$lock 627

Case 1. A Table Locked Exclusively 628
Case 2: Session Updating a Row of an Exclusively Locked Table 629

Case 3: A Session Trying to Update an Updated Row by Another Session
630

Monitoring Locks on the System 631
Avoiding Locks: Possible Solutions 635
Implementing L ocks with Latches 638

Functioning of Latches 638

Analyzing Views Related to Latches 639
Checking for Latch Contention 640
Tuning Some Important L atches 642

VIl Parallel and Distributed Environments
26 Parallel Query Management 649
I ntroduction 650

Parallel Load 650
Parallel Recovery 651
Parallel Propagation (Replication) 651
Parallel SQL Execution 651
SQL Operations That Can Be Parallelized 653
Understanding the Degree of Parallelism 654

Determining the Degree of Parallelism 654
When Enough Query Slaves Are Not Available 656

Understanding the Query Server Processes 656
Analyzing Objects to Update Statistics 656
Understanding the 9,3,1 Algorithm 657
Understanding Parallel DML 657

Parallel Execution in OPS Environment 658

Tuning Parallel Query 659
27 Parallel Server Management 661
Understanding the Benefits of Parallel Server 662
Using Single Instance Versus Parallel Server Databases 663

Using Vendor Interfaces 664

Using the Parallel Cache Management Lock Process 664
Using Parallel Cache Management Lock Parameters 667
Parallel Server Initialization Parameters 675

Rollback Segment Considerations for Parallel Server 678
Redo Logs and Parallel Server Instances 679

Using Freelist Groups to Avoid Contention 680

Determining when Parallel Server Can Solve a Business Need 683
Designing a Parallel Database for Failover 684
Page 16
Designing a Parallel Database for Scalability 686
Application and Functional Partitioning 687
Department/Line of Business Partitioning 689
Physical Table Partitioning 690
Transaction Partitioning 691
Indexes and Scalability Considerations 691
Sequence Generators and Multiple Instances 692
Specia Considerations for Parallel Server Creation 693
Monitoring and Tuning Parallel Server 695
Monitoring VSLOCK_ACTIVITY 696
Monitoring V$BH 698
Monitoring VSCACHE and V$PING 699
Tuning Strategy for Parallel Server 700

28 Distributed Database M anagement 703

Understanding Distributed Databases 704

Describing Each Type of Database 704

Naming Databases 705

Achieving Transparency 705

Using Oracle Security Server and Global Users 706
SQL*Net 707

Using a Distributed Database 707

Setting Up a Distributed System 708
|dentifying Potential Problems with a Distributed System 712
Tuning a Distributed System 712

Using Distributed Transactions 713

Understanding Two-Phased Commit 713
Dealing with In-Doubt Transactions 714

Understanding Read-Only Snapshots 717
Setting Up a Snapshot 717
Using Snapshot Refresh Groups 719
| dentifying Potential Problems with a Snapshot 719
Understanding Limitations of Snapshots 722

Tuning Snapshots 723
Using Initialization Parameters for Snapshots 724

VII1 Performance Tuning

29 Performance Tuning Fundamentals 727
Revisiting Physical Design 728
Understanding Why Y ou Tune 729
Knowing the Tuning Principles 730

Tuning Principle 1 730
Tuning Principle 2 731

Tuning Principle 3 732
Tuning Principle 4 732
Tuning Principle 5 733

Tuning Goals 734

Using the Return on Investment Strategy 735

Page 17

Step 1: Do aProper Logical Design 735

Step 2: Do a Proper Physical Design 735

Step 3: Redesign If Necessary 736

Step 4: Write Efficient Application Code 736
Step 5: Rewrite Code If Necessary 736

Step 6: Tune Database Memory Structures 736
Step 7: Tune OS Memory Structures If Necessary 736
Step 8: Tune Database I/0 737

Step 9: Tune OS 1/O If Necessary 737

Step 10: Tune the Network If Necessary 737
Step 11: Tune the Client(s) If Necessary 738

Step 12: If All Else Fails, Consider More Exotic Solutions 738

Revisiting Application Types 741

OLTP Issues 741
DSS |ssues 742
Other Considerations for both OLTP and DSS 743

Understanding Benchmarks 743

Using Oracle Diagnostic Tools 745

Using SQL_TRACE and TKPROF 745

Using EXPLAIN PLAN 745

Using the V$ Dynamic Performance Views 745

Using the Server Manager Monitor 746

Using the Performance Pack of Enterprise Manager 746
Using utlbstat/utlestat and report.txt 746

Using Third-Party Products 747

30 Application Tuning 749

Motivation 750
Understanding the Optimizer 751

Ranking Access Paths 752
Analyzing Queriesto Improve Efficiency 754
Specifying Optimizer Mode 755
Understanding Optimization Terms 758

SQL Trace and tkprof 759

Understanding EXPLAIN PLAN 762

|dentifying Typical Problems 764

The Proper Use of Indexes 764
Dealing with Typical Problemsin Application Tuning 766

Rewriting Queries 768

Using Set Operators 769
Using Boolean Conversions 769

Introducing New Index Features for Oracle8 770

Using Index Partitioning 770

Using Equi-Partitioned, Local Indexes 770
Using a Partition-Aware Optimizer 771
Using Index-Only Tables 771

Using Reverse Key Indexes 771

31 Tuning Memory 773
Introduction 774
UTLBSTAT/UTLESTAT 774

Interpreting Results 775
Reviewing the Report File 776

Tuning the Shared Pool 776

Guidelines for Improving the Performance of the Library Cache 778
MultiThreaded Server Issues 781

Tuning the Database Buffer Cache 782
Tuning Sorts 786

What Triggers Sorts? 787
Parameters for Sorts 788
Other Fine-Tuning Parameters for Sorts 790

Tuning the MultiThreaded Server (MTS) 791

Tuning Locks 792

Operating System Integration Revisited 793
32 Tuning 1/0 795

Tuning Tablespaces and Datafiles 796

Partitioning Tablespaces 797
Clustering 798
Monitoring 801

Tuning Blocks and Extents 802
Using Preallocation 802
Using Oracle Striping 803
Avoiding Fragmentation 804
Tuning Rollback Segments 807
Tuning Redo Logs 808

Oracle8 New 1/0O Features 810

Partition-Extended Table Names 810
Direct Load Inserts 811

Page 18
Appendixes
A Oracleon UNIX 815
Solaris 816
A UNIX Primer for Oracle DBAs 816

Shells and Process Limits 816

Soft and Hard Links 817

Named Pipes and Compression 817
Temporary Directories 818

The SA and DBA Configuration on UNIX 818

Setting Up the dba Group and OPS$ Logins 819
Using the oratab File and dbstart/dbshut Scripts 819
Using the oraenv Scripts and Global Logins 820

Configuring Shared Memory and Semaphores 821

Understanding the OFA 822

Comparing Raw Disk and UFS 824

Using Additional UNIX Performance Tuning Tips 825
B Oracle on Windows NT 829

Why Choose Oracle on Windows NT? 830

Windows NT File Systems 831

FAT Features 831
NTFS Features 832

Understanding Windows NT Administration 833

Associated Windows NT Tools 833
Windows NT Services and Oracle Instances 835

Installing Oracle Server on the Windows NT Server 837

Before Installing 837
Installation Instructions 837
Before Upgrading 838
Upgrade Instructions 838

Creating an Instance on Windows NT 839

Creating INITsid.ora839
Creating a Service 839

Tuning and Optimizing Oracle on Windows NT 841

Adjusting Windows NT Configurations 841
Storing Oracle Configurations 842

Learning from Oracle Windows NT 842

Knowing the Limitations 842

Installing Enterprise Manager 843

Accessing Large File Sizeson Windows NT 843
Exporting Directly to Tape on Windows NT 843
Trying Automation on Windows NT 843

The UTL_FILE Package 84

Supporting Oracle8 on Windows NT 845
C New Features of Oracle8 847
Changing from Oracle7 to Oracle8 848

Enhanced Database Datatypes 848

New Database Datatypes 849

Enhanced ROWID Format 850
Heterogeneous Services 850

Internal Changes to the Database Engine 850

Supporting Large Databases 851

Partitioned Tables and Indexes 851

Direct Load Insert and NOLOGGING 852
Enhanced Parallel Processing Support 853
Index Fast Full Scan 853

Supporting Object-Relational Features 853

Abstract Datatypes 854
Variable Arrays 855
Nested Tables 855
Object Views 856

Administering Oracle8 857
Enhancements to Password Administration 857
Page 19
Backup and Recovery Optimizations 857
shutdown transactional 858
Disconnect Session Post Transactional 858
Minimizing Database Fragmentation 858
New Replication Options 858
Developing Applications 858
External Procedures 858
Index-Only Tables 859
Reverse Key Indexes 859
Instead Of Triggers 860
Data Integrity Management 860
D Oracle Certification Programs 863
Benefiting from Technical Certification 864
The Oracle Certified Professional Program 864

Becoming an Oracle Certified Database Administrator 865

Describing the Program 865
Preparing for the Tests 866

The Certified Database Administrator Program 874
Description of the Program 874
Index 879

Page 20

Table of Contents | Next

Previous | Table of Contents | Next

Page 1
About this Book

Using
Special Edition
Using

a0

Page 2

Page 3

Using
Special Edition
Using

Oracles ™

William G. Page, Jr., and

aue’

Page 4

Special Edition Using Oracle8 ™

Copyright© 1998 by Que® Corporation.

All rights reserved. Printed in the United States of America. No part of this book may be used or reproduced in
any form or by any means, or stored in a database or retrieval system, without prior written permission of the
publisher except in the case of brief quotations embodied in critical articles and reviews. Making copies of any
part of this book for any purpose other than your own personal useis aviolation of United States copyright laws.
For information, address Que Corporation, 201 W. 103rd Street, Indianapolis, IN, 46290. Y ou may reach Que's
direct salesline by calling 1-800-428-5331 or by faxing 1-800-882-8583.

javascript:displayWindow('images/ch00fg01.jpg',124,32)
javascript:displayWindow('images/ch00fg01.jpg',124,32)

Library of Congress Catalog No.: 97-80936
ISBN: 0-7897-1345-4

Thisbook is sold asis, without warranty of any kind, either express or implied, respecting the contents of this
book, including but not limited to implied warranties for the book's quality, performance, merchantability, or
fitness for any particular purpose. Neither Que Corporation nor its dealers or distributors shall be liable to the
purchaser or any other person or entity with respect to any liability, loss, or damage caused or alleged to have
been caused directly or indirectly by this book.

009998654321

Interpretation of the printing code: the rightmost double-digit number is the year of the book's printing; the
rightmost single-digit number, the number of the book's printing. For example, a printing code of 98-1 shows that
the first printing of the book occurred in 1998.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately
capitalized. Que cannot attest to the accuracy of thisinformation. Use of aterm in this book should not be
regarded as affecting the validity of any trademark or service mark.

Screen reproductions in this book were created using Collage Plus from Inner Media, Inc., Hollis, NH.

Page 21

Credits

Publisher
Joseph B. Wikert

Executive Editor
Bryan Gambrel

Managing Editor
Patrick Kanouse

Acquisitions Editor
Tracy Dunkelberger

Development Editor
Nancy Warner

Technical Editor
Sakhr Y ouness

Project Editor

Rebecca M. Mounts

Copy Editors
Nancy Albright
Michael Brumitt
Patricia Kinyon
Sean Medlock

Team Coordinator
Michelle Newcomb

Cover Designer
Dan Armstrong

Book Designer
Ruth Harvey

Production Team
Carol Bowers
Mona Brown
Ayanna Lacey
Gene Redding

Indexers
Erika Millen
Christine Nelsen

Composed in Century Old Style and I TC Franklin Gothic by Que Corporation.

Page 27

Acknowledgments

Thanks to the various people at Mitretek who supported me in this effort, and, of course, special thanks to my
piglets.

—William G. Page, Jr.

| give no small amount of credit for my current success and happiness to three very special and important people
| met while working for the University of Michigan: Russell Hughes, Richard Roehl, and William Romej. | count
them among my closest and most respected friends, and would not be where | am today without their support and
advice over the years. I'd like to thank the folks at Oracle Education for their fine classes and materials, as well

as the professionals at Oracle Corp., who have put up with my badgering, pestering, and even complaining. I'd
aso like to acknowledge the expertise of the folks on oracle-1 and comp.databases.oracle.* , who have provided
me much valuable knowledge and even afew laughs. And finally, thanks to the wonderful folks at Que, and
especially Tracy Dunkelberger, for their understanding and patience with this first-time author. It's been a great

trip.
—Nathan Hughes

Page 28

Page 22

In memory of Y. W. G. Fong.
—William G. Page, Jr.

This book is dedicated to the amazing women who have made such a lasting impact on my life. To my beautiful wife Janet, who
fillsal my days with joy and makes my life complete. To my Mom, who showed me the way but made me make the choices—and
welcomed me with open arms even when | strayed. And to my Grandma, who taught me (through example!) that since life is what
you make of it, you might as well make it something good.

—Nathan Hughes

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 7
PART |

Principles of Database Management Systems

1. Database, DBMS Principles, and the Relational Model

2. Logica Database Design and Normalization

3. Physical Database Design, Hardware, and Related | ssues
4. The Oracle Solution

Page 8
Page 9
CHAPTER 1

Databases, DBMS Principles, and the Relational Model

In this chapter

« Understanding Databases 10
« UnderstandingaDBMS 11
« Understanding an RDBMS 13

Page 10
Understanding Databases

Over the years, there have been many definitions of database. For our purposes, a databaseis an
organized collection of data serving a central purpose. It is organized in the sense that it contains data
that is stored, formatted, accessed, and represented in a consistent manner. It serves a central purposein
that it does not contain extraneous or superfluous data. A phone book is a good example of a database. It
contains relevant data (that is, names) that allow access to phone numbers. It does not contain irrelevant
data, such asthe color of a person's phone. It stores only what is relevant to its purpose. Most often, a
database's purpose is business, but it may store scientific, military, or other data not normally thought of
as business data. Hence, there are business databases, scientific databases, military databases, and the list

goes on and on. In addition, data can not only be categorized asto its business, but also its format.
Modern databases contain many types of data other than text and numeric. For example, it is now
commonplace to find databases storing pictures, graphs, audio, video, or compound documents, which
include two or more of these types.

When discussing databases, and database design in particular, it is commonplace to refer to the central
purpose a database serves as its business, regardless of its more specific field, such as aerospace,
biomedical, or whatever. Furthermore, in real life adatabase is often found to be very, very specific to
its business.

In earlier days, programmers who wrote code to serve Automatic Data Processing (ADP) requirements
found they frequently needed to store data from run to run. This became known as the need for persistent
storage; that is, the need for datato persist, or be saved, from one run of a program to the next. This
fundamental need began the evolution of databases as we know them. A secondary need, smple data
storage, also helped give rise to databases. Online archiving and historical data are a couple of specific
examples. Although files, directories, and file systems could provide most general data storage needs,
including indexing variations, databases could do what file systems did and more.

Modern databases typically serve some processing storage need for departments or smaller
organizational units of their parent organization or enterprise. Hence, we use the terms enterprise-wide
database, referring to the scope of the whole organization's business; the department-wide database,
referring to the level of a department; and the workgroup database, usually referring to some
programming or business unit within a department. Most often, databases are found at the department-
wide and workgroup levels.

Occasionally one finds databases that serve enterprise-wide needs, such as payroll and personnel
databases, but these are far outnumbered by their smaller brethren. In fact, when several departmental
databases are brought together, or integrated, into one large database, thisis the essence of building a
data warehouse (DW). The smaller databases, which act as the data sources for the larger database, are
known as operational databases. However, thisis nothing new. An operational database isjust one that
produces data, which we have known for years as a production database. Only in the context of building
aDW do you find production databases also referred to as operational databases, or sometimes
operational data stores. With the advent of Internet technology, databases and data warehouses now
frequently serve as back ends for Web browser front ends.

Page 11

When workgroup databases are integrated to serve alarger, departmental need, the result istypically
referred to as adata mart (DM). A DM is nothing more than a departmental-scale DW. Asyou can
Imagine, just as with the term database, the term data warehouse has yielded a multitude of definitions.
However, when you're integrating several smaller databases into one larger database serving a broader
organizational need, the resulting database can generally be considered a DW if it stores data

historically, provides decision support, offers summarized data, serves data read-only, and acts
essentially asadatasink for al the relevant production databases that feed it.

Otherwise, if adatabase ssimply grows large because it is a historical database that's been storing data for
along period of time (such as a census database) or because of the type of data it must store (such asan
image database) or because of the frequency with which it must store data (such as a satellite telemetry
database), it is often referred to as avery large database (VLDB).

What qualifies as a VLDB has changed over time, as is to be expected with disk storage becoming
denser and cheaper, the advent of small multiprocessing machines, the development of RAID
technologies, and database software growing, or scaling, to handle these larger databases. Currently, a
genera guidelineisthat any database of 100GB or larger can be considered a VLDB. Aslittle asafew
years ago, 10GB was considered the breakpoint.

Understanding a DBMS

A Database Management System (DBMYS) is the software that manages a database. It acts as a repository
for all the data and is responsible for its storage, security, integrity, concurrency, recovery, and access.
The DBMS has a data dictionary, sometimes referred to as the system catal og, which stores data about
everything it holds, such as names, structures, locations, and types. This datais also referred to as
metadata, meaning data about data. The lifespan of a piece of data, from its creation to its deletion, is
recorded in the data dictionary, asis all logical and physical information about that piece of data. A
Database Administrator (DBA) should become intimate with the data dictionary of the DBMS, which
serves him or her over the life of the database.

Securing Data

Security is always a concern in a production database, and often in a development or test database too. It
Is usually not a question of whether or not to have any security, but rather how much to have. A DBMS
typically offers severa layers of security, in addition to the operating system (OS) and network security
facilities. Most often, a DBM S holds user accounts with passwords requiring the user to login, or be
authenticated, in order to access the database.

DBMSs also offer other mechanisms, such as groups, roles, privileges, and profiles, which all offer a
further refinement of security. These security levels not only provide for enforcement, but also for the
establishment of business security policies. For example, only an authenticated user who belongs to an
aviation group may access the aviation data. Or, only an authenticated user who has the role of operator
may back up the database.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 12
Maintaining and Enforcing Integrity

The integrity of datarefersto its consistency and correctness. For data to be consistent, it must be
modeled and implemented the same way in all of its occurrences. For data to be correct, it must be right,
accurate, and meaningful.

Oneway aDBMS maintains integrity is by locking a dataitem in the process of being changed. A
database usually locks at the database page level or at the row level. Incidentally, locking also permits
concurrency, which we'll cover next.

Another way a DBMS enforces integrity isto replicate a change to a piece of dataif it is stored in more
than one place. The last way a DBMS enforces integrity is by keeping an eye on the data values being
entered or changed so that they fall within required specifications (for example, a range check).

If proper modeling and implementation practices are followed, to be discussed later in Chapter 2,
"Logical Database Design and Normalization," the DBM S helps to automatically enforce this integrity
when put in place, for example, through atrigger or constraint. Without integrity, datais worthless. With
integrity, datais information. Integrity not only enhances data, but also gives dataits value,

A DBMS must manage concurrency when it offers multiuser access. That is, when more than one person
at atime must access the same database, specifically the same pieces of data, the DBMS must ensure
that this concurrent access is somehow possible. Concurrent can be defined as simultaneous, in the
looser sense that two or more users access the same data in the same time period.

The methods behind how a DBMS does this are not too complex, but the actual programming behind it
Is. Essentially, when two or more people want to ssmply look at the same data, without changing it, all is
well. But when at |east one person wants to change the data and others want to look at it or change it too,
the DBM S must store multiple copies and resolve all of the changed copies back into one correct piece
of data when everyoneis done.

We mentioned one aspect of concurrency management already: locking. Generally speaking, the finer-
grained (smaller) the lock, the better the concurrency (that is, more users have simultaneous access
without having to wait). Rows are typically smaller than the smallest database page or block. Hence,
row-level locks serve short, random data transactions better, and block-level locks may serve long,
sequential data transactions better.

Thisis how concurrency and integrity are linked. When a person wants to look at or change a piece of

data, that person is performing a transaction with the database.
Understanding Transactions

A DBMS has, as part of its code, a transaction manager whose sole purpose is to manage concurrency
and ensure integrity of transactions. The transaction manager has atough job because it must allow
many peopl e to access the same data at the same time, and yet it must put the data back as though it had
been accessed by one person at atime, one after the other, which ensuresits correctness. Therein lies the
fundamental answer asto how a DBMS must resolve all those multiple copies of data. Transactions
occurring during the same time period

Page 13

can preserve the accuracy of the dataif (and only if) they are serializable. Simply put, the DBM S must
rearrange them so that the net result of al the changesisasif they all occurred singlefile.

The transaction is a unit of concurrency, or aunit of work. Nothing smaller or lesser than a transaction
can occur. That is, no one can halfway change a piece of data. All transactions must be atomic in that
each individual transaction either completes or not. Until modern twentieth century physics came along,
the atom was thought to the smallest unit of matter. Likewise, the transaction is the smallest unit of
concurrency. Itisall or nothing. A transaction that completesis said to be committed, and one that does
not is rolled back.

The DBMS handles recovery using transactions as units of recovery. Normal completions, manual
requests for aborts, and unexpected aborts all require the DBM S to again call upon its multiple copies of
data to either commit or roll back the data. A transaction log is kept by the DBM S for the purpose of
rolling back (undo), and aso for rolling forward (redo). A rollback is an undo operation. A rollforward
Is aredo operation that takes place when, for example, a committed transaction doesn't make it from
memory to disk because of a hardware or software failure. The DBMS simply redoes it. Hence, the key
to transaction recovery in aDBMS is that a transaction must be atomic and can be done, undone, or
redone when necessary.

Communicating with the Database

A DBMSisno good if you can't talk to it. How does one talk to a DBM S? Through an access or query
language. The Structured Query Language (SQL) is the predominant query language today. It works
mostly with the predominant type of DBMS that we will discuss shortly, the Relational DBM S
(RDBMYS). All communication to and from the database should pass through the DBM S, and to do this,
we use SQL or something like it. DBAS use query languages to build and maintain a database, and users
use query languages to access the database and to look at or change the data.

Understanding an RDBMS

In 1970, E. F. Codd fathered the concept of the relational model. Before RDBM Ss like DB2 were born,
hierarchic (IMS) and network (IDMS) models were commonplace. Before these models, databases were
built using flat files (operating system files, not necessarily flat!) and third generation language (3GL)
access routines. In fact, some customized systems are still built thisway, justified or not. Many of these
legacy databases still exist on mainframes and minicomputers. CODASY L (from the COnference on
DAta SY stem Languages) was a database standard created by the Database Task Group (DBTG). This
was a COBOL -based network database standard, and IDM S was one vendor implementation. Since the
seventies, however, RDBM Ss have come to dominate the marketplace, with products such as Oracle,
Sybase, Informix, and Ingres.

Recently, object-oriented (OO) DBM Ss have come into the foreground and found many > niche
applications, such as CAD/CAM, engineering, multimedia, and so forth. OO DBM Ss filled those niches
because their strengths are handling complex data types in an amost

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 14

non-transactional environment. To compete, RDBM S vendors have made universal servers
commercially available to offer OO/multimedia capabilities, including text, audio, image, and video data
types. Oracle's Universal Server is an example. In addition, user-defined data types, or extensible types,
have been augmented or added to the core database servers. Oracle8 offers such capability. RDBMS
products like these are considered hybrid, yet they are clearly more mainstream than ever.

Furthermore, Multi-Dimensiona Databases (MDDs) have found some market share. These databases
offer highly indexed data for applications with many variables that must be multi-dimensionally
accessed and tabulated, such as behavioral science data. In traditional RDBMSs, this would be nearly
impossible to implement, let alone use. Again, to compete with MDDs, RDBM S vendors offer some
layered products of their own that provide super-indexed data and use specia techniques such as bit-
mapped indexes. Oracle's Expressis an example.

Using the Relational Model

We've already discussed the major responsibilities of a DBMS, so to understand what constitutes an
RDBMS, we must first cover the relational model. A relational model is one in which:

. Thefundamental pieces of data are relations.
. The operations upon those tables yield only relations (relational closure).

What isarelation? It's a mathematical concept describing how the elements of two sets relate, or
correspond to each other. Hence, the relational model is founded in mathematics. For our purposes,
however, arelation is nothing more or less than a table with some specia properties. A relational model
organizes data into tables and only tables. The customers, the database designer, the DBA, and the users
al view the data the same way: astables. Tables, then, are the lingua franca of the relational model.

A relational table has a set of named attributes, or columns, and a set of tuples, or rows. Sometimes a
columnisreferred to as afield. Sometimes arow isreferred to as arecord. A row- and-column
intersection is usually referred to as a cell. The columns are placeholders, having domains, or data types,
such as character or integer. The rows themselves are the data. Table 1.1 has three columns and four
rows.

Table 1.1 Car Table

Make Model Cost

Toyota Camry $25K
Honda Accord $23K
Ford Taurus $20K
Volkswagen Passat $20K
Page 15

A relational table must meet some special properties to be part of the relational model:

. Datastored in cells must be atomic. Each cell can only hold one piece of data. Thisis also known
as the information principle. To do otherwise is a no-no, although many systems have been built
that way over the years. When a cell contains more than one piece of information, thisis known
as information coding. A good example is aVehicle Identification Number (VIN). If thiswere
stored as one column, it would violate the information principle because it would contain many
pieces of information, such as make, model, origin of plant, and so on. Whether practice
overrulestheory is adesign choice in such cases, although in most cases, this turns out to be bad
news for data integrity.

. Data stored under columns must be of the same data type.

. Each row isunique. (No duplicate rows.)

. Columns have no order to them.

. Rows have no order to them.

. Columns have a unigue name.

In addition to tables and their properties, the relational model has its own special operations. Rather than
get deeper and deeper into relational mathematics, suffice it to say that these operations allow for subsets
of columns, subsets of rows, joins of tables, and other mathematical set operations such as union. What
really mattersis that these operations take tables as input and produce tables as output. SQL isthe
current ANSI standard language for RDBM Ss, and it embodies these relational operations.

Before SQL became dominant, a competing language was QUErL, or QUEry Language, from Ingres.
Another was UDL, or Unified Data Language. ANSI, the American National Standards Institute, isa
standards body with very broad scope, one that includes computer software languages such as SQL. The
primary statements that permit data manipulation, or data access, are SELECT, INSERT, UPDATE, and
DELETE. Hence, any one of these data manipulation operations is a transaction, as we discussed earlier
in the chapter.

The primary statements that permit data definition, or structural access, are CREATE, ALTER, and
DROP. All of these statements are replete with aslew of clauses that permit many variations with which
to define and access the structure and data of the relational tables, which make up your database. Hence,
SQL is both a Data Definition Language (DDL) and a Data Manipulation Language (DML). A unified

DDL and DML isinherently more productive and useful than two different languages and interfaces.
The DBAs and the users access the database through the same overall language.

The last thing the relational model requires are two fundamental integrity rules. These are the entity
integrity rule and the referential integrity rule. First, two definitions:

A primary key isacolumn or set of columns that uniquely identifies rows. Sometimes,
more than one column or sets of columns can act as the primary key.

A primary key that is made up of multiple columnsis called a concatenated key, a
compound key, or, more often, a composite key.

Page 16

The database designer decides which combination of columns most accurately and efficiently reflects
the business situation. This does not mean the other dataisn't stored, just that one set of columnsis
chosen to serve as the primary key.

The remaining possible primary keys are referred to as candidate keys, or aternate keys. A foreign key
Isacolumn or set of columnsin one table that exist as the primary key in another table. A foreign key in
onetableis said to reference the primary key of another table. The entity integrity rule smply states that
the primary key cannot be totally nor partially empty, or null. The referential integrity rule smply states
that aforeign key must either be null or match a currently existing value of the primary key that it
references.

An RDBMS, then, isaDBMS that is built upon the preceding foundations of the relational model and
generdly satisfies al of the requirements mentioned. However, what happened when RDBM Ss were
first being sold, in the late seventies through the early eighties, was that SQL was being slapped on top
of essentially non-relational systems and being called relational. This triggered some corrective
movements; namely, Codd's Twelve Rules (1985).

Using Codd's Twelve Rules
Codd proposed twelve rules that a DBMS should follow to be classified as fully relational:

1. Theinformation rule. Information is to be represented as data stored in cells. Aswe discussed
earlier, the use of VIN as asingle column violates thisrule.

2. The guaranteed access rule. Each data item must be accessible by combination of table name +
primary key of the row + column name. For example, if you could access a column by using
arrays or pointers, then thiswould violate thisrule.

3. Nulls must be used in a consistent manner. If aNull istreated as a0 for missing numeric values
and as a blank for missing character values, then this violates this rule. Nulls should ssimply be
missing data and have no values. If values are desired for missing data, vendors usually offer the

ability to use defaults for this purpose.

. An active, online data dictionary should be stored as relational tables and accessible through the
regular data access language. If any part of the data dictionary were stored in operating system
files, thiswould violate this rule.

. The data access language must provide all means of access and be the only means of access,
except possibly for low-level access routines (see rule 12). If you could access the file supporting
atable, through a utility other than an SQL interface, this might violate thisrule. See rule 12.

. All views that may be updatable should be updatable. If, for example, you could join three tables
asthe basisfor aview, but not be able to update that view, then this rule would be violated.

. There must be set-level inserts, updates, and deletes. Currently, thisis provided by most RDBM S
vendors to some degree.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 17

8. Physical data independence. An application cannot depend on physical restructuring. If afile
supporting atable was moved from one disk to another, or renamed, then this should have no
impact on the application.

9. Logical dataindependence. An application should not depend on logical restructuring. If asingle
table must be split into two, then aview would have to be provided joining the two back together
so that there would be no impact on the application.

10. Integrity independence. Integrity rules should be stored in the data dictionary. Primary key
constraints, foreign key constraints, check constraints, triggers, and so forth should all be stored
in the data dictionary.

11. Distribution independence. A database should continue to work properly even if distributed. This
Is an extension of rule 8, except rather than only being distributed on a single system (locally), a
database may also be distributed across a network of systems (remotely).

12. The nonsubversion rule. If low-level accessis allowed, it must not bypass security nor integrity
rules, which would otherwise be obeyed by the regular data access language. A backup or load
utility, for example, should not be able to bypass authentication, constraints, and locks. However,
vendors often provide these abilities for the sake of speed. It isthen the DBA's responsibility to
ensure that security and integrity, if momentarily compromised, are reinstated. An exampleis
disabling and re-enabling constraints for aVVLDB load.

If aDBMS can meet all of the fundamental principles discussed in this chapter (two-part definition, six
properties, relational operations, and two integrity rules) and these twelve rules, it may be designated an
RDBMS. Codd summed up all of thiswith his Rule Zero: "For a system to qualify asan RDBMS, that
system must use its relational facilities exclusively to manage the database."|

Page 18

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 19

CHAPTER 2

Logical Database Design
and Normalization

In this chapter

. Entity-Relationship Modeling 20
. Mapping ERDs to the Relational Model 23
« Understanding Normalization 23

Page 20
Entity-Relationship Modeling

The best thing a DBA can do for his or her database is to start out with a proper, logical design.
Unfortunately, database design is often hurried through, done wrong, and even back-engineered after the
database has been built. A well-informed and wise DBA knows that a good design improves
performance rather than detracts from it, contrary to popular wisdom. Indeed, jJumping directly into the
physical design or further simply invites trouble, not just in terms of performance, but in data integrity.
What good is a database that runs fast and houses bad data? Early on in the design phase of a database
system, aproper logical design can tolerate physical design changes later on in the production and

mai ntenance phases. If, however, you shortcut the logical design, not only will you likely have to
redesign your logical model, but also restructure your underlaying physical model. The indirect cost
(staff hours, downtime, and so on) can be staggering. So let's cover the principles behind logical
database design and normalization before you run off and build your database.

Astherelational model came to dominate over other data models during the mid-seventies, relational
modeling techniques sprung up that permitted formal design capabilities. The most popular of theseis
the Entity-Relationship Diagram (ERD), developed by P. P. Chen in 1976. Thisis known as semantic
data model because it attempts to capture the semantics, or proper meaning, of business elements, the
essence of the business. Because the relational model itself is mostly a syntactic model, one dealing
mostly with structure, the ERD typically supplementsit. In fact, ERD modeling naturally precedes
relational modeling. Once an ERD is complete, it is mapped into the relational model more or less
directly, and later the relational model is mapped to its physical model.

An entity is a business element, such as an employee or a project. A relationship is an association
between entities, such as employees working on several projects. Attributes are the characteristics that
make up an entity, such as an employee's salary or a project's budget. Attributes are said to take on
values from domains, or value sets. The values they take will be the data used later on in the relational
model. These are all abstractions of a business or part of a business. ERDs can be drawn many ways. It
doesn't really matter as long as you choose one and remain consistent in your meaning throughou.

For our purposes, diagrams are drawn using boxes for entities, with the attribute names listed inside the
box and the entity name listed outside the box. Arrows are drawn between the boxes to represent the
relationship types. There are three kinds of relationships. one-to-one, one-to-many, and many-to-many.
A one-to-one relationship uses a single-headed arrow on one or both sides, depending on the kind of one-
to-one relationship. A one-to-many uses a double-headed arrow. A many-to-many uses a double-headed
arrow on both sides. A pure one-to-one relationship exists when every value of one entity is related to
one and only one value of another entity, and vice versa. Thistype of relationship israre. Figure 2.1
shows a one-to-one relationship. A husband is married to only one wife, and awifeis married to only
one husband. (We aren't counting polygamists.)

Page 21
FIG. 21

A one-to-one (1:1)
relationship.

[= 1—

A more common kind of one-to-one relationship is the subtype relationship. Thisis one of the
foundations of OO analysis and design. In OO systems, thisis seen as a class and a subclass (or more
simply put, a class hierarchy). Figure 2.2 shows how a one-to-one subtype relationship is modeled. This
diagram shows the classic example of a square being a subtype of arectangle. The direction of the arrow
indicates the direction of the inheritance, another OO concept related to the class hierarchy. In other
words, attributes in the more general entity (the rectangle) donate attributes (such as length and width) to
the more specific entity (the square). Hence, the direction of inheritance flows from general to specific.

FIG. 2.2
A one-to-one (1:1)
subtype relationship.

javascript:displayWindow('images/ch02fg01.jpg',341,65)

‘ racfangle I
‘ =G

Subtype relationships are more common than pure ones, yet both find infrequent use. Asis often the
case, when a designer runs across one-to-one relationships, he or she must ask the following questions:

. Can these two entities be combined?
. Arethey one and the same for our purposes?
« Must they remain separate and distinct for some compelling business reasons?

More often than not, one-to-one entities can be combined.

The dominant relationship to be used in the relational model is the one-to-many. Figure 2.3 shows a one-
to-many relationship. A state has many cities, but those same cities belong to only one state. (It istrue,
however, that you will find a city's name reused by different states. This only means that, as a designer,
your choice of primary key must not be a city name. For example, it might be state name + city name.
The previous section contains a definition of the primary key concept and how to choose one.)

Finally, Figure 2.4 shows our many employees, seen earlier, working on many projects, a many-to-many
relationship. Notice that the underlined attributes are identifier attributes, representing our best current
guess about what will later be the primary key in the relational model.

Page 22
FIG. 2.3

A one-to-many (1:M)
relationship.

javascript:displayWindow('images/ch02fg02.jpg',104,139)

FIG. 24
A many-to-many (M:N)
relationship.

]

Suggestion: At this point, one of the best things you can do for yourself as adesigner isto rid yourself of
al your many-to-many relationships. Not that you'd actually be getting rid of them, but you can
substitute two or more one-to-many relationshipsin their place. Y ou want to do this because the
relational model can't really handle a direct implementation of many-to-many relationships. Think about
it. If we have many employees working on many projects, how do we store the foreign keys? (We can't
without storing multiple values in one column, thus violating the relational requirement that data be
atomic, that no cell may hold more than one piece of information. These two things also lead directly to,
and in fact are the same as, First Normal Form, to be discussed shortly.) Hence, to ensure data atomicity,
each many-to-many relationship will be replaced by two or more one-to-many relationships.

Hence, what you want to do isto split it so that many employees working on many projects become one
employee with many assignments, and one project belongs to many assignments, with assignments
being the new entity. Figure 2.5 shows this new relationship. Notice that identifier attributes have been
combined.

The new entity called assignment is often called an intersection table in the relational model, because it
represents the intersection of every real pairing of the two tablesit relates. It isalso called ajoin table.
The intersection table is an entity that is not necessarily always areal-life abstraction of some business
element, but it is the fundamenta way to solve and implement the many-to-many relationshipsin the
relational model.

Previous | Table of Contents | Next

javascript:displayWindow('images/ch02fg03.jpg',104,146)
javascript:displayWindow('images/ch02fg04.jpg',365,109)

Previous | Table of Contents | Next

Page 23

FIG. 25

Revised many-to-many
(M:N)relationship
using two one-to-many
(1:M and 1:N)
relationships.

Mapping ERDs to the Relational Model

An ERD folds nicely into the relational model because it was created for that purpose. Essentially,
entities become tables and attributes become columns. Identifier attributes become primary keys.
Relationships don't really materialize except through intersection tables. Foreign keys are created by
always placing the primary keys from atable on a one side into the table on amany side. For example, a
relationship of one state to many cities would call for you to place the state primary key in the city table
to create aforeign key there, thus forging the relationship between the two.

Many automatic Computer Assisted Software Engineering (CASE) tools exist in the current market to
help you accomplish just this mapping. Examples include LogicWorks ERwin and Oracle's own
Designer/2000. These tools permit you to not only draw the ERDs, but also specify primary and foreign
keys, indexes, and constraints, and even generate standard Data Definition Language (DDL) SQL code
to help you create your tables and indexes. For Oracle, you can run those scripts directly, but frequently
you need to modify them, for example, to change datatypes or add storage parameters. These tools can
also help you reverse engineer the logical model from an existing database which has none documented!
Thisis especialy useful when attempting to integrate databases, or when you must assume DBA
responsibilities of an already built database. So, CASE tools not only help you to design and build
database systems, but they also can help you to document as well.

Understanding Normalization

Normalization is arefinement, or extension, of the relational model. Normalization is also a process that
acts upon the first draft relational model and improves upon it in certain concrete ways that we'll discuss

javascript:displayWindow('images/ch02fg05.jpg',320,248)

soon. The foundation of normalization is mathematical, like the relational model. It is based on a
concept known as functional dependency (FD).

Page 24

Although it isn't necessary to get bogged down in the mathematics of functional dependency, it is useful
and instructive to at least defineit for our context, the relational model. A column or set of columns, Y,
is said to be functionally dependent on another column or set of columns, X, if agiven set of valuesfor
X determine aunique set of valuesfor Y. To say that Y isfunctionally dependent on X isthe same as
saying X determines Y, usually written as X -> Y. Of course, the most obvious example is the primary
key of arelational table uniquely determining the values of arow in that table. However, other
dependencies may exist that are not the result of the primary key. The main purpose of normalization is
to rid relational tables of all functional dependencies that are not the result of the primary key.

Here are the three major reasons for normalization that are usually always cited in any database analysis
and design text:

. Tomaintain dataintegrity. This reason, perhaps above all else, is enough justification for
troubling at al with normalization. Data stays correct and consistent because it's stored only
once. In other words, multiple copies of the data do not have to be maintained. Otherwise the
various copies of the same dataitems may fall out of synchronization, and may ultimately require
heavy application programming control because the automatic integrity mechanisms of an
RDBMS cannot be leveraged. Many legacy systems suffer this fate.

. Tobuild amodel that is as application independent as possible. In other words, normalization
simply furthers the notion that the relational model should be data-driven, not process-driven. For
the most part, this means the database design can remain stable and intact, given changing
process needs. Application programming requirements should be irrelevant in logical database
design. (However, they mean everything to physical database design, as we shall see later.)

. Toreduce storage needs (and frequently lay the foundation for improved search performance,
too). Except for foreign keys, full normalization will rid your relational design of all
redundancies. Unnecessary copies of data likewise require unnecessary secondary storage needs.
In addition, the more data that exists and possibly has to be searched, the more total system time
required, and hence, worse performance.

Using a Normalization Example

In the last section, we passed quickly over how the atomic data requirement (the information principle)
Is tantamount to First Normal Form (1INF). But let's reemphasize it:

First Normal Form (INF): No repeating groups. Thisis the same as saying that the data stored in a cell
must be of a single, ssimple value and cannot hold more than one piece of information.

Table 2.1 lists states with cities whose populations increased at |east five percent over the previous year.
Because dl the city information is stored in arepeating group, this table is non-normal, or not INF. First
of al, how do we know for sure that the populations and percentages in the columns to the right of the
cities belong to those cities? We could assume an order to them, of course, but this violates the
fundamental relational rule that columns have no order. Worse, arrays would have to be used, and this
requires end-users to know about and use a physical data structure such as an array. This surely can't
make for a good user interface.

Page 25

Table 2.1 States with Cities Having >= 5% Population Increases

STATE ABBREV SPOP CITY LPOP CPOP PCTINC
North 5M Burlington, 40K 44K 10%
Carolina

Raleigh 200K 222K 11%

Vermont VT AM Burlington 60K 67.2K 12%
New Ny 17M Albany, 500K 540K 8%
York
NewYork 1M 147M 5%
City,
White = 00k 106K 6%
Plains

To make it INF, move repeating groups from across columns to down rows. Table 2.2 shows the same
tablein INF, with STATE as the primary key. However, this table still suffers from problems. To update
or delete state information, we must access many rows and programmatically guarantee their

consistency (the DBMSwon't do it). To insert city info, we must add state info along with it. If we
delete the last city of a state, the state info goes with it, and so on. What's the problem? We'll seeina
moment.

Table 2.2 States and Citiesin First Normal Form (1INF)

STATE ABBREV SPOP CITY LPOP CPOP PCTINC

North 5M Burlington 40K 44K 10%
Carolina
North .

NC 5M Raeigh 200K 222K 11%

Carolina

Vermont VT

New
Y ork

New
Y ork

New
Y ork

NY

NY

NY

4AM Burlington 60K 67.2K 12%
17M Albany 500K 540K 8%

1m NewYork o 147m 5%
City

im White ok 106K 6%
Plains

To tackle the higher normalization levels, we need a nonkey column. The strict definition of a nonkey
column is simply one, which is not part of the primary key. The broader definition of a nonkey column
isonethat is not part of any candidate key. For our purposes, we'll take the strict definition. Essentially,
the set of columns of atable can be thought of as having a primary key and the remainder. Any column
that is part of the remainder is a nonkey column.

Second Normal Form (2NF): No partial dependencies. Every nonkey column depends on the full
primary key, including all of its columnsif it is composite. Our Table 2.2 does not currently comply
with this criterion. City information does not depend on state information. Namely, all the city columns
(CITY, LPOP, CPOP, and PCTINC) do not depend on the state name (STATE). Hence, we break them
up into 2 tables (Tables 2.3 and 2.4). It only makes sense that states and cities are separate entities,
although related, and therefore should be separate tables.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 26

Table 2.3 States in Second Normal Form (2NF)

STATE ABBREV SPOP
North Carolina NC 5M
Vermont VT aM
New Y ork NY 17M

Table 2.4 Citiesin Second Normal Form (2NF)

CITY ABBREV LPOP CPOP PCTINC
Burlington NC 40K 44K 10%
Raleigh NC 200K 222K 11%
Burlington VT 60K 67.2K 12%
New York City NY 14M 147M 5%
Albany NY 500K 540K 8%
White Plains NY 100K 106K 6%

Third Normal Form (3NF): No transitive dependencies. No nonkey column depends on another nonkey
column. A tableisin 3NF if all of its nonkey columns are dependent on the key, the whole key, and
nothing but the key. If, after eliminating repeating groups, every nonkey column is dependent on the key
and the whole key, then thisis 2NF. And nothing but the key is 3NF. Our city table (Table 2.4) doesn't
pass this test because the column PCTINC (percent increase) depends on CPOP (current population) and
LPOP (last year's population). In fact, it isafunction of the two. Thistype of column is called a derived
column, because it is derived from other, existing columns. However, all of these are nonkey. The
immediate solution isto drop PCTINC and calculate it on-the-fly, preferably using aview if itis highly
accessed. Also in our state table (Table 2.3), SPOP (state population) depends on ABBREV
(abbreviation) because this is a candidate key, athough not the primary one. Tables 2.5, 2.6, and 2.7
show our solution, which now gives us three tablesin 3NF.

Table 2.5 Statesin Third Normal Form (3NF)

ABBREV SPOP

NC S5M
VT 4 M
NY 17 M
Page 27

Table 2.6 State Namesin Third Normal Form (3NF)

STATE ABBREV
North Carolina NC
Vermont VT
New Y ork NY

Table 2.7 Citiesin Third Normal Form (3NF)

CITY ABBREV LPOP CPOP PCTINC
Burlington NC 40K 44K 10%
Raleigh NC 200K 222K 11%
Burlington VT 60K 67.2K 12%
New York City NY 14M 14.7M 5%
Albany NY 500K 540K 8%
White Plains NY 100K 106K 6%

Continuing the Normal Form

The Boyce Codd Normal Form (BCNF): No inverse partial dependencies. Thisis aso sometimes
referred to, semi-seriously, as 31/, NF. Neither the primary key, nor any part of it, depends on a nonkey

attribute. Because we took the strict definition of nonkey, 3NF took care of our candidate key problem,
and our tables are already in BCNF.

Fourth Normal Form and higher. Normalization theory in academia has taken us many levels beyond
BCNF. Database analysis and design texts typically go as high as 5NF. 4NF deals with multivalued
dependencies (MVDs), while 5NF deals with join dependencies (JDs). Although the theory behind these
formsisalittle beyond the scope of this book, you should know that atableisin 4NF if every MVD isa
FD, and atableisin 5NF if every JD is a consequence of itsrelation keys.

Normal forms as high as 7 and 8 have been introduced in theses and dissertations. In addition,
alternative normal forms such as Domain Key Normal Form (DKNF) have been developed that parallel
or otherwise subsume current normalization theory.

Recommendation: strive for at least BCNF, then compensate with physical database design as necessary,
which leads us to our next topic. If possible, study 4NF and SNF and try to reach them in your
normalization efforts. Y our goal asaDBA isto normalize as high as you can, yet balance that with as
few entities as possible. Thisis a challenge because, generally, the higher the normal form, the more
entities produced.

Page 28

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 29

CHAPTER 3

Physical Database Design, Hardware,
and Related Issues

In this chapter

. Understanding Application Types 30

« Using Quantitative Estimates 31

. Denormalizing 32

. Understanding the Storage Hierarchy and RAID 34

. Understanding RAID 35

. Understanding BottlenecksinaDBMS 36

. Making Your Platform Selection 37

. Operating System Integration and Genera Memory/CPU Recommendations 38
. Physical Design Principles and General Hardware Layout Recommendations 39

Page 30
Understanding Application Types

Before we discuss physical database design, and later, performance tuning, it isimportant to cover the
major application types. First, let's clarify the terms transaction and query. In database theory, broadly
speaking, atransaction isasingle, atomic SELECT, INSERT, UPDATE, or DELETE. However, with
regards to application types, atransaction is generally more loosely defined as a business transaction,
possibly containing multiple INSERTs, UPDATES, or DELETEs. In addition, DML truly refersto
SELECT, INSERT, UPDATE, and DELETE. However, you will find "DML," like "transaction," in this
context often used to mean only INSERT, UPDATE, and DELETE operations. In sum, DML and
transaction usually mean write-only, or modify-only. To distinguish the SELECT operation as read only,
the term query is used.

WEe'l follow these latter industry conventions for the sake of common understanding, although they are
quite confusing and, in fact, at conflict with their real definitions. That said, there are three main
application types in the world of database systeqO applications:

OLTP: On-Line Transaction Processing. An OLTP system is an application that contains
heavy DML, transaction-oriented activity; primarily updates, but also inserts and del etes.
Classic examples are reservation systems such as those used by airlines and hotels. OLTP
systems can have high concurrency. (In this case, high concurrency typically means many
users simultaneously using a database system.)

DSS. Decision Support System. A DSSistypicaly alarge, read-only database with
historical content, and is generally used for simple canned or ad hoc queries. Often aDSS
growsinto VLDB, DM, or DW in the manner discussed in Chapter 1, "Databases, DBMS
Principles, and the Relational Model." A good example of aDSS is a database behind an
organization's intranet.

Batch: A batch system is a non-interactive, automatic application that works against a
database. It usually contains heavy DML and has low concurrency. (In this case, low
concurrency typically means few users simultaneously using a database system.) The ratio
of querying to transactions determines how to physically design it. Classic examples are
production databases and operational databases relative to DWs.

Some |ess common application types include:

OLAP: On-Line Analytical Processing. An OLAP system offers analytical services, asthe
name implies. This means mathematics, statistics, aggregations, and high computation. An
OLAP system doesn't always fit the OLTP or DSS molds. Occasionally, it isa cross
between the two. In addition, some people smply view OLAP as an extension or an
additional functional layer on top of an OLTP system or DSS. ROLAP stands for
Relational OLAP. Thisterm doesn't really add much in the way of classification, though.
An OLAP tool is often tightly coupled withaMDD (discussed in Chapter 1), and
sometimes it is simply layered on top of amodified RDBMS. A demographic database for
social statisticsis agood example.

VCDB: Variable Cardinality Database. This type of database is frequently a back-end for
a processing system that causes the tables in that database to grow and shrink considerably
during the processing phase, which otherwise may be constant or periodic.

Page 31
Cardinality refersto the number of rowsin atable at a given time. Some tables may be
static lookup tables, but most are definitely highly variable in their number of records.

Good examples are any databases that record short-lived activities, such as a security
authorization database.

Using Quantitative Estimates

Quantitative estimating of any sort is an attempt to quantify, or measure, some process or product. With
databases, the two main types of quantitative estimates are transaction analysis (sometimes referred to as

volume analysis) and sizing analysis.
Transaction Analysis

Transaction analysisis simply putting numbers on the database system. Different measures mean
different things, and apply to certain kinds of database systems. The most typical measures, or metrics,
include the minimums, averages, or maximums of the following:

« Number of concurrent users

. Responsetime

. Elapsed time

« Number of transactions

« Number of concurrent programs
. Number of bytesread or written

There are many more metrics, such as number of rows affected by an operation, but these will offer
some insight.

Usually, these measures have more meaning if they are expressed in the context of a given time period
or activity. For example, it is usually more useful to know the maximum number of transactions per
second than the cumulative number of transactions. The latter tells us little about the typical stress, or
load, on the database. These numbers also mean more in the context of what kind of application your
database serves.

If your application typeisan OLTP system, the number of concurrent users, transactions per second, and
response time are more important, because concurrence is the prime issue with OLTP.

If you have a batch system, elapsed time and number of concurrent programsis perhaps most important.
A DSS might require you to know the bytes read per some unit of time, among other things.

Y ou need to ask these questions as a DBA and gather your best possible answers, for thiswill affect
your physical design and your performance tuning. In addition, these figures are largely the same
measures that are used for benchmarking efforts. What we're trying to do here, though, is gather
estimated, prototyped, or piloted numbers before the system is actually built, in order to help build it.

Page 32
Sizing Analysis

Sizing is perhaps a more widely known activity, if not widely practiced often enough by all DBAS.
Whereas in transaction or volume analysis, we ask "How often?' and "How much?' with regards to
processes and data flow; with sizing we ask "How much?' with regard to data storage.

The fundamental thing is simply that atable with n rows of b max bytes per row will need at least n¥b
bytes of storage. Of course, we've left out overhead. And this calculation varies considerably with the
vendor of choice. Oracle, for example, offers afairly complicated set of steps, as do other vendors, to
help size atable, an index, or other structures. The best recommendation isto place thisformulainto a
spreadsheet once, and you'll never haveto do it again. Just pull it out and dust it off every time you need
to do sizing for another database project. Just plug in the relevant input numbers, such as block size,
block parameters, number of rows, column sizes, and so on. Thisway, you'll be able to subtotal by table,
by sets of tables, by indexes, by sets of indexes, and for the whole database.

Then a seasoned DBA will add a fudge factor on top of that estimate to account for any mistaken
underestimates, accidental oversights, and unanticipated future changes. Something like the final
estimate size¥120 percent is not unreasonable.

Remember, too, that the figure you size for is usually based on tables and indexes alone. As with all
RDBMS vendors, there are many more architectural considerations, to be discussed in Chapters 5 and 6,
which will add to the overall system size. And whatever final figure of bytes you come up with,
remember that thisis the usable space you need, not the amount of raw disk space. Low-level hardware
and a high-level operating system can subtract from the initial unformatted (raw) size of the disk,
leaving less usable space than you'd think.

For example, formatting can consume 15 percent of a4GB disk. This only leaves 85 percent, or 3.4GB.
If your final sizing estimate was 20 GB, and you didn't take thisinto account, you'd purchase 5¥4GB
disks and yet have only 5¥3.4GB, or 17GB, of usable space. Y ou'd need another disk.

Denormalizing

Denormalization refers to dropping the level of your tables normal forms back down afew notches for
physical design, performance tuning, or other reasons.

Recommendation: Don't do this unless you have very good reasons. A shortage of disks with no budget
for new ones may be a good reason. Expecting to have poor performance without evidence, as opposed
to actually having poor performance, is not a good reason. In fact, even poor performance itself does not
immediately indicate the need to back off on your logical design. Y our first step should be performance
tuning. Denormalization should always be a last resort.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 33

That said, what to do? Suppose you have 30-odd tables that make up the logical design in your database,
al of which are 3NF or higher (not unrealistic). However, three of these tables are virtually always
joined together when they are used. Now, join operations themselves, with or without indexes, are
resource-intensive and can consume a small machine in no time. In the interest of performance, with no
other performance-tuning tricks at hand, you might want to pre-join these three tables into one table for
permanent use, thereby avoiding the join for future accesses. By placing two or more normalized tables
back into one, you are virtually guaranteed of reducing the normalization level, or even worse, becoming
fully unnormalized. Of course, if this must be done, more and more procedural and application-level
dataintegrity controls must be written to take the place of the DBM S's automatic features.

If, for example, you opt to keep both the original tables and the newly joined one, you are faced with the
unenviable task of keeping them synchronized. However, if updates are very frequent, (every hour or
less), and currency of the joined datais required, other methods will have to be used.

Another method isto create a denormalized view on top of the normalized base tables. However, the
performance of this option is the same or worse than simply having the original three tables. Its only
advantage is user interface simplicity. So, while denormalization may help in some static data cases, it
usually cannot solve many dynamic data problems. A method like Oracl€'s clustering might sufficein
thistype of situation if denormalization doesn't work. However, we'll have more to say about that later.

A final, fairly common, example of denormalization iswhen DBAs must deal with time series. The
reason why time series often must be denormalized is because time must almost always be part of the
primary key of atable. Thisis true because most data stored is time-dependent.

A good example is a database storing satellite feed data. This data is timestamped, which is part of the
primary key on most of the tables in the database. For any given table which has the timestamp as the
component, all the other columns which make up the primary key, such as satellite ID, are repeated for
every different timestamp. In other words, if the database downloads 100 rows of datafrom asingle
satellite every hour, then in 8 hours, we have 800 rows stored, with all the other satellite information
unnecessarily repeated 800 times. The wasted storage can be tremendous, especially considering you
may have multiple satellites or more frequent sample rates.

Thetypical solution isto denormalize by inverting the data from row-wise to column-wise. We now
have 100 timestamp columns, and we have reduced the number of rows from 800 to 8, or by afactor of
the sampleinterval of 100. Storage reduction, especially row reduction, almost always helps search
performance since there are fewer rows to scan through, either in atable or an index. However, thistype
of denormalization, though often necessary, results in atable which is not normal by virtue of the

timestamps being stored as repeating group columns. Hence, you are then unable to use aforeign key
constraint on this former primary key com-ponent. Instead, you must resort to check constraints,
procedures, triggers, and possibly supplemental application integrity handling. If anything, the lesson
you should learn from this particular exampleisthat if you must denormalize for performance, you will
have to pay the price in integrity management.

Page 34
Understanding the Storage Hierarchy and RAID

One of the most important things a DBA can learn about is the storage hierarchy and its associated
tradeoffs. This, more than anything, helps explain alot about physical design and performance tuning.
One of the key ideas behind the storage hierarchy is the electromechanical disadvantage—anything that
has a motor or moving parts isinherently slower than something that is solely electronic.

Figure 3.1 shows a modern interpretation of the storage hierarchy. Clearly, memory is faster than disk.
Asyou go up the pyramid, speed increases (access time), cost increases (per unit), but storage decreases.

FIG. 3.1
The storage hierarchy.

The more we want to store, the more we have to pay. Especialy if we want it fast. However, we can
make some tradeoffs. With a historical system, we can put the older stuff nearline on optical disks or at
least slower disks, and even older stuff on tape, either nearline or offline. If your particular storage
pyramid has everything robotically nearline, down through tape, and you have software to accessit on
demand, that's a Hierarchical Storage Management (HSM) system. There are vendors who specializein
this sort of hardware and software. So historical systems can afford to gravitate toward the bottom,
because speed is not of the essence, relative to the data currency. However, real-time systems, such as
aircraft navigation and so forth, should place most of their storage toward the faster elements at the top.
A reasonable medium for many businessesisto place important, current data on RAID or fast disk, and
everything else on slower disk.

Page 35

Understanding RAID

javascript:displayWindow('images/ch03fg01.jpg',400,294)

RAID, or Redundant Array of Inexpensive Disks, is perhaps a misnomer. Since its inception, the disks
that make up RAID have never really cost any less than regular SCSI (Small Computer Systems
Interface) disks. In addition, RAID requires specia hardware, software, or both to work, at added cost.
Sothel in RAID isnot quite correct.

RAID isaset of disksthat can work in parallel to reduce I/0O time by afactor of how many disks make
up the set, an important thing for databases. RAID worksin parallel through atechnique known as
striping, as opposed to ordinary disk storage, which worksin serial. Thisis simply writing asinglefile
using stripes, or chunks of the file, across multiple disks in parallel. The stripes are some multiple size of
aphysical data block, the smallest unit of disk 1/0. Typically, adatablock is made up of 512 bytes. This
istrue for most UNIX systems, VMS, and DOS/NT.

RAID aso offersrea-time disk failure recovery, another important thing for databases. RAID can offer
thislevel of availability through parity information, which is also written out to adisk or disks. Parity,
checksums, and error correction are handled through certain mathematical formulae and algorithms that
can reconstruct the missing dataon alost disk. And RAID can offer either small or large disksin a set,
which can help different database application types. For example, DSS often performs better with larger
disks, while OL TP does better with smaller ones. RAID comesin many flavors, known as levels.

The RAID levels most used in industry today are O, 1, 3, and 5. All other levels are either not used or are
some variation of these four. RAID levels are offered by vendors that number 7 and higher, but these are
rarely seen in practice. RAID 0 is basic striping with no parity. That is, you get the performance
advantage but no parity. Thisis good when pure speed is the goal and availability isn't asimportant.

RAID 1 isknown as mirroring, or sometimes duplexing, again with no parity. In mirroring, you
essentially have an even set of disks, half of which contain thereal or primary data and half of which
contain the copies of that data, on a disk-wise basis. Actually, both disks are written to at the same time,
and sometimes this can mean a performance loss when writing. Reading, on the other hand, can actually
be sped up, if software is designed to read the multiple disks and merge the streams for use.

RAID 3isstriping again, except now with asingle, dedicated parity disk. Y ou can afford to lose one
datadisk and still recover it using the parity disk. However, the parity disk isasingle point of failure. If
it'slost it could be fatal, depending on the software or hardware and how it is written to handle this
event.

RAID 5 isalso striping with parity, except rather than using a single, dedicated disk, it stripes the parity
along with the data across all disks. Parity information is as well protected as data, and thereis no single
point of failure. RAID 5, like RAID 3, can tolerate and recover from the loss of a single disk. However,
neither 3 nor 5 can lose two disks and recover. Too much parity information islost.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 36

RAID levels 2, 4, and 6 are rarely sold or implemented in industry. The mathematics behind the parity
information for these levelsis too computationally intense to be practical.

A final word about RAID. With regards to striping, RAID does what can be done manually with
RDBMS and OS utilities and techniques. However, it usually does a better, finer-grained form of
striping, and offers more features such as partitioning volumes (stripe sets), adjustable stripe sizes, and
so forth. In addition, although the striping part of RAID can be done in a gross manner without much
difficulty, you still have to manage those stripes. RAID usually excels at this and offersasinglefile
interface in avirtual file system (VFS), leveraging OS file-level commands and utilities, aswell as
offering other features such asfileslarger than physical disk size.

Lastly, while you might be able to manage some form of striping, you have no safety net other than your
standard backup and restore mechanisms. Whereas RAID will give you the tolerance to lose one disk
and recover, it would be too complex for you to attempt to write this software that already exists.

Recommendation: Use gross, manual RDBMS or OS striping when availability is not a major concern.
Otherwise, use RAID when you need the availability it offers, want even better performance through
finer-grained stripes, or need its other features such as largefiles.

Understanding Bottlenecks in a DBMS

Most often in the past, DBM Ss have always been accused of being I/0-bound, or disk-bound. Thisisthe
same as saying that a DBM S is bottlenecked in a system by its reading to and writing from disk.
Studying the storage hierarchy we just covered, thisis hardly arevelation. A disk has a much slower
access speed than memory or CPU. And this actually has been the case for many database applications
over the years. It isespecially true for DSSs, VLDBs, and DWSs, because huge amounts of data (GB)
must be moved with single queries. However, thisis not always the case. OLTP and OLAP (On-Line
Analytical Processing) systems can often be memory- or CPU-bound.

If adatabase hardware server has alow memory-to-disk ratio, meaning that the application is memory-
poor, that database will suffer considerably due to the lack of room in the memory for data and code
caching. If a database application is of the OLAP type, such as a scientific database, number-crunching
speed is of utmost importance. Hence, if that type of application runs on a server with arelatively weak
CPU, performance will surely be poor in terms of user expectations (such as response time). The lesson
hereis that bottlenecks in any system, database systems included, are application-specific.

Finaly, in client/server database systems, the network is the slowest component of the total system,

slower even than disk. For aclient/server system to function efficiently, proper application segmentation
must occur, and the network must not be overloaded. Further, the network must be designed, like the
other resources, to minimize contention. Further the network hardware and software should be
modernized to take advantage of the current networking capabilities. Well revisit al of these bottlenecks
in Chapter 29, "Performance Tuning Fundamentals."

Page 37
Making Your Platform Selection

When choosing what type of hardware database server and operating system is right for your
application, there are many things to consider, including:

. Application Type: Asdiscussed, OLTP, DSS, batch, or something else.

. Quantitative Estimates: As discussed, your figures regarding transactions, volumes, and sizing.

. Current Environment: Basically, what are your predominant platforms now?

. Trends. Where isthe industry headed with your current environment and what you're now
considering?

. Processing Needs: Is your need real-time, less time-critical, or periodic? Use your transaction and
volume figures to specify concurrence and load.

. Storage Needs: Use your sizing figures to specify raw disk needs. Use transaction and volume
figuresto specify RAID or not.

. Staff Capabilities: Iswhat you're considering too far from your staff's base expertise?

. Time Constraints. Can you migrate or develop given your time window?

. Porting and Partnerships: Does the RDBMS vendor have cozy relationships with the OS and
hardware vendors?

. Integration: Similar to the preceding, but also how well do all the pieces work together,
regardless of their business relationships?

The current magjor RDBM S vendors are Oracle, Sybase, and Informix. CA has yet to do much with
Ingres, and Microsoft only offers SQL Server on NT. Smaller, desktop databases aren't considered here.
Now, considering only Oracle, UNIX and Windows NT are its two major platforms—for UNIX,
specifically Sun Solaris. Oracle aso portsto the other flavors of UNIX, of course. And Oracle also has
some large installed bases on MV S and VMS. However, Solaris and Windows NT are its current top two
porting priorities as of thiswriting.

Asfor hardware, Sun isthe only real choice for Solaris, of course, not counting Intel machines. Sun has
many available processors, but its latest is the UltraSPARC. Windows NT is predominantly found on
Compaq, but also on DEQ and HP machines. The significant thing about Windows NT on DEC is that
DEC offers both Alpha and Intel machines. Both Solaris and Windows NT can run on multiprocessing
machines. However, Windows NT can only handle alimited number of processors (14), and its ability to
scale flattens out at about 4 processors for Oracle. Solaris can scale very well past 20 processors, even

for Oracle. Disk storage options are roughly equivalent, although some larger options are more readily
available with Sun than with Compaq or HP. DEC, of course, can offer large storage like Sun.

Rather than getting further bogged down with hardware comparisons, let's make a recommendation: As
aset of genera guidelines, consider all the options listed earlier when trying to pick a platform. If your
predominant environment is DEC/VMS and you're likely to stay there for afew more years, your next
platform might aswell be DEC/VMS, especidly if you're only planning to buy one additional machine.

If you're buying for a whole department and the risk is not critical, however, it might be time to consider
Windows NT or UNIX.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 38

And if you need only one machine for arelatively small database of <10 GB, consider NT. On the other
hand, if you only need one machine but the storage is large or high performance is required, consider
UNIX. Findly, if you don't really have a predominant environment or you're just starting up new (or can
treat your purchase in that respect), by all means consider both Windows NT and UNIX and let al the
factors come into play except the environment factor.

Operating System Integration and General
Memory/CPU Recommendations

Aside from secondary storage, disks, and RAID, which we emphasi zed when discussing the storage
hierarchy, we need to consider other hardware issues and operating system (OS) components, such as
memory and CPU.

NOTE

What we mean by memory is often referred to as core memory, physical memory, main
memory, or random access (RAM) memory. These are all termsfor the same thing, so
we'll just use memory. n

Essentialy, memory is very fast electronic storage. It stores instructions and data. For aDBMS, the most
important thing is that the OS can yield some of its memory to it. Then the DBMS can do with it what it
will. And it does. Thisiswhy aDBMS is sometimes referred to as a micro-OS, or an OS within an OS,
or an OS on top of an OS. In essence, a DBM S takes care of itself with regards to the care and feeding of
its resource needs, abeit in deference to and cooperation with the OS. Thisis often done through a
capability known as shared memory, especially in UNIX. (See Appendix A, "Oracle on UNIX," for
more details.)

Locking, a key component to DBMSs, is also handled through memory structures. Shared resources are
secured one at atime from competing processes. A DBMS either handles its own locking, does it
partially with the OS, or yields locking duties to the OS.

Once an OS yields some of its memory to the processes that constitute aDBMS, the DBM Stakes it
from there, storing in that memory space its own instructions (code caching) and data (data buffering).
Without getting too much into Oracle's architecture, which will be discussed |ater, let us broadly map
what we have discussed. Oracle's memory access is based on the alocation of its System Global Area
(SGA). The SGA contains a structure known as the data block buffers (data buffering) and shared pool.

The shared pool containsthe library cache (code caching), as well as the data dictionary cache. Undo
(rollback) blocks are buffered within the data block buffers, and redo is buffered in its own redo log
buffers section. These components are all configurable through Oracle's parameter file, init.ora. More on
thislater.

RDBM Ss have come along way with regards to CPU utilization. As mentioned earlier, most database
systems of the past have tended to be I/0O-bound. However, with VLDBs and OLAP/MDD systems,
more and more database systems are memory- or CPU-bound. With VLDBSs, memory is a bottleneck
because the amount of memory is usually too small to be of use with huge amounts of data. With heavy
analytical or scientific systems, or even DW systems, CPUs can be the bottleneck due to the enormous,
concurrent computational demands.

Page 39

With the advent and evolution of multiprocessor machines within the last 10 years, many things have
changed. Very large memory is now possible (>= 10s of GBs). Also, CPU architectures and speeds have
advanced considerably. Word sizes are 32-bit and 64-bit now, with clock speeds around 200 to 300 MHz
at the time of thiswriting. And these CPUs have pipelined architectures, permitting multiple instructions
per clock tick (CPU step). But the important thing is that the RDBM S software has followed suit.

Oracle and the other mgjor RDBM S vendors have likewise rewritten their code over time to take
advantage of these hardware advances. Aside from shared memory and very large memory,
multiprocessing is the major advancement and refinement of recent years. Two mgjor classes of
multiprocessors exist now:

. Symmetric MultiProcessors (SMPs)
. Massively Parallel Processors (MPPs)

In SMP machines, such as those Sun offers, the CPUs use shared memory and other internal hardware
items such as buses. SMPs now have up to 64 processors. M PP machines have a shared-nothing
architecture and are like micro-LANS, or Local Area Networksin abox. MPPs can have hundreds or
thousands of processors.

RDBM S software now is either fully multithreaded or pseudo-multithreaded to take advantage of the
processing power of the multiprocessing machines. To an operating system, an RDBMS s just one or
more processes. Multithreading is a piece of software's capability to run multiple subprocesses, or
threads, within its same parent process environment. Sybase and Informix, for example, are fully
multithreaded. Oracle is pseudo-multithreaded when using the MultiThreaded Server (MTS) option;
otherwise it is single-threaded. A DBA simply needs to know his number of CPUs, and he can configure
the Oracle MTS. Other Oracle parameters are affected by the number of CPUSs, such as certain locking
structures known as latches.

Physical Design Principles and General Hardware
Layout Recommendations

What are the mgjor principles of physical database design? Well, we have alluded to the fact that
physical database design is actually pre-tuning, or nothing more than the second stage of tuning.
(Logical database design isthefirst stage.) It should not be surprising, therefore, to learn that the major
physical database design principles are essentially the same as the major performance tuning principles,
except that we are dealing with the database before and during its construction, rather than after. There
are many design principles, but the maor ones aways include the following:

. Divide and conquer. Partitioning, segmentation, and parallelization are all extensions of the
divide-and-conquer algorithm design approach. If a process time can be broken up to pieces that
can be run concurrently, it is said to be parallelizable. The main requirement for thisis that each
of the pieces of the process must be data-independent; that is, one piece can start regardless of
whether or not any of the others have completed. An

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 40

exampleisto split along-running query to find a sum into two pieces, run them on separate
CPUs, and then add their subtotals to get the final result. Thisis, in fact, what Oracle's Parallel
Query capability provides.

. Predlocate and precompile. Static allocation and fixed allocation mean the same thing as
preallocation. In other words, allocate your resources ahead of time, rather than let the software
do it for you on-the-fly, or dynamically. This typically results in additional computational and 1/O
overhead, which is nearly always undesirable. Precompiled programs will save substantial time
over interpreted programs. DBMS caching handles alot, but the DBA should be on the lookout
for what he or she can also do as a supplement. For example, write generic, reusable procedures
and pin them in memory. Oracle's KEEP operation does the latter. The KEEP operation is
discussed further in Chapter 31, "Tuning Memory."

. Beproactive. Anticipate the magjor problems. Follow the Pareto rule: fix the 20 percent of the
problems that might cause 80 percent of the trouble. Thisis also referred to as the 20/80 rule. A
statistical way of saying thisisthat performance problems aren't uniformly distributed among
causes. We want to try to predict the most major problems and either design them out of the
system or at least compensate and design around them. Consider alarge batch system that runs
only afew major programs serially, each one inserting, updating, or deleting large amounts of
data. The potential problem here is with the transaction log, especially the undo log, growing
extremely large and perhaps running out of room. With Oracle, the undo log is the set of
available rollback segments. Asa DBA, the proper design would to be have at |east one very
large, non-SY STEM rollback segment capable of handling the maximum amount of undo data
generated.

. Bulk, block, and batch. Use mass transit. Batch things together that make sense to be batched.
What this meansis that for things such as disk and network 1/0O, often the best route to take is
mass transit—group together 1/O operations with the same origins and destinations. This works
most often for DSS and batch systems. For example, users may frequently select alarge number
of rows from an extremely large table. Since these selects return so many rows, they never use
any available indexing. If thisisthe case, and without the benefit of any parallelizing hardware or
software, the table should exist contiguously on asingle, large disk. Then we increase the
database logical buffer sizes, and read many physical data blocks at once. In Oracle, for example,
we would set DB_BLOCK _SIZE to the highest amount for our platform; for example, 8K on a
Windows NT machine. We're reading as many blocks as we can with one read request. This all
stems from the simple fact that in most all-electromechanical systems, startup costs are
expensive. An analogous network situation is to send as much in one packet as possible, because
thisis more cost effective.

Page 41

. Segment the application appropriately. This could be considered a subheading under divide and
conquer. But it is somewhat different in that what we are emphasizing is the entire environment
and the application, not just the database behind it (the back end). Consider the relative
performance capabilities of the client, the network, and the server before distributing the
application. Put functionality where functionality is performed logically. For example, display
and presentation duties clearly belong to the client in an interactive application, whereas database
events that act on database objects should be handled at the database (by the DBMS) and not by
some front-end piece of software. In Oracle, use triggers and stored procedures for this design.

The major objective of physical design and tuning isto eliminate, or at least minimize, con-tention.
Contention is when two or more pieces of software compete for the same resource. Common sense only
tells us that something has to wait. To combat this, practice the following layout recommendations:

. Separate tables and indexes.

. Placelarge tables and indexes on disks of their own.

. Place frequently joined tables on either separate disks (or cluster them).

. Place infrequently joined tables on the same disks if necessary (that is, if you're short on disks).
. Separate DBM S software from tables/indexes.

. Separate the data dictionary from tables/indexes.

. Separate the undo (rollback) logs and redo logs onto their own disksif possible.

. Use RAID 1 (mirroring) for undo or redo logs.

. UseRAID 3or 5 (striping with parity) for table data.

. Use RAID 0 (striping without parity) for indexes.

Aswe discussed regarding RAID, manual striping can suffice in certain casesif RAID is not available.
However, in genera it isnot asflexible, safe, or fast. Also, when we say to separate something, we mean
put them on separate disks, but it can further mean to put them on separate disk controllers. The more
controllers, the more ideal the performance and safety.|

Page 42

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 43

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 44

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 45

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0046-0046.html
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0046-0046.html

Previous | Table of Contents | Next

Page 53

CHAPTER 5

The Oracle Instance Architecture

In this chapter

. Introduction 54

. Defining the Instance 54

. Creating the Instance 55

. Understanding the Oracle Instance 55

. Understanding the Anatomy of a Transaction 66
. Monitoring the Instance 67

Page 54
Introduction

When someone refers to the Oracle database, they are most likely referring to the entire Oracle data
management system. But as Oracle professional's, we must recognize the difference between the
database and the instance—a distinction often confusing to non-Oracle administrators. In this chapter we
explore the structure and configuration of the Oracle instance, and continue our exploration of the
internals of the Oracle Relational Database Management System (RDBMYS) in the next chapter by
looking in-depth at the Oracle database. (To avoid confusion, the term RDBMS, is used to describe the
entire data management server consisting of the Oracle database and instance.) The creation of the
instance is automatic and behind the scenes. The details of how and when this happens are discussed.

Defining the Instance

To provide the degree of service, flexibility, and performance that Oracle clients expect, much of the
work done by the database is handled by a complex set of memory structures and operating system
processes called the instance. Every Oracle database has an instance associated with it, and unless the
Oracle Parallel Server option isimplemented, a database is mounted by only one instance. The
organization of the instance allows the RDBM S to service many varied types of transactions from
multiple users ssimultaneously, while at the same time providing first class performance, fault tolerance,
dataintegrity, and security.

NOTE

This chapter defines the term process as any running task, operating without user
intervention. Your particular OS may refer to these as tasks, jobs, threads, and the like.

The instance structure is loosely styled after UNIX's implementation of the multitasking operating
system. Discrete processes perform specialized tasks within the RDBM S that work together to
accomplish the goals of the instance. Each process has a separate memory block that it uses to store
private variables, address stacks, and other runtime information. The processes use a common shared
memory areain which to do its work—a section of memory that can be written to and read from at the
same time by many different programs and processes. This memory block is called the System Global
Area (SGA).

NOTE

Because the SGA resides in a shared memory segment, it is aso often referred to as the
Shared Global Area.

Y ou might think of the background processes as the hands, eyes, ears, and mouth of the database, with
the SGA as the brain, storing and distributing information as necessary. The SGA takes part in all
information and server processing that occurs in the database.

NOTE

Single user Oracle configurations (such as Personal Oracle Lite) do not use multiple
processes to perform database functions. Instead, al database functions are contained
within one Oracle process. For this reason, single user is also known as single process
Oracle.

Page 55
Creating the Instance

Opening an Oracle database involves three steps:

1. Creating the Oracle instance (nomount stage).
2. Mounting the database by the instance (mount stage).
3. Opening the database (open stage).

The Oracle instance is created during the nomount stage of database startup. When the database passes
through the nomount phase the init.ora parameter fileis read, the background processes are started, and
the SGA isinitialized. Theinit.orafile defines the configuration of the instance, including such things as
the size of the memory structures and the number and type of background processes started. The
instance name is set according to the value of the ORACLE_SID environment variable and does not
have to be the same as the database name being opened (but for convenience, usualy is). The next stage
the database passes through is called the mount stage. The value of the control file parameter of the init.
orafile determines the database the instance mounts. In the mount stage, the control fileisread and
accessible, and queries and modifications to the data stored within the control file can be performed. The
final stage of the database iswhen it is opened. In this stage the database files whose names are stored in
the control file are locked for exclusive use by the instance, and the database is made accessible to
normal users. Open is the normal operating state of the database. Until a database is open, only the DBA
is able to access the database, and only through the Server Manager utilities.

In order to change the operating state of the database, you must be connected to the database as internal,
or with SY SDBA privileges. When going from a shutdown state to an open state you can step through
each operating state explicitly, but when shutting down the database you can only go from the current
operating state to a complete shutdown. For example, you can issue the STARTUP NOMOUNT
command in the Server Manager utility. Thiswill put your database into the nomount stage. Next, you
canissue ALTER DATABASE MOUNT or ALTER DATABASE OPEN to step through the operating
stages. At any operating state, if you issue a SHUTDOWN command you will completely shut down the
database. For example, you cannot go from an open state to a mount state.

An instance that does not have a database mounted is referred to as idle—it uses memory, but does not
do any work. An instance can only attach to one database, and unless Parallel Server isbeing used, a
database only has one instance assigned to it. The instance is the brain of the data management
system—it does all the work, while the database stores all the data.

Understanding the Oracle Instance

Figure 5.1 isavisual representation of the Oracle instance. Explanations of the different components
follow.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available

Page 52

Previous | Table of Contents | Next

Previous | Table of Contents | Next

CHAPTER 4

Chapter not available
Page 51

PART II

The Oracle Database Server

5. The Oracle Instance Architecture
6. The Oracle Database Architecture
7. Exploring the Oracle Environment

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0050-0050.html
file:///E|/Computer%20Books/Oracle/using_oracle_8/ch04/0050-0050.html

Previous | Table of Contents | Next

Page 56

FIG.5.1

The Oracle Instanceisa
complex interaction of
discrete processes.

Many parameters and techniques exist to help you configure the instance to best support your
applications and requirements. Configuring the instance objects for peak performanceis, in most cases, a
trial and error procedure—you can start with likely parameter values, but only time and monitoring give
you the best possible mix of all settings and variables.

Configuring instance parameters involves changing the necessary init.ora parameter and bouncing
(stopping and starting) the database. There are numerous init.ora parameters, and many of these are
undocumented. Although you should not change or add unfamiliar initialization parameters, you can
reference the internal x$ksppi table to view all the possible initialization parameters for a database. The
ksppinm and ksppdesc columns give you the parameter name and a brief description of the parameter,
respectively.

NOTE

Manipulating initialization file parameters without a clear understanding of the possible
consequences is dangerous! There are many parameters that exist for pure diagnostic
reasons, which can leave your database in an unsynchronized or corrupted state.
Undocumented parameters are named with aleading underscore. Do not add or change
keys or valuesin theinit.orafile unless you are confident in what you are doing!

For the most part, instance configuration is primarily concerned with the objects in the SGA, and you
find most of your database configuration and tuning time spent with these structures. However, there are
Issues and configuration options with the background processes that also need to be addressed, and we
explore those parts of the instance as well.

javascript:displayWindow('images/ch05fg01.jpg',400,291)

Page 57
The System Global Area (SGA)

The SGA isthe primary component of the instance. It holds al the memory structures necessary for data
manipulation, SQL statement parsing, and redo caching. The SGA is shared, meaning that multiple
processes can access and modify the data contained within it at the same time. All database operations
use structures contained in the SGA at one point or another. As mentioned in the previous section, the
SGA iswhen the instance is created, during the nomount stage of the database, and is deall ocated when
the instance is shut down.

The SGA consists of the following:

. The Shared Pool

. The Database Buffer Cache

. The Redo Log Buffer

. Multi-Threaded Server (MTS) structures

These are each explained in the following sections.

The Shared Pool The shared pool (see Figure 5.2) contains the library cache, the dictionary cache, and
server control structures (such as the database character set). The library cache stores the text, parsed
format, and execution plan of SQL statements that have been submitted to the RDBMS, aswell asthe
headers of PL/SQL packages and procedures that have been executed. The dictionary cache stores data
dictionary rows that have been used to parse SQL statements.

FIG.5.2

The shared pool caches
information used when
parsing and executing
SQL statements.

==

The Oracle server uses the library cache to improve the performance of SQL statements. When a SQL
statement is submitted, the server first checks the library cache to see if an identical statement has
already been submitted and cached. If it has, Oracle uses the stored parse tree and execution path for the
statement, rather than rebuilding these structures from scratch. Although this may not affect the
performance of ad-hoc queries, applications using stored code can gain significant performance
improvements by utilizing this feature.

javascript:displayWindow('images/ch05fg02.jpg',400,145)

NOTE

For a SQL statement to use a previously cached version, it must be identical in ALL
respects to the cached version, including punctuation and letter case—upper versus
lower. Oracle identifies the statements by applying a hashing algorithm to the text of the
statement—the hash value generated must be identical for both the current and cached
statementsin order for the cached version to be used.

Page 58

The library cache contains both shared and private SQL areas. The shared SQL area contains the parse
tree and execution path for SQL statements, while the private SQL area contains session-specific
information, such as bind variables, environment and session parameters, runtime stacks and buffers,
and so on. A private SQL areais created for each transaction initiated, and deall ocated after the cursor
corresponding to that private areais closed. The number of private SQL areas a user session can have
open at onetimeislimited by the value of the OPEN_CURSORS init.ora parameter. Using these two
structures, the Oracle server can reuse the information common across all executions of a SQL
statement, while session-specific information to the execution can be retrieved from the private SQL
area.

NOTE

An application that does not close cursors as they are used continues to allocate more and
more memory for the application, in part because of the private SQL areas allocated for
each open cursor.

The private SQL area of the library cacheis further divided into persistent and runtime areas. Persistent
areas contain information that is valid and applicable through multiple executions of the SQL statement,
while the runtime area contains data that is used only while the SQL statement is being executed.

The dictionary cache holds data dictionary information used by the RDBMS engine to parse SQL
statements. Information such as segment information, security and access privileges, and available free
storage space is held in this area.

The size of the shared pool is determined by the init.ora parameter SHARED POOL_SIZE. Thisvaue
Is specified in bytes. Y ou must set this value high enough to ensure that enough space is available to
load and store PL/SQL blocks and SQL statements. The shared pool becomes fragmented over time
from the loading and unloading of data objects, and errors can occur if there is not enough contiguous
free space in the pool to load an object. Y ou can solve this problem in the short term by issuing the SQL
command ALTER SYSTEM FLUSH SHARED POOL, but if you are regularly encountering shared
pool errors during database operation, you have to increase the shared pool size.

The Database Buffer Cache The operation of the database buffer cache is one of the biggest factors
affecting overall database performance. The buffer cache is made up of memory blocks the same size as
the Oracle blocks. All data manipulated by Oracle isfirst loaded into the buffer cache before being used.
Any data updates are performed on the blocks in memory. For thisreason, it is obviously very important
to size the buffer cache correctly. Memory access is hundreds of times faster than disk access, and in an
OLTP environment, most of your data operations should take place completely in memory, using
database blocks already |oaded into the cache.

The Oracle RDBM S swaps data out of the buffer cache according to a Least Recently Used (LRU) list.
The LRU list keeps track of what data blocks are accessed, and how often. When ablock is accessed or
retrieved into the buffer cache, it is placed on the Most Recently Used (MRU) end of the list. When the
Oracle server needs more space in the buffer cache to read a data block from disk, it accesses the LRU
list to decide which blocks to swap out. Those blocks

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 59

at the far end of the MRU side are removed first. Thisway, blocks that are frequently accessed are kept
In memory.

NOTE

The exception to the LRU loading rule is that data that is accessed through afull table
scan is automatically placed at the bottom of the LRU list. This behavior can be
overridden by specifying the table as CACHE.

Buffer blocks that have been modified are called dirty, and are placed on the dirty list. The dirty list
keeps track of al data modifications made to the cache that have not been flushed to disk. When Oracle
receives arequest to change data, the data change is made to the blocks in the buffer cache and written
to the redo log, and the block is put on the dirty list. Subsequent access to this data reads the new value
from the changed data in the buffer cache.

The Oracle server uses deferred, multiblock writes to lessen the impact of disk 1/0 on database
performance. This means that an update to a piece of data does not immediately update the datain the
datafiles. The RDBM S waits to flush changed data to the data files until a predetermined number of
blocks have been changed, space needs to be reclaimed from the cache to load new data, a checkpoint
occurs, or DBWR times out. When DBWR is signaled to perform a buffer cache write, it moves a group
of blocksto the datafiles.

The key to configuring the buffer cache isto ensure that the correct amount of memory is allocated for
optimal caching of data. This doesn't necessarily mean allocating all possible memory resources to the
buffer cache; however, asin most computer applications, there is a point of diminishing returns with
increased memory allocation. Y ou find that beyond a certain point, the increase in buffer cache hit
percentage gained with an addition of memory becomes less and |ess worthwhile, and that the memory
you are allocating to the buffer cache could be better used in other places, such as other Oracle memory
structures.

Two initialization parameters determine the size of the buffer cache—DB_BLOCK_SIZE and
DB_BLOCK_BUFFERS. The DB_BLOCK_SIZE parameter is used during database creation to set the
size of the Oracle block (which is explained in detail in Chapter 7, "Exploring the Oracle Environment").
The DB_BLOCK_BUFFERS parameter determines the number of blocks to allocate to the buffer cache.
Multiplying DB_BLOCK_SIZE * DB_BLOCK_BUFFERS gives you the total amount of memory (in
bytes) of the buffer cache.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0061-0063.html

The Redo L og Buffer The redo log buffer is used to store redo information in memory beforeit is
flushed to the online redo log files. It isacircular buffer, meaning that it fills from top to bottom and
then returns to the beginning of the buffer. Asthe redo log buffer fills, its contents are written to the
onlineredo log files.

The redo log buffer is sized by means of the LOG_BUFFER initialization parameter. The valueis
specified in bytes, and determines how much space is reserved in memory to cache redo log entries. If
thisvalueis set too low, processes contend with each other and the Log Writer (LGWR) (explained
later) process reading and writing to the buffer, possibly causing performance problems. Thisis,
however, ararity in all but the most active of databases and can be monitored using the v$sysstat view.
Query v$sysstat for the "value" field with the field "name"

Page 60

equal to "redo log space requests.” This indicates the time user processes spent waiting for the redo log
buffer.

To enforce the sequential nature of the redo log writes, the Oracle server controls access to the buffer
using alatch. A latch is nothing more than alock by an Oracle process on a memory structure—similar
in concept to afile or row lock. A process must hold the redo allocation latch to be able to write to the
redo log buffer. While one process holds the allocation latch, no other process can write to the redo log
buffer using the allocation latch.

The Oracle server limits the amount of redo that can be written at one time using the value of the
initialization parameter LOG_SMALL_ENTRY_MAX_SIZE. This parameter is specified in bytes, and
the default value varies, depending on OS and hardware. For servers with multiple CPUs, the Oracle
server does allow redo entries needing space greater than the value of the
LOG_SMALL_ENTRY_MAX_SIZE parameter to be written using the redo allocation latch. Instead,
processes must hold aredo copy latch. The number of redo copy latches available is equal to the value
of the LOG_SIMULTANEOUS COPY initialization parameter. The default for
LOG_SIMULTANEOUS COPY isthe number of CPUs in the system. Using redo copy latches,
multiple processes can simultaneously write to the redo log buffer.

Y ou can monitor the redo allocation and copy latches using the v$latch dynamic performance view. (See
Chapter 31, "Tuning Memory," for more information on tuning the redo latches.)

The Oracle Background Processes

At any one point in time, an Oracle database can be processing thousands (or millions!) of rows of
information, handling hundreds of simultaneous user requests, and performing complex data
manipulations, all while providing the highest level of performance and data integrity. To accomplish
these tasks, the Oracle database divides the grunt work between a number of discrete programs, each of

which operates independently of one another and has a specific role to play. These programs are referred
to as the Oracle background processes, and are the key to effectively handling the many operational
stresses placed upon the database. A complete understanding of the background processes and the tasks
they perform helps you to analyze performance problems, pinpoint bottlenecks, and diagnose trouble
spots in your database.

NOTE

On Windows NT servers, the background processes are implemented as multiple threads
to the Oracle Service. This allows the Oracle process to use shared memory address
space more efficiently, and results in less context changes by the Windows NT OS to
handle Oracle operations.

The Oracle background processes are as follows:

. SMON and PMON
. DBWR

. LGWR

. ARCH

. CKPT

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0061-0063.html

Previous | Table of Contents | Next

Page 73

CHAPTER 6

The Oracle Database Architecture

In this chapter

. Defining the Database 74

. TheSYSand SYSTEM Schemas 74

« Understanding the Components of the Database 75
« Understanding Database Segments 85

. Using the Oracle Data Dictionary 89

« Other Database Objects 90

Page 74
Defining the Database

The term database is used both as the name for the entire database management environment and as a
description (in Oracle terms) of the logical and physical data structures that make up the Relational
Database Management System (RDBMS). As Oracle professional's, we define the Oracle database as the
configuration files, datafiles, control files, and redo log files that make up the data processing
environment, as well as the tables, indexes, and other structures contained within these objects.

The SYS and SYSTEM Schemas

There are two default accounts installed with every Oracle database that you should know about. The
SY S schemaisthe owner of all of theinternal database tables, structures, supplied packages, procedures,
and so on. It also owns al of the V$ and data dictionary views and creates all of the packaged database
roles (DBA, CONNECT, RESOURCE, and so on). SY Sistheroot or administrator ID of an Oracle
database, and because of the all-powerful nature, you should avoid doing work logged in asit. Making a
simple typo when you're logged in as SY S can be devastating.

The SY S UserID isthe only one able to access certain internal data dictionary tables. Because it owns all
of the data dictionary structures, it is also the schema you must log in to in order to grant explicit rights
to data dictionary objects to other schemas. Thisis necessary when you're writing stored procedures or

triggers using the data dictionary views and tables. The default password for the SY S account when a
databaseisfirst installed is CHANGE_ON_INSTALL, and every DBA worth his or her salt will follow
that advice to the letter.

The SY STEM schemaiis also installed upon database creation and is the default schema used for DBA
tasks. SYSTEM also hasfull rightsto all database objects, and many third-party toolsrely on the
existence and privileges of the SY STEM schema. The default password for the SY STEM account is
MANAGER, and like the SY S account should be changed immediately after creating a database. Many
DBAs use the SY STEM schemato perform database administration tasks, but it's preferable to create a
specific schemajust to do DBA tasks. This ensures that a specific UserlD, linked to a specific person, is
responsible for any database modifications.

Because these schemas are well known and exist in every Oracle database, it is important to change their
default passwords immediately upon database installation, securing the accounts against unauthorized
access. If security isamajor issue, you might also consider making it impossible to log in to these
accounts and setting valid passwords only when it is necessary

to log in to them.

NOTE

Y ou can make it impossible to log in to an account by issuing ALTER USER xxx
IDENTIFIED BY VALUES "password';, where “password' is any lowercase string. This
sets the stored password to the actual value you give, rather than the encrypted version
Oracle would store with anormal ALTER USER xxx IDENTIFIED BY “password';
command. It isimpossible for Oracle to generate a lowercase encrypted password string,
making it impossible to log in to the account.

Page 75

Understanding the Components of the Database

We can group the pieces of the database into two distinct categories. objects used internally by the
RDBMS, which we call system database objects, and objects that can be accessed by any process, which
we call user database objects.

System Database Objects

When referring to system database objects, we're looking at the database objects the RDBM S uses to
support internal database functions. These objects are configured and created by the DBA or the server
itself and are not explicitly used in end user database transactions.

The system database objects are:

. Theinitialization parameter file(s)
. Thecontrol file

« Onlineredo log files

. Thearchived redo logs

. Thetracefile(s)

. The ROWID

. Oracle blocks

An explanation of each of these objects follows.

The Initialization Parameter File(s)The initialization parameter file, or init.ora, isthe primary
configuration point for the RDBMS. It is nothing more than a collection of configuration keys and
values, each of which controls or modifies one aspect of the operation of a database and instance. It is an
ASCII text file found in SORACLE_HOME/dbs on UNIX servers and SORACLE_HOME/database on
Windows NT servers. By default it is named initSID.ora, where SID is equal to the system identifier for
the database it controls. On a UNIX server thisis the filename the Oracle server will look for (where
SID will be equal to the value of the SORACLE_SID environment variable) when starting the database,
if aninit.orafileisnot explicitly provided on the command line. Each Oracle database and instance
should have its own unique init.orafile.

Theinit.orafile can include configuration values from other files using the |FILE parameter. It's a'so
quite common in UNIX environments to link the SORACLE_HOME/dbg/init.orafileto afile in another
location, to allow better control and structure of the database environment installation. Undocumented
parameters (used primarily by Oracle Worldwide Customer Support) are named with aleading
underscore.

Theinit.orais read when the database is started, before the instance is created or the control files are
read. The valuesin the init.ora determine database and instance characteristics such as shared poal,
buffer cache, and redo log buffer memory allocations, background processes to automatically start,
control filesto read, rollback segments to automatically bring online, and so on. Changes made to
parametersin the init.orafile will not be recognized until the database is shut down and restarted.

Page 76
The default init.orafile shipped with the Oracle RDBMS, located in the SORACLE_HOME/dbs
directory, comes preconfigured with the essential init.ora parameters and different recommended

(arbitrary) values for small, medium, and large databases. This file can be copied and renamed when
you're creating new databases and instances.

The configuration parameters set in the init.ora file can be viewed from within a database by querying

the VSPARAMETER view. Thisview lists all of theinit.ora parameters and their values, and each one
has a flag indicating whether the parameter value is the server default or not.

Explanations of the parameters contained within the default init.orafile are given in Table 6.1. For a
more comprehensive list, consult the Oracle Server Reference Manual contained within your server
documentation set.

Table 6.1 Common init.ora Parameters

Parameter Name Use

Enables or disables writing
records to the audit trail.

audit_trail Note that this merely allows
auditing; audit actions must
be configured separately.

Destination directory for
Oracle background process
trace files, including alert.
log.
Compatibility level of the
database. Prevents the use of
compatible database features introduced
in versions higher than the
value of this parameter.

The control filesfor this
database.

Number of database blocks
contained in the buffer cache.
db _block buffers ¥
db_block size = size of
database buffer cache, in
bytes.

Size of the Oracle database
block. Cannot be changed
once the database has been
created.

Maximum number of
db files database files that can be
opened.

background dump_dest

control_files

db_block buffers

db_block size

db_name

db_file multiblock read count

dml_locks

log_archive dest

Optional name of the
database. If used, must match
the database name used in
the CREATE DATABASE
statement.

Maximum number of
database blocksread in one |/
O. Used for sequential scans,
and important when tuning
full table scans.

Maximum number of DML
locks for all tables by all
users of the database.

Destination of archived redo
log files.

Previous | Table of Contents | Next

Previous | Table of Contents | Next
Page 72

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 68

guery given below from decimal to hexadecimal, you can match the Windows NT thread ID with the
background process from the Oracle side.

SELECT spid, nane FROM v$process, v$bgprocess WHERE addr = paddr;

(See Appendix B, "Oracle on Windows NT," for more information on tuning and tracking Windows NT
background threads.)

Using the v$ Tables to Monitor Instance Structures

Numerous dynamic performance views are available to the DBA to display instance information. These
views are invaluable when attempting to discover the current state of the database instance, and
troubleshoot problems related to the instance.

Monitoring Database Connections Both user and background processes that are connected to the
instance can be monitored using the v$ views. The v$process view displays information about all
processes that are connected to the database, including background and user processes. V $bgprocess
contains alist of all possible background processes, with an additional column, PADDR, that contains
the hexadecimal address of running background processes (or 00 for those that are not running).

The columns of interest to us from the v$process table are as follows:

Column Usage

ADDR Oracle Address of the Process
PID Oracle Process ID

SPID OS System Process ID
USERNAME OS Process Owner

SERIAL# Oracle Process Serial#

TERMINAL OS Terminal Identifier
PROGRAM OS Program Connection

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0066-0067.html

1 for Background Process, NULL for User

BACKGROUND
Process

The columns of interest to us from the v$bgprocess table are as follows:

Column Usage
Oracle Process Address (Same as ADDR

PADDR column of v$process)

NAME Name of the Background Process
DESCRIPTION Description of the Background Process
ERROR Error State Code (0 for no error)

Y ou can display the addresses and names of all running background processes by joining the v$process
and v$bgprocess table, asin the following query:

Page 69

SELECT spid, nane

FROM v$process, v$bgprocess

VWHERE paddr (+) = addr;

Information about user sessions that are connected to the database are stored in the vésession view. The v
$session view contains many fields, and agreat deal of valuable information can be accessed from this

view.

The columns of interest from the v$session view are as follows:

Column Usage

SID Session ldentifier

SERIAL# Session Seria#

PADDR Address of Parent Session
Oracle User Identifier

USER# (from the SY S.USER$
table)

USERNAME Oracle Username

Current Command in
Progress for this Session.
COMMAND For number to command
tranglations, see the sys.
audit_actionstable

Status of the Session
STATUS (ACTIVE, INACTIVE,
KILLED)

Type of Server Connection
the Session Has
DEDICATED, SHARED,
PSEDUO, or NONE)

OS Username the
OSUSER Connection Has Been
Made From

OS Program Making the
PROGRAM Connection into the
Database

Type of Terminal the
Connection Is Made From

Type of Session
TYPE (BACKGROUND or
USER)

Used to Uniquely Identify
the Currently Executing
SQL Statement

SERVER

TERMINAL

SQL_HASH_VALUE and
SQL_ADDRESS

The following query displays important information on connected processes. It also demonstrates the
manner in which the process views relate to each other:

col bgproc format a6 headi ng " BGProc'

col action format alO heading DB Action'
col program format alO

col usernane format a8

col termnal format alO

Page 70
SELECT

b. nane bgproc, p.spid, s.sid, p.serial#, s.osuser,
s.usernane, s.term nal,

DECODE(a. nane, ~UNKNOWN , " ----- ', a.nane) action
FROM
v8process p, v$session s, v$bgprocess b,
sys.audit_actions a
VWHERE
p. addr =s. paddr (+) AND b. paddr(+) = s.paddr AND
a.action = NVL(s.action, 0)
ORDER BY
si d;

By querying the v$access view, you can display information on what database objects users are
currently accessing. Thisis useful when trying to figure out what a third-party application or
undocumented procedure is doing, and can also be used to resolve security problems. By using a DBA
account to run an application or procedure that is giving you security problems, you can determine the
exact objects to which security should be granted.

Finally, the vémts view contains tracking information for shared server processes. This view contains
columns for maximum connections, servers started, servers terminated, and servers highwater.

Monitoring the Shared SQL Area Often it is useful to be able to ook into the RDBM S engine and see
what SQL statements are being executed. The v$sglarea view contains information on SQL statements
in the shared SQL area, including the text of SQL statements executed, the number of users accessing
the statements, disk blocks and memory blocks accessed while executing the statement, and other
information.

NOTE

The disk_reads and buffer _gets columns that are found in v$sglarea track the number of
blocks that are read from disk and from the buffer cache. These two columns are quick
and easy waysto find queries that are utilizing large amounts of database resources.

The v$open_cursor view is aso useful to investigate cursors that have not yet been closed. The
following query displays al open cursorsfor agiven user's SID:

SELECT b. pi ece, a.sqgl text
FROM v$open _cursor a, v$sqgltext b
VHERE
a.sid = &SID and
a.address = b. address and
a. hash_val ue = b. hash_val ue
ORDER BY
b. address, b. hash_val ue, b.piece asc;

The v$sgltext view can also be used to determine what SQL statements are passed to the database
engine. Unlike vésglarea, which only stores the first 80 characters of the SQL statement, this view holds
the entire SQL statement. The v$sgltext with _newlines view isidentical to

Page 71

NOTE

vsgltext, except that the newline charactersin the SQL statements have been left in
place.

The SQL statements stored in vésgltext are split into pieces. To retrieve the entire statement, you have to
retrieve all the parts of the SQL statement and order by the PIECE column.

Monitoring the SGA There are two v$ views available that provide information about the operation of
the SGA. The v$sga view displays the size (in bytes) of each major component of the SGA, including
the redo log cache, the database buffer cache, and the shared pool. The v$sgastat contains much more
interesting information. Within this view you find the specific size for each individual memory structure
contained in the SGA, including the memory set aside for stack space and PL/SQL variables and stacks.
Y ou can also query this view to find the amount of free memory available in the SGA:

SELECT bytes FROM v$sgastat WHERE nanme = free nenory';

Monitoring the Library and Dictionary Cache Two views exist that contain information regarding the
library and data dictionary cache. v$librarycache contains library cache performance information for
each type of object in the library cache. The v$rowcache view contains performance information for the
data dictionary cache. (See Chapter 31 for more information on these views and the information
contained in them.)

Monitoring the Parallel Query Processes The v$pq_sysstat and v$pq_tqstat views contain information
on the parallel server processes and their behavior. Query v$pq_sysstat to display current runtime
information on parallel query servers, such as the number of query servers busy and idle and dynamic
server creation and termination statistics. The v$pq_tgstat view contains information on queries that
have previously run that used parallel query servers. (See Chapter 26, "Parallel Query Management,” for
more information on tracking the parallel servers.)

Monitoring the Archiver Processes Archiver activity is stored in the v$archive view. Y ou can retrieve
information on the archived logs written by ARCH from this view. (For an explanation of the columns
in this view, see Chapter 27.)

Monitoring the Multi-Threaded Server Processes The vémts, v$dispatcher, and véshared server
views contain information on the status of the M TS processes and memory structures. vémts contains
tracking information on the shared server processes such as the number of servers started, terminated,
and the highwater value for running servers. védispatcher contains information on the dispatcher
processes running. From this view you can query the name, supported protocol, number of bytes
processed, number of messages processed, current status, and other runtime information relating to the
dispatcher processes. The v$shared server view provides the same type of information, but for the
shared running shared server processes.

(See Chapter 19, "Oracle Networking Fundamentals," for more information on setting up and tuning the
shared server and dispatcher processes.)

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch05/0066-0067.html

Page 77

Previous | Table of Contents | Next

Parameter Name

log_archive_start

log_buffer

log_checkpoint_interval

max_dump file size

processes

remote_login_passwordfile

rollback _segments

sequence_cache entries

Use

Enables or disables automatic
archiving. When true, the ARCH
process will automatically start
when the instance is started.

Number of bytes allocated to the
redo log buffer.

The number of redo log file
blocks that must befilled to
trigger a checkpoint.
Maximum size in operating
system blocks of Oracle trace
files.

Maximum number of OS
processes that can connect to the
database, including the
background processes. |mportant
when tuning shared memory on a
UNIX server.

Specifies whether a password
fileisused for remote internal
authentication, and how many
databases can useasingle
password file. Can be set to
NONE, SHARED, and
EXCLUSIVE.

List of rollback segmentsto
automatically take online at
database startup.

Number of sequences that can be
cached in the SGA. Should be
set to the maximum number of
sequences that will be used in the
instance at one time.

shared pool_size Size of the shared pool, in bytes.

Number of SNP processes to
start at instance startup. SNP
processes are responsible for
refreshing snapshots and running
database jobs submitted with
DBMS_JOB.

Enables or disables the collecting
of timing statistics for the
database. While setting thisto

timed_statistics true incurs aminimal
performance overhead, it allows
much greater flexibility in
database tuning.

Destination directory for user
trace files,including those
generated by setting sgl_traceto
true.

snapshot_refresh processes

user _dump_dest

The Control FileThe control file is the heart of the database. It contains information on what datafiles
and redo log files belong to the database, what character set the data should be stored as in the database,
the status and revision of each datafile in the database, and other critical information. Most of the
parameters contained in the control file are set during database creation and are relatively static—they
do not change from day to day. The control fileisin binary format and cannot be read or edited
manually.

Page 78

The control fileis created when the database is created. Most databases operate with multiplexed control
files (as explained later) and are therefore usually referred to in the plural. The specific control files
created are those specified in the CONTROL_FILES init.ora parameter. The database creation
parameters specified in the CREATE DATABASE clause are stored in these files.

The database cannot be opened without the correct control files. If the control file is unavailable or
corrupted for some reason, the database cannot be started and the data contained in the database cannot
be accessed. For this reason, mirroring of the control filesisinternally supported by the Oracle server
and is highly recommended. To mirror control filesin a new database, merely specify more than one
value for the CONTROL_FILES init.ora parameter before issuing the CREATE DATABASE
command. To mirror control filesin a preexisting database, you must shut down the database, copy the
current control file to the directories where you want it to be mirrored, edit the CONTROL_FILES
parameter to specify the new control file locations, and start the database.

NOTE

A good rule of thumb isto store no fewer than three copies of the control files on three
separate physical disks.

Unfortunately, modifying control file parametersis not as easy as changing an initialization parameter
and bouncing the database. To change any of the control file parameters, you must re-create the control
files. Follow these stepsto re-create your control file:

1.

2.

ok

6.

Back up your database. Making an error while modifying your control file can corrupt your
database beyond recovery. Never perform this activity without a valid backup of the database.
Issue the ALTER DATABASE BACKUP CONTROLFILE TO TRACE; command from Server
Manager or SQL*Plus. This creates a user trace file (located in USER_DUMP_DEST) with the
commands necessary to re-create your current control file.

Edit the trace file generated in the preceding step. Delete all of the linesin the trace file except
for the CREATE CONTROLFILE statement. Set the new parameter values.

Shut down your database normal, by issuing the SHUTDOWN command in Server Manager.
Start your database in nomount mode, by issuing the STARTUP NOMOUNT command from
Server Manager.

Execute ALTER DATABASE OPEN;.

Y ou can avoid ever having to re-create your control files by setting the database parameters during
database creation to values higher than you'll ever need. The only thing wasted in setting these control
file parameters higher than needed is a negligible amount of disk space.

Page 79

CAUTION

It's important that you set the CHARACTERSET parameter correctly when you create
the database. Changing this parameter requires re-creating the entire database. It cannot
be changed by rebuilding the control file.

The configurable control file parameters are listed in Table 6.2.

Table 6.2 Modifiable Configuration Parameters Contained in the Control File

Parameter Name Description

Maximum number of online redo log
files

Maximum number of members per
redo log file

MAXDATAFILES Maximum number of datafiles

M aximum number of instances that
MAXINSTANCES can mount this database
(parallel server)

Maximum number of archived redo
MAXLOGHISTORY log file groupsto use for
instance recovery (parallel server)

MAXLOGFILES

MAXLOGMEMBERS

NOTE

To change the database name, re-create the control file as described, but change the
REUSE DATABASE "OLD_NAME" linein thetracefileto SET DATABASE
"NEW_NAME".

The VSCONTROLFILE view lists the control files that the Oracle server is currently reading from and
writing to.

Online Redo Log FilesThe log writer background process (LGWR) writes the contents of the redo log
cache to the online redo log files. The redo logs store all of the change information for the database and
are used by Oracle during database recovery.

Asshown in Figure 6.1, the online redo log files are made up of at least two groups of redo log files and
are written to in acircular nature. A redo log group is activeif it is currently being written to by LGWR.
A log switch occurs when the current log group fills up and LGWR stops writing to it and moves on to
the next one. When alog switch occurs and archivelog mode is enabled for the database, the redo log
group previoudly written to is locked by the archiver (ARCH) process and copied to disk or tape,
depending on your configuration. If LGWR catches up with the ARCH process and needs to write to the
group currently being written to by ARCH, all database activity will be suspended until ARCH finishes
writing to the log. If you see errorsin your aert.log file stating that afree log group could not be latched
by LGWR, this behavior is occurring in your database, indicating that you need to add more redo log
groups or adjust the size of the groups.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 80

FIG. 6.1
Redo log groups with
multiple members.

Each log group can consist of multiple members. Each member of alog group is an exact mirror of the
others, and redo log entries are written to each member in parallel. If LGWR cannot write to a member
of the group, it does not fail. Rather, it writes an entry into the aert.log file. By using multiple members
per group, you can safeguard against database failure resulting from lost redo logs. Aslong as one
member of the group is accessible, the database will continue to function.

NOTE

The same functionality can be obtained by mirroring your redo log groups using RAID 1
(Mirrored) or RAID 5 volumes. This alleviates the overhead caused when LGWR hasto
update multiple log group members for each database transaction.

As shown in Figure 6.2, the redo logs are written to in acircular fashion. LGWR writes to one group
until it isfull. It then moves on to the next group in the sequence. Meanwhile, ARCH will copy the just-
filled online redo log to the operation system as an archived redo log. This process will continue until all
of the logs have been filled, and then LGWR will begin writing back at the first online redo log. At no
point will LGWR write to an online redo log that ARCH is still copying. If this happens, all database
activity will seem to halt until ARCH has finished its copy. This LGWR-ARCH contention can be
avoided by having online redo log groups of ample size and number available in the database.

Page 81
FIG. 6.2

Redo logs are written to
in acircular fashion.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0083-0084.html
javascript:displayWindow('images/ch06fg01.jpg',400,263)
javascript:displayWindow('images/ch06fg02.jpg',400,197)

The V$LOG and VSLOGFILE views hold information on the online redo log files. The following query
checks the status of the current logs:

SELECT nenber, bytes, nenbers, a.status
FROM v$l og a, v$logfile b

VWHERE a. group# = b. group#

ORDER BY nenber ;

SELECT b. nenber, b.bytes, b.nenbers, a.status
FROM v$l og a, v$logfile b

VWHERE a. group# = b. group#

ORDER BY b. nmenber;

The Trace File(s)All Oracle databases have at |east one file where system messages, errors, and major
events are logged. Thisfile, named sSIdALRT.log (where sid is the system identifier for the database), is
stored at the location specified by the init.ora parameter BACKGROUND DUMP_DEST. Itisthefirst
place you should look when investigating database problems. Critical failures are always logged here, as
well as database startup and shutdown messages, |og switch messages, and other events.

Background and user processes also create their own trace files where problems and failures are logged.
Background process trace files are stored in the BACKGROUND_DUMP_DEST location, while user
trace files are stored in the directory pointed to by the USER_DUMP_DEST parameter setting. Setting
the USER_DUMP_DEST directory differently than that pointed to by BACKGROUND_DUMP_DEST
will allow you to keep track of the different classes of trace files. Background process trace files are
named sidPROC.trc, where sid is the system identifier for the database and PROC is the name of the
background process (DBWR, LGWR, SMON, PMON, and so on).

User session trace files are given an ora prefix, followed by a sequence of unique numbers, with a .trc
file extension. User session trace files are generated when a user session causes an unrecoverable
problem (such as a deadlock or a crashed server process) or when the user session is explicitly told to,
such aswhen SQL tracing is enabled or an ALTER DATABASE BACKUP CONTROLFILETO
TRACE command isissued. To enable SQL tracing, issue ALTER SESSION

Page 82

SET SQL_TRACE=TRUE from the SQL*Plus prompt, or set the SQL_TRACE init.ora parameter to
true. Be cautious, however, because setting SQL_ TRACE to truein init.orawill cause all SQL
statements that occur against the database to be written to trace files; this will generate an enormous
amount of trace information.

The current settings for the BACKGROUND_DUMP_DEST and USER_DUMP_DEST parameters can
be queried from the VSPARAMETER view.

The ROWIDFor the Oracle database to retrieve information, it must be able to uniquely identify each
row in the database. The internal structure the Oracle RDBMS uses for thistask is called the ROWID, a
two-byte value that stores the physical location for arow in the database. The format of the ROWID is
asfollows:

BBBBBBBB. RRRR. FFFF

wher e

BBBBBBBB i s the bl ock nunber (in hex) where the row resides in the
datafil e,

RRRR is the row nunber (in hex) in the block where the data row
exi sts, and

FFFF is the file where the bl ock exists.

For example, arow in atable might have a OWID as follows:
0000068C. 0000. 0001

ThisROWID isinthefirst datafile (0001), the 68C (hex) block in that datafile, and the first row in that
block (0000).

NOTE

Y ou can match the file number from the preceding ROWID to the filename by querying
the DBA_DATA_FILESview. In Oracle?, these file numbers are fixed, while in Oracle8
they are determined at database startup.

A row isassigned a ROWID when it isfirst created. The ROWID remains the same until the row is
deleted or the segment the row isin is reorganized (through import/export, third party reorganization
tools, and so on). Using the ROWID is the fastest method of finding arow in the database. Every table

in the database contains a pseudocolumn named ROWID, which can be queried to show the ROWID of
each row in thetable.

Because of the unique nature of the ROWID, it can be used to creatively solve many different problems.
For example, one of the most common usages of the ROWID isto identify columns with duplicate
valuesin the database. The following SQL script shows how this can be done:

delete fromduplicate_ table
where ROND not in (select MN (ROND) fromduplicate table
group by al, a2);

Y ou can also use the value of the actual ROWIDs in queries. The following SQL script will display the
number of database files atable hasrowsin:

SELECT COUNT(DI STI NCT(SUBSTR(ROWN D, 15, 14)))) "Files"
FROM t est _t abl e;

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0083-0084.html

Previous | Table of Contents | Next

Page 93

CHAPTER 7

Exploring the Oracle Environment

In this chapter

. Creating the Oracle Environment 94

. Designing an Optimal Flexible Architecture 94

. Configuring the Oracle Environment 101

. Understanding the Oracle Software Environment 101
. Creating Your First Database 106

. Exploring the Oracle Database 111

. Exploring an Unfamiliar Environment 115

Page 94
Creating the Oracle Environment

The Oracle database is a powerful yet complicated data storage and retrieval system, capable of
supporting enormous workloads while maintaining high levels of performance, security, and data
integrity. An integral part of a successful database isthe manner in which the softwareisinstalled and
configured on the database server. This chapter examines the role the server software and configuration
plays in the database environment, and deciphers the sometimes confusing aspects of the Oracle server
installation. This chapter also explores strategies for creating your Oracle server environment, as well as
your first Oracle database. Finally, it looks at what you can do to familiarize yourself with an unfamiliar
Oracle database.

When configuring a server to house the Oracle software, you must take several key factors +into
consideration. These include the flexibility of the design, the ease of administration, and the simplicity
of the structure. If you design your environment with these points in mind, you will be rewarded with an
environment conducive to your uptime and performance goals, as well as avoid the problems and
anxiety that a poorly designed server structure can create.

Designing an Optimal Flexible Architecture

The Oracle standard for creating and configuring your Oracle environment is named the Optimal
Flexible Architecture, or OFA, Standard. It is a set of rules and guidelines that enables you to easily
create and configure a production-level Oracle server. Asthe name states, the OFA Standard was created
to give you the most flexible Oracle environment without sacrificing usability, ease of administration, or
simplicity of design.

Mr. Cary Millsap of Oracle Corporation wrote the OFA Standard in the early 1990s. The definitive
white paper on the structure can be found at http://www.europa.com/~orapub/index.html. Mr. Millsap's

article goes into much more detail than will be described here. His white paper deals with configuring
the entire environment, while we are concerned with the creation and configuration of the operating
system directory structures and naming conventions used to support the Oracle database. Mr. Millsap's
OFA Standard paper isrequired reading for any Oracle DBA or systems integrator interested in the best
practices for implementing an Oracle installation.

Mr. Millsap sums up the purpose of the OFA Standard Recommendations with his statement that "A
good standard should act as a strong floor, without becoming a ceiling that inhibits "creative magic.™
The OFA Standard Recommendations are just those—recommendations. Y our specific environment will
have requirements and specifications that are best met with methods not included in (or contrary to) the
OFA Standard. However, close study of the OFA Standard will reveal many best practice methods that
would only be obvious through difficult trial, error, and experience.

Creating Top-Level Directories

The first step in configuring your environment is to decide on the naming and creation of the OS mount
points and top-level directories of your Oracle installation. As with many

Page 95

configuration items, the implementation varies from UNIX to Windows NT, but the general concepts
remain the same. The first OFA rulerelatesto thistopic and is

OFA Recommendation 1: Name all mount points that will hold site-specific data to match
the pattern /pm, where p is a string constant chosen not to misrepresent the contents of any
mount point, and m is a unique fixed-length key that distinguishes one mount point from
another.

In other words, create top-level mount points that are unique, but do not have meaning in and of
themselves. The character portion (p) should be short and simple—one or two characters are ideal. The
numbered portion distinguishes the mount points from each other. Each mount point should have the
same named portion, and be of the same length, for example, u01, u02, and u03 or ora01, ora02, and
ora03.

file:///E|/www.europa.com/~orapub/index.html.

On aWindows NT server, the different drives and volumes are aready separated according to drive
|etters. This makes the usage of mount-point names as described above unnecessary. Use a directory
named orant (the default Oracle name) on each drive to denote Oracle applications and files.

NOTE

To minimize confusion, UNIX naming conventions will be used throughout this
explanation. However, unless otherwise indicated, al of the structure and naming
conventions given are applicable to both UNIX and Windows NT environments.

Using mount points without site-specific, application-specific, or hardware-specific connotations enables
great flexibility when reconfiguring your system. Consider the following example: Bob, a novice DBA,
names mount points on his UNIX system that refer to the physical disks each mount-point volumeis
attached to. This makesit very easy for Bob to balance his datafile I/O over drives. By glancing at the
pathname, he can tell that his main data tablespace is on DISK01, while hisindex tablespaceison
DISKO05. But, as always happens, Bob's database grows, forcing him to add more disks and new
hardware. Bob wants to take advantage of his new RAID controller to stripe and mirror some volumes,
which means he must reorganize his entire drive subsystem to accomplish this goal. Unfortunately, this
also meansthat if he wants to keep his naming convention, he must rename his mount points and change
all of hisbackup scripts, applications, and so on, to point to the new paths. Bob could have avoided this
hassle by using directory names that are unique, but that by themselves have no meaning.

Using Application Directories

One of the benefits gained from implementing an OFA-compliant configuration is the ease in which
multiple applications and multiple versions of the same application can be installed, using the same
directory structure. In an OFA environment, each application has its own home directory that stores the
binaries, configuration files, and so forth that are necessary for running the application. The next two
OFA rulesrelate to this and are as follows:

OFA Rule 2: Name application home directories matching the pattern /pm/h/u, where pm
IS amount-point name, h is selected from a small set of standard directory names, and uis
the name of the application or application owner.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 91

information, while not showing Social Security number and salary data), and to make complicated
gueries easier to understand and use. Views can aso be used to hide distributed database objects by
creating views on remote database tables. Any statement that can be executed as a SQL query can be
created asaview.

NOTE

Views can be very helpful when designing applications because they can be used to hide
complicated query logic in atable format that is much easier to query. They can be
created with optimizer hints embedded in them, to ensure top query performance.

The DBA_VIEWS view holds information on views created in the database.

Sequences

Seguences are database objects that are used to generate unique numbers. A sequenceis created with a
starting value, an increment, and a maximum value. Each time a number is recalled from a sequence, the
current sequence value is incremented by one. Each sequence-generated number can be up to 38 digits
long.

Y ou use a sequence by selecting the NEXTVAL or CURRVAL pseudocolumns from it. If you have a
sequence named EMP_SEQ, for example, issuing SELECT EMP_SEQ.NEXTVAL FROM DUAL will
return the next integer value of the sequence and increment the current value of the sequence by one.
You can SELECT EMP_SEQ.CURRVAL FROM DUAL to return the current integer value of the
sequence. Note that to use CURRVAL, you must have initialized the sequence for your user session by
previously issuing a query on the NEXTVAL pseudocolumn of the sequence.

The most common usage of sequencesis to provide unique numbers for primary key columns of tables.
Information on sequencesis stored in the DBA_SEQUENCES view.

Triggers

Triggers are stored procedures that fire when certain actions occur against atable. Triggers can be coded
to fire for inserts, updates, or deletes against a table and can aso occur for each row that is affected or
for each statement. Triggers are most often used to enforce data integrity constraints and business rules
that are too complicated for the built-in Oracle referential integrity constraints. Information on database

triggers can be found in the DBA_TRIGGERS view.
Synonyms

Synonyms are database pointers to other database tables. When you create a synonym, you specify a
synonym name and the object the synonym references. When you reference the synonym name, the
Oracle server automatically replaces the synonym name with the name

of the object for which the synonym is defined.

There are two types of synonyms: private and public. Private synonyms are created in a specific schema
and are only accessible by the schemathat owns it. Public synonyms are owned by the PUBLIC schema,
and all database schemas can reference them.

Page 92

It's important to understand the order in which an object name is resolved within a SQL statement. If the
SQL statement SELECT * FROM EMP_SALARY isissued, the Oracle server attempts to resolve the
EMP_SALARY object in the following way:

1. Firgt, the server checksto seeif atable or view named EMP_SALARY existsin theissuing user's
schema.

2. If the table or view doesn't exist, Oracle checks for the existence of a private synonym named
EMP_SALARY.

3. If this private synonym exists, the object that the synonym references is substituted for
EMP_SALARY.

4. If the private synonym does not exist, the existence of a public synonym named EMP_SALARY
Is checked.

5. If apublic synonym does not exist, Oracle returns the message ORA-00942, table or view does
not exist.

Public synonyms should be used with care. Because all schemas can use public synonyms to resolve
object names, unpredictable results can occur.

Information on public synonymsis stored in DBA_SYNONY MS. Note that the owner of public
synonyms will be listed as PUBLIC in this view.

Database Links

Database links are stored definitions of connections to remote databases. They are used to query remote
tables in a distributed database environment. Because they are stored in the Oracle database, they fall
under the category of database object. More information on database links can be found in Chapter 28,
"Distributed Database Management.”

Information on database links can be found in the DBA_DB_LINKS data dictionary view.

CAUTION

DBA_DB_LINKS isone of the views that can store passwordsin clear text, if the
database link is defined with a specific UserlD and password to connect to the remote
database. Care should be taken when allowing end users access to this database view.

Packages, Procedures, and Functions

Stored packages, procedures, and functions are stored in the data dictionary, along with their source
code. A stored procedure is a code unit that does work, can be passed arguments, and can return values.
A stored function is a code unit that is passed an argument and returns one value. A packageisa
collection of procedures, variables, and functions, logically grouped by function. See Chapter 10, "PL/
SQL Fundamentals,” for more information.

Y ou can access information on stored packages, procedures and functions through the DBA_ OBJECTS
and DBA SOURCE views.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 88

the buffer cache. If another user session requests the same data, the before image stored in the rollback
segment isreturned (thisis called a consistent read). When the session that is making the change
commits, the rollback segment entry is marked invalid.

Multiple user sessions can share a single rollback segment. Each rollback segment is made up of at |east
two extents. When a transaction starts, the user session gets an exclusive lock on an available extent in
an available rollback segment. Transaction information is then written to the rollback segment. If the
transaction fills the first extent, it allocates another extent. If another extent is unavailable, the rollback
segment automatically allocates another extent to itself, which the user session grabs. Thisiscalled
rollback segment extension. Because extent allocation affects performance, your goal should beto
enable all transactions to run without allocating new extents.

If the rollback segment is unable to allocate another extent (either because the maximum number of
extents has been reached for the rollback segment or there are no more free extents in the rollback
segment tablespace), an error occurs and the transaction is rolled back. This commonly occursin large
data loads, where online rollback segments do not provide sufficient space to store al of the rollback
information for the transaction.

See Chapter 21 for more information on creating and administering rollback segments.
The DBA_ROLLBACK _SEGS view contains information on rollback segments.
Table Clusters

A table cluster is a database object that physically groups tables that are often used together within the
same data blocks. The clustering of tablesis most effective when you're dealing with tables that are
often joined together in queries. A table cluster stores the cluster key (the column used to join the tables
together), as well as the values of the columnsin the clustered tables. Because the tables in the cluster
are stored together in the same database blocks, 1/0 is reduced when working with the clusters.

Hash Clusters

Hash clusters are the final option for database storage. In a hash cluster, tables are organized based upon
a hash value derived by applying the hash function to the primary key values of thetables. To retrieve
data from the hash cluster, the hash function is applied to the key value requested. The resulting hash
value gives Oracle the block in the hash cluster where the datais stored.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0085-0087.html

Using hash clusters can significantly reduce the I/O required to retrieve rows from atable. There are
several drawbacks to using hash clusters, however. See Chapter 21 for more information on creating and
administering hash clusters.

Page 89
Using the Oracle Data Dictionary

The data dictionary is the repository of information on all of the objects stored in the database. It is used
by the Oracle RDBM S to retrieve object and security information and by the end-users and DBASto
look up database information. It holds information on the database objects and segments in the database,
such as tables, views, indexes, packages, and procedures. The data dictionary is read only; you should
NEVER attempt to manually update or change any of the information in any of the data dictionary
tables. It consists of four parts: the internal RDBM S (X$) tables, the data dictionary tables, the dynamic
performance (V$) views, and the data dictionary views.

Internal RDBMS (X$) Tables

At the heart of the Oracle database are the so-called internal RDBMS (X $) tables—the tables used by
the Oracle RDBM S to keep track of internal database information. The X$ tables are cryptically named,
undocumented, and nearly impossible to decipher. Most of them are not designed to be used directly by
the DBAs or end users. Nonetheless, they contain valuable information. Many undocumented or internal
statistics and configurations can be found only in the X$ tables.

The easiest way to decipher what is stored in a particular X$ table is to work backward from a known
data dictionary table. The SQL* Plus autotrace feature is invaluable for this work. For example, to
determine where the information in V$SGASTAT isreally stored, you can perform the following
anaysis:

. Loginto SQL*Plusas SYS (or an account with explicit accessto the X$ and V$ tables). If a
plan_table does not exist for the schema you are logged in to, create one by running
$ORACLE_HOME/rdbms/admin/UTLXPLAN.sgl.

. Issuethe following SQL* Plus command: SET AUTOTRACE ON.

. Issue aquery against the table whose components you are interested in. Set the WHERE clause to
avalue that will never be true, so that no rows are returned: SELECT * FROM v$sgastat
WHERE 0 =1;.

. Among other information, the autotrace will return output similar to the following: Execution
Plan

0 SELECT STATEMENT Opti m zer =CHOOSE

1 0 FI LTER

2 1 FI XED TABLE (FULL) OF " X$KSMSS'

From the output of the SQL trace, you can decipher the data dictionary base tables from which the
information for the view is extracted. Querying the X$ tables found in this manner often produces
surprising information.

Page 90
Data Dictionary Tables

The data dictionary tables hold information for tables, indexes, constraints, and all other database
constructs. They are owned by SY S and are created by running the SQL .BSQ script (which happens
automatically during database creation). They are easily identified by the trailing dollar sign at the end

of their names (tab$, seg$, cons$, and so on). Most of the information found in the data dictionary tables
can be found in the data dictionary views, but certain applications and queries still benefit from using the
information contained in the base tables.

The columns and tables of the data dictionary are well documented in the SQL.BSQ file. Thisfileis
found in the SORACLE_HOME/dbs directory. By familiarizing yourself with the contents of SQL.BSQ,
you can gain a better understanding of how the Oracle RDBMS actually stores the data dictionary and
database information.

Dynamic Performance (V$) Views

The dynamic performance (V$) views are the mainstay of the Oracle DBA. These views contain runtime
performance and statistic information on alarge number of database functions. They are also fairly
readable (as opposed to the X$ tables) and are meant to be used by the DBA to diagnose and
troubleshoot problems. Documentation on most V$ views can be found in the Oracle Reference Manual,
supplied on your Oracle server media.

Note that the V$ views are actually public synonymsto theV_$ views, owned by SYS. Thisis
important to note when writing stored procedures or functions that read the V$ tables. It is often
necessary to reference or grant privileges to the base V_$ view rather than the V$ public synonym.

Data Dictionary Views

The data dictionary views are views created on the X$ and data dictionary tables and are meant to be
queried and used by end users and DBAS. They are divided into three categories—the DBA_, ALL _,
and USER _ views. The DBA _ views contain information on all objects in the database. For example,
DBA_TABLES containsinformation on all tables created. The ALL _ views contain information on all
objects to which the user querying the table has access. The USER _ views contain information on all

objects the user querying the table owns.

Other Database Objects

There are severa other objects stored in the database that are not rightfully classified as segments but
should be discussed nonetheless. They include views, sequences, synonyms, triggers, database links, and
stored packages, procedures and functions. They are described in the following sections.

Views

Views are stored SQL statements that can be queried. A view is used for security reasons to hide certain
data (such as an HR view that shows only first name, last name, and address

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch06/0085-0087.html

Previous | Table of Contents | Next

Page 96
OFA Rule 3: Store each version of Oracle server distribution software in a directory

matching the pattern h/product/v, where h is the application home directory of the Oracle
software owner and v represents the version of the software.

A sample implementation of thisruleis given in the following directory template:

/ [mount _poi nt]/ APP/ [appl i cati on_name]/ PRODUCT/ [ver si on]/
application home

In this example, we see that application home directories are stored in the APP subdirectory directly
underneath our mount point. We next use a generic name to identify the directory under which the
application will be stored. The PRODUCT directory and version then follow.

A sample hierarchy using this naming convention is

/[u01

app
fi nance

[...]
[...]

oracl e

gse

adm n
pr oduct

7.1.6

7.3.3

8.0.3

While this method may seem more complicated than necessary, the resulting flexibility and ease of
administration iswell worth it. Asyou can see, under this mount point you have three applications
installed—finance, QSE, and Oracle. Finance and QSE are third-party or homegrown applications, and
the directory structures underneath the main directories follow the same format as shown in the Oracle
hierarchy. In the Oracle application directory, you see the product and admin subdirectories. Within the
product subdirectory are three versions of the Oracle software—7.1.6, 7.3.3, and 8.0.3. Any change or
new installation of Oracle software can be made to one version without fear of interaction with any other
version,

Separating the versions in this manner is very important when performing testing and cutover of new
Oracle versions. Obviously you need the ability to easily install a new version of the software without
impacting your production installation. After your new version is tested, cutover to the new versionisa
simple matter of setting the correct environment variables to the new directory. The old version then can
be deleted at your leisure.

Managing Database Files

One of the needs that necessitated the creation of the OFA guidelines was the difficulty DBAs faced
when simultaneously administering many databases. A method to organize administrative information
and data into a manageable and predictable format was needed. The admin directory we saw earlier is
used to store files related to administering the database and goes a

Page 97

long way in improving the capability of a single person to keep track of many databases. Our next OFA
rule isrelated to this structure:

OFA Rule 4: For each database with db_name=d, store database administration filesin
subdirectories of /h/admin/d, where h is the Oracle software owner's login home directory.

The following chart shows a sample admin directory structure:

/ u0l/ app/ oracl e/ adm n
PROD

bdunp
udunp
cdunp
pfile
sql
create

The subdirectories in the admin directory are explained in Table 7.1.

Table7

.1 ADMIN Directories

Directory
Name Usage
bdum Background dump files (value of
P BACKGROUND_DUMP_DEST)
udum User dump files (value of
P USER DUMP_DEST)
cdump Corefiles (UNIX only)
: init.oraand any other database initialization
pfile
parameters
Sl Database administration SQL files
credte Scripts used to create the initial database and
database objects
init.orafiles, trace and dump files, alert.log, and so forth are all stored in this central administrative

directory. This eases administering the large amounts of data produced by an Oracle database. Y ou can
add directories to store other data as the need arises.

NOTE

On UNIX platforms, create alink of theinit.orafile from the SORACLE_HOME/dbs
directory to the admin/pfile directory. This ensures the Oracle default configuration is
intact, while allowing you to benefit from the OFA structure. On Windows NT platforms,
you will have to either specify the full pathname to the init.orafile when starting the
database and create an OFA- compliant structure or store the init.orafilesin the default
$ORACLE_HOME/database directory to keep the default Oracle configuration intact.

Page 98

Naming Conventions

When managing multiple databases on one database server, afile-naming convention isimportant. The
OFA standard gives the following rule for naming database files:

OFA Rule 5: Nane Oracle database files using the foll ow ng patterns:
/pmi g/ d/control.ctl _ control files
/pmg/d/redon.log redo log files

/pm g/ d/tn.dbf _ data files

wher e:
1 pmis a nount-point nanme
1 g is a string denoting the separation of Oracle data fromall
other files
1 d is the db _nane of the database
1 nis a distinguishing key that is fixed-length for a given file
type
1 t is an Oracl e tabl espace nane

Never store any file other than a control, redo log, or data file associated with a database d
in/pm/g/d.

Deviation from this standard depends on your personal preference, but the naming convention ideas
should not be ignored. Use a meaningful filename extension, include the tablespace name in datafile
names, and keep all datafilesin their own exclusive directories.

A template for an aternative naming standard that keeps the original naming conventions could be
tn_SID_n.ext, where tn is an abbreviation for the tablespace the datafile isfor, SID is the database the
datafile belongs to, and n is the datafile number.

Try to keep the tablespace abbreviation brief and, if possible, keep it a set number of letters. Thiswill
produce uniform reports. Also, the number portion for redo log files should indicate both the log group
and member—using a combination of numbers and characters, such as 0la (first log group, first
member) and 02c (second log group, third member), works well. Names using the alternative notation
areshownin Table 7.2.

Table 7.2 Database File Examples

File Name

syst PROD_01.dbf

ctrl_ TEST 02.ctl

redo PPRD_Ola
log
redo PPRD_02c.
log

data PROD_02.dbf

INItTEST .ora

Explanation

First SY STEM tablespace datafile for
the PROD database

Second controlfile for the TEST
database

First member of first redo log group for
database PPRD

Third member of second redo log group
for database PPRD

Second data tablespace datafile for the
PROD database

Initialization parameter file for the TEST
database

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 99

Asyou can see, investing the extra time in implementing a naming convention for your database files
results in names that have no guesswork involved. Y ou can immediately determine their function by
glancing at the name.

The OFA rule also dictates that database datafiles, redo log files, and control files should be stored in a
dedicated directory off of the mount point. The following shows a directory structure that complies with
this recommendation, containing data for four databases:

[u0l
app
or adat a
PRCD
[...]
PPRD
[...]
DEVL
[...]
TEST

All datafiles, log files, control files, and archived redo log files are stored in the directory under the
oradata subdirectory. Each database has its own directory, and ONLY database files are stored in these
directories.

Putting It All Together

A wise person once said that the great thing about standards is the variety from which to choose. Thisis
especially apt when describing the OFA guidelines. There is no one perfect solution for creating an

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0102-0104.html

Oracle server environment because no two environments are the same.

The following are sample OFA implementations on both UNIX and Windows NT. These are meant to
give you ideas and get you started. Y ou may find specific points that, when reworked, serve your
particular needs better than those presented. Explanations of each section are also given.

UNIX Implementation

/ Root Directory
uol u0l Mount Poi nt
app Application Directory
oracl e Oracle
Application Directory
adm n
Adm nistrative Directory
PROD PROD Dat abase Directory
pfile Initialization
Paraneter Files
bdunp Background Dunp Fil es
udunp User Dunp Files
cdunp Core Files
Create Dat abase Creation
Scripts
sql SQ Scripts
PPRD PPRD Dat abase
Directory
[...] Sane Directory
Structure as PROD
TEST TEST Dat abase
Directory
[...] Sane Directory
Structure as PROD
pr oduct Application Files
Directory
Page 100
7.1.3 Version 7.1.3 Files
[...] ORACLE_HOME for version

7.1.3

Files

8.0.3
gse
adm n

[...]
Adm ni stration
pr oduct
[...]
or adat a
Directory
PRCD
PPRD
TEST
uo?2
or adat a
Directory
PRCD
PPRD
TEST

Windows NT Implementation

C.
oracl e
hone
[...]
or adat
PROD
[...]
PPRD
[...]
adm n
Directories
PROD
[...]
PPRD
[...]
D:

8.

0.

3

Version 8.0.3
ORACLE_HOME for version

(SE Application Directory
Adm ni strative Directory
Directories for QSE

Application Files Directory
(SE Versions and Fil es
Oracl e Dat abase Fil es

PROD Dat abase Fil es
PPRD Dat abase Fil es
TEST Dat abase Fil es
u02 Mount Poi nt
Oracl e Dat abase Fil es

PROD Dat abase Fil es
PPRD Dat abase Fil es
TEST Dat abase Fil es

Dri ve Desi gnat or
Oracle Software Directory

Oracle Hone Directory

ORACLE _HOVE Contents
Oracl e Dat abase Fil es

PROD Dat abase Files Directory
PROD Dat abase Fil es

PPRD Dat abase Files Directory
PPRD Dat abase Fil es

Oracl e Adm ni strative

PROD Adm nistrative Directory
Sane Structure as UN X
PPRD Adm nistrative Directory
Sane Structure as UN X
Dri ve Desi gnat or

oracl e Oracle Software Directory

or adat a Oracl e Dat abase Files
PRCD PROD Dat abase Files Directory
[...] PROD Dat abase Fil es
PPRD PPRD Dat abase Files Directory
[...] PPRD Dat abase Fil es

One of the crucial factorsin making the OFA standards work is the separation of application and
database files. The admin and oradata directories are created in order to keep all database- specific files
separate from the Oracle software. Thisis necessary to fulfill one of the promises discussed earlier; the
simple and transparent cutover to new software versions.

Thefina OFA rule from Mr. Millsap's paper we are going to discuss follows:

OFA Rule 6: Refer to explicit path names only in files designed specifically to store them,
such asthe UNIX /etc/passwd file and the Oracle oratab file; refer to group memberships
only in /etc/group.

Page 101

If followed, thisrule will help you avoid a common pitfall we all step into: creating an application "on
the fly" that becomes a common tool used everyday, which breaks as soon as any system reconfiguration
is performed. Avoid using hard-coded directory namesin a shell script, batch file, or application
program. When working with the Oracle tools, thisis easier than it sounds—any directory or value you
might need to work with is probably already implemented as an environment variable or registry key.

Configuring the Environment

The Oracle server is acomplex set of interacting programs and processes. The software environment
involved is likewise complicated and often difficult to understand. V arious parameters exist to control
the behavior of the Oracle programs, set the locations for configuration or shared files, define the
language and character set to use, and a myriad other traits. On a UNIX machine, these parameters are
stored as environment variables, which are usually loaded from the supplied coraenv or oraenv files
called from the user'slogin script. On a 16-bit Windows computer, the parameters are stored in the
oracle.ini file. On 32-bit Windows computers (Windows 95, Windows NT, and so on), these
configuration parameters are stored in the Registry.

The environment variable files or Registry keys are created the first time an Oracle product isinstalled
on a machine. Subsequent software install ations add to and update these configurations. Systems
programmers or DBAs also modify these configurations by hand to tune, troubleshoot, and customize

the Oracle environment. A full description of the software configuration parameters can be found in

your operating system-specific Oracle documentation. Y ou should take afew minutesto familiarize

yourself with the various parameters for your operating system— many problems can be solved with
careful tweaking of these parameters.

NOTE

Don't confuse the Oracle configuration parameters with the initialization parameters of a
database. The Oracle configuration parameters apply to the Oracle software installed on a
computer, while the initialization parameters configure a single database.

There are severa environment variables with which you should be immediately familiar, asthey play an
important role in the operation of the Oracle server. ORACLE_HOME defines the base path for the
Oracle software. It isexplained in detail later in this chapter. ORACLE_SID is set to the default
database SID (System Identifier) for your session. Many tools use the ORACLE_SID to determine what
database to connect to. It isimportant you always know what val ues these variables are set to—having
wrong values for either of these can result in performing operations on the wrong database or using the
wrong version of the Oracletools.

Understanding the Oracle Software Environment

When you install the Oracle software on a server or client computer, an Oracle directory structureis
created to store the binary executables, shared libraries, configuration files, trace files, and so on used by
the Oracle programs. This directory tree is semi-standard across different server platforms and versions
of Oracle software. Both server and client software is stored in the same directory.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0102-0104.html

Previous | Table of Contents | Next

Page 119

CHAPTER 8

SQL*Plus for Administrators

In this chapter

. Administering SQL*Plus 120

. Using the SQL*Plus COPY Command 130

. Using SQL to Create SQL 132

. Restricting aUser's Privilegesin SQL*Plus 135
. Tracing SQL Statements 139

Page 120
This chapter discusses SQL*Plus, Oracle's implementation of the Structured Query Language (SQL).
SQL*Plusis an interactive program used to access an Oracle database. It is also the database

administrator's best friend and an indispensable tool.

In addition to SQL*Plus, a database administrator (DBA) can interface with the database and use
SQL*Plus commands (but only a subset of the commands) in two other tools:

. Server Manager
. Worksheet utility in the Enterprise Manager

Note that Server Manager replaces, beginning with Oracle7 7.3, the SQL* DBA utility that was used in
Oracle version 6 and Oracle7 releases prior to 7.3.

Because SQL*Plusis such avast subject, which cannot be dealt with in asingle chapter, | will
concentrate mainly on features of interest to DBAS, new features (EXECUTE and AUTOTRACE), and
lesser-known and lesser-used features (COPY command, disabling commands).

Administering SQL*Plus

There are two files, glogin.sgl and login.sgl, that are used to administer SQL*Plus. The glogin.sgl fileis
the global setup file, and login.sgl isintended for individual use. These two files contain SQL* Plus

commands and/or SQL statements that are executed every time an Oracle user invokes SQL*Plus. The
glogin.sgl fileisread and executed first, followed by the user'slogin.sql file.

The glogin.sgl fileislocated in the SORACLE_HOME/sglplus/admin directory. The Oracle DBA may
customize thisfile to include SQL* Plus commands, SQL statements, and PL/SQL blocks that will be
executed by every SQL* Plus user at the beginning of his or her SQL* Plus session. The glogin.sgl fileis
also known as a Site Profile.

NOTE

Under Windows 95/NT 4.0, the glogin.sql fileislocated in the directory %
ORACLE_HOME%\PLUSnn, where nn represents the version of SQL*Plusinstalled on
your machine. For example, if SQL*Plus 3.2 isinstalled, the directory name will be %
ORACLE_HOME%\PLUS32.

Using SQL*Plus Environment Variables
There are two environment variables that are used by SQL*Plus:

. SQLPATH
. _editor

SQL*Plus uses the environment variable SQLPATH to identify the directory where the login.sgl fileis
located. In other words, SQL*Plus will look in every directory defined in SQLPATH for login.sql,
starting with the local directory—the directory you were in when you started SQL*Plus.

Page 121

For example, if you want SQL*Plusto look for login.sgl first in the local directory, then in your home
directory, and then in another directory, set SQLPATH asfollows:

$ SQLPATH=".: $HOMVE: <ot her _directory>"; export SQ.PATH - - (Bour ne/
Korn shell)
$ set SQPATH=(. $HOMVE <ot her directory>) -- C shell

Under Windows 95/NT 4.0, SQLPATH is defined in the Registry. The default valueis

$ORACLE _HOME\DBS (set during installation). The value for ORACLE_HOME is C:\ORAWIN95
for Windows 95 and C:\ORANT for Windows NT 4.0 (replace C: with the name of the disk drive where
you installed Oracle, if you did not install it on your C: drive).

NOTE

Under Windows 95/NT 4.0, the login.sgl fileislocated in directory %ORACLE_HOME
%\DBS, the default value for SQLPATH.

To set or change the value of SQLPATH under Windows 95/NT 4.0, follow these steps:

ol

POOoOONO O MWDNE

Select Run from the Start menu.

Enter regedit.exe/regedit32.exe (for Windows 95/NT, respectively).

Click OK.

Double-click HKEY_LOCAL_MACHINE.

Double-click SOFTWARE.

Double-click ORACLE.

Double-click SQLPATH.

The Edit String dialog box appears. In the Vaue Datafield, enter the new value for SQLPATH.
Click OK.

From the Registry menu, select Exit.

Reboot your machine for the new value to take effect (or log out and log back in
Windows NT 4.0).

NOTE

SQLPATH isalso used by SQL*Plusto identify the location of SQL scripts that you run
from SQL*Plus.

There is another environment variable that can be set in glogin.sgl or login.sgl. This environment
variableiscalled _editor. It defines the editor you can use to edit SQL* Plus commands.

To set the value of _editor to the vi text editor, enter the following linein glogin.sgl or | ogi n. sql :

define _editor=vi

If you use any other text editor, replace vi with the appropriate name. For more information on using
different editors, see the section "Using Y our Operating System Editor in SQL*Plus," later in this
chapter.

Page 122

Invoking/Accessing SQL*Plus

To invoke SQL* Plus from the operating system prompt, use the following command:

$ sqglplus [[-S[ILENT]] [logon] [start]]]|-"7

The -§[ILENT]] parameter is used when running SQL* Plus from a shell script, because it suppresses all
the information that SQL* Plus displays when invoked, such as the SQL* Plus banner, prompt messages,
and the command prompt.

The [logon] section requires the following syntax:

user nane[/ password] [@onnect _string]|/|/NOLOG

The [start]] clause enables you to start SQL* Plus and run a command file containing any combination of
SQL*Plus commands, SQL statements, and/or PL/SQL blocks. In addition, you can pass arguments to
the command file. The start clause requires the following syntax:

@ile name[.ext] [arg...]
If you do not enter the username or the password, SQL* Plus prompts you to enter them.

After you successfully access SQL* Plus, you can enter three type of commands at the SQL* Plus prompt

(SQL >):

. SQL commands/statements for working with database objects and manipul ating the data stored in
the database

. PL/SQL (Procedura Language/SQL) blocks for working with database objects and manipulating
the data stored in the database

. SQL*Plus commands for setting options, editing, storing, and retrieving SQL commands and PL/
SQL blocks, and for formatting the output of queries

To submit a SQL command to SQL* Plus, enter a semicolon (;) at the end of the command and press
Enter. SQL* Plus executes the command, displays the results of the query, and returns you to the prompt.

To end aPL/SQL block, enter aperiod (.) on aline by itself. To submit a PL/SQL block for execution,
terminate it with aslash (/) on aline by itself and press Enter.

Editing SQL Commands

If you make a mistake when entering a SQL command and want to correct it, or if you want to run the
last command with only a minor change, you are lucky! SQL* Plus stores the most recently entered SQL
statement in a buffer, appropriately called the SQL buffer. SQL* Plus provides a set of commands to
retrieve and edit SQL statements and PL/SQL blocks stored

in the buffer.

Note that SQL* Plus commands are not saved in the buffer. Therefore, they cannot be retrieved and
modified. However, thereis away to store SQL* Plus commands in the buffer. This method is discussed
in the section "Entering and Editing SQL* Plus Commands,” later in this chapter.

Table 8.1 lists the commands used to view, edit, and run the contents of the SQL* Plus buffer.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 117

PART Il

Oracle Interfaces and Utilities

8.

9.
10.
11.
12.
13.
14.
15.

SQL*Plus for Administrators

Oracle Enterprise Manager

PL/SQL Fundamentals

Using Stored Subprograms and Packages
Using Supplied Oracle Database Packages
| mport/Export

SQL* L oader

Designer/2000 for Administrators

Page 118

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 114

v3$bgprocess can be used to quickly list the running background processes. The following query will
help:

SELECT name FROM v$bgprocess WHERE paddr <> "00;

The dba_jobs table holds information on pending jobs scheduled through the DBMS_JOBS package.
Y ou can list the scheduled database jobs with the following query:

SELECT | og user, job, what, to _char(last _date, DD MON-YY') |1,
| ast _sec | 2,
to char(next _date, "DD-MON-YY') nl, next _sec n2, failures
FROM dba_j obs
ORDER BY next date DESC, next_sec DESC,

User information is stored in dba_users. Information on granted privilegesis stored in the dba _tab_privs,
dba_sys privs, and dba role privstables. You can also query role tab privs, role_sys privs, and
role_role_privsto display information on privileges granted to roles. More information on monitoring
security information can be found in Chapter 23, " Security Management."

Looking at the Database Segments

Now that we know where database configuration information is stored, let's ook at the user data objects
information. Database segments we are interested in include tables, indexes, views, clusters, and other
data storing objects.

The DBA_TABLES, DBA_INDEXES, DBA_SEGMENTS, DBA_SEQUENCES, and DBA_OBJECTS
datadictionary views listed in Table 7.6 provide information on the various database segments stored in
the database.

The format and information in the views are fairly self explanatory. Dba _objects isinteresting because it
stores creation and last modification (timestamp) information on all objects stored in the database, and
DBA_SEGMENTS s useful because it stores the size and number of extents used by each database
segment.

Looking at Miscellaneous Database Objects

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0111-0113.html

Our exploration of the database is not complete without looking at several other structures, including the
stored PL/SQL objects, triggers, synonyms, and database links.

Sources for the packages, procedures, and functions are stored in the sys.source$ table. When you create
the object, all of the blank lines are stripped and each line is stored as a separate record in this table. You
can query dba_source to easily retrieve the text of stored packages, procedures, and functions. The
following query will produce the source code for an indicated stored object:

SELECT text

FROM dba_sour ce

VWHERE nane = upper(&Obj ect Nane')
ORDER BY I ne;

Page 115

Information on triggersis stored in the dba_triggers table. Because the trigger body is stored as along
value, you'll need to set your longsize to an adequate value when querying on this column from
SQL*Plus. In thisview, the TRIGGER_TY PE column is either row or statement, and
TRIGGERING_EVENT storesthe type of trigger—before insert, after update, and so on.

DBA_synonyms lists information on the synonyms in the database. Note that public synonyms will have
PUBLIC astheir owner. Query dba db_links for information on the defined database links. One word of
caution on dba_db_links—if the link is defined with a user and password to connect to, the password is
stored in clear text.

Exploring an Unfamiliar Environment

Let's put some of the information covered in this chapter into afamiliar frame of reference. Suppose you
are acontract DBA and have just arrived at a new site. The previous DBA has already departed the
scene and, amazingly enough, has left no supporting documentation of his system configuration. What
can you do?

The following two sections explore possible courses of action—one on aUNIX server, and oneon a
Windows NT server. They should give you ideas and reinforce the information presented earlier in the
chapter.

Exploring the UNIX Environment

Y our primary interest is to determine how the Oracle software has been installed and configured, and
what databases are on the system. The first step is obtaining access to the OS account used to install the
Oracle software. Next, you'll need to locate possible ORACLE _HOME directories. If thereis only one
ORACLE_HOME on the system, this should already be set by your login sequence. Check the

ORACLE_HOME environment variable for this value. Also, find and check the oratab file to determine
if database and ORACLE_HOME information is contained within. Thisis not a guaranteed
comprehensive list. However, the oratab file is manually updated, and up-to-date information is not a
requirement to operate the database. Another aternative isto search for the Oracle server executable
(oracle), or the rdbms and dbs directories. These are standard in al Oracle server installations. Make a
careful list of all possible Oracle directories.

Next, you'll want to determine what databases are on the server. In each of the Oracle home directories
you found, check the dbs directory. All of the configured databases should have an initSID.orafilein
this directory. The file may be linked to adifferent administrative directory, but the listing of these files
will show you all of the databases that are configured. Again, this does not necessarily mean that all of
these databases exist. The creation as well as the deletion of theinit.orafilesis, for the most part,
manually done by the DBA.. It is aso no guarantee that the init.orafileswill bein the dbs directory. As
thisiswhere these files are looked for by default by Oracle programs, it islikely you'll find them here.

Check your user and system login script and determine whether custom modifications have been made
to the Oracle environment. Check to see whether coraenv or oraenv are being

Page 116

called from the login script and whether these files have been modified in any way. If coraenv or oraenv
Is not being called, determine where the Oracle environment variables are being set. Check the system
startup scripts (rc files and the like) to see what programs or daemons are automatically started upon
system boot. Don't forget to check the crontab file or system scheduler for the Oracle owner and
administrator to determine what automated jobs are scheduled and running. Finally, examine your UNIX
kernel parameters to see how the memory and kernel has been configured for your Oracleinstall. The
location and method of setting these parameters vary between UNIX vendors. Check your OS-specific
documentation for more details.

Exploring the Windows NT Environment

On aWindows NT server, figuring out the specific configuration of the Oracle environment is alittle
more straightforward than on a UNIX server. Thisis because fewer aspects of the configuration are left
completely to the DBA'swhimsy. Y our first step in deciphering a Windows NT environment is to look
at the Oracle Registry values. Using regedit, look at the HKEY LOCAL_MACHINE\Software\Oracle
key. The string values will tell you the ORACLE_HOME location, among other useful information.
Next, open up the Services applet in the Control Panel and look for any Oracle services. There will be
one Oracle service for each database on the system. There may be an Oracle Start for each database, as
well. Also, look for any other Oracle services that may be installed—the TNS Listener, Web Server, and
SO on.

All configuration values of interest will be stored in the Oracle Registry key. The init.ora parameter files

for the database are in SORACLE_HOME/database. Thisis also the default directory to store database
datafiles. Y ou may or may not find them here. Be sure to check the Windows NT job scheduler to see
what jobs may be or have been running.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch07/0111-0113.html

Previous | Table of Contents | Next

Page 123

Table 8.1 SQL* Plus Commands Used with the SQL Buffer

Command Abbreviation Action
APPEND text A text ﬁggs text to the end of a
CHANGE old/ Changes old text with new
C old/new))
new inaline
CHANGE /text C /text Deletes text from aline
CLEAR BUFFER CL BUFF Deletes al lines
DEL (NONE) Deletes current linein
buffer
Adds one or morelinesto
INPUT | the buffer
INPUT text | text Adds aline consisting of
text
Lists the contents of the
LIST L SOL*Plus buffer
LIST n Lnorn Listslinen
LIST * L * Liststhe current line
LISTmn Lmn Listslinesmton
LIST LAST L LAST Liststhe last line in buffer

With the exception of the LIST command, al other editing commands affect only asingle linein the
buffer. Thislineis called the current line. It is marked with an asterisk when you list the SQL command
or PL/SQL block. When you run the LIST command, the current line will always be the last line in the
buffer. Also note that the semicolon (;) that ends a SQL command is not saved in the buffer, as shown in
Listing 8.1.

Listing 8.1 SQL Statement Stored in Buffer

SQL> LI ST

1 SELECT enpno, enane, deptno, job, sal, comm

2 FROM enp
3* WHERE comm | S NOT NULL

If you get an error message, the line containing the error becomes the current line so that you can edit it
right away to correct the error(s). Listing 8.2 shows alisting with an error.

Listing 8.2 Line with Error Becomes Current Line

SQ.> SELECT enpno, enpnane, deptno, job, sal, comm
2 FROM enp
3 VWHERE comm IS NOT NULL;

SELECT enpno, enpnane, deptno, job, sal, comm

ERROR at |ine 1:
ORA-00904: invalid colum nane

Page 124
Entering and Editing SQL*Plus Commands

SQL*Plus commands, such as DESCRIBE, entered directly at the SQL*Plus prompt, are not saved in
the SQL buffer. Therefore, you cannot retrieve the last SQL* Plus command entered to edit and/or rerun
it. The result of trying to list an SQL* Plus command from the buffer is shown in Listing 8.3.

Listing 8.3 SQL* Plus Commands Are Not Buffered

SQL> DESCRI BE EMP

Name Nul | ? Type

EMPNO NOT NULL NUMBER(4)

ENAME VARCHAR2(10)

JOB VARCHAR2(9)

MGER NUMBER(4)

HI REDATE DATE

SAL NUMBER(7, 2)

COw NUMBER(7, 2)

DEPTNO NOT NULL NUMBER(2)
SQL> LI ST

No lines in SQ. buffer.

To store SQL* Plus commands in the buffer, enter INPUT with no text and press Enter. SQL* Plus

prompts you with aline number where you can enter the commands. When you are finished entering the
commands, enter a blank line by pressing the Return key. Listing 8.4 shows an example.

Listing 8.4 Storing SQL* Plus Commands in the Buffer

SQL> | NPUT
1 DESCRI BE EMP
2

SQL> L
1* DESCRI BE EMP

NOTE

See Table 8.1 for the abbreviation "L," which stands for
"List."

Y ou cannot execute the command from the buffer, but you can saveit in afile, which you can retrieve
and run later in SQL*Plus. A failed attempt at running an SQL* Plus command from the buffer but then
successfully saving it to afileis shownin Listing 8.5.

Page 125
Listing 8.5 Save SQL*Plus Commandsto Files

SQ.> RUN

1* DESCRI BE EMP
DESCRI BE EMP
*

ERROR at |ine 1:
ORA- 00900: invalid SQ. statenent
SQL> SAVE test
Created file test
SQL> CGET test
1* DESCRI BE EMP

The newly created fileis saved in the directory pointed to by the SQLPATH environment variable.
Using Your Operating System Editor in SQL*Plus

The editing capabilities offered by SQL* Plus are poor and not intuitive compared to other text editors.
(For instance, you cannot use the arrow, Home or End keys.) Therefore, many users prefer to create their

command files using editors they feel comfortable with, then run these files in SQL* Plus using the
START or @ command.

If you would rather work with your operating system editor than use the editing capabilities of
SQL*Plus, you can do that in SQL* Plus by using the EDIT command. The syntax of the EDIT
command is

EDIT [file_nanme[.ext]]

Thiswill open file_name with the editor defined by the variable _editor in the glogin.sgl or login.sql file.
If you want to use a different editor in your SQL* Plus session, you can redefine the _editor variable with
the SQL* Plus command DEFINE:

DEFI NE _edit or=emacs

If the editor variable is not defined, the EDIT command tries to use the default operating system editor
(for example, Notepad in Windows 95).

When you issue the EDIT command, you invoke an editor from within SQL* Plus without leaving it,
which is convenient.

If you do not supply afilename when running the EDIT command, SQL* Plus will save the contents of
the SQL buffer in afile and open that file with the editor. By default, the name of the fileis afiedt.buf,
and it is created in the current directory or the directory defined in the SQLPATH environment variable.
When opening the editor, you can use the full pathname for the file you want to edit, for example: EDIT
C\MYDIRWYFILE.SQL.

SQL> EDIT
Wote file afiedt. buf

Page 126

Y ou can change the name of the file where SQL* Plus saves the contents of the buffer by setting the
appropriate value in the editfile variable, as shown in Listing 8.6.

Listing 8.6 Edited Files Have a Default Name

SQ> SHOW editfile

editfile "afiedt. buf"

SQ.> SET editfile "buffer.txt"
SQ> SHOW editfile

editfile "buffer.txt"

If you do not enter a filename when running the EDIT command and the SQL buffer is empty,
SQL*Plus returns a notification message, like the one shown in Listing 8.7.

Listing 8.7 Empty Buffers Have Nothing to Save

SQ.> CLEAR BUFFER
buf fer cl eared
SQL> EDIT

Not hing to save.

The default extension for the filename is .sgl. So, if you do not specify afile extension, SQL* Plus will
look for afile named file_name.sgl. If you want to edit afile with an extension other than .sqgl, you have
to explicitly specify the extension. Y ou can also change the default value for the file extension through
the SUFFIX variable, as shown in Listing 8.8.

Listing 8.8 Changing the Default Suffix

SQL> SHOW SUFFI X
suffix "SQ"

SQL> SET SUFFI X sh
SQL> SHOW SUFFI X
suffix "sh"

NOTE

The SUFFIX variable applies only to command files, not to spool (output) files.
Depending on the operating system, the default extension for spool filesis.Ist or .lis.

Running SQL*Plus/SQL Commands
Y ou can run SQL commands and PL/SQL blocks three ways:

« From the command line
. Fromthe SQL buffer
. From acommand file (informally known as a SQL script)

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 127

To execute a SQL command or a PL/SQL block from the buffer, SQL* Plus provides the RUN command
and the / (forward slash) command. The syntax of the RUN command is

Rl UN|

The RUN command lists and executes the SQL command or PL/SQL block currently stored in the
buffer.

L et's assume that the buffer contains this query:

SELECT empno, ename FROM emp

If you ran the query using the RUN command, it would look like Listing 8.8.
Listing 8.8 Running a Query with the RUN Command

SQ.> RUN

1* SELECT enpno, enane FROM enp
EMPNO ENANME

7934 M LLER
14 rows sel ect ed.

RUN displays the command from the buffer and returns the results of the query. In addition, RUN

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0131-0133.html

makes the last line in the buffer the current line.

The/ command is similar to the RUN command. It executes the SQL command or PL/SQL block stored
in the buffer, but it does not display the contents of the buffer, as shown in
Listing 8.9.

Listing 8.9 Running a Query with the/ Command

SQL> /

EMPNO ENAME
7369 SM TH
7499 ALLEN
7521 WARD

Page 128
Listing 8.9 Continued

7566 JONES
7654 MARTI N
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 Kl NG
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 M LLER
14 rows sel ect ed.

NOTE

Unlike the RUN command, the / command does not make the last line in the buffer the
current line.

To run a SQL command, a SQL* Plus command, or a PL/SQL block from a command line, there are two

commands:

. START
. @("a")

The syntax of the START command is
START file nane[.ext] [argl arg2...]

The file_name|.ext] represents the command file you wish to run. If you omit the extension, SQL* Plus
assumes the default command-file extension (usually .sql).

SQL*Plus searchesin the current directory for afile with the filename and extension that you specify in
your START command. If no such fileis found, SQL* Plus will search the directory or directories
specified in the SQLPATH environment variable for the file. Y ou could also include the full pathname
for thefile, for example: C\MYDYRWMYFILE.SQL.

Y ou can include any SQL command, SQL* Plus command, or PL/SQL block that you would normally
enter interactively into acommand file. An EXIT or QUIT command used in a command file exits
SQL*Plus.

The arguments section ([argl arg2...]) represents values you want to pass to parameters in the command
file. The parameters in the command file must be specified in the following format: &1, &2, ...(or &&1,
&&2, ...). If you enter one or more arguments, SQL* Plus substitutes the values into the parametersin
the command file. The first argument replaces each occurrence of &1, the second replaces each
occurrence of &2, and so on.

Page 129

The START command defines the parameters with the values of the arguments. If you run the command
file again in the same SQL* Plus session, you can enter new arguments or omit the arguments to use the
current values of the parameters. To run acommand file named DELTBL.SQL, you enter the following:

SQ.> START DELTBL

The @ ("at") command functions very much like the START command. The only differenceisthat the
@ command can be run both from inside a SQL* Plus session and at the command-line level when
starting SQL* Plus, whereas a START command can be run only from within a SQL* Plus session. To
start a SQL* Plus session and execute the commands from a command file, enter

$ sql plus [usernane/ password] @il e _nane[.ext] [argl arg2...]

If the START command is disabled, thiswill also disable the @ command. The section "Restricting a
User's Privilegesin SQL*Plus," later in this chapter, contains more information on disabling SQL* Plus
commands.

Using the EXECUTE CommandStarting with SQL*Plus 3.2, there is anew command, EXECUTE, that
enables the execution of asingle PL/SQL statement directly at the SQL* Plus prompt, rather than from
the buffer or acommand file. EXECUTE's main usage is for running a PL/SQL statement that references
afunction or a stored procedure, as shown in Listing 8.10.

Listing 8.10 Use EXECUTE with Stored Procedures

SQ.> VARI ABLE id NUMBER -- Define a bind variable
SQ.> EXECUTE :id := ADD CASES(10);
PL/ SQL procedure successfully conpl et ed.
SQL> PRINT id
| D
10
SQ.> EXECUTE :id := ADD CASES(3);
PL/ SQL procedure successfully conpl et ed.
SQL> PRINT id
| D

The value returned by the stored procedure ADD _CASES s stored in the bind variable :id.

Saving SQL*Plug/SQL CommandsY ou can save the SQL*Plus or SQL command stored in the buffer in
an operating system file (called command file), using the SAVE command. The syntax of the SAVE
command is

SAV[E] file_nane[.ext] [CRE[ATE] | [REP[LACE] | APP[END]]

Page 130

Thefile_namel.ext] isthe name of the operating system file where you want to store the contents of the
SQL buffer. To name the file, use the file-naming conventions of the operating system where SQL* Plus
Is running. If you do not provide an extension for the file, SQL* Plus uses the default extension, .sql.

Y ou could also specify a path as part of the file name. If you do not specify a path, the SAVE command
will use the directory named in the SQLPATH environment variable as the path for thefile.

The CRE[ATE] parameter createsthefile. If the file already exists, you will receive an error message.

The REP[LACE] parameter replaces an existing file with the contents of the SQL buffer. If the file does
not exist, SAVE...REPLACE createsiit.

The APP[END] parameter appends the contents of the SQL buffer at the end of thefile. If the file does
not exist, SAVE...APPEND createsiit.

Retrieving SQL* Plus/SQL CommandsTo retrieve SQL* Plus or SQL commands, use the GET
command. The syntax of the command is

GET file name[.ext] [LIS[T] | NOL[IST]]

The GET command loads an operating system file—file_name—that contains SQL* Plus or SQL
commands, into the SQL buffer, so that you can edit the commands in the file or run them. The default
extension for thefileis.sqgl.

The LIS[T] parameter lists the contents of the file as SQL* Plus |oads the file in the buffer. LIST isthe
default. The NOL[IST] parameter does not list the contents of the file.

If you do not specify the full path for the filename in the GET command, SQL* Plus searches for it first
in the current directory, then in the directories listed in the environment variable SQLPATH.

TIP

If you use Windows 95/NT, you can have SQL*Plus look in a specific directory for your
command files by starting the application in that directory. To do this, change the
Windows shortcut Start In property to the directory that contains the files. Files that you
open, create, or save without specifying

adirectory path will be opened, created, or saved in the directory in which you start
SQL*Plus.

Using the SQL*Plus COPY Command

Although its effectiveness has been somewhat reduced when Oracle introduced the CREATE TABLE...
UNRECOVERABLE AS SELECT... inversion 7.2, the COPY command is still one of the most useful
SQL*Plus commands; yet it is not understood very well and therefore is not used very often. The COPY
command can be used for severa functions:

. Copying one or more tables, or an entire schema, from alocal database to aremote database or to
another local database. This can be used to move an entire schema from one database to another
without using Export/Import utilities and is especially helpful when the export fileis larger than

the operating system file limit.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0131-0133.html

Previous | Table of Contents | Next

Page 147

CHAPTER 9

Oracle Enterprise Manager

In this chapter

. Understanding the Enterprise Manager Architecture 148
. Getting Started 150

« Using the Console Functions 152

. Using the Database Administration Tools 159

« Using the Performance Pack 166

« Using the Enterprise Vaue-Added Products 172

Page 148

Understanding the Enterprise Manager Architecture

Enterprise Manager is much more than just a set of database administration tools. This product provides
aframework for an enterprise-wide distributed system management solution. For example, a database
administrator can physically reside in Los Angeles and manage databasesin New Y ork, London, and
Tokyo from the same integrated console. A set of centrally located Oracle tables forms arepository to
store information necessary to support the activities of each administrator. This repository may reside
anywhere on the network or on the local Windows 95 or Windows NT workstation supporting the
Enterprise Manager client.

Enterprise Manager is open and extendible. Tool Command Language (Tcl), pronounced “tickle," isa
nonproprietary and widely used scripting language characterized by ease of use and extensibility. Tcl is
used to submit commands to remote operating systems and databases for execution. The implementation
of Tcl used by Enterprise Manager, known as OraTcl, includes extensions that enable functions you
need to fully manage an Oracle database environment:

. Start and stop Oracle databases.

. Execute SQL.

« Access operating system resources and functions.

. Access Simple Network Management Protocol (SNMP) Management Information Base (MIB)
variables describing Oracle databases.

. Access non-Oracle SNM P-enabled devices and services.

NOTE

To become familiar with Tcl, review the Enterprise Manager Tcl scriptsfound in
<ORACLE_HOME>\SY SMAN\SCRIPTS\TCL.

SNMP is an open standard used by remote intelligent agents to communicate with non-Oracle software
and hardware. Originally, SNMP was designed to communicate with network devices, but it is now used
to communicate with applications as well. Use of the SNMP standard enables integration of avariety of
third-party software and hardware with Enterprise Manager. Application developersintegrate
applications within the console using Object Linking and Embedding (OLE) or callsto one of the
published Application Program Interfaces (APIs) specific to Enterprise Manager. To top it off, when
information moves over the network between the console and the remote intelligent agents, it can be
secured with Oracle Secure Network Services using the Net8 Advanced Networking Option (ANO).
Thislevel of security makes it possible to administer remote databases over the Internet.

All of these components and technologies are tied together with an architecture that makes use of a
graphics-oriented console client linked to remote intelligent agents that communi cate with the databases
(see Figure 9.1). In addition to the messages between the communication daemon and the intelligent
agents, the application components such as the Database Administration Tools communicate directly
with remote databases by using SQL over Net8. Tasks performed by the application components directly
on remote databases in real time do not use the

Page 149

communications daemon. The communications daemon uses either native TCP/IP or Net8 Transparent
Network Substrate (TNS) connections to communicate with remote intelligent agents to perform core
consol e functions such as job scheduling and event management.

FIG. 9.1

The Enterprise Manager
architecture provides
centralized database

javascript:displayWindow('images/ch09fg01.jpg',400,359)

The discovery cacheis alarge buffer that is used to store metadata describing the services and nodes
managed by the console. Metadata is collected the first time an object is accessed, and the data is stored
in the discovery cache for the remainder of the session. When metadata in the discovery cacheis
accessed, there is no need to repeat queries to determine the structure of remote databases. As aresult,
response time improves and unnecessary resource utilization is avoided. At the end of a session, the data
Is stored in the repository so that it will be available for the next session. Custom applications can also
access the discovery cache.

The intelligent agents autonomously execute and manage remote activities. After the communications
daemon instructs a remote agent to execute a particular script at a given time, the script executes
independently from the console. If the console is unavailable when it istime for aremote job to run, the
agent manages the execution and buffers up to 500 returned messages. The agent passes this information
back to the console when it becomes available and reestablishes communication. Similarly, intelligent
agents handle remote event monitoring and responses independent of the console.

Page 150

Most installations of Enterprise Manager do not take full advantage of the architecture. In some ways,
thisis atribute to the flexibility of the product to support real-time database administration using
components such as Schema Manager without depending on the entire architecture. Sites that already
use robust third-party systems management tools such as BMC Patrol, CA-Unicenter, Compuware
EcoTools, or Platinum ProVision duplicate existing functions while increasing administrative overhead
and system workload if the entire framework isimplemented. Sites that are not using such tools might
find Enterprise Manager, which is bundled with Oracle8 Server at no extra cost, a suitable substitute
(value-added products such as the Performance Pack are available at an additional charge).

Due to the limited scope of Enterprise Manager and currently available add-on tools to extend its
capabilities, it is not a substitute for arobust systems management product whose scope extends well
beyond database management. Particularly in large enterprises where the operations staff benefits from
the efficiencies of acommon user interface and approach to tasks across many platforms, database
technologies, and other managed technology, a more comprehensive solution might add value. In any
case, itislikely that thereis a place for at least some of the components of Enterprise Manager in any
Oracle database environment.

Getting Started

Enterprise Manager has arobust architecture, but it is easy to start using it. After the software is
installed, tools such as Schema Manager, which does not require arepository or remote intelligent agent,
areimmediately functional. The repository enables some functions such as data accumulation for
performance analysis and capacity planning. This repository makes some activities easier, such as
logging into the console, by storing preferred credential s between sessions. Because stored information
varies from one administrator to the next, each administrator should have a separate repository. Only one

instantiation of Enterprise Manager can connect to arepository at any given time.

The best place to start exploring and gain immediate benefit from Enterprise Manager is using the
following Database Administration Tools:

. Instance Manager
. Schema Manager

. SQL Worksheet

« Security Manager
. Storage Manager

These five tools can be accessed in five ways. The first is directly from the Windows task bar. For
example, from the Start menu on the task bar, choose Programs, Oracle Enterprise Manager, |nstance
Manager to start the Instance Manager. Second, the default configuration of the

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 146
Listing 8.19 Continued

0 redo size
726 bytes sent via SQ.*Net to client
376 bytes received via SQL*Net fromclient
3 SQ.*Net roundtrips to/fromclient
0O sorts (nenory)
0O sorts (disk)
14 rows processed

TIP

The TRACEONLY option is particularly useful when you are tuning a query that returns
alarge number of rows.

The client referred to in the execution statistics is SQL* Plus. SQL* Net refers to the generic interprocess
communication between the client (SQL* Plus) and the server (Oracle RDBMYS), whether SQL*Net is
installed and used or not.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 142

After these steps are performed, the user can get areport on the execution path used by the optimizer
and the execution statistics after the successful running of any DML statement

(SELECT, INSERT, DELETE, UPDATE). The output of the report is controlled by the AUTOTRACE
system variable.

The allowed settings for the AUTOTRACE system variable and the results of using them are listed in
Table 8.5.

Table 8.5 AUTOTRACE Vaues

Value Result

SET AUTOTRACE OFF The default. No report is
generated.

The trace report shows only

SET AUTOTRACE ON : _
EXPLAIN the execution path; no
execution statistics.
SETAUTOTRACEON [EIESIET ooy
STATISTICS : ’
execution path.
The trace report shows both
SET AUTOTRACE ON the execution path and the
execution statistics.
SETAUTOTRACE 0 eremit of he
TRACEONLY ’ ’

guery is not shown.

Understanding the Execution Plan

The execution plan shows the access paths the optimizer is using when executing a query. The execution
plan output is generated using the EXPLAIN PLAN command. Each line displayed in the execution plan
has a sequential line number. The line number of the parent operation is also displayed. The execution
plan consists of four columns (for standard queries, only three columns are displayed; the fourth column
Is displayed only in the case of distributed queries or queries run using the Parallel Query Option

(PQQ)).

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0138-0141.html

The name of the columns, the order in which they're displayed, and their description are shown in Table
8.6.

Table 8.6 Execution Plan Column Descriptions

Column Name Description
Displays the line number of each

ID_PLUS EXP :
- - execution step
PARENT _ Displays the relationship between
ID_PLUS EXP astep and its parent
Displays each step of the report;
PLAN_PLUS EXP for example, TABLE ACCESS
(FULL) OF DEPT'
Page 143
Column Name Description
Displays the database link(s)
or parallel query servers used
OBJECT_NODE (only when running
_PLUS EXP distributed queries or queries
using the Parallel Query
Option (PQO)

The default column formats are usually set in the Site Profile (the glogin.sgl file).

The format of the columns can be altered using the SQL* Plus command COLUMN. Y ou can change the
width of a column, renameit, or stop it from being displayed. For example, to prevent the
ID_PLUS EXP column from being displayed, enter

SQL> COLUMN ID_PLUS EXP NOPRINT
The second part of the statement-tracing report displays the statement-execution statistics. They show
the system resources required to execute the query and their usage. Unlike the execution path, the

default format of the statistics report cannot be changed.

Using the AUTOTRACE Feature

This section shows in detail the steps required to enable user SCOTT to use the AUTOTRACE facility
in SQL*Plus.

First, user SYSTEM logs on to SQL*Plus and grants user SCOTT the PLUSTRACE role (SY S has
previously run the SORACLE_HOME/sqglplus/admin/plustrce.sql script that creates the PLUSTRACE
rolein the database). Listing 8.16 shows this being done.

Listing 8.16 Granting the PLUSTRACE Role

$ sgl plus system

SQ*Plus: Release 3.3.3.0.0 - Production on Thu Cct 02 16:14:51 1997
Copyright (c) Oracle Corporation 1979, 1996. All rights reserved.
Connected to:

Oracl e7 Server Release 7.3.3.0.0 - Production Rel ease

Wth the distributed, replication and parallel query options

PL/ SQL Release 2.3.3.0.0 - Production

Enter password: **x***x

SQL>

SQ.> GRANT plustrace TO scott;

Grant succeeded.

Next, user SCOTT logs on to SQL*Plus and createsthe PLAN_TABLE (required by the EXPLAIN
PLAN command) into his schema by running the script $ORACLE_HOM E/rdbms73/admin/utlxplan.
sgl, asshownin Listing 8.17.

Page 144
Listing 8.17 Creating PLAN_TABLE

SQL> CONNECT scott

Enter password: *****

Connect ed.

SQL> @ORACLE HOVE/ rdbns73/ adm n/ ut | xpl an
Tabl e creat ed.

SQ> L

1 create table PLAN TABLE (

2 statenent id var char 2(30) ,
3 ti mestanp dat e,

4 remar ks var char 2(80) ,
5 operation var char 2(30) ,
6 options var char 2(30) ,
7 obj ect _node var char 2(128),

8 obj ect _owner var char 2(30),
9 obj ect _nane var char 2(30),
10 obj ect i nstance nuneri c,

11 obj ect _type var char 2(30),
12 optim zer var char 2(255) ,
13 search_colums nuneric,

14 i d nuneri c,

15 parent id numneri c,

16 position numeri c,

17 cost nuneri c,

18 cardinality numeri c,

19 byt es numeri c,

20 ot her _tag var char 2(255) ,
21* ot her | ong)

The L[IST] command lists the contents of the SQL buffer, which contains the last SQL command
executed by the CREATE TABLE plan_table statement from the ORACLE_HOME/rdbms73/admin/

utlxplan.sgl script.

Next, SCOTT enters and executes the query he wants to trace. Listing 8.18 shows an example.

Listing 8.18 Tracing a Query

SQL> SELECT t1l1.dnane, t2.enane, t2.sal,

2 FROM dept t1, enp t2

3 WHERE t1.deptno = t2.deptno;
DNAME ENAME SAL
RESEARCH SM TH 800
SALES ALLEN 1600
SALES WARD 1250
RESEARCH JONES 2975
SALES MARTI N 1250
SALES BLAKE 2850
ACCOUNTI NG CLARK 2450
RESEARCH SCOrT 3000
ACCOUNTI NG Kl NG 5000
SALES TURNER 1500

t2.)ob

CLERK
SALESVAN
SALESVAN
MANAGER
SALESVAN
MANAGER
MANAGER
ANALYST
PRESI DENT
SALESVAN

RESEARCH ADANMS 1100 CLERK

SALES JAVES 950 CLERK
RESEARCH FORD 3000 ANALYST
ACCOUNTI NG M LLER 1300 CLERK

14 rows sel ect ed.

To get information on both the execution path and the execution statistics, SCOTT hasto set the
AUTOTRACE variable appropriately. Listing 8.19 shows the commands used to set AUTOTRACE on
and run the previous query from the buffer.

Listing 8.19 Tracing the Query in the Buffer

SQL> SET AUTOTRACE ON
SQ> /

Executi on Pl an

0 SELECT STATEMENT Opti m zer =CHOOSE

1 0 NESTED LOOPS

2 1 TABLE ACCESS (FULL) OF "EMP

3 1 TABLE ACCESS (BY RON D) OF " DEPT

4 3 | NDEX (UNI QUE SCAN) OF " DEPT_ PRI MARY KEY' (UNI QUE)
Statistics

O recursive calls
2 db block gets
43 consistent gets
0 physical reads
0O redo size
726 bytes sent via SQL*Net to client
376 bytes received via SQL*Net from client
3 SQ.*Net roundtrips to/fromclient
0O sorts (nenory)
0 sorts (disk)
14 rows processed
To trace the sane statenent w thout displaying the query data:
SQL> SET AUTOTRACE TRACEONLY
SQL> / -- slash command: doesn't display query text
14 rows sel ect ed.
Execution Pl an
0 SELECT STATEMENT Opti m zer =CHOOSE
1 0 NESTED LOOPS

2 1 TABLE ACCESS (FULL) OF "EMP

3 1 TABLE ACCESS (BY ROW D) OF " DEPT

4 3 | NDEX (UNI QUE SCAN) OF " DEPT_PRI MARY_KEY' (UNI QUE)
Statistics

O recursive calls
2 db block gets
43 consistent gets
0O physical reads

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch08/0138-0141.html

Previous | Table of Contents | Next

Page 151

Oracle Administrator toolbar includes these five applications and the Net8 Assistant. To start the Oracle
Administrator toolbar, from the Start menu on the task bar, choose Programs, Oracle Enterprise
Manager, Administrator Toolbar. The Administrator toolbar functions much like the Windows task bar
and the Microsoft Office shortcut bar.

The third way to access the database administration applicationsis from the Enterprise Manager console
application launch palette. But before you can use the console, it is necessary to build a repository.
Unlike earlier releases of Enterprise Manager, the process of repository construction is performed
automatically. The first time the console starts with a given user ID, the Repository Manager describes
the sub-components that are necessary to start the console. When you respond OK to the prompt,
Repository Manager creates arepository for itself, Enterprise Manager, and Software Manager, and
starts the Discover New Services Wizard. If there are nodes on the network that already have Oracle
Intelligent Agent configured, this wizard will communicate with the remote nodes to populate the
navigation tree on the console. Because this function can be performed at any time, you can skip it for a
fast start.

CAUTION

Because arepository is built automatically during the first login, you must be careful to
avoid creating arepository for a system user, such as SY STEM, inthe SY STEM
tablespace. A repository in the SY STEM tablespace might cause fragmentation and space
constraints that adversely affect performance and manageability.

After the Enterprise Manager console opens, use the Database Administration Tools from the
Applications toolbar to explore the Instance Manager, the Schema Manager, and other Database
Administration Tools. The remaining tools—Backup Manager, Data Manager, and Software
Manager—can only be accessed from here in the console.

The fourth way to access the Database Administration Tools is also from within the console on the menu
bar by selecting Tools, Applications.

Enterprise Manager is now ready to use, but there are no databases or listeners known to Enterprise
Manager unless the Discover New Services Wizard took advantage of remote intelligent agents to
automatically discover and define them. To add databases and nodes representing systems, from the
menu bar choose Navigator, Service Discovery, Manually Define Services to start the Service Definition
Wizard. The wizard guides database administrators through the process of defining listeners and

databases to Enterprise Manager. Database Administration Tools are now accessible in the fifth and final
way by right-clicking one of the newly added databases in the upper-left Navigator window. From the
mouse menu, select Related Tools to see a context-sensitive list of tools available to access the selected
database (see Figure 9.2).

Page 152

FIG. 9.2
Context-sensitive menus
enable Schema

Manager accessto
ORCL through the
console.

Using the Console Functions

When database administrators become familiar with Enterprise Manager, console functions are not
usually the attraction of the product. M ost database administrators become interested in the product
because of the Database Administration Tools and the Performance Pack. However, a significant portion
of these components are crippled or do not function at all without the Event Management and Job
Scheduling components working with remote intelligent agents:

. The Backup Manager cannot perform backups or recoveries without Job Scheduling.

. DataManager cannot perform imports, exports, or loads without Job Scheduling.

. Software Manager cannot distribute software without Job Scheduling.

. Trace Manager cannot collect performance data for analysis without Job Scheduling.

. The defragmentation and coal escence functions of Tablespace Manager require Job Scheduling.
. The advanced events that come with the Performance Pack depend on Event Management.

Use the information in this section to implement the full architecture so that the promise of Enterprise
Manager isfulfilled. The focus on implementation and configuration of the integrated console functions
found in this book is intended to enable database administrators to take full advantage of all the other
useful functions that depend on the console components.

The Enterprise Manager console centralizes control of the database environment. Whether managing a
single database or a global enterprise, the console provides consolidated

javascript:displayWindow('images/ch09fg02.jpg',800,600)

Page 153

management. There are four primary console functions, each of which is represented in a panein the
console window:

. Navigator

. Map

. Event Management
. Job Scheduling

The Navigator provides a tree structure representing all databases, servers, Net8 listeners, Web servers,
and groups of these components. Context-sensitive access to the Database Administration Toolsis only
afew mouse clicks away. Map provides away to geographically track the status of systems and drill
down into systems to examine listeners and databases. In conjunction with the event functionality, Map
shows system status at a glance.

Event management and job scheduling are dependent on the availability of remote intelligent agents.
The Event Management component communicates with remote intelligent agents to track activities and
conditions on remote systems. Using this capability, Enterprise Manager sends mail, pages people, or
runs ajob to correct afault or capture diagnostic information for later analysis. If ajob runs to resolve or
prevent afault, the Job Scheduler component handles the task. In addition, the Job Scheduler can launch,
monitor, and report completion of a series of activities on remote systems.

Understanding the Integrated Console Functions

Some console functions apply to all of the other components of Enterprise Manager to enforce security,
make applications available, manage the four panes of the console window, and manage the
communications daemon.

SecuritySecurity functionality for Enterprise Manager is managed from the console and is accessible
from the menu by selecting File, Preferences. The database administrator can store the passwords
necessary to access the services managed by Enterprise Manager. When many user |Ds with different
passwords are required to administer alarge environment, you often resort to writing them down on dlips
of paper or in notebooks. It isimpossible to remember 20 user IDs and the associated continually
changing passwords. The user preferences at |east enable database administrators to store passwordsin a
secured environment where they will not accidentally fall into the wrong hands.

Launch PalettesL aunch palettes are small toolbars that can float as independent windows or as toolbars
at the top or bottom of the console. The Launch palettes are accessed and managed, from the menu bar
by selecting View, Launch Palettes. The default installation of Enterprise Manager without value added
or custom products provides only the Application palette.

Y ou can activate the Enterprise Manager toolbar by choosing View, Toolbar from the menu bar. The
toolbar consists of five sections of buttons for related tasks (see Figure 9.3). These tasks manage which
application panes are visible, provide drag-and-drop help, manage map images, create and remove
events, and create and remove jobs.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 154

FIG. 9.3

The Enterprise Manager
toolbar providestools
for the Map, Event, and
Job console panes.

I-r---r\- 'r-i-'_-:l

Communications Daemon The database administrator uses the console to provide management of the
communications daemon by selecting Tools, Daemon Manager. Daemon Manager enables the database
administrator to manage and monitor the interaction of the local communications daemon and the
remote intelligent agents by configuring items such as the TCP/IP port, polling intervals, and maximum
connection counts. In addition, the database administrator can observe which applications and nodes
have pending events and jobs.

Surfing Databases with Navigator

Navigator is the most widely used part of the Enterprise Manager console. It behaves much like the
Windows Explorer, so the interface is intuitive and immediately usable. Right-clicking any object
reveals a mouse menu to create new tree views, access Navigator functions, or use related Database
Administration Tools.

From the mouse menu, select Split View to create areference point for the top of atreein anew view
easily accessible using tabs at the top of the Navigator window. In a complex database or operating
environment, the tree views make accessing the parts of the environment of interest more efficient (see
Figure 9.4). Filters provide an alternative method of limiting branches of the tree to objects of interest.
For example, if al general ledger objects begin with"GL _," afilter value of GL_% will limit objects
below the filter in the tree structure to those that belong to the general ledger system.

The same menu enabl es the database administrator to create new objects of the same type or delete
existing objects. Some object changes are possible directly from Navigator using Quick Edit, while more
complex changes may require accessing one of the Database Administration Tools that operate on the
selected object by selecting Related Tools.

NOTE

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0158-0160.html
javascript:displayWindow('images/ch09fg03.jpg',640,75)

Because the mouse menu is context sensitive, the operations available vary widely across
different objects.

Navigator is also the source of components for Map. To add an object to a map, simply drag the object
from Navigator to Map and drop it where you want it on the map.

Using Navigator, a single administrator can access every object in every database, create new objects,
and delete existing objects without writing a single SQL statement. Navigator easily becomes the
database administrator's primary interface to manually query and alter databases and their objects.

Page 155

FIG.9.4

Navigator provides
away to get to and
mani pulate any object
in any database.

Visualizing the Database World with Map

Map provides a geographically oriented means to monitor the status and basic information concerning
databases, nodes, listeners, and Web servers, as well as groups of these four objects. Maps of Asia,
Europe, Japan, the United States (refer to Figure 9.2), and the world are provided with the product, but
any bitmap file (*.BMP) isavalid map. The map doesn't even have to be geographical. Consider
organizational charts, business process flows, and network diagrams as alternative maps. The capability
to switch quickly between maps from the Console toolbar enables many views of the enterprise.

Used in conjunction with remote intelligent agents, Map indicates the status of each object on the map
with asmall signal flag. Green signal flags mean al iswell. Y ellow flags indicate that some condition
requires attention, and red indicates a serious problem. The Event Management component of Enterprise
Manager enables the database administrator to define conditions and thresholds necessary to trigger
changes in status indicated by the signal flags. Double-clicking a Map object starts a view-only Quick
Edit of the object. Database Administration tools, usually started from the Console, can be started
directly, specific to an object if the object is selected on the map.

Automating Administration Tasks with Job

javascript:displayWindow('images/ch09fg04.jpg',800,600)

The Enterprise Manager Job Scheduling component, known as Job, provides away for database
administrators to automate tasks at specific times or based on events in the operating environment.
Scheduling is especially valuable in complex environments with many systems.

Page 156

Job can perform any tasks requiring operating systems commands or SQL. The remote agent handles
actual execution independently of the Enterprise Manager console.

NOTE

Job is not usable if Oracle Intelligent Agent is not installed and
configured.

Job comes with a variety of predefined tasks ready to configure and schedule. The process for creating a
job is best explained using an example. To schedule an export of a remote database, start by selecting J
ob | Create Job from the Enterprise Manager menu bar. The resulting window contains four tabs:
General, Tasks, Parameters, and Schedule.

Starting with General, give the job a name and description. Then, select the destination type and a
destination. To perform a database export, the destination type should be "Database.” Next, move to the
Taskstab. There are over a dozen database and system building block tasks available to configure ajob.
Select the Export task from the Available Tasks list and move it to the Selected Taskslist. More
complex jobs are composed of multiple tasks arranged in the required order.

Next, select the Parameters tab, where configuration information for each task in ajob is managed. For a
simple export, select the Select Export Objects button and determine whether you will export the entire
database or specified users and tables. Select the Advanced Export Options button to select the
parameters to pass to export when it runs (see Figure 9.5).

FIG.9.5
Many task building

blocks are available to
create ajob, each with
its own parameters.

javascript:displayWindow('images/ch09fg05.jpg',800,600)

Page 157

TIP

If there are no objectsin the Available Tasks list, go to Navigator and create a database
group in the Database Groups folder. The database groups make up the Available Tasks
list.

The export job is now ready to schedule. Select the Schedule tab and define when the job should run.
Pressing the Submit button saves the job; it is ready to run at the specified time. The job name and
description are displayed in the Jobs console window when the Job Library tab is selected. Information
on active and complete jobs is available from other tabs.

Job is an easy-to-use and well-organized job scheduling system that gives database administrators the
ability to automate tasks on diverse systems directly from the Enterprise Manager console. However, it
IS no substitute for the more robust job scheduling components of the comprehensive systems
management packages that provide features such asjob restart and job triggers based on the existence of
afile on remote systems. The key to using Job to its full potential is to understand your job scheduling
requirements. If you are currently using cron to schedule al your UNIX-based jobs, Job is a huge
improvement. If you are thinking about implementing a more robust job scheduling process for your
entire operation as part of an enterprise-wide systems management strategy, you may find other products
more suitable.

Responding to Change with Event Management

The Event Management System (EMYS) is the Enterprise Manager component that monitors the health
and welfare of remote databases and the services that make them available to applications. Unlike Job,
which triggers tasks on a specific schedule, EM S works with remote intelligent agents to constantly
monitor for unusual conditions, known as events, and then manage the events based on specifications
defined by the database administrator. Events can trigger ajob to take preventative or corrective action
to keep a system available and to collect information for later analysis. If events are serious enough,
Map is notified to change the visual signal flags on the graphical display. EM S can even send mail or
use pagers to notify individuals of events.

Like Job, EM S uses the communications daemon on the local client and remote intelligent agents on
each system to monitor and respond to events. The intelligent agents actually monitor system resources,
so the events are managed 24 hours a day without the direct participation of the Enterprise Manager
console. Without Oracle Intelligent Agent installed and configured, Job is not usable.

To begin monitoring a remote resource for a particular event, the event must be registered in EMS. A
variety of predefined events come ready to configure and register. The process to begin monitoring is

best explained using a simple example. To monitor the availability of aremote listener, start by selecting
Event, Create Event Set from the Enterprise Manager menu bar. The resulting window contains three
tabs: General, Events, and Parameters.

Starting with General, give the event a name and description and select the service. To monitor a
listener, the service type should be Listener. Next, move to the Events tab. For other service types such
as Database, there are many events available to create an event set if the Performance Pack is
implemented (see Figure 9.6), but for alistener, EM S only monitors whether

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0158-0160.html

Previous | Table of Contents | Next

Page 173

CHAPTER 10

PL/SQL Fundamentals

In this chapter

. Understanding PL/SQL 174

. Understanding the PL/SQL Engine 175
. Adding PL/SQL to Your Toolbox 179
. Getting Started with PL/SQL 181

. Language Tutorial 185

Page 174

Understanding PL/SQL

PL/SQL isaProcedural Language extension to Oracle's version of ANSI standard SQL. SQL isanon-
procedural language; the programmer only describes what work to perform. How to perform the work is
left to the Oracle Server's SQL optimizer. In contrast, PL/SQL, like any third-generation (3GL)
procedural language, requires step-by-step instructions defining what to do next.

Like other industry-standard languages, PL/SQL provides language elements for variable declaration,
value assignment, conditional test and branch, and iteration. Like C or Pascal, it is heavily block-
oriented. It follows strict scoping rules, provides parameterized subroutine construction, and like Ada,
has a container-like feature called a package to hide or reveal data and functionality at the programmer’s
discretion. It isastrongly typed language; data type mismatch errors are caught at compile and runtime.
Implicit and explicit data type conversions can aso be performed. Complex user-defined data structures
are supported. Subroutines can be overloaded to create a flexible application programming environment.

Additionally, because it is a procedural wrapper for SQL, the language is well integrated with SQL.
Certain language features enable it to interact with the Oracle RDBMS, performing set and individual
row operations. The more you know about writing SQL, the better designed your PL/SQL programs will
be.

PL/SQL provides afeature called Exception Handling to synchronously handle errors and similar events
that may occur during processing. You'll learn how to embed exception handlersin your PL/SQL code

to deal with error conditions gracefully.

PL/SQL is not an objected-oriented language. It does have some features found in languages such as
Pascal and Ada. If you're familiar with the syntax of Pascal, you will have no trouble learning PL/SQL.
Unlike languages such as C and Pascal, pointers are not supported. PL/SQL is primarily a back-end
development tool, where it interacts strictly with database tables and other database objects. Interaction
with the operating system and external software components is handled through the supplied database
packages.

PL/SQL ishighly portable; it is standardized across al Oracle platforms. Because its data types are
based on the database server's, the language is completely machine independent. Y ou do not need to
learn various flavors for UNIX, Windows NT, NetWare, and so on. A PL/SQL program will compile
and run on any Oracle Server with no modifications required.

CAUTION

The Oracle Server imposes limitations on the size of a PL/SQL module, depending on
the operating system. On NetWare 3.x it islimited to 32KB. For most flavors of UNIX
and Windows NT, the module size is restricted to 64KB. Violating this limit can crash
your database server or the server machine itself.

This portability also extends to 3GL programming languages. PL/SQL provides a standardized interface
to various languages such as C and COBOL, viathe Oracle-supplied precompilers. The precompilers
support the ANSI standard for embedded SQL .

Page 175

Understanding the PL/SQL Engine

Before you look at PL/SQL as alanguage, you need to understand it in the executing environment.
Fitting into the Client/Server Environment

In aclient/server configuration, the real bottleneck istypically the network. Connect a couple hundred
usersto the Oracle server viayour compiled C, C++, Delphi, or COBOL program, and you'll have avery
sluggish network system. The solution is to combine complex program segments, especially those
performing reiterative or related SQL statements, into PL/SQL blocks. These blocks can be embedded in
an OCI (Oracle Call Interface) program, or executed even more efficiently by moving them into the
database itself as stored functions, procedures, and packages. Figure 10.1 shows the typical interaction
between client applications with the Oracle server.

FIG. 10.1
A typical client/server
environment.

PL/SQL is executed by the PL/SQL engine. Thisengineis part of the database server. Figure 10.2
illustrates internally how a PL/SQL block is handled.

Whatever tool you use, such as Oracle SQL* Plus, the tool must submit the PL/SQL source text to the
Oracle Server. The PL/SQL engine scans, parses, and compiles the code. The compiled code is then
ready to be executed. During execution, any SQL statements are passed to the SQL Statement Executor
component for execution. The SQL Statement Executor performs the SQL or DML statement. The data
set retrieved by the query is then available to the PL/SQL engine for further processing.

One advantage of using a PL/SQL block to perform a set of SQL statements, versus sending them
individually, isthe reduction in network traffic. Figure 10.3 illustrates this idea.

This aone can substantially improve an application's performance. Additionally, the SQL/DML
statements can be treated as a single transaction. If the entire transaction succeeds, then al the

Page 176

modifications to the database can be committed. If any part fails, the entire transaction can be rolled
back. Because complex logic can be included in the PL/SQL block, and thereby executed on the server,
client program size and complexity is reduced.

FIG. 10.2

The PL/SQL engineisa
component of the
Oracle database server.

FIG. 10.3

javascript:displayWindow('images/ch10fg01.jpg',367,225)
javascript:displayWindow('images/ch10fg02.jpg',314,252)

Grouping several SQL
statements into one PL/
SQL block reduces network
traffic.

Executing Stored SubprogramsA further refinement involves storing compiled, named PL/SQL blocks
in the database. PL/SQL blocks will be referred to collectively in this chapter as stored subprograms or
just subprograms. "Named" simply means the name of the subprogram that is included with its code, just
like any C function or Pascal subroutine. Figure 10.4 illustrates how the PL/SQL engine calls stored
subprograms.

Page 177

FIG. 10.4

The PL/SQL engine
runs stored subpro-
grams.

These subprograms can perform complex logic and error handling. A simple anonymous or unnamed
block (ablock of PL/SQL code that isn't |abeled with a name), embedded in a client application, can
invoke these subprograms. This capability is generally referred to as a Remote Procedure Call (RPC).
Subprograms can also call other subprograms. Because these subprograms are already compiled, and
hopefully well tuned by the devel oper, they offer a significant performance improvement, aswell as
reduce application development by providing reusable building blocks for other applications or modules.

Shared SQL Areas Within the System Global AreaThe System Global Area (SGA) isalarge chunk of
memory allocated by the operating system to the Oracle Server. Within this memory, the Server
maintains local copies of table data, cursors, user's local variables, and other sundry items.

When you compile any PL/SQL program, whether a named or unnamed block of code, the source and
object code are cached in a shared SQL area. The space allocated to each PL/SQL block iscalled a
cursor. The server keeps the cached program in the shared SQL area until it gets aged out, using a L east
Recently Used algorithm. Any SQL statements inside the PL/SQL block are also given their own shared

javascript:displayWindow('images/ch10fg03.jpg',400,252)
javascript:displayWindow('images/ch10fg04.jpg',400,215)

SQL area.
When a named subprogram is compiled, its source code is aso stored in the data dictionary.

The code contained in a subprogram is reentrant; that is, it is shareable among connected users. When an
unnamed PL/SQL block is submitted to the server for execution, the server determines whether it has the
block in cache by comparing the source text. If the text is exactly identical, character for character,
including case, the cached, compiled code is executed. The sameistrue for SQL statements; if the query
text isidentical, the cached, parsed code can simply be executed. Otherwise, the new statement must be
parsed first. By sharing executable code, a server-based application can achieve substantial memory
savings, especialy when hundreds of clients are connected.

Private SQL Areaslf several users are executing the same block of code, how does the server keep their
data separated? Each user's session gets a private SQL area. This hunk of

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 171

system is defined based on the type of workload (OLTP, DSS, or Batch), downtime tolerance, peak
logical write rates, and application information. After the scope is defined, choose the Collect tab to
define what data and how much data to collect for analysis. When the collection parameters are defined
at the minimum level necessary to meet the tuning session scope, click the Collect button to acquire the
required data. Before applying this process to a production database, practice in atest environment until
the impact of the various options is understood and the amount of time consumed performing the
specified activitiesis quantified.

Next, select the View/Edit tab to provide more detailed specification for the tuning session. Thisis
where the specific tuning rules and thresholds are defined. Experienced tuners may want to ater some of
the hundreds of rules based on the profile of the target database and personal knowledge and experience.
For inexperienced tuners, it is an opportunity to see what Expert believesis good and bad.

From the Analyze tab, click the Perform Analysis button to begin the analysis process. After analysisis
complete, select the Review Recommendations tab to get advice from Expert (see Figure 9.14). If
recommendations are deemed reasonabl e, use the Implement tab to generate implementation scripts and
new parameter files. Run the scripts and implement the new parameters to put Expert advice to work. If
the advice does not seem correct, this can often be traced back to a rule that might require modification
for the target database environment. Recollecting datais not required to develop new recommendations
based on rule changes. Simply alter the rules to better reflect the environment of the target database and
rerun the analysis.

FIG.9.14
These recommenda-
tions are from an
Oracle samplefile that
comes with Expert.

Page 172

Expert provides the opportunity to aggregate the collected wisdom at Oracle Corporation and add the
experience and knowledge of the local database administration team to a structured methodology for

javascript:displayWindow('images/ch09fg14.jpg',800,600)

performance management. Although most installations do not use this component of Enterprise
Manager, it is probably most useful where it isleast used—in small organizations with limited database
tuning experience. Progressive database administrators in such environments should find afriend in
Expert after even a short period of time using the tool.

Using the Enterprise Value-Added Products

Oracle provides several other value-added products that integrate with Enterprise Manager. Each meets
specialized requirements for areas such as Web server management and processing of biometrics
information such as fingerprints.

Replication Manager is useful for environments that make heavy use of Oracle8 replication features.
Oracle Rdb for Windows NT provides tools to manage the Rdb database that Oracle acquired from
Digital Equipment Corporation (DEC) several years ago. Oracle Fail Safe manages high availability
environments implemented on Windows NT clusters. Oracle Biometrics works with specialized
hardware to administer fingerprint identification used with the Advanced Networking Option (ANO).
Oracle also integrates Web Server Manager and Security Server Manager with Enterprise Manager as
value-added applications.

Using the Oracle Enterprise Manager Software Developer's Kit (SDK), developers build their own
application integrated with Enterprise Manager to meet the specific needs of their environment. Several
third-party applications are integrated with the Oracle Enterprise Manager. The functionality of these
applications ranges from systems management functions such as transaction processing management
connected through Oracle XA to specialized vertical market applications including a computerized
medical record system. More third-party applications are under development.|

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 168

Job configured, the Trace and Expert repositories on the client, remote intelligent agents on the node
where Trace-enabled programs reside, Trace Collection Services on remote nodes (usually linked with
the remote application), and Trace Formatter tables on remote nodes. Each application might require
configuration as well. For example, at a minimum, Oracle8 must have the ORACLE_TRACE_ENABLE
parameter set to TRUE before it will produce trace data. The setup is not trivial and should not be taken
lightly. However, Trace is the key to providing the data necessary to take full advantage of the
Enterprise Manager Performance Pack.

Managing Tablespaces

Tablespace Manager provides detailed information on storage utilization in tablespaces, data files, and
rollback segments. A color-coded map of each piece of storage enables the database administrator to
visualize the storage used by every database object, how many extents are used, and where the extents
are placed in both the tablespace and data files (see Figure 9.12). Thisinformation isinvaluable when
tracking down 1/0O contention or tracking the progress of large database loads and index builds.

FIG. 9.12

Selecting an extent in
the graphical display
highlights other extents
in the same object.

In addition to the graphical display, there are two other tabs in the right application pane. The Space
Usage tab displays the space utilization statistics, such as the row count and the average row length. The
Extent Information tab shows information such as the extent count for the selected object and the data
file where the selected extent resides.

Page 169

CAUTION

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0164-0167.html
javascript:displayWindow('images/ch09fg12.jpg',800,600)

Most of the information under the Space Usage tab is produced by the ANALY ZE SQL
command. For objects with no statistics, generate statistics using ANALY ZE or the
Tablespace Analyzer Wizard. If the database is tuned for rules-based optimization and
the CHOOSE optimization mode is employed, generating statistics may have an adverse
performance impact. Likewise, if cost-based optimization isimplemented and statistics
are not available, performance might severely suffer.

Using Job, Tablespace Manager employs four wizards to change and analyze storage configurations. All
four wizards submit jobs to the Enterprise Manager Job Scheduling component to perform the requested
tasks. The Tablespace Analyzer Wizard analyzes selected tables, partitions, clusters, and indexes using
the ANALY ZE SQL command. The Tablespace Organizer Wizard defragments tables, partitions, and
clusters using export and import utilities and rebuilds the indexes. It can also detect space that has not
been used at the end of segments. The Defragmentation Wizard duplicates Tablespace Organizer
defragmentation capabilities, but it is easier and quicker to use because it uses default options. The
Coalesce Wizard combines adjacent free space into asingle block. Thisis a particularly important
technique for active operational databases where object sizes change frequently and temporary objects
are routinely created and dropped. Unless a selected object contains adjacent free blocks, thiswizard is
disabled.

Monitoring Sessions

TopSessions enables database administrators to monitor database sessions and kill them if necessary due
to inactivity or over-utilization of resources. Thistool monitors all sessions or only the most active based
on consumption of specified resources such as memory or 1/O. Filtering provides a means to narrow the
focus on sessions of interest when analyzing activity.

TIP

Before running TopSessions for Oracle8, run <ORACLE_HOME>/SY SMAN/
SMPTSI80.SQL to ensure that tables required to perform al the functions are in place
with appropriate permissions. Be aware that this script may not run "asis" and requires
some editing to alter the ORACLE_HOME drive and name. It is still necessary to log in
as SY Sto explain access plans.

TopSessions can drill down into sessions to display exhaustive session statistics on redo, enqueue,
cacheing, the operating system, parallel server, SQL, and other miscellaneous information. Examining
active or open cursors (see Figure 9.13) reveals the SQL executed by each cursor and the access plan the
SQL isusing for execution. Locking information, including identification of blocking locks held by the
session, isalso available.

TIP

TopSessions can identify locks for a particular session, but for in-depth analysis of the
entire locking picture, the tool to useis Lock Manager. Lock Manager displays either all
locks held on the database or only blocking or waiting locks. Offending sessions can be
killed directly from Lock Manager.

Page 170

FIG. 9.13
By drilling down into
asession's open Cursors,
detailed access plans,
are available.

Using Oracle Expert

Like Oracle Trace, Oracle Expert is an elaborate product with its own user's guide, consisting of 160
pages in the current release. Expert is more than just a product; it is the implementation of a performance
management methodology. While other Performance Pack components provide information for database
administrators to analyze, Expert applies a set of rules to the data to develop conclusions and make
recommendations to improve performance. Expert considers trends that develop over time as well as
current system conditions. As new database rel eases become available, the rules are updated to make
recommendations on how to take advantage of new advanced features. As aresult, Expert doubles as a
mentor to help database administrators learn more about performance management and Oracle8.

Unfortunately, performance tuning is often neglected in favor of day-to-day requirements until serious
performance problems affect the production database environment. Expert provides a means to
automatically sift through performance data that might consume alarge percentage of even a skilled
database administrator's time. Expert doesn't replace the database administrator as a performance tuner.
It does free the database administrator from the mundane task of screening mountains of datato find
potential problems. With Expert, the performance tuning focus becomes how to deal with what Expert
finds and enhancing Expert with more rules based on the experience and knowledge of the database
administrator. Performance tuning becomes more efficient, effective, and rewarding.

To start an Expert Tuning session, from the menu, select File, New and start telling Expert about the
areas it should analyze. The scope of the tuning session is defined based on requirements for instance

javascript:displayWindow('images/ch09fg13.jpg',800,600)

tuning, application tuning, and storage structure tuning. The profile of the

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch09/0164-0167.html

Previous | Table of Contents | Next

Page 178

memory contains a private copy of the variable data included in the subprogram. A private SQL areais
also alocated for any SQL statements within the PL/SQL block. Figure 10.5 represents the scheme.

FIG. 10.5
Shared and private SQL
areas within the SGA.

h- _._1 -
:" =
=

Thefirst time a stored subprogram is referenced, it must be loaded from the database into the SGA.
Once loaded, it is available to every user. Aslong asit continues to be referenced by any user (not
necessarily the one who first called it), the subprogram will remain in memory. Packages work the same
way, except that awhole set of subprograms may be included in the package. Theinitial load may take
longer, but now all these subprograms are available; there is no further disk hit. When a set of
subprograms are expected to be invoked, you're better off having them all load at once. Packages offer
this mechanism.

: e

Fitting into the Client Environment

The PL/SQL engine may also be embedded in certain Oracle tools, such as SQL* Forms 4.5 and other
Developer/2000 development tools. The main advantage here is programming in afamiliar language.
The client program can perform the computations contained in the local PL/SQL block, and send the
SQL to the server or invoke stored PL/SQL portions. Again, this supports code reuse and simplifies the
client program by handling portions of complex logic directly on the database server.

Server-Side Versus Client-Side Development

The developer must consciously decide how much complexity to hide on the server versus how much to
keep in the client program. After years of developing client/server applications, the author suggests
some guiding principlesto follow:

. Reduce network traffic. Push some functionality on to the server. The network is typically the
bottleneck in any client/server application.

javascript:displayWindow('images/ch10fg05.jpg',383,240)

Page 179

. Develop standard code. Standard code can be reused on new applications or when adding on to
existing applications. This leverages past development effort.

. Strivefor low coupling and high cohesiveness. Coupling occurs when one module is dependent
on the specific contents of another module, such as when you use global variablesinstead of
passing in parameters. Cohesiveness means putting like elements in the same place, such as
bundling all math functions into one math library.

. Hide implementation details. This reduces client program complexity and decouples functionality
from implementation. Decoupling is removing or avoiding module dependencies. When
implementing top-down design, for example, defer the actual "how-to" by pushing
implementation details down to the lower levels.

. Write modules in a generic manner. The more specific amoduleis, the lessreusableit is. Look
for patterns and common traits. This does not mean cram several different activitiesinto asingle
module.

. Handle business rules in a consistent, centralized manner. This makes them more visible and
reusable on future projects. If your business rules are ever-changing and spread out over many
client program modules, you will have to locate and revise them all over the place—a process
that is neither efficient nor maintainable.

NOTE

Clamage's Rule of Maintainability: A highly maintainable program module is one that
requires little or no changes when the requirements for that module changes. An
unmaintainable program is one that requires substantial modificationsin order to
incorporate new requirements. The above principles will help guide you toward the goal
of building highly maintainable software.

Use stored subprograms to implement these principles. By providing standard libraries of stored
subprograms, multiple and future client applications can take advantage of earlier, completed
development. For example, business rules can be implemented as stored subprograms. If arule changes,
for example, how to compute a sales commission, just modify and recompile the appropriate stored
program. Any dependent client programs need not change or even be recompiled, provided the stored
subprogram's interface remains unchanged.

Packages are a good way to increase a subprogram's generality by allowing the subprogram name to be
overloaded. Overloading simply means giving the same subprogram name to a set of code, usually with
different data types or different numbers of argumentsin the parameter list. For example, the addition
operator is overloaded in nearly al computer languages to handle both integer and floating point
arithmetic.

Adding PL/SQL to Your Toolbox

Stop for a minute and think about how you can use PL/SQL in your everyday tasks. Y ou may not be
involved in application development. Asa DBA, you have to perform steady maintenance on the
database. Y ou can use PL/SQL to make your life easier.

Page 180
Energize Your SQL Scripts

Some SQL * Plus scripts can actually generate another script, such aslisting the number of rows for every
table in atablespace. However, the scripts could be rewritten in PL/SQL, compiled, and stored in the
database; thereby running much faster, without writing the intermediate script to afile.

Writing these kinds of scriptsis also somewhat difficult; a PL/SQL script is more straightforward and
easier to document and maintain. Additionally, acompiled PL/SQL program is readily shared among
DBAs (especidly if you'reina"24 x 7" shop). Instead of searching the hard drive for scripts, everyone
will always know where they are and how to run them.

Stored subprograms can take parameters, which makes them extremely flexible. Y ou can even write
SQL*Plus front ends for them, collect user input and pass these values in, without having to know the
order and types of the parameters.

Simplifying Database Administration

Y ou probably have agood set of SQL scripts that give you information about your database in action.
But after you understand PL/SQL, you'll envision awhole new set of programs that give you additional
information on database performance, storage, user load, locks, and so on. PL/SQL eliminates the
restrictions and limitations of plain SQL scripts.

Y ou can automate many tasks, running them at set intervals by using the supplied packages. Y ou can
send system or application datato external performance monitors—written, perhaps, in C++ or
Delphi—and use their powerful reporting and graphing features to display thisinformation in real-time.

Some tools, such as Visual Basic, are easy to use. With the additional capabilities of PL/SQL, you can
develop visual tools to simplify tasks such as running EXPLAIN PLAN and graphically viewing indexes
and constraints on tables. Several upscale third-party tools were devel oped this way.

Getting Better Information with Less Hassle

Y ou can write PL/SQL programs that use the data dictionary, for example, to show detailed index
information for any particular table, even if it'sin another schema. Thisisgreat if you're not logged on

as SYSor SY STEM and you need some data dictionary information, and you don't want to have to
reconnect. Thisis especially helpful to developers, who aways need to access that kind of information.
Y ou can reverse-engineer any database object using PL/SQL, rebuilding a syntactically correct
statement to re-create the object. Thiswill save you the trouble of manually updating your scripts every
time you alter atable or grant anew privilege.

If composing alarge, complex SQL statement is difficult, you can break it up into smaller parts and run
them together in aPL/SQL script. Thisis preferable to trying to join more than seven tables, after which
the SQL Executor seems to bog down. Multi-table joins can be improved dramatically by doing the
Master table lookups separately. Plus, it's easier to validate the output of a script when you know the
reusable code in it is aready working correctly.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 181
Designing Better Database Applications

Y ou can use PL/SQL in stored procedures and packages to build better applications. A concerted effort
to design and build reusable PL/SQL modules will reap long term benefits. With some thoughtful design
and planning, you can:

. Leverage the effort in one application when building the next one.

. Spread the cost of building several related applications across all of them.
. Provide consistent interfaces to underlying tables and other objects.

. Simplify and optimize data access.

« Reduce application maintenance and deployment costs.

. Enforce coding standards.

Using PL/SQL iseasy and fun. It has arelatively short learning curve as languages go. Experiment to
determine what works well or at all. If you follow the steps detailed in this section, you should become
productive in just afew days and, after only afew months, master PL/SQL sufficiently enough to
achieve some sophisticated results.

Getting Started with PL/SQL

This section details some things the DBA must do before you can do much with PL/SQL. The
architecture of the application environment in which you'll be working will also be explored.

Before you can really get into writing PL/SQL programs, you or your DBA must first do the following:

. Grant you (that is, your Oracle account name) the CREATE PROCEDURE privilege so you can
create subprograms in your own schema. For new applications, you might want to create a
special user name and schema (a particul ar tablespace).

. Grant you directly (not viaaRole) SELECT, INSERT, UPDATE, or DELETE privileges on any
database objects (for example, tables and sequences) in whatever schema for which you may be
writing PL/SQL programs. A stored subprogram or package can only reference objects that the
owner of the subprogram (you) has access rights to directly (not viaarole).

. Make sure the appropriate Oracle-supplied packages have been compiled, and you have
EXECUTE privilege on them. Y ou will find them in the directory <ORACLE_HOME>/
rdoms<version>/admin/ where <ORACLE_HOME> is the Oracle home directory (shown either
in the UNIX shell variable of the same name or in the Windows Registry) and <version> isthe
database version. The names of the package scripts have the general form of dbms*.sqgl. For

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0184-0186.html

example, on the author's Win95 machine, dbmssgl.sgl isin d:\orawin95\rdoms72\admin.

. Make sure there is sufficient storage available for your stored subprograms and packages. These
objects make additional data dictionary entriesin the SY STEM tablespace. The DBA may create
a default tablespace for your own local copies of tables and indexes, so you aren't mucking with
Production objects.

Page 182

. Make sure the shared and private SQL areas in the System Global Area (SGA) are sufficiently
large to handle the anticipated |oad from running PL/SQL scripts and subprograms.
. Make sure you have access to the SQL* Plus application or a suitable third-party tool.

Once these things are in place, you're ready to start developing PL/SQL programs!
Understanding the Schema of Things

In abstract terms, a schemaisalogical collection of related database objects, such as tables, indexes, and
views. A schemais a developer's-eye view of the database objects of interest, such as are shown on an
Entity-Relationship Diagram (or ERD).

In an Oracle database, a schemaisalogical collection of objects stored within one or more tabl espaces.
Because it isalogical collection, several applications can share schemas, or cross schema boundaries
into other schemas. The relational organization of schema objectsis strictly asthe DBA and developers
seeit, which iswhy a"roadmap," such as an ER diagram, is critical to the success of any database-
related software development. A tablespace, in turn, isalogical storage areathat maps to one or more
physical files out on disk. Figure 10.6 illustrates this organization.

FIG. 10.6

Applications, schemas,
tablespaces, and
database files are
organized hierarchically.

— =
—_—

= =
e
T

Typically, a schema has exactly one owner (that is, an Oracle user account) responsible for creating,
altering, and dropping these objects. This owner then grants access privileges to other users, either
directly or viaroles. If you're not the owner of these objects, you qualify references to the objects by
specifying which tablespace they are in using dot notation, as with SELECT CUST_NAME FROM
MKG.LEADS.

javascript:displayWindow('images/ch10fg06.jpg',400,195)

Managing Y our PL/SQL Code After they have been thoroughly tested and validated in your own
development schema, your stored PL/SQL programs are likely to become objects managed by the
schema owner. In acomplex development environment with many developers, it becomes critical to
determine who is the owner of

Page 183

the source code and where it is kept. When amodule is being worked on, it isin a state of flux. The
developer can make significant changes to a private copy, some of which may be backed out later. It's
strongly recommended that you use a Code Management System (CMS) to control the one official
version of the source code. When the modul e has been thoroughly tested and accepted for Production,
the new version is placed in the CM S, and the schema owner can compile the new version. The quickest
way to shoot yourself in the foot is to lose track of which copy isthe one known good version. In the
long run, just keeping different subdirectories for different versionsis a poor code management strategy.

There is no correspondence between schemas and tablespaces; one or more schemas may be stored in a
single tablespace, or one schema may be broken up into separate tablespaces. In practice, it is generally
agood ideato store aschemain its own set of tablespaces, along with a good set of documentation. For
example, tables may be stored in one tablespace and indexes in another. Conceptually, both tablespaces
are included in the same schema.

TIP

PL/SQL developers should have their own default tablespaces to play around in,
preferably on a non-Production database. Y ou can create your own private tables and
indexes with which to experiment. Thisway, if you inadvertently corrupt atemporary,
local copy of a Production table, who cares? Whereas the alternative could result in an
abrupt end in your career (at least as far as your current workplace goes). Additionally,
any stored programs or packages you compile are strictly local to within your schema
(stored in the data dictionary alongside subprograms belonging to other schemas), so you
can make experimental changes to Production code in a safe development environment.

CAUTION

The caveat to this scheme is to take care with object references. If it'sin your default
tablespace, you don't need to qualify the reference with the tablespace name; otherwise,
you must qualify it in order for it to be properly found. If an object by the same nameis
In more than one tablespace, qualify the reference. Y ou can use synonyms for
unqualified objectsin PL/SQL code to provide the qualifier.

As a pragmatic consideration, some applications may easily cross schema boundaries, whereas core
applications might focus on one schema. For example, a marketing application may have been
developed to automate this one department. Later, upper management may request a high-level view of
the entire enterprise, requiring a new application to obtain data from several schemas. The work you do
in one application may be reused in another, so always keep an eye toward making PL/SQL modules
generic enough to be used in multiple contexts.

Your Basic PL/SQL Development Environment

PL/SQL code is developed using your favorite text editor and the Oracle-supplied SQL* Plus
application, or one of the severa fine third-party development toolkits. If you'rein a UNIX environment,
it'sa good ideato have a couple of sessions up—one running atext editor such asvi or emacs, and
another session running SQL*Plus. If you're running Windows, you can use Notepad (or areal
programmer's editor) and have a SQL* Plus session up.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0184-0186.html

Previous | Table of Contents | Next

Page 239

CHAPTER 11

Using Stored Subprograms
and Packages

In this chapter

. Defining Stored Subprograms and Packages 240

« Building and Using Stored Programs 240

. Debugging with Show Errors 248

. Checking the State of a Stored Program or Package 255
« Building and Using Packages 256

. Creating a Real-World Example 263

Page 240
Defining Stored Subprograms and Packages

The real application development begins when you start building stored subprograms and packages,
which are persistent code modules that are compiled and stored in the database. They are shareable,
reentrant, and reusabl e software that you design. They are callable from other PL/SQL modules, SQL
statements, and client-side applications in languages that support remote procedure calls.

Whenever you compile a stored subprogram or package, the source code, compiled code, compilation
statistics, and any compilation errors are stored in the data dictionary. Various data dictionary views help
you visualize these entities. Y ou can get information about modules you compile with the USER _
views; you can get some restricted information about modules other folks compiled and granted you
accessto with the ALL _ views; and you can get all information anyone compiled with the DBA__ views,
provided you have DBA rights. These views are listed in Table 11.1 (for simplicity, listed as DBA _
vViews).

Table 11.1 Data Dictionary Views for Stored Subprograms and Packages

View Description

Textual source code for all
compiled modules.

Textua listing of any compilation
errorsfor al modules.

Statistics for compiled modules,
DBA_OBJECT SIZE such asvalidity, source, and object
Sizes.

Catalog of compiled modules
DBA_OBJECTS (stored procedures, functions,
packages, package bodies).
List of object dependencies, such as
tables referenced in packages.

DBA_SOURCE

DBA_ERRORS

DBA_DEPENDENCIES

No views exist to expose the object code because you don't need to seeit. All you need to know is that
it'sin there and whether it'svalid. A compiled module becomes invalid when a dependent object is
changed or removed, such as when a column is added or atable dropped. If a stored module becomes
invalid, it first must be recompiled, either automatically by the server or manually by the owner.

Building and Using Stored Programs

The syntax for creating stored subprograms is very similar to that for defining subprogramsin
anonymous PL/SQL blocks. Stored subprograms have all the same features of the sub-programs you
learned to write in the previous chapter, plus some additional ones. Let's make a stored function out of
that bool_to_char function you saw earlier (see Listing 11.1).

Page 241
Listing 11.1 bool2chr.sgl—Stored Subprograms Make for Reusable Code

CREATE OR REPLACE FUNCTI ON bool to_char (Pbool | N BOOLEAN)
RETURN VARCHAR2 | S

str VARCHAR2(5); -- capture string to return
BEG N

| F (Pbool) THEN -- test Bool ean val ue for TRUE
str := "TRUE ;

ELSI F (NOT Pbool) THEN -- FALSE
str := "FALSE ;

ELSE -- nust be NULL
str := "NULL';

END | F;, -- test Bool ean val ue

RETURN (str);

END bool to_char;
/

The server replies:
Function created.

That's all you get. The server doesn't execute the program; it compiles the program so that you can
execute it later when called from other PL/SQL blocks.

NOTE

The CREATE OR REPLACE syntax creates a new function or replaces an existing one.
This means you don't make incremental recompilations or source changes to stored code;
you totally replace them with new versions.

CAUTION

Good source code management is required when using CREATE OR REPLACE. Once
you replace a subprogram, the old source is gone forever from the data dictionary. It also
means you can only have one object of this name in your schema.

Now let's run this newly created stored function using an unnamed PL/SQL block, as shown in Listing
11.2.

Listing 11.2 testbool .sgl—Executing a Stored Subprogram

SET SERVEROUTPUT ON
BEA N
DBVS QUTPUT. enabl e;
DBMS OUTPUT. put _|i ne(bool to char(TRUE));
DBMS OUTPUT. put _|i ne(bool to _char (FALSE));
DBMS OUTPUT. put _|i ne(bool to _char(NULL));
END;
/

Page 242

This example pretty much exhausts the possibilities for all possible values returned by the stored
function. It iscalled a Unit Test. For each input, verify the output. The input values should test all

boundary conditions (values at and near the limits defined for the inputs, as well as some random values
in between). Y ou should always have a Unit Test file for your stored subprograms like this one so you
can verify and validate the correct functioning of your code. Keep the Unit Test program with the stored
subprogram, so that when you modify the subprogram you can test it again.

After running Listing 11.2, the server sends back the following:

TRUE

FALSE

NULL

PL/ SQL procedure successfully conpl eted.

What happens if you try to pass in something other than a Boolean? Let's try it and see:

BEG N

DBMS _OUTPUT. put _|i ne(bool _to_char(0));
END;
/

The server responds with:

ERROR at |ine 1:

ORA- 06550: line 2, colum 24:

PLS- 00306: wong nunber or types of argunents in call to
"BOOL_TO CHAR

ORA- 06550: line 2, colum 3:

PL/ SQL: Statenent ignored

This error message indicates a compilation error. The PL/SQL engine's strong type checking caught the
problem and responded with a pretty decent message.

Let'slook at another, dightly long-winded example of a stored procedure, shown in Listing 11.3.
Listing 11.3 showindx.sgl—A Stored Procedure to Display Index Information for Tables

CREATE OR REPLACE PROCEDURE show i ndex(Ptable IN
al | _i ndexes. tabl e_name%lYPE ADEFAULT NULL) IS
-- local cursors
CURSOR show_i ndex_cur(Ctable all _indexes.table name%YPE) | S
SELECT
t abl e_owner, table _nane, tabl espace_nane, index_nane,
uni queness, status

FROM al | _i ndexes
VWHERE
(Ctable IS NULL OR table nane = Ctable) -- one table or all
ORDER BY
t abl e_owner, table nane, index nane;
-- local constants
TB CONSTANT VARCHAR2(1) := CHR(9); -- tab character

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 237
bi nary_search(numarr, 100, isfound, rowout);
DBMS OUTPUT. put _|ine(FOUND=" || bool to char(isfound) ||
", ROM" || TOCHAR(rowout) || =~ SB=1");
bi nary_search(numarr, 145, isfound, rowout);
DBMS OUTPUT. put _|ine(FOUND=" || bool to char(isfound) ||
", RO || TOCHAR(rowout) || =~ SB=11');
bi nary_search(numarr, 108, isfound, rowout);
DBMS OUTPUT. put _|ine(FOUND=" || bool to char(isfound) ||
", ROM" || TOCHAR(rowout) || =~ SB=4");
bi nary_search(numarr, 105, isfound, rowout);
DBMS OUTPUT. put _|ine(FOUND=" || bool to char(isfound) ||
", ROM" || TOCHAR(rowout) || =~ SB=4");
END, -- bintest

/
The output from the server is

FOUND=FALSE, ROWN£1 SB=1

FOUND=FALSE, ROW13 SB=13

FOUND=TRUE, ROM1 SB=1

FOUND=TRUE, ROWMZ11 SB=11

FOUND=TRUE, ROWN4 SB=4

FOUND=FALSE, ROWN-4 SB=4

PL/ SQL procedure successfully conpl et ed.

Note the OUT parameter mode, which means output only. This means inside the procedure, this variable
can only be written to. If you need to read and write from a parameter variable, declareit asIN OUT.

Does that binary to char conversion routine look familiar? Wouldn't it be nice not to have to paste into
every PL/SQL program that needs it?

Default Parameter ValuesParameters can receive default values, to be used when the parameter is not
provided in the actual call to the subprogram. This makes the subprogram appear asif it can have a
variable list of parameters.

DECLARE
-- types, constants, variables

FUNCTI ON get data (Pkey | N CHAR,
Pflag | N BOOLEAN DEFAULT FALSE,
Psort I N CHAR DEFAULT =)
RETURN VARCHAR2 1S
... ~-- function inplenentation
BEG N -- executable code

| F get _data(keyl) THEN -- valid call (Pflag, Psort defaulted)
ELSIF get data(key2, TRUE) -- valid call (Psort defaulted)
ELSIF get data(key3, , "ASCENDING) THEN -- invalid!

Note the use of the keyword DEFAULT. Y ou could also use the assignment operator (:=). Asacoding
convention, only DEFAULT isused in this context, to distinguish this semantically unusual construction
from the more straightforward assignment upon declaration.

Page 238

Both default parameters can be left off intentionally, so in thefirst call to get_datathe flag parameter is
defaulted to FALSE, and the sort parameter is defaulted to spaces. This makes for avery clean coding
style where you only specify the parameters of interest to you. Note, however, that you cannot skip a
default parameter and provide the next one because this notation for specifying parametersis positional.
The positions of the parametersis significant. Y ou cannot try to use a placeholder, such as the extra
comma above.

Positional and Named NotationY ou can use an alternate notation, however, called named notation to
specify parametersin any order. Y ou provide the name of the parameter along with the value.

ELSI F get dat a(key3,
Psort => "ASCENDING) THEN -- valid (Pflag defaulted)

Y ou can start off left to right using positional notation, then switch to named notation, which is known
as mixed notation. Once you use named notation, you must then stick with it for subsequent parameters.
Named notation can be used for any parameter, not just any that were defaulted.

ELSI F get data(key3, Psort => " ASCENDI NG ,
Pflag => TRUE) THEN -- right

ELSI F get data(Pkey => key3, ~ASCENDI NG ,
Pflag => TRUE) THEN -- w ong!

Although this seems convenient and unusual among programming languages, I've never needed it. But if

you had a bunch of parameters and nearly every parameter was defaulted and you wanted to have
maximum flexibility calling the subroutine, thisis practically indispensable.

Built-in FunctionsNearly all the built-in functions and operators you usein SQL can also be used in PL/
SQL expressions and procedural statements. There are only afew exceptionsto thisrule.

Y ou cannot use "= ANY (...)"in an expression. Instead, use the IN operator, asin:
IF (key IN(A, B, C)) THEN -- acts like an OR conditi onal
Y ou can still use operators such as BETWEEN, ISNULL, ISNOT NULL, LIKE, and so on.

Y ou cannot use DECODE in procedural statements. Also, none of the SQL group functions are allowed
in procedural statements. They don't make much sense in this context, either. Of course, there are no
such restrictions for SQL statements embedded in PL/SQL.

Y ou have seen how to use SQL CODE to trap the numeric exception error value. SQLERRM (sglcode) is
used to convert the SQL CODE value to the error message string associated with the exception. All the
other built-in functions are fair game.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 233

evaluated. An OUT parameter may only appear on the left side of an assignment statement. An IN OUT
parameter can appear anywhere.

In general, use the most restrictive mode as needed for the subprogram. This provides the greatest
protection from programming errors where variables are inadvertently trashed during a subprogram
execution.

Try coding all your single row lookup routines as procedures. Follow the same coding style for single-
row lookups. Pass in the key values, areturn row type record variable, and a status indicator. This style
has the advantage of encapsulating the SQL statement or cursor in order to handle exceptionsinline, as
well as making for reusable code fragments. It is also an easily maintainable style. Listing 10.27 shows
an example of this style:

Listing 10.27 table.sgl—A Standardized Coding Style Lends Itself to Maintainable Code

DECLARE
-- constants
TB CONSTANT VARCHAR2(1) := CHR(9); -- TAB
-- vari abl es
stat us NUVERI C;
table rec all tabl es%YPE;

-- routines

PROCEDURE get tabl e(Powner IN al | tabl es. owner % YPE,
Ptable IN al | _tabl es.tabl e _nane%l YPE,
Prec QUT all tabl es%YPE,

Pstatus IN OQUT NUMERIC) IS
-- local cursors
CURSCR t abl e _cur (Cowner all tabl es. owner %'YPE,
Ctable all _tables.table nanme%lYPE) | S
SELECT *
FROM al | _tabl es
VWHERE owner = Cowner AND table nane = Ctabl e;
-- local variables
Lowner all tabl es. owner % YPE;
Ltabl e all _tabl es.tabl e_nanme%l YPE;
BEG N
Pstatus := 0; -- K

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0230-0232.html

Lowner : = UPPER(Powner);

Lt abl e : = UPPER(Pt abl e) ;

OPEN t abl e _cur (Lowner, Ltable);

FETCH t abl e _cur I NTO Prec;

| F (tabl e_cur %NOTFOUND) THEN
RAI SE NO DATA FOUND;

conti nues

END | F;
CLCSE tabl e cur;
EXCEPTI ON
VWHEN OTHERS THEN
BEA N
Pstatus := SQLCODE; -- capture error code
| F (table_cur% SOPEN) THEN -- close the open cursor
Page 234
Listing 10.27 Continued
CLCSE tabl e cur;
END | F;
Prec : = NULL; -- clear return values and display input val ues
DBVS _QUTPUT. put _|ine(get _table: ~ || SQLERRM Pstatus));
DBVS QUTPUT. put line("OMER =~ || "< || Lowner || ~>');
DBVS QUTPUT. put _line("TABLE =~ || "< || Ltable || “>');
EXCEPTI ON
VWHEN OTHERS THEN
NULL; ~-- don't care (avoid infinite |oop)
END;
END get _t abl e;
BEG N -- display storage paraneters for a given table
DBMS_QUTPUT. enabl e;
DBVS_OUTPUT. put _|i ne(” TABLE || TB || ~TABLESPACE || TB ||
TINITIAL || TB || "NEXT || TB || “~MAX);
DBMS_OQUTPUT. put _Iine(RPAD("-', 43, "-')); ~-- just an underline
get table(scott', “dept', table rec, status);

| F (status = 0) THEN
DBMS_QUTPUT. put _|i ne(
tabl e_rec.tabl e_nane || TB ||
tabl e_rec.tabl espace_nane || TB ||
table_rec.initial _extent || TB ||

t abl e _rec. next extent || TB ||
tabl e rec. max_extents);
END | F;
get table(scott', "garbage', table rec, status);
| F (status = 0) THEN
DBMS OUTPUT. put _|i ne(

tabl e rec.tabl e nane || TB ||
tabl e rec.tabl espace nane || TB ||
table rec.initial _extent || TB ||
t abl e _rec. next extent || TB ||
tabl e rec. max_extents);
END | F;

END;

/

The server returns the following:

TABLE TABLESPACE | NI TI AL NEXT MAX

DEPT USER DATA 10240 10240 121

get table: ORA-01403: no data found
OMER = <SCOTT>

TABLE = <GARBAGE>

PL/ SQL procedure successfully conpl eted.

If you anticipate an exact match using a unique key, manage the cursor yourself and perform exactly one
fetch. When detecting no rows, close the cursor in the exception handler, rather than inside the
conditional block (it has to be closed in the exception block anyway, so why code it three times?). Note
that you must raise the predefined exception NO_DATA_FOUND,

Page 235

because the fetch does not generate one automatically. The input values are converted to uppercase
using local variables because the converted values are used in more than one place.

Also take note of the additional information displayed by the exception handler. Why not take the
opportunity to show the key values that the exception occurred on? This would be especially valuable
when processing a large number of rows. This information could aso have been dumped to an error
table for post mortem analysis.

Y ou might be thinking, "I can get the same information with asimple SELECT statement. What does all
this buy me?" In the larger scheme of things, canned queries are more efficient because they can be

found in the shared SQL area and reused. The manual control of the cursor with itssingle fetch is
certainly more efficient, especialy when it is run thousands of times over and over. Remember, your
goal isto write efficient applications. After you have the row that was found, you can programmatically
do anything you want with it. Y ou have total flexibility and control, yet the underlying procedure is
coded once and reused.

Listing 10.28 shows another example that implements a binary search on a PL/SQL table containing
numeric values.

Listing 10.28 bintest.sgl—A Binary Search Routine Made Easy to Use with a Procedure

SET SERVEROUTPUT ON
DECLARE
-- constants
FI XED TOP CONSTANT NUMBER := 12; -- fixed # of elenents
-- data types
TYPE NUMARR TYPE | S TABLE OF NUMBER | NDEX BY BI NARY | NTEGER;
-- gl obal variabl es
numarr NUMARR TYPE;
I sfound BOOLEAN;
rowout NUMBER;

-- routines

PROCEDURE bi nary_search(-- binary search on sorted array
Par r | N NUVARR_TYPE,
Pnum | N NUMBER,

Pf ound OUT BOOLEAN,
Prow OUT NUMBER) | S
| ocal found BOOLEAN : = NULL;
top BI NARY | NTEGER : = FI XED TOP;
bott om Bl NARY | NTEGER : = 1;
m ddl e Bl NARY | NTEGER : = NULL,;

BEG N
| ocal _found : = FALSE;
LOOP -- binary search
mddle := ROUND((top + bottom / 2); -- find mddle
|F (Parr(mddle) = Phnum THEN -- exact match
| ocal _found := TRUE, -- match succeeded
EXIT, -- break

conti nues

Page 236
Listing 10.28 Continued

ELSIF (Parr(mddle) < Pnum THEN -- GO UP
bottom:= mddle + 1;
ELSE -- GO DOMN
top := mddle - 1;
END IF; -- test for match
| F (bottom > top) THEN -- search failed
| F (Pnum > Parr(m ddle)) THEN
mddle := mddle + 1; -- MAY BE QUTSI DE ARRAY!
END IF;, -- insert after
EXI T;
END IF;, -- failed
END LOOP; -- search
Pfound : = Il ocal found;
Prow : = m ddl e;
EXCEPTI ON
VWHEN OTHERS THEN
DBVS_OUTPUT. PUT_LI NE(SQLERRM SQLCCDE)) ;
DBVS_OUTPUT. PUT_LI NE(TO CHAR(mi ddl e));
END bi nary_sear ch;

FUNCTI ON bool to_char(Pbool I N BOOLEAN) -- convert Boolean to char
RETURN VARCHAR2 | S
str VARCHAR2(5); ~-- capture string to return
BEG N
| F (Pbool) THEN -- test Bool ean value for TRUE
str := "TRUE' ;
ELSI F (NOT Pbool) THEN -- FALSE
str := " FALSE ;
ELSE -- nust be NULL
str := "NULL';
END | F; -- test Bool ean val ue
RETURN (str);
END bool to_char;
BEG N -- bintest executable code
DBMS_QUTPUT. enabl e;
numarr (1) 100; -- fill array wth nunbers in order
numarr (2) 103;
numar r (3) 104,
numarr (4) 108;

numarr (5) := 110;
numarr (6) := 120;
numarr (7) := 121;
numarr (8) := 122;
numarr (9) := 130;
numarr (10) : = 140;
numarr (11) := 145;
numarr (12) := 149;
bi nary_search(numarr, 90, isfound, rowout);
DBMS OUTPUT. put _|ine(FOUND=" || bool to char(isfound) ||
", ROM' || TOCHAR(rowout) || =~ SB=1");
bi nary _search(numarr, 150, isfound, rowout);
DBMS OUTPUT. put _|ine(FOUND=" || bool to char(isfound) ||
", ROM' || TOCHAR(rowout) || =~ SB=13');

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch10/0230-0232.html

Previous | Table of Contents | Next

Page 243

-- local record vari abl es

show i ndex_rec show i ndex _cur YROMYPE;, -- based on cursor

ol d index_info show index cur%ROMYPE, -- used to detect control
br eak

-- | ocal vari abl es
st at us NUMERI C;

| ocal table all _indexes.tabl e name%l YPE;
BEA N
status : = O;
| ocal table := UPPER(Ptable); -- make upper case
old index info.table owner := "GARBAGE OMNER' ; -- initialize
old index_info.table nane := " GARBAGE TABLE ;
| F (local table IS NULL) THEN -- one table or all?
DBMS OQUTPUT. put _line(User * || USER || ": Index Information for
Al ATables');
ELSE
DBMS OUTPUT. put _line(User * || USER || ": Index Information for
Tabl e ~
|| Alocal table);
END IF;, -- one table or all?
OPEN show_ i ndex_cur (|l ocal _tabl e);
LOOP -- get index information

FETCH show i ndex_cur | NTO show i ndex_rec;
EXIT WHEN show i ndex_cur ¥NOTFOUND,;

| F (ol d_index_info.table owner != show index rec.table owner OR
ol d index_info.table nane != show index _rec.table nane) THEN
-- Acontrol break
DBMS OUTPUT. put _line(TB); -- doubl e spacing between tables
END | F;
DBMS OUTPUT. put _line(Table Omer: ~ || show_.index rec.
table owner || TB ||
"Table: ° || show_index _rec.table nane);
DBMS OUTPUT. put _line(Index: ° || show.index_rec.index_nane
Al T8 [] " in |

show i ndex_rec. tabl espace _nane || TB ||

show_i ndex_rec. uni queness || TB
| | show_i ndex_rec. status);

old_index_info := show_ index_rec; -- copy new values to old
END LOOP; -- get index information
CLOSE show_i ndex_cur;
EXCEPTI ON
WHEN OTHERS THEN
BEG N
status : = SQLCODE;
DBVS_QUTPUT. put _|i ne(show_i ndex: = || SQERRM status)); --
di spl ay
error nessage
| F (show_i ndex_cur% SOPEN) THEN -- cl ose any open cursors
CLOSE show_i ndex_cur;
END | F;
EXCEPTI ON
WHEN OTHERS THEN
NULL; -- don't care
END;

END show_i ndex;
/

Thistime, the server responds with:
Procedure created.
Page 244

To execute this procedure, you can call it from an anonymous PL/SQL block, or you can use the
EXECUTE command for one-liners.

NOTE

The EXECUTE command can only be used to run one-line statements. If your statement
spans two or more lines, you must use an anonymous PL/SQL block (using BEGIN ..
END). If you can cram two or more statements onto a single line, you can still use
EXECUTE. In fact, EXECUTE expandsto a BEGIN .. END block on oneline. It'sjust a
shorthand.

EXECUTE show_index('DEPT");

On my system | get:

User SYSTEM |Index Information for Tabl e DEPT

Tabl e Owmer: SYSTEM Tabl e: DEPT
| ndex: DEPT_PRI MARY_KEY in USER DATA UNIl QUE VALID

PL/ SQL procedure successfully conpl et ed.

Thefirst time | run this stored procedure, | have to wait for the server to load it into memory. On
subsequent calls, running it is much faster because it's already |oaded.

This particular example shows some fine features you'll want in your own stored procedures. | always
try to be consistent with the organization of local variable declarations, aways putting them in the same
order. Also, notice the block inside the exception handler to close the cursor in case an error leaves it
open. If you don't do this and you do have an exception, the next time you run the stored procedure you
will immediately bomb with a CURSOR_ALREADY _OPEN exception. Y our users would have to
reconnect in order to clear the open cursor because the cursor remains open for the duration of a session
until either the cursor is closed or the session is terminated.

If the user wants all tables and their indexes that are visible, ssmply drop the single input parameter (and
parentheses in this case), as with:

EXECUTE get _i ndex;

Y ou have to put yourself in your users (in this case, developers) shoes to anticipate the various waysin
which they might want to use this tool. Better yet, go ask them. Y ou'll be surprised at the answers you'll
get.

Calling Stored Programs from SQL

Suppose you aren't satisfied with the Oracle-supplied TO_NUMBER() built-in function. Y our complaint
with it might be that when a character-to-number conversion fails because the string doesn't represent a
valid number, the SQL fails and terminates abruptly. What you'd prefer isthat, at the very least, the error

Is handled gracefully so that processing can continue with the rest of the data set. Let's try to cure this
problem with a stored function, as shown in Listing 11.4.

Page 245

Listing 11.4 char2num.sgl—Character-to-Number Conversion

CREATE OR REPLACE FUNCTI ON char _to_nunber (Pstr I N VARCHAR2,
VARCHAR2 DEFAULT NULL)
RETURN NUMBER | S
BEG N
|F Pformat IS NULL THEN -- optional format not supplied
RETURN (TO NUMBER(Pstr));
ELSE
RETURN (TO NUMBER(Pstr, Pformat)); -- format supplied
END IF;, -- test for optional fornat
EXCEPTI ON
WHEN OTHERS THEN -- unknown val ue
RETURN (NULL) ;
END char _t o_nunber;
/

Y ou can run this stored function in two ways:

. FromaPL/SQL block
. Within an SQL statement

First, try it from a PL/SQL block, as shown in Listing 11.5.
Listing 11.5 testc2nl.sgl—Testing char_to_number() from a PL/SQL Block

DECLARE
v VARCHAR2(1) := O;

Pf or nat

I N

w VARCHAR2(10) := "999.999'; -- try a floating point nunber

X VARCHAR2(11) := +4294967295'; -- try a big positive nunber

y CHAR(11) := "-4294967296"; -- try a big negative nunber

z VARCHAR2(10) := "garbage'; -- this is NOT a nunber!
BEG N

-- stored function returns NULL on error, so convert NULL to error
message

DBVS _QUTPUT. put _line(v || ~ is ~ || NVL(TO CHAR(char _to_nunber(v)),
" NOT
A ANUMBER! ")) ;

DBVS QUTPUT. put _line(w || ~ is ~ || NVL(TO CHAR(char _to_nunber(w)),
" NOT
A ANUMBER! ")) ;

DBVS QUTPUT. put _line(x || ~ is = || NVL(TO CHAR(char _to_nunber(x)),
" NOT

A ANUMBER! ")) ;

DBMS OQUTPUT. put _line(y || ~ is °

> NOT
A ANUMBER! '));

DBMS OQUTPUT. put _line(z || ~ is °

> NOT

A ANUMBER! '));
END;

/

The server responds:

O0is O

999. 999 is 999. 999
+4294967295 is 4294967295
-4294967296 is -4294967296
gar bage i s NOT A NUVBER!
Page 246

PL/SQL procedure successfully completed.

| | NVL(TO CHAR(char to_nunber(y)),

| | NVL(TO CHAR(char to_nunber(z)),

Okay, now let'stry it ina SQL statement, as shown in Listing 11.6.

Listing 11.6 testc2n2.sgl—Running char_to_number() from SQL

SELECT 0" str,

NVL(TO CHAR(char _to _nunmber(0")), = IS NOT A NUMBER' ') num

FROM DUAL;
SELECT "999.999" str,

NVL(TO_CHAR(char _to_nunber (°

num
FROM ADUAL;
SELECT +4294967295' str,

NVL(TO _CHAR(char _to_nunber (°

NUVBER! ') num
FROM ADUAL;
SELECT " -4294967296' str,

NVL(TO _CHAR(char _to_nunber (°

NUVBER! ') num
FROM ADUAL;
SELECT " garbage' str,

NVL(TO _CHAR(char _to_nunber (°

999.999')), ° IS NOT A NUVBER! ')

+4294967295')), " 1S NOT A

- 4294967296')), " 1S NOT A

garbage')), = 1S NOT A NUMBER! ')

num
FROM ADUAL;

And you get the same answers as above. It looks kind of goofy converting back to a string when you just
got through converting from a string to number, but still it verifies the operation of the stored function,
particularly in the last query shown.

Just for fun, let's write the converse of bool to char(), called appropriately char_to_bool() (see Listing
11.7).

Listing 11.7 chr2bool .sgl—Converting a String to Boolean

CREATE OR REPLACE FUNCTI ON char _to_bool (Pstr I N VARCHAR2) RETURN
BOOLEAN | S

Lstr VARCHAR2(32767); -- max string |length

Lbool BOOLEAN := NULL; -- local Bool ean value (default)
BEG N

Lstr := UPPER(LTRIM RTRIM Pstr))); -- renove leading/trailing
spaces,

Aupper case

|F (Lstr = "TRUE') THEN
Lbool := TRUE;

ELSIF (Lstr = "FALSE') THEN
Lbool := FALSE;

END | F;

RETURN(Lbool) ;
END char to_bool;
/

Now, let'stest it with the PL/SQL statement shown in Listing 11.8.
Listing 11.8 testc2bl.sql—Testing char_to_bool() in aPL/SQL Block

BEA N
| F (char _to_bool (° true ")) THEN
DBVS _QUTPUT. put _line(""'Tis True!');

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 247

END | F;
| F (NOT char _to_bool (° Fal se')) THEN
DBMS OUTPUT. put _line('"Tis Untrue!');

END | F;
| F (char _to_bool (" NULL ") I'S NULL) THEN
DBMS OUTPUT. put _line(Don''t Care!');
END | F;
END;

/
The server responds:

"Tis True!

"Tis Untrue!

Don't Care!

PL/ SQL procedure successfully conpl et ed.

Now try it in a SQL statement.

SELECT char _to_bool ("true') FROV DUAL;
But this time, the server responds:

ERROR:

ORA- 06550: line 1, colum 12:
PLS-00382: expression is of wong type
ORA- 06550: line 1, colum 7:

PL/ SQL: Statenent ignored

no rows sel ected

What happened? There's no Boolean datatype in SQL. The return value of the function is an unknown
SQL datatype. The PL/SQL engine has determined that the data type is inappropriate within the context
of a SQL statement. The SQL engine subsequently returns no rows.

Calling Stored Programs from PL/SQL

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0250-0253.html

Y ou've aready seen how to invoke a stored subprogram from a PL/SQL block. What's a high value use
for them? Have you ever tried to compose a query that has a 14-table join? Instead, create a bunch of
single-row lookup routines for each master table whose key you would have used in ajoin. Then, ina
PL/SQL block, code just the minimal tables required to drive a cursor loop. Inside the loop, perform the
single-row lookups for the attendant data values. Using this technique, |'ve seen speed improvements of
4,000%. Queries that used to run in 20 minutes can be run in 30 seconds or faster, using this technique.
If you're using some sort of report writer to format the output, you can write the data to a temporary
table, which can then be scanned by the reporting tool. Obvioudly, this slows things down somewhat, but
it's still faster than bogging down the Oracle Server with a huge, complex query. Plus, it's easier to
verify the correctness of the output. If you rigorously test the single-row lookup routines, the only facet
you'll have to validate is the substantially smaller query.

Page 248

Now think about how many times you had to code an outer join in a complex query. In a PL/SQL block,
it's a piece of cake to test the single-row lookup for no data found, and skip to the end of the loop or
carry on, as needed. For example, a Claims Processing program might have aloop in it that looks
something like this:

LOOP -- process all clainms for the period sel ected
FETCH cl ai ns_cur | NTO cl ai ns_rec;
EXIT WHEN cl ai ns_cur ¥NOTFOUND,;
-- get related table info
get claimant _info(clains_rec.clainmnt_ssn, status);
get _provider _info(clains _rec.provider _id, status);
get approval _info(cl ains_rec. approvedby, status);

| F (status !'= 0) THEN -- no approval on file!
QOTO SKIPIT, -- skip processing claim
END | F;
... =-- nore single row | ookups, clains processing
<<SKIPIT>> -- continue with next claim
END LOOP; -- process all clains for the period selected

where status is passed back the SQL CODE result value of the single-row lookup. To make this example
really useful, you need to dump information about why the claim wasn't processed (no approval) to some
sort of application error table. Even better, inside the lookup routine you could dump the lookup key and
error code to an errors table of your design. Then you could later determine the subroutine and key
values that caused a claim to go unprocessed. The calling program could then dump additional data
('such as context information) to make troubleshooting easier.

Another use for stored procedures is to implement business rules. Then, the rule can be invoked from a
trigger, aclient program, or another PL/SQL program. For example:

CREATE OR REPLACE TRI GGER check _approval _st at us
BEFORE | NSERT ON cl ai m di sbur sal

DECLARE
st at us NUMERI C;
BEG N -- check for approval
get approval _i nfo(: new. approvedby, status);
| F (status !=0) THEN -- no approval on file!
RAI SE_APPLI CATI ON_ERROR(-20100, "No approval on file!'");
END | F;
END, -- check for approval

END check_approval _st at us;

Here, the application-defined exception causes an INSERT to be rolled back. The businessruleis
defined by a single stored procedure, which can now be used in many places. Should the rule require
modification, it can be changed within the body of the stored procedure. The dependent PL/SQL code
would then only need to be recompiled.

Debugging with Show Errors

Up to now, your stored procedures have compiled flawlessly. Unfortunately, you can expect to make
mistakes leading to compilation errors (I know | do). Fortunately, the information to debug them is at
hand. However, the feature provided by Oracle to observe them has some limitations, given itsrelative
simplicity, but there is a better solution.

Page 249

When your unnamed PL/SQL blocks failed to compile, the server dumped the error information straight
back to SQL*Plus. With stored subroutines, the procedure is alittle different. Immediately after the
failed compilation, you type:

SHOW ERRORS

Then, al the errors and the line numbers on which they occurred are displayed for your perusal.

NOTE

SHOW ERRORS only shows the errors for the last stored subprogram or package
submitted for compilation. If you submit two in arow, and the first has errors, SHOW
ERRORS will only show errors for the second one (if any occurred). However, the error
information for both is still available in USER_ ERRORS.

Consider the bug-infested code shown in Listing 11.9.
Listing 11.9 showerrl.sgl—Show errors Procedure, First Pass

CREATE OR REPLACE PROCEDURE showerr 1(

Pnane I N user _errors. nane%l YPE,
Ptype |IN user _errors.type%YPE) IS

CURSOR get _errors(Cnane I N user_errors. nane%l YPE,

Ctype IN user_errors.type%YPE) IS

SELECT * FROM USER_ERRORS
VWHERE nane = Cnane AND type = CQype
ORDER BY SEQUENCE;

get _errors_rec get_errors%YPE;

status NUMERI C : = O;

Lnane user _errors. nane% YPE;

Ltype user_errors.type% YPE;

BEA N
Lnane = UPPER(Pnane) ;
Ltype = UPPER(Pt ype) ;
DBVS_QOUTPUT. put _|ine(Conpilation errors for ° || Lnane);
OPEN get _errors(Lnane, Ltype);
LOOP -- display all errors for this object

FETCH get _errors INTO get _errors_rec;
EXIT WHEN get _err or s¥NOTFOUND

DBVS OUTPUT. put line(At Line/Col: °~ || get _errors rec.line ||
/" || get_errors_rec.position);
DBMS OUTPUT. put _line(get _errors_rec.text);
END LOOP; -- display all errors
CLOSE get _errors;
DBVS _QUTPUT. put _line(Errors Found: ~ || TO CHAR(errs));
EXCEPTI ON
VWHEN OTHERS THEN
BEA N
status : = SQ.CODE;
| F (get _errors% SOPEN) THEN -- cursor still open
CLOSE get _errors;
END | F;
END;

END showerr1;
/.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0250-0253.html

Previous | Table of Contents | Next

Page 271

Chapter 12

Using Supplied Oracle Database
Packages

In this chapter

. About the Supplied Oracle Database Packages 272

. Describing Supplied Packages 272

. Getting Started with the Oracle-Supplied 274 Packages
. Hands-On with the Oracle-Supplied Packages 277

Page 272

About the Supplied Oracle Database Packages

Aside from the STANDARD package that gives the Oracle Server its basic functionality, such as your
basic subtype declarations and data type conversion routines, there is a set of packages intended for use
by DBAs and developers. These packages are distinguished by their names, which begin with DBMS _
or UTL_, meaning they interact with the database or provide general- purpose utilities. First, we'll take a
quick look at these packages and afterwards examine them more closely.

Interaction Within the Server

Most of the Oracle-supplied packages work on data within the server environment: data dictionary
items, user database objects, or objects found solely within the System Global Area, like the shared
memory pool. With them, you can manage snapshots, recompile program units, generate asynchronous
alerts when database entries change, run jobs, and so on.

Many of these packages interface with functionality built into the database application or extends the
database environment with calls to loadable external modules, such asDLLS. It's

not expected or necessary that you understand or use these module entry points. I'd go so far asto say
you're definitely not supposed to try to use them directly, but rather, through the

PL/SQL programmatic interface provided.

Interaction Beyond the Server

Some packages give feedback to the calling context or otherwise provide an interface to

an external process. The Oracle pipe feature, for example, isintended as a method for intersession
communication that is strictly memory only—no database objects are used for intermediate storage. As
another example, the DBMS _OUTPUT package allows the display of print statements when running PL/
SQL programsin SQL*Plus.

Getting More Information from Your Server

Severa packaged routines enable you to obtain additional tuning information about your database
server, such as shared memory pool usage, segment space information, running traces, getting general
database information, and so on. Once you get used to using them, they'll become a standard part of your
tool box.

Describing Supplied Packages

Table 12.1 isahandy, quick reference of each Oracle-supplied package and a brief description of what it
contains.

Page 273

Table 12.1 Summary of Supplied Packages

Package
Package Name Header Description
File
Asynchronous
DBMS ALERT dblm%" " handling of
= database events.
Register the name

of the application
domsutil. that's currently
s running (for

performance

monitoring).

Recompile stored
dbmsutil. subprograms and
s packages, analyze

database objects.

DBMS _APPLICATION_INFO

DBMS DDL

DBMS _DESCRIBE

DBMS_JOB

DBMS LOCK

DBMS OUTPUT

DBMS_PIPE

DBMS_REFRESH

DBMS_SESSION

DBMS_SHARED_POOL

DBMS_SNAPSHOT

DBMS_SPACE

DBMS_SQL

DBMS_SYSTEM

dbmsdesc.
sl

dbmsjob.
s

dbmslock.
sl

dbmsotpt.
sl

dbmspipe.
sqlz

dbmssnap.
sl

dbmsuitil.
sl

dbmspool.

dbmsutil.
sl

Describe
parameters for a
stored
subprogram.

Run user-defined

jobs at a specified

time or interval.

Manage database
locks.

Write text linesto
abuffer for later
retrieval and
display.

Send and receive
data between
sessionsviaa
memory "pipe."
Manage groups of
snapshots that can
be refreshed
together.

Perform Alter
Session
Sstatements
programmatically.
View and manage
the contents.

Refresh, manage

. Shapshots, and

purge snapshot
logs.

Get segment
space
information.
Perform dynamic
SQL and PL/
SQL.

Turn on/off SQL

trace for the given
session.

DBMS TRANSACTION gglmwt”' t“f;”;%ﬁf',;?
conti nues
Page 274
Table 12.1 Continued
Package Name Package Header Description

File

DBMS UTILITY dbmsutil.sql

UTL RAW utlraw.sql
UTL_FILE* utlfile.sql
UTL_HTTP* utlhttp.sql
DBMS LOB* dbmslob.sgl

Various Utilities: For a
given schema,
recompile stored
subprograms and
packages, analyze
database objects, format
error and call stacks for
display, display whether
Instance isrunning in
parallel server mode,
get the current timein
10ms increments,
resolve the full name of
a database object,
convert aPL/SQL table
to acomma-delimited
string or vv., get a
database version/
operating system string.
String functions for
RAW datatype.

Read/write ASCII-based
operating system files.

Get an HTML-
formatted page from a
given URL.

Manage large objects.

Oracle7.3 and later
*+ Oracle8.0 and later

Getting Started with the Oracle-Supplied Packages

Before you can use the routines contained in the Oracle-supplied packages, you should first check that
they've been installed and are valid. The DBA can run the following query:

SELECT obj ect nane, object type, status

FROM dba_obj ect s

VWHERE owner =' SYS' AND obj ect _type LIKE ~ PACKAGEY
ORDER BY obj ect _nane, object type;

This should give you a list simlar to the foll ow ng:

OBJECT _NAME OBJECT _TYPE STATUS
DBV ALERT PACKAGE VALI D
DBV ALERT PACKAGE BODY VALI D
DBVMS _APPLI CATI ON_I NFO PACKAGE VALI D
DBVMS _APPLI CATI ON_I NFO PACKAGE BODY VALI D
Page 275

DBMS DDL PACKAGE VALI D
DBMS DDL PACKAGE BCDY VALID
DBVS DESCRI BE PACKAGE VALI D
DBVS DESCRI BE PACKAGE BCDY VALID
DBV JOB PACKAGE VALI D
DBV JOB PACKAGE BCDY VALID
DBMVS LOCK PACKAGE VALI D
DBMS LOCK PACKAGE BCDY VALID
DBVS OUTPUT PACKAGE VALI D
DBVS OUTPUT PACKAGE BCDY VALI D
DBVS Pl PE PACKAGE VALI D
DBVS Pl PE PACKAGE BCDY VALI D
DBV REFRESH PACKAGE VALI D
DBV REFRESH PACKAGE BCDY VALI D
DBMS SESSI ON PACKAGE VALI D

DBMS_SESSI ON PACKAGE BODY VALI D

DBMS_SHARED POOL PACKAGE VALI D
DBMS_SHARED POOL PACKAGE BODY VALI D
DBVS_ SNAPSHOT PACKAGE VALI D
DBVS_ SNAPSHOT PACKAGE BODY VALI D
DBMS_SPACE PACKAGE VALI D
DBMS_SPACE PACKAGE BODY VALI D
DBMS_SQL PACKAGE VALI D
DBMVS_SQL PACKAGE BODY VALI D
DBVS_SYSTEM PACKAGE VALI D
DBVS_SYSTEM PACKAGE BODY VALI D
DBMVS_TRANSACTI ON PACKAGE VALI D
DBMVS_TRANSACTI ON PACKAGE BODY VALI D
DBMS_UTI LI TY PACKAGE VALI D
DBMS_UTI LI TY PACKAGE BODY VALI D

There will be some other packages not shown here, but we won't be concerning ourselves with them.
Most of these additional packages are not intended to be called by user applications, but rather are for
internal use only.

Locating the DBMS Packages

The Oracle-supplied packages are located in <ORACLE_HOME>\RDBM S<version>\ADMIN where
ORACLE_HOME isthe path to the Oracle Home directory (you can check the system variable of the
same namein UNIX or check the Registry entry under Windows 95/NT). version is the database version
you are running. Y ou can examine the package header fileslisted in Table 12.1 for each of these
packages to see what routines and global variables are available.

Y ou may also note the existence of files of the form prvt*.sgl and prvt*.plb (for example, prvtpipe.sgl
and prvtpipe.plb). The former are the package bodies for the supplied packages, in ASCII format. The
latter are binary compiled versions of the package body. The PLB files are recognizable by the PL/SQL
engine and result in avalid and executable package

body when submitted to the Oracle Server. These represent the "release” form of the package bodies.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 270

At thetime | wrote this, | really had aweak understanding of the data dictionary views. After analyzing
and playing around with them, creating objects and then seeing what the different results were, | really
gained an appreciation for them. My enthusiasm level was very high after completing this project. It
really made me think. The DDL syntax for many of these database objectsis very rich and complex. In
order to understand how constraints work, and how the rev_pkeys, rev_ukeys, rev_fkeys, and
rev_checks procedures work, create these constraints and see what datais stored in dba_constraints (the
constraint name and type), dba_cons_columns (the constraint columns), and dba_indexes (for the index
and storage parameters).

Some issues not implemented are how to handle disabled constraints (the storage parameters for the
related index are blank, which isreally a syntax error— you have to add them manually), clusters (not
done), tablespaces (not done), users (not done), and so on.

I've found this a very handy utility, especially for old legacy applications whose DDL files have long
been deleted or outdated. | encourage you to examine it, try it, and hopefully take something from it to
use in your own PL/SQL masterpieces.

Thelast item | fedl | need to point out is actually not part of the package proper, but rather follows it.
The grant and synonym created for it make the package available to all.

GRANT EXECUTE ON rev_eng TO PUBLI C,
CREATE PUBLI C SYNONYM REV_ENG FOR REV_ENG

It's avery good ideato include these items here, so that you document for whom the package is intended
and manage privileges locally to the module. Thiswill save you and all following DBAs that much
trouble later on.

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 267

when | wish to default the parameter to NULL in order to specify a"don't care" value for this column. If
the parameter value is supplied, the WHERE clause will match on it; otherwise, the column is
effectively ignored, for the purpose of matching.

The cursor get_constraintsis actually used by all the constraint routines that need to check for the
constraint type, so | gained some coding efficiency here. | generalized the cursor just enough to avoid
having to declare various flavors of what's essentially the same cursor. Cursors are probably one of your
bigger memory hogs. The cursor get_index_params also falls into the reuse bin. | broke out this
information into a separate cursor, even though | could have shoved it messily into another, because it
was cleaner thisway. In general, | think | avoided joins because the underlying data dictionary tables are
difficult to decipher. Try looking at the Explain Plans for some of the dba_* views. Besides, they're
potentially more flexible as separate objects, which enables me to combine them as needed in nested
loops.

Below the cursor declarations are the global, private variables. The known_indexes PL/SQL table stores
the names of all indexes you have already processed. The known_indexes array can be cleared using the
clear_indexes array by simply assigning clear_indexes to known_indexes.

known i ndexes := clear _indexes; -- clear table (7.2)
known i ndexes. DELETE; -- clear table (7.3)

Y ou never assign values to the elements of clear_indexes. It is always left empty. Thisis the standard
method of clearing a PL/SQL table in Oracle7.2. In Oracle7.3, you can use the PL/SQL table attribute
DELETE to clear al elements.

In order to simplify existence checks for the index presently being examined, | wrote the function
idx_already rev. Since the only way to check the array for an index name is to loop through all its
entries, this function hides this implementation detail in an easy-to-use manner, as with:

| F (idx_already rev(get _indexes rec.index_nane)) THEN
AOTO SKIPIT; -- index was al ready reverse engi neered
END | F;

which is pretty readable.

Due to a bug between SQL*Plusand DBMS OUTPUT in Oracle7.2 that causes leading whitespace to
be trimmed, | use tabs heavily for indentation. A variety of character constants help me in this endeavor.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0264-0266.html

NOTE

In Oracle7.3 and later, use set serveroutput on format wrapped to prevent leading
whitespace from being trimmed.

| created a date-formatting string because | write out the date everywhere, and this was a decent code
reducer. If you wanted to change the date format, you only need to do it in one place.

-- declare gl obal constant data

CR CONSTANT VARCHAR2(1) := CHR(13); ~-- carriage return character
DFORMAT CONSTANT VARCHAR2(20) := "DD-MONYYYY HHM:SS'; -- date
f or mat
Page 268

-- declare gl obal data
stat us NUMERI C

-- record vari abl es
get _tables_rec get _t abl esYRONMYPE;

These global private variables were added here instead of within procedures because, again, | never
knew where I'd actually use them, and some | use in more than one subprogram. Also, it was a helpful
organizational aid; | could see how far along 1'd gotten with the implementation by checking these,
especially the cursor record variables. | only defined them as | went along, instead of trying to
enumerate them all up front.

The private local routine get_parent_table isa"helping” routine used further down. It's up here and not
inside the one procedure that calls it because, again, | didn't know beforehand where it might be used.
The most annoying thing isto overly restrict yourself and then be forced to move chunks of code around
the module. This routine uses an implicit cursor so | can detect the TOO_MANY _ROWS exception.

Note that all the exception handler sections have similar coding constructs. | always follow the same
genera method for writing exception handlers. | trap the error, display or storeit, clean up potentially
open cursors, and set any return values to default values.

EXCEPTI ON

VWHEN OTHERS THEN

BEG N
status : = SQ.CODE;
DBMS OQUTPUT. put _line(-- rev_indexes ERROR ~ || SQLERRM
(status));

| F (get i ndex_col s% SOPEN) THEN
CLOSE get i ndex_col s;

END | F;

| F (get i ndexes% SOPEN) THEN
CLOSE get i ndexes;

END | F;
EXCEPTI ON
VWHEN OTHERS THEN

NULL; -- don't care
END;

END rev_i ndexes;

The displayed error message is printed as a comment because | intended the programs' output to be
spooled to afileand | didn't want to muck it up with stuff the user might have to cut out to get the
resulting SQL file to run. Each exception handler tells you what its name is for easier debugging. Return
values, if any, are set to NULL. Any cursors that might be open are closed. The entire exception handler
Is placed in its own block to avoid a potential infinite loop on any operation done inside the exception
handler.

| wound up having to write put_long_line because of aline length limitation with DBMS OUTPUT,
particularly when printing the long text for views. It seemed like such a generally useful thing, so | made
it public. Thisroutine looks for suitable places to break long lines. | think | must have coded it five times
over before | handled every situation correctly. And lest you think me

Page 269

less than analytical, | wrote out all the cases and logic on paper (also five times)! Sometimes, it's easy to
miss things. Actually, the cases became more refined and the logic more concise with repetition.

TIP

For complex, difficult code pieces, it's a good ideato write out on paper beforehand all
the cases and logic goals before attempting a coding solution. Then exercise the
algorithm on paper to seeif you missed anything.

Designing the Procedures

Turns out most of the main routines have similar elements suitable for a cut and paste operation,
especially with things like converting strings to uppercase and storing in local variables.

Lowner dba_t abl es. owner % YPE;
Lt space dba_t abl es. t abl espace_nanme%l YPE;
Lt abl e dba_tabl es.tabl e nane%l YPE;

BEG N
status : = O;
Lowner = UPPER(Powner) ;
Lt space : = UPPER(Pt space);
Lt abl e = UPPER(Pt abl e) ;

Note that statusisaglobal private variable and thus it must be initialized in each routine. I've found
from other projectsthat | might want to test certain variablesin places other than in the most obvious,
inside the procedures using them, so historically I've always defined status this way. Old habits die hard.
When | start fleshing out a new package, | add in early the common elements | know I'll need. That's
why they wind up being global private items. Thisway, | can test the value of status outside of any of
the procedures that modify it. It's guaranteed to be available to all routines without having to remember
to declare it everywhere.

The comment headers for each subprogram, and therefore each DDL statement generated, are printed
with the following code:

| F (Ltable I'S NULL) THEN -- paraneter comments
DBVS_QUTPUT. put (" -- ALL TABLES');
ELSE
DBMS OUTPUT. put (" -- TABLE ° || Ltable);
END | F;
DBVS _QUTPUT. put _|ine(" FOR OMNER © || Lowner ||
", TABLESPACE " || Ltspace);
DBVS_QUTPUT. put _|ine(-- PERFORMED ° || TO CHAR(SYSDATE,
DFORVAT)) ;

This stuff was added |ate in the game, and required modification of every procedure, but it wasredly a
no-brainer after setting up the pattern.

Wrapping Up the Package
This package makes heavy use of the DBA data dictionary views for tables, indexes, constraints, views,

etc. | chose the DBA views so that users could reverse-engineer any schema, not just their own or ones
they have privileges on. This was especially important because an index, foreign key reference, or grant

might be made by a user other than the schema owner.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch11/0264-0266.html

Previous | Table of Contents | Next

Page 276

CAUTION

Do not attempt to modify the package body of any of the Oracle-supplied packages for
recompilation.
You're liable to break something.

Making Sure the Packages Are Installed Correctly
You'll want to verify two things:

. The packages exist and are valid (as shown by the previous query).
. Users have EXECUTE privilege on them or the ones they intend to use.

A user can check to see if they have EXECUTE privilege on the Oracle supplied packages with the following query:
SELECT tabl e _nane, grantee

FROM al | _tab _privs

WHERE gr ant or=" SYS' and privil ege=" EXECUTE

CORDER BY t abl e_nane;

A typical response m ght be

TABLE_NAVE GRANTEE
DBVS_APPLI CATI ON_I NFO PUBLI C
DBVS_DDL PUBLI C
DBVS_DESCRI BE PUBLI C
DBVS_JOB PUBLI C
DBVS_OUTPUT PUBLI C
DBVS_PI PE PUBLI C
DBMS_SESSI ON PUBLI C
DBVS_SNAPSHOT PUBLI C
DBVS_SPACE PUBLI C
DBMS_SQL PUBLI C
DBVS_STANDARD PUBLI C
DBVS_TRANSACTI ON PUBLI C
DBVS_UTI LI TY PUBLI C
DBVS_REFRESH PUBLI C
UTL_FI LE PUBLI C

All of the Oracle-supplied packages should have been granted with EXECUTE to PUBLIC. | used the all_flavor of the
datadictionary view to verify this. If any are missing that you intend to use, the DBA can run the appropriate script as

SYS. If apackage exists but isinvalid, the DBA can recompile it with:
ALTER PACKAGE SYS. <nane> COWPI LE PACKAGE;

Where name is the name of the invalid package. The clause COMPILE PACKAGE tells Oracle to recompile the
package specification and body. If just the body needs to be recompiled,
instead run:

ALTER PACKAGE SYS. <nane> COWPI LE BODY;

Page 277

CAUTION

Some supplied packages may have dependencies on other packages. If you have to recompile a package
header, this invalidates any dependent packages. Check again that other packages are still valid after
recompiling. If only the body is recompiled, dependent packages are not invalidated. Any user-written
stored subprograms and packages may aso likely be affected in this manner.

Hands-On with the Oracle-Supplied Packages

Now for the fun part! I'll illustrate some of the more interesting contents of each supplied
package with some reasonably simple and useful examples.

Monitoring Programs with DBMS_APPLICATION_INFO

This package enables devel opers to add application tracking information in the views v$sglarea and v$session. The
kind of datathat can be tracked is

.« A module name (such as the name of the currently running application), a VARCHARZ string up to 48 bytes,
stored in v$sglarea.module and v$session.module.

. Thecurrent action (for example, "Update Customer Info," "Verify Credit Limit"), aVARCHAR2Z string up to
32 bytes, stored in v$sglarea.action and v$session.action.

. Any client-specific information, aVARCHAR?2 string up to 64 bytes, stored in v$session.client_info.

Oracle doesn't do anything with this information; it's provided for the use of the DBA so he or she can run statistics
against each application and component operations. Strings longer than what's supported are truncated. Listing 12.1
shows a simple example.

Listing 12.1 appinfo.sgl—Setting and Reading Application Information

DECLARE
nodul e VARCHAR2(48); -- application info
action VARCHAR2(32);
client VARCHAR2(64);
| date VARCHAR2(30); -- to capture systemdate
BEG N

DBVS_QUTPUT. enabl e;
nodul e : = “ CLAI M TRACKI NG ;
action := "VERIFY ELIG@BILITY';
DBMS_APPLI CATI ON_I NFO. set _nodul e(nodul e, action);
DBMS_APPLI CATI ONLI NFQO. set _cl i ent _i nf o(USER) ;
DBVS_APPLI CATI ON_I NFO. r ead_nodul e(nodul e, action);
DBVS_APPLI CATI ON_ I NFO. read_client _info(client);
DBVMS_QUTPUT. put _line(client || ~ is running ~ || nodule || ": °~ || action);

conti nues
Page 278
Listing 12.1 Continued

SELECT TO_CHAR(SYSDATE, " YYYY-MON-DD HH M :SS') INTO | date
FROM DUAL,

END;

/

The response | get is
SCOTIT is running CLAIM TRACKING VERIFY ELIGBILITY
While this session is still up, the DBA can check who is doing what wth:

COLUWN nodul e FORVAT A20

COLUWN acti on FORVAT A20

COLUWN client _info FORMAT A20
SELECT client _info, nodule, action
FROM v$sessi on

WHERE client info |I'S NOT NULL;

To get:
CLI ENT_I NFO MODULE ACTI ON
SCOTT CLAI M TRACKI NG VERI FY ELIABILITY

The DBA can then see the effects of everyone running this nodul e and action
W t h:

SELECT
sql _text, SUM sharable nmem smem SUM persistent_nmem pnem
SUMruntine_nem) rnmem SUM sorts) sorts, SUMI oads) | oads,
SUM di sk_reads) rdisk, SUM buffer gets) bget,
SUM rows_processed) prows
FROM v$sql ar ea
WHERE nodul e = " CLAIM TRACKING AND action = "VERIFY ELIGBILITY'

GROUP BY sql _text;

The results are pretty interesting:

SELECT TO_CHAR(SYSDATE, ' YYYY- MON- DD HH: M : SS') FROM DUAL
4267 508 792 0 1 0 4 2

SELECT USER FROM SYS. DUAL
3596 508 688 0 1 0 4 1

begi n dbnms_out put.get |ines(:lines, :numines); end,
4317 592 420 0 1 0 0 1

The only query | explicitly made was the first one, but SQL* Plus apparently does some work behind the scenes.
Page 279
As amodule performs different actions, the devel opers should make the appropriate callsto set_action() to reflect this.

In this manner, you can collect some interesting statistics on how badly an application is battering the server by query,
by action, by module, by user, or by groups of users.

NOTE

Even after a user disconnects, entries still exist in vésglarea until the related SQL gets aged out of the
SGA.

Recompiling Packages with DBMS_DDL
There are precisely two things you can do with this package:

. Recompile stored subprograms and packages with alter_compil ().
. Anayzeatable, index, or cluster with analyze object().

A simple use for ater_compile() would be to find what stored program objects are invalid and then recompile them.
Listing 12.2 illustrates this.

Listing 12.2 recompil.sgl—Recompile Invalid Program Objects Only

-- reconpile invalid stored program objects
-- CAVEAT: does not take package dependenci es
-- I nto account!
DECLARE

CURSOR invalid prog obj IS

SELECT obj ect _nane, object _type
FROM user obj ects
VWHERE status = "I NVALID ;

rec invalid_prog_obj YROMYPE;

stat us NUMVERI C;

BEG N

DBMS _QUTPUT. enabl e;

OPEN i nval id _prog_obj;

LOOP -- reconpile each stored program object
FETCH i nvalid_prog_obj |INTO rec;
EXIT WHEN i nval i d_prog_obj ¥NOTFOUND
DBVMS_OUTPUT. put (" Reconpile ~ || rec.object type |

© || rec.object _nane);

DBMS DDL. al ter_conpil e(rec. object _type, NULL, rec.object_nane);

DBVMS_OUTPUT. put _|ine(” SUCCESSFUL'); ~-- reconpile succeeded
END LOOP; -- invalid program objects
CLCSE invalid_prog _obj;
EXCEPTI ON
WHEN OTHERS THEN
BEG N
status : = SQLCODE;
DBMS_OUTPUT. put _line(" FAILED with °~ || SQ.ERRM status));

I F (invalid_prog_obj% SOPEN) THEN
CLCSE invalid _prog obj;
END | F;

Previous | Table of Contents | Next

conti nues

Previous | Table of Contents | Next

Page 280
Listing 12.2 Continued

EXCEPTI ON WVHEN OTHERS THEN
NULL; -- do not hing
END;
END;
/

This might return something similar to the following:

Reconpi | e FUNCTI ON TABLE EXI STS SUCCESSFUL
1 Program bj ects Reconpil ed
PL/ SQL procedure successfully conpl eted.

CAUTION

If a program object fails to recompile successfully, alter_compile will not tell you! After
running alter_compile, you should check the status of the package to make sure it
compiled successfully.

If you provide a program object name that doesn't exist, or you have the type wrong, you get:

ORA- 20000: Unable to conpil e PACKAGE "BLICK", insufficient privileges
or does
not exi st

Y ou can programmatically analyze (generate statistics) for tables, indexes, and clusters. For example,
you could analyze all or selected objectsin your schema, as shown in Listing 12.3.

Listing 12.3 runstats.sgl—Running Statistics Programmatically

-- analyze all tables, indexes and clusters in your own schema

-- conputes exact statistics

SET ECHO OFF

ACCEPT net hod PROVPT °~ ANALYZE Met hod ([COVPUTE] | ESTI MATE| DELETE) :
ACCEPT estrow PROVMPT °~ | F ANALYZE Method i s ESTI MATE, #Rows (0-n)

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0284-0286.html

[100] :

ACCEPT estpct PROVWPT °~ | F ANALYZE Method is ESTI MATE, %Rows (0-99)
[20] :
DECLARE

-- application-defined exceptions

bad nmet hod EXCEPTION;, -- user entered an invalid nethod

bad estrow EXCEPTION;, -- user entered an invalid est. #rows

bad _estpct EXCEPTION, -- user entered an invalid est. % ows

-- cursors

CURSOR anal yze obj IS
SELECT obj ect _nane, object _type
FROM user _obj ects

VWHERE obj ect _type = ANY (TABLE , "INDEX , "CLUSTER);
-- constants
METHOD CONSTANT VARCHAR2(30) : = NVL(UPPER(&&mrethod'), "~ COWUTE');
-- variabl es
estrow NUMBER : = NVL(&&estrow , "~100'); -- user input est. #rows
estpct NUMBER := NVL(&&estpct', 20'); -- user input est. pct

Page 281

rec anal yze obj “ROMYPE;

status NUVERI C : = O;

cnt NUVERI C : = 0O;

BEG N

DBMS_QUTPUT. enabl e;

-- validate user input

| F (METHOD NOT IN (" COWUTE , "ESTIMATE , "DELETE)) THEN
RAlI SE bad_net hod,;

ELSIF (METHOD IN (T COWUTE' , "DELETE)) THEN -- ignore est. #/ % ow
estrow : = NULL;
estpct := NULL;

ELSE -- picked ESTI MATE, nust provide either est. #rows or % ows
| F (estrow < 1 AND estpct = 0) THEN
RAI SE bad_estrow,
ELSI F (estpct NOT BETWEEN 1 AND 99) THEN
RAlI SE bad_est pct;
END | F;
END IF;, -- validate input

OPEN anal yze obj ;
LOOP -- anal yze schenma objects
FETCH anal yze obj | NTO rec;

EXIT WHEN anal yze_ obj ¥NOTFOUND;
-- COWUTE STATISTICS for this schema only

DBVS_QUTPUT. put (~ Analyze ~ || METHOD || =~ ° ||
rec.object type || = ~ || rec.object_nane);
DBMS DDL. anal yze obj ect(rec. obj ect _type, NULL, rec.object nane,
" COWPUTE') ;
DBVS_QUTPUT. put _|ine(” SUCCESSFUL');
cnt :=cnt + 1,
END LOOP; -- analyze schema objects
CLOSE anal yze obj ;
DBMS OUTPUT. put _|ine(TO CHAR(cnt) || =~ objects analyzed');
EXCEPTI ON

VWHEN bad net hod THEN
DBMS OUTPUT. put _line(Invalid Method! Miust be COWPUTE, ESTI MATE or
DELETE only');
VWHEN bad_estrow THEN
DBMS OUTPUT. put _line(Invalid Est. #Rows! Must be >= 1');
VWHEN bad_est pct THEN
DBMS OUTPUT. put _line(Invalid Est. %Rows! Miust be between 1 and
99");
VWHEN OTHERS THEN
BEG N
status : = SQ.CODE;
DBMS OUTPUT. put _line(" FAILED with ~ || SQLERRM st atus));
| F (anal yze_obj % SOPEN) THEN
CLOCSE anal yze obj ;
END | F;
EXCEPTI ON WHEN OTHERS THEN
NULL;
END;
END;
/

Page 282

Note all the input validation we have to do. Partly, thisis because analyze object does very little of its
own. If you provided arow estimate along with the COMPUTE method, for instance, you'll get:

Anal yze TABLE <t abl e> FAI LED with ORA-01490: invalid ANALYZE comrand.

When | compute statistics by picking all the defaults, my run looks like this:

ANALYZE Met hod ([COVPUTE] | ESTI MATE| DELETE) :
| F ANALYZE Method is ESTI MATE, #Rows (1-n) [1]:
| F ANALYZE Method is ESTI MATE, %Rows (1-99) [20]:
old 12: METHOD CONSTANT VARCHAR2(30) := NVL(UPPER(&&method'),
" COMPUTE') ;
new 12: METHOD CONSTANT VARCHAR2(30) := NVL(UPPER('), COWPUTE);

old 14: estrow NUMBER : = NVL(&&estrow , "1'); -- user input est.
#r ows

new 14: estrow NUMBER := NVL(', "1'); -- user input est.
#r ows

old 15: estpct NUMBER : = NVL(TRUNC(&&estpct'), 20"); -- user

| nput est. pct

new 15: estpct NUMBER := NVL(TRUNC('), 20'); -- user input est.

pct

Anal yze COMPUTE TABLE BONUS SUCCESSFUL
Anal yze COMPUTE TABLE DEPT SUCCESSFUL
Anal yze COMPUTE TABLE EMP SUCCESSFUL

Anal yze COMPUTE | NDEX PK_DEPT SUCCESSFUL
Anal yze COMPUTE | NDEX PK_EMP SUCCESSFUL
Anal yze COMPUTE TABLE SALGRADE SUCCESSFUL
6 objects anal yzed

PL/ SQL procedure successfully conpl et ed.

If you enter in an invalid method, it complains with:
| nval id Met hod! Must be COWPUTE, ESTI MATE or DELETE only
aswe desired. Play around with it and see how you likeit.

Thisimplementation of the ANALY ZE command doesn't do VALID STRUCTURE or LIST CHAINED
ROWS. In this respect, it's an incomplete implementation, but it's still pretty useful.

Formatting Output with DBMS_OUTPUT

If you've been following along since the tutorial, you're already familiar with the put_line procedurein
this package. Here are some details regarding the implementation of the package:

. Each lineisterminated with a newline character.

. Each line may only be up to 255 bytes, including the newline character.
. Eachlineisstored in aprivate PL/SQL table.

. Nothing isstored unlessDBMS OUTPUT.ENABLE isfirst called.

. The buffer size specified must be in the range 2,000 to 1,000,000.

Y ou use the procedure enable to turn on the output feature. put_line calls are ignored if output hasn't first
been enabled. When you enable output, you can also specify a buffer size, as with:

DBMS QOUTPUT. enabl €(1000000); -- 1 mllion bytes is the nmax
Page 283

Conversely, you can turn output back off with disable:

DBMS QUTPUT. di sable; -- turn off out put

Y ou can store aline of text with put_line. It's overloaded to take a DATE, NUMBER or VARCHAR?2.
Y ou can also store aline of text without terminating it by using the put procedure (which is overloaded
in like manner). Thisis useful if the line you're building requires some logic:

-- excerpt taken from Package rev_eng
| F (Ltable I'S NULL) THEN -- paraneter conments

DBVMS_QUTPUT. put (" -- ALL TABLES);
ELSE
DBMS _QUTPUT. put (" -- TABLE ° || Ltable);
END | F;
DBMS OUTPUT. put _line(- FOR OMNER © || Lowner ||
", TABLESPACE " || Ltspace);

Y ou can terminate text submitted with put by using the new_line procedure. This signals the end of the
current line of text with amarker, and also stores the length of the text line along with the text (thisis
completely transparent to the user). Note that if you try to double or triple space output lines by sending
new lines without first using put, it doesn't work:

BEG N

DBVS_QOUTPUT. put (~ Hey,);

DBVS_QUTPUT. put (~ Dan! ') ;

DBMS_QUTPUT. new_| i ne;

DBMS_QUTPUT. new_| i ne;

DBVS_QUTPUT. put _|ine(Time to go Hot Tubbing!');
end,

Givesyou:

Hey, Dan!

Time to go Hot Tubbi ng!
PL/ SQL procedure successfully conpl et ed.

It didn't double space. Oh well.

You'll get an exception if you attempt to output a string longer than the acceptable 255 bytes before
ending it with new_line:

ORA- 20000: ORU-10028: line length overflow, limt of 255 bytes per
| i ne.

Why did the folks at Oracle limit the string length to 2557 L ook back to the example where a PL/SQL
table of VARCHAR2 (32767) quickly exhausted available memory (see Chapter 10, "PL/SQL
Fundamentals," Listing 4.10). So they picked what they considered a reasonable limit.

Strings are returned with get_line. Thisiswhat SQL* Plus does to return the strings written with
put_line. Unseen, it calls get_line until no more lines are available. Y ou really only need concern
yourself with get_line (and its multiple line version, get_lines) if you're writing a 3GL program to
receive lines stored with put_line. You can use it in aPL/SQL program if you wish, such as to buffer
lines and then access them in FIFO manner, perhaps to insert them into atable.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0284-0286.html

Previous | Table of Contents | Next

Page 305

Chapter 13

Import/Export

In this chapter

« Understanding the Purpose and Capabilities of Import/Export 306
« Understanding Behavior 307

. Controlling and Configuring Import and Export 309

. Taking Walkthroughs of Import and Export Sessions 319

. Using the SHOW and INDEXFILE Options 326

Page 306

Understanding the Purpose and Capabilities of
Import/Export

The Oracle8 Server comes with two important utilities: Import and Export. These two utilities are useful
for many important database functions such as backing up data, copying objects among different
schemas and databases, and generating object creation scripts. They are also useful in migrating from
one version of Oracle to another, and may be used to upgrade your database to Oracle8.

The Import and Export utilities provide awide range of capabilities. The main purposeisto back up and
recover data and objects. The objects and data are stored in a binary form that may be read only by
Oracle databases. Export and Import can perform the following tasks:

. Back up and recover your databases.
Export and Import are frequently used as part of a backup plan. Typically, full or hot backups are
used to back up the entire database in the event of adisk or computer failure. However, if just
one table in the entire database needs to be recovered, the entire database would have to be
recovered on another machine, and the one table would be copied over. Thisisincredibly time
and resource consuming. lmport and Export can save you this hassle by providing the capability
to export the entire database and import just the tables you need recovered. They may also serve
as a backup and recovery mechanism for the entire database, because Point-in-time Recovery is
also an option.

. Move data and objects among schemas.

Y ou can use Import and Export to copy tables, indexes, grants, procedures, and views, among all
other object types from one schemato another. This helps save time and effort because you can
just specify those objects you desire to move. Also, moving data may be used as aform of data
replication among different Oracle databases.

. Migrate databases from one Oracle version to another.
Y ou can upgrade (or downgrade) the version of Oracle by using the Import and Export utilities.
Y ou can export an entire Oracle7 database, for example. Then, providing you have the Oracle3
Server installed, the database can be imported, making the data and application function in an
Oracle8 environment. This processis called migration.

. Defragment a tablespace or the entire database.
Fragmentation occurs when objects such as tables and indexes are created, deleted, enlarged, and
reduced in size over time. Fragmentation also occurs when object storage parameters are poorly
defined. By exporting a tablespace, coalescing space, and importing objects again, you can
defragment tablespaces.

. Generate CREATE scripts.
Y ou can also use Import and Export to generate CREATE scripts for tables, partitions, views,
grants, indexes, constraints, and tablespaces, among all other objectsin the database. This proves
quite useful for modifying objects and safeguarding the structure of your objects in the event one
gets corrupted or deleted.

Page 307

NOTE

The export fileisin abinary format that may only be used with Oracle databases. Y ou
cannot export from Oracle and import into a non-Oracle database. Similarly, you cannot
import from a non-Oracle database. If you wish to copy datato Oracle from another
database product such as Microsoft Access, you should use SQL* L oader on adelimited
file format of the data, such as CSV (comma-separated values). To transfer data from
Oracle to a non-Oracle database, you must make a delimited file manually by spooling
from within PL/SQL or SQL*Plus.

Understanding Behavior
There are three types of exports:

. FULL export: Exports all objects, structures, and data within the database.
. OWNER export: Exports only those objects owned by a particular user account.
. TABLE export: Exports only the specified tables and partitions.

With dozens of types of structures that may be exported, it isimportant to distinguish what gets exported
with each of the three export categories. Table 13.1 shows which structures are exported with each

export option (in the order that Export exports). The following section then describes the syntax of
running exp80 and imp80, executables for export and import with Oracle8.

NOTE

InaWindows NT environment, exp80 and imp80 are the commands for the Export and
Import utilities. On UNIX and other operating systems, exp and imp are the commands
for the Export and Import utilities. For simplicity, this book provides all examples with
the xp80 and imp80 commands.

Table 13.1What Objects Get Exported with Each of the Three Export Options

Type of with FULL=Y with OWNER with TABLE
Object option option option
Tablespace .
definitions /M OJeCts
Profiles All objects
User :
definitions | ODIects
Roles All objects
RESOUrCe Al objects
costs
conti nues
Page 308

Table 13.1Continued

Type of Object with FULL=Y option with OWNER option with TABLE
option Rollback

segment

definitions All objects Database links All objects Just for owner Sequence numbers All objects Just for
owner

Directory aliases All objects

Foreign

function

library names All objects Just for owner Object type

definitions All objects Just for owner

Cluster definitions All objects Just for owner Just for table

and owner Tables All objects Just for owner Just for table and

owner Indexes All objects Just for owner Just for table and

owner Referential

integrity

constraints All objects Just for owner Just for table

and owner

Postable actions All objects Just for owner Synonyms All objects Just for owner Just for table and
owner Views All objects Just for owner Stored procedures All objects Just for owner

Triggers All objects Just for owner Just for table and

owner Snapshots All objects Just for owner Snapshot logs All objects Just for owner Job queues All
objects Just for owner

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 304

Moving right along, let's find out what platform we're running:

EXECUTE DBMS OUTPUT. put | i ne(DBMS_UTI LI TY. port_string);
| get:

| BMPC/ W N _NT-7.3.3

What do you get?

I've touched upon the most readily usable packaged subprograms provided by Oracle. By using these
routines, you can accomplish quite a bit more programmatically than you may have been used to. |
encourage you to try them on your own, and to also examine some of the others (like DBMS ALERT)
not delved into in this section. Y our ability to tune the database and applications should improve with
their use.

Previous | Table of Contents | Next

Page 299

Here's a sample run:

Ent er Usernane: scott
Turn Trace OV OFF: on
ol d 8: OVWNER

new 8: OMNNER

ol d 9:

new 9:

Previous | Table of Contents | Next

CONSTANT VARCHAR2(30)
CONSTANT VARCHAR2(30)
SETTRACE CONSTANT VARCHAR2(3)
SETTRACE CONSTANT VARCHAR2(3)

TRACE FOR USER SCOIT is now ON
PL/ SQL procedure successfully conpl et ed.

UPPER(~ &&owner');
UPPER(" scott');

RTRI M UPPER(" &&t race'));
RTRI M UPPER("on'));

Once turned on, the trace remains active until you or the user turns trace back off, or the user

disconnects.

Using Miscellaneous Utilities in DBMS_UTILITY

This package contains a bunch of useful routines, some of which I'll illustrate. A brief description of

themisgivenin Table 12.3.

Table 12.3 Miscellaneous Utility Routines Found in DBMS_UTILITY

Subprogram

PROCEDURE compile _schema
(Powner VARCHAR?2);

PROCEDURE analyze schema
(Powner VARCHARZ2, Pmethod
VARCHAR2, Pest_rows
NUMBER DEFAULT NULL,
Pest pct NUMBER DEFAULT
NULL);

FUNCTION format_error_stack
RETURN VARCHAR?Z2;

Description

Recompiles all stored
subprograms and
packagesin agiven
schema.

Performs ANALY ZE on
all tables, indexes, and
clustersfor the given
schema

Returns a string
containing the first 2,000
bytes of the error stack.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0295-0298.html

Returns a string
FUNCTION format_call_stack containing the first 2,000

RETURN VARCHARZ; bytes of the program call
stack.
Returns TRUE/FALSE
FUNCTION is _paralel server indicating whether
RETURN BOOLEAN; parallel option for this

server isturned on.

Returnsthetimein
FUNCTION get_time RETURN hundredths of a second
NUMBER; since the epoch (good for

timing applications).

conti nues

Page 300

Table 12.3 Continued

Subprogram Description
PROCEDURE name_resolve(Pname CF;beSg tV relzrié:jlven
IN VARCHAR2, Pcontext IN eXJ i
NUMBER, Powner OUT VARCHAR?2, P J
synonyms and

Ppartl OUT VARCHAR?2, Ppart2 OUT
VARCHAR2, Plink OUT
VARCHAR?2, Ppartl_type OUT
NUMBER, Pobj_number OUT
NUMBER);

following remote
database links as
necessary; also does
authorization
checking.

Given astring
containing an object
reference in dot
notation, breaks it

PROCEDURE name_tokenize(Pname
IN VARCHAR2, Powner OUT
VARCHAR?2, Ptable OUT

VARCHAR?. Pcol OUT VARCHAR?, ggn'qntgn'gt s
Plink OUT VARCHAR?2, Pnext OUT poriem Parts.
owner, table,

BINARY _INTEGER); column. database

link.

PROCEDURE comma to_table(Plist
IN VARCHARZ2, Ptabn OUT
BINARY INTEGER, Ptab OUT
uncl_array);

PROCEDURE table to_comma(Ptab
IN uncl_array, Ptabn OUT

BINARY _INTEGER, Plist OUT
VARCHARY);

FUNCTION port_string RETURN
VARCHAR?,

FUNCTION make data block address
(Pfile NUMBER, Pblock NUMBER)
RETURN NUMBER;

FUNCTION data_block address file
(PdbaNUMBER) RETURN
NUMBER;

Page 301

Given astring
containing tokens
separated by
commas, loads the
tokensinto aPL/
SQL table, starting
with table element
1.

Given a PL/SQL
table, builds a
comma-delimited
string consisting of
the values from the
table. Thefirst table
element must be 1
and the last table
entry must be
NULL.

Returns a string
containing the
version of Oracle
and the operating
system.

Given afile and
block number,
returns the data
block address; used
for accessing fixed
tables containing
data block
addresses.

Given adata block
address, returns the
file portion of it.

Subprogram

Description

Given a data block
FUNCTION data block address block address, returns
(PdbaNUMBER) RETURN NUMBER,; the data block
portion of it.

You can use format_error_stack in exception handlers to display the error stack right at the point where
it's most useful, perhaps storing the string in an error log table, or sending it to another session viaa
pipe. Here'savery smple example:

DECLARE
X VARCHAR2(1);
BEG N
X := " bust!';
EXCEPTI ON
VWHEN OTHERS THEN
DBVMS QUTPUT. put i ne(DBMS_UTI LI TY. format _error_stack);
END;
/

which returns:

ORA- 06502: PL/SQ.: nuneric or value error
PL/ SQL procedure successfully conpl et ed.

Inasimilar vein, you can use format_call _stack to view the calling stack. Thisis useful when you're
nested down several levels through various subprograms. Here is a modest example (see Listing 12.13).

Listing 12.13 callstk.sgl—What's on the Call Stack?

CREATE TABLE call | og (

| og_date DATE,

| og_| evel NUMBER,

| og_nsg VARCHAR2(2000))
/

DECLARE
X NUMBER
PROCEDURE nest (Pl evel I N OUT NUMBER, Pstopat IN NUMBER) IS
msg VARCHAR2(2000) ;
BEG N
| F (Pl evel < Pstopat) THEN
Plevel := Plevel + 1; -- increnent nesting depth

nest (Pl evel , Pstopat);
ELSE
nsg := DBVMS _UTILITY. format _cal |l _stack;
| NSERT | NTO cal | | og
VALUES (SYSDATE, Pl evel, nsQ);
END | F;
END nest ;

Page 302
Listing 12.13 Continued

BEG N
x :=1;, -- always start with 1
nest (x, 4);

END;

/

SELECT * FROM cal |l | og ORDER BY | og_date
/

DROP TABLE cal |l _| og
/

| get:

Tabl e creat ed.
PL/ SQL procedure successfully conpl et ed.
LOG DATE LOG LEVEL

LOG_MsG

27- NOV- 97 4

---- PL/SQL Call Stack ----
obj ect | ine object
handl e nunber nane
12770c8 10 anonynous bl ock
12770c8 8 anonynous bl ock
12770c8 8 anonynous bl ock

12770c8 8 anonynous bl ock

conti nues

12770c8 17 anonynous bl ock
Tabl e dropped. ?

Okay, so thisisn't the most useful thing in an anonymous block. If you used it in a stored procedure with
some sort of trace mechanism (like the one we built earlier), you could unwind the stack during a
debugging session to see where your program is going.

Moving right along, let's see whether our server isrunning Parallel Query Mode by using Listing 12.14.
Listing 12.14 pgm.sgl—Check to See if We're Running Parallel Query Mode

BEG N
DBMS_QUTPUT. enabl e;
| F (DBVMS_UTILITY.is_parallel _server) THEN
DBVS_QOUTPUT. put _|i ne(database is running in parallel server
node') ;
ELSE
DBVS_QOUTPUT. put | i ne(database is NOT running in parallel server
node') ;
END | F;
END;
/

Page 303
| think | wrote thisin 30 seconds, a new world record! Running it | get:

dat abase is NOT running in parallel server node
PL/ SQL procedure successfully conpl et ed.

We'reon aroll. Now let's do atiming example, as shown below in Listing 12.15.

Listing 12.15 timetest.sgl—L oop Index Timing Test: NUMBER versus PLS INTEGER, Which Is
Faster?

-- Loop Indexing Test: NUMBER vs. PLS | NTEGER
DECLARE

maxnum CONSTANT NUMBER = 100000; -- nunber of |oops to do
maxbi n CONSTANT PLS | NTEGER : = 100000; -- nunber of |oops to do
time_start NUMBER -- time we started (in 10ns)
time_stop NUMBER -- time we stopped (in 10ns)

numn oops NUMBER : = O; -- |l oop index

bi nl oops PLS | NTEGER : = O; -- |l oop index
BEGA N
DBVS QUTPUT. enabl e;

time_start := DBMS _UTILITY.get tineg;

VWH LE (num oops < maxnun) LOOP -- spin our wheels
num oops : = numl oops + 1;

END LOOP; -- spinning

time_stop := DBMS UTILITY. get tineg;
DBMS OUTPUT. put _|i ne(Looping with NUMBER i ndex ~ ||
TO CHAR(maxnum) | |
"X takes T ||
TO CHAR(time_stop - time_start) ||
hundredths of a sec');

time_start := DBMS UTILITY.get tineg;

VWHI LE (bi nl oops < maxbi n) LOOP -- spin our wheels
bi nl oops : = binloops + 1;

END LOOP; -- spinning

time_stop := DBMS UTILITY. get tineg;
DBMS OUTPUT. put _|ine(Looping with PLS Bl NARY index ~ ||
TO _CHAR(maxbi n) ||
"X takes T ||
TO CHAR(tinme_stop - time_start) ||
hundredths of a sec');

END;

And | get:

Looping wi th NUMBER i ndex 100000x takes 140 hundredths of a sec
Looping with PLS BI NARY i ndex 100000x takes 54 hundredths of a sec
PL/ SQL procedure successfully conpl eted.

Wow! PLS INTEGER math isalot quicker.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch12/0295-0298.html

Previous | Table of Contents | Next

Page 309

Type of with FULL=Y with OWNER with TABLE
Object option option option
Refresh

groups All objects Just for owner

and children

User history
table

Default and
system
auditing
options

All objects

All objects

CAUTION

ROWIDs are re-assigned during an import. If atable has a column with ROWID
information, the data will become obsolete. Also, ROWID snapshots become obsolete
after an import and must be refreshed with the COMPLETE option before they can be
automatically refreshed again. In addition, some REF attributes may contain ROWID
information, so the REFs may become obsolete during an Import session. To re-create
the REF information with proper ROWIDs after importing the data, issue the ANALYZE
TABLE owner.table name VALIDATE REF UPDATE; command.

Controlling and Configuring Import and Export

The Import and Export utilities—with the availability of dozens of parameters that can be passed—are
extremely flexible. Also, there are two methods of running Import and Export: Interactive mode and
Non-interactive mode. With the Interactive mode, you are stepped through a series of prompts to enter
the basic information for an import and export session. This method is less flexible; you are prompted
for only afew of the dozens of available parameters.

To export with the Interactive mode, just enter exp80 at the command line. Y ou are then prompted for a
username and password.

CAUTION

To export the entire database, the user account that you export with must have been
granted the EXP_FULL_DATABASE system privilege. For accounts with DBA
privileges, such as SY STEM, this privilege isimplicitly granted to the user. Otherwise,
the export will fail.

Next, you receive a prompt for the array fetch buffer size. Thisisthe size of the memory buffer through
which rows are exported. This should be larger than the size of the largest record multiplied by the
number of rows that you wish to fit within the buffer, and is operating-system dependent.

Page 310

Y ou then receive a prompt for the name of the export file. By default, it is expdat.dmp. Next, a small
menu with three options appears: (1)E(ntire database), (2)U(sers), or (3)T(ables).

If you select option 1, you receive a prompt to enter values for grants (Y/N), table data (Y/
N), and compress extents (Y/N).

If you select option 2, you receive a prompt to enter values for grants (Y/N), table data (Y/
N), compress extents (Y/N), and user(s) to be exported (keep entering until done, and then
enter asingle period on the line to finish).

If you select option 3, you receive a prompt to enter values for export table data (Y/N),
compress extents (Y/N), and Table (T) or Partition (T:P) to be exported (keep entering
until done, and then enter a single period on the line to finish).

To export in Non-interactive mode, you can either pass all parameters at the command line or through a
parameter file. For all possible parameters of the export command, type exp80 help=y in Windows NT,
asshown in Figure 13.1.

FIG. 13.1

Sampl e result of exp80
help=y, inaWindows NT
environment.

Y ou can use 23 parameters during an export session. Y ou can either specify them in the command line
or any parameter file that is specified. Table 13.2 describes al the export parameters.

javascript:displayWindow('images/ch13fg01.jpg',668,451)

Table 13.2Description of Parameters for the Export Utility

Parameter Default Vaue

Description BUFFER

The size of BUFFER
(in bytes) determines
the memory buffer
through which rows

are exported. This

gsen dent should be larger than
P the size of the largest

record multiplied by
the number of rows
that you wish to fit
within the buffer.

Page 311

Default
Parameter Value

COMPRESS Y

CONSISTENT N

CONSTRAINTS N

Description

If COMPRESS=Y, the
INITIAL storage parameter
will be set to the total size of
all extents allocated for the
object. The change takes
effect only when the object is
imported.

Setting CONSISTENT=Y
exports all tables and
references in a consistent
state. This slows the export
because rollback spaceis
used. If CONSISTENT=N,
which isthe default, and a
record is modified during the
export, the data becomes
Inconsistent.

Specifies whether table
constraints are exported.

DIRECT N

FEEDBACK 0

FILE expdat.dmp
FULL N
GRANTS Y

HELP N

Page 312

Table 13.2Continued

If DIRECT=Y, Oracle
bypasses the SQL command
processing layer, improving
the speed of the export.
Unfortunately, the new object
types endemic to Oracles,
such as LOBs, will not get
exported.

Oracle displays a period for
each group of records inserted.
The size of thegroup is
defined by FEEDBACK. By
setting FEEDBA CK=1000,
for example, a period displays
for every 1000 records
imported. This parameter is
useful for tracking the
progress of large imports.

By default, expdat.dmp
(stands for EXPort DATa
DuMP) will be the name of
thefile. For amore
meaningful file name, change
the FILE parameter.

The entire database will be
exported if FULL=Y,
including tablespace
definitions.

Specifies whether all grant

definitions will be exported
for the objects being exported.

No other parameters are
needed if you specify
HELP=Y. A basic help screen
Is displayed.

conti nues

Parameter

INCTY PE

Default
Vaue

Description

The valid options
for the INCTY PE
parameter are
COMPLETE,
CUMULATIVE,
and
INCREMENTAL.
A COMPLETE
export lays down a
full export for
which the other two
options rely on for
restores of the
database.
CUMULATIVE
exports al tables
and other objects
that have changed
since the last
CUMULATIVE or
COMPLETE
export was taken. If
onerecordina
table has been
atered, the entire
table is exported.
INCREMENTAL
exports al tables
and objects that
have changed since
the last
INCREMENTAL,
CUMULATIVE, or
COMPLETE
export.

INDEXES

LOG

PARFILE

Specifies whether
user-defined
indexes are
exported. System
Indexes created
with constraints
(primary key,
unigque key) and
OID indexes are
automatically
exported, regardiess
of the value of the
INDEXES
parameter.

The LOG
parameter specifies
the name of thefile
to spool the
feedback from the
export session.
Unless otherwise
specified, Oracle
appendsa.LOG
extension to the
file.

Instead of entering
al parameters on
the command line,
some or all may be
kept in a parameter
file. The PARFILE
parameter specifies
which fileto use, if
desired. This
parameter is
especially useful
for non-interactive
Import sessions.

Exports
information for a
Point-in-time
Recovery for the
tablespace listed
with the
TABLESPACES
parameter.

POINT_IN_TIME_RECOVER N

Previous | Table of Contents | Next

Page 313

Parameter

RECORD

RECORD_LENGTH

RECOVERY_TABLESPACES

ROWS

Previous | Table of Contents | Next

Default
Vaue

oS
Dependent

Description

If using the INCTY PE
parameter with RECORD=Y,
the SY S data dictionary tables
INCEXP, INCFIL, and INCVID
are populated with export data
such as owner, type of export,
and the time of export.

The RECORD LENGTH
parameter is used only when
you will import on a machine
with a different byte count of
the file than on the machine
where the export occurs. In
most import sessions, the
default should be used.

The
RECOVERY_TABLESPACES,
used in conjunction with the
POINT_IN_TIME_RECOVER
parameter, specifies which
tablespaces may be recovered
using Point-in-time Recovery.
Thisisimportant because
imports could not otherwise
recover transactions past the
time of export.

Specifies whether table and
object datawill be exported. If
ROWS=N, only object
definitions are exported.

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

Specifies whether table and
index statistics are to be
analyzed with COMPUTE or
ESTIMATE when imported.

STATISTICS ESTIMATE Note that only those objects that
aready have statistics on them
will be analyzed during import.
Specify NONE if no objects
should be analyzed.

Specifies a comma-separated
list of all tablesto be exported.
This parameter should be used
in conjunction with the

TABLES FROMUSER parameter. In a
non-UNIX environment, such
as Windows NT, you must
enclose the table list within
parentheses.

Page 314
Table 13.2Continued

Parameter Default Value Description TABLESPACES List of tablespaces to be exported with the
POINT_IN_TIME_RECOVER parameter. USERID Specifies the username and password for the user
conducting the import. The format for the command is username/password. Y ou may also use Net8's
@connect_string format if desired.

To use Import with the Interactive mode, just enter imp80 at the command line. Y ou then receive a
prompt for a username and password.

CAUTION

To use Import from a DBA-invoked export, the user account that you import with must
have been granted the IMP_FULL_DATABASE system privilege. For accounts with
DBA privileges such as SY STEM, this privilege isimplicitly granted to the user.
Otherwise, the import will fail.

Y ou then receive a prompt for the name of the export file from which to import. By default, it is expdat.
dmp. Next, you receive a prompt for the array fetch buffer size. Thisisthe size of the memory buffer
through which rows are exported. This should be larger than the size of the largest record multiplied by

the number of rows that you wish to fit within the buffer and is operating-system dependent.

Next, you are asked whether you want to list the contents of the import file only (Yes/No). Theresultsif
you select Y es are described later in this chapter in the section titled "Using the SHOW and
INDEXFILE Options." If you select No, you are asked whether to ignore all create errors that may occur
due to object existence (Yes/No). Then you are asked whether to import grants, table data, and the entire
export file.

If you select No to import the entire export file, you receive a prompt for the username corresponding to
the owner of the objects. Thisisfollowed by arepeating prompt to enter all tables and partitions. If you
leave the line blank, all objects for the username are assumed. To stop the repeating prompt, enter a
single period at the prompt.

To use Import in Non-interactive mode, you can either pass all parameters at the command line or
through a parameter file. For all possible parameters of the import command, type imp80 help=y, as
shown in Figure 13.2.

Page 315

FIG. 13.2

Sampl e output from
Imp80 help=y on a
Windows NT platform.

Y ou can use 24 parameters during an import session. Y ou can specify them in either the command line
or any parameter filethat is specified. Table 13.3 describes all the import parameters.

Table 13.3Description of Parameters for the Import Utility

Default _—
Parameter Value Description

javascript:displayWindow('images/ch13fg02.jpg',668,511)

ANALYZE Y

oS-
BUFFER [endent
Page 316

Table 13.3Continued

Parameter

CHARSET

COMMIT

Default
Vaue

N

Tables that are imported will have
their statistics analyzed if
ANALYZE issetto Y. Note that
only those tables that already had
statistics on them during the
export will be computed. The
tables will be ESTIMATEd by
default, unless the export was
performed with the
STATISTICS=COMPUTE
parameter configuration.

The size of BUFFER (in bytes)
determines the memory buffer
through which rows are imported.
This should be larger than the size
of the largest record multiplied by
the number of rows that you wish
to fit within the buffer.

Description

The CHARSET is an obsolete
Oracle6 parameter, indicating
whether the export was done in
ASCII or EBCDIC. In Oracle7
and Oracle8, thisinformation is
processed automatically.

By default, acommit occurs after
each table, nested table, and
partition. If you are importing a
large table, the rollback segments
may grow large. To improve
performance while loading large
tables, you should set
COMMIT=Y.

conti nues

DESTROY

FEEDBACK

FILE

FROMUSER

N

0

expdat.dmp

If you set DESTROY =Y and do
afull import, Oracle overwrites
any datafiles that exist. If you
use raw devices for your
datefiles, they will be
overwritten during a full import
because DESTROY =N will not
prevent the overwriting of
datefiles! It isalways agood
practice to back up the database
before such an import. Do not
use this option unless you know
what you are doing.

Oracle displays a period for each
group of recordsinserted. The
size of the group is defined by
FEEDBACK. By setting
FEEDBACK=1000, for example,
aperiod displays for every 1000
records imported. This parameter
is useful for tracking the progress
of large imports.

By default, expdat.dmp (stands
for EXPort DATa.DuMP) isthe
name of the file that Import will
import from. If thefileis
something other than expdat.
dmp, specify it with the FILE
parameter.

Specifying this parameter
imports only those objects
owned by the FROMUSER user
account.

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

Previous | Table of Contents | Next

Page 329

CHAPTER 14

SQL*Loader

In this chapter

« Running SQL*Loader 330

. Components of SQL*Loader 331

. Looking at SQL*Loader Examples 333

. Conventional and Direct Path Loading 347

Page 330

Running SQL*Loader

Databases today are ever increasing in complexity and size. Gigabyte-sized databases are common and
data warehouses are often reaching the terabyte-sized range. With the growth of these databases, the
need to popul ate them with external data quickly and efficiently is of paramount importance. To handle
this challenge, Oracle provides atool called SQL* Loader to load data from external datafilesinto an
Oracle database.

SQL*Loader has many functions that include the following capabilities:

. Datacan be loaded from multiple input datafiles of differing file types.

. Input records can be of fixed and variable lengths.

. Multiple tables can be loaded in the same run. It can also logically load selected records into each
respective table.

« SQL functions can be used against input data before loading into tables.

. Multiple physical records can be combined into asingle logical record. Likewise, SQL can take a
single physical record and load it as multiple logical records.

SQL*Loader can be invoked by typing in sglload, sglldr, or sglldr80 at the command line. The exact
command may differ, depending on your operating system. Refer to your Oracle operating system-
specific manual for the exact syntax. Please note that all listings and server responses in this chapter may
differ with your results based on the operating system that you are using. The sglldr command accepts
numerous command-line parameters. Invoking SQL* Loader without any parameters displays help

information on al the valid parameters (see Listing 14.1).

Listing 14.1SQL* L oader Help Information

| nvoki ng SQL*Loader w thout paraneters:

$ sqlldr
The server
| nvoked

responds with help informati on because SQ.*Loader was

W t hout paraneters:

SQL* Loader:

(c) Copyri ght

Rel ease 8.0.3.0.0 -

Pr oducti on on Mon Nov 17 9:38:19 1997

1997 Oracle Corporation. Al rights reserved.

Usage: SQLLOAD keywor d=val ue [, keyword=val ue, .. .]

Val i d Keywor ds:

userid
contr ol

| og
bad

data --

di scard
di scar dmax

Page 331

skip
| oad
errors
r ows
bet ween

bi ndsi ze

si | ent

di rect
parfile

par al | el

ORACLE user nane/ password
Control file nane

Log file nane

Bad fil e nane

Data fil e nane

D scard fil e nane

Nunmber of discards to allow (Default all)

Nunmber of logical records to skip (Default 0)
Nunmber of | ogical records to | oad (Default all)
Nunmber of errors to allow (Def ault 50)

Nunmber of rows in conventional path bind array or

di rect path data saves

(Default: Conventional path 64, Direct path all)

Si ze of conventional path bind array in bytes (Default
65536)

Suppress nessages during run

(header, f eedback, errors, di scards, partitions)

use direct path (Def ault FALSE)
paraneter file: nane of file that contains paraneter
speci fications

do parallel |oad (Def ault FALSE)

file -- File to allocate extents from

ski p_unusabl e _i ndexes -- disallow all ow unusabl e i ndexes or i ndex
partitions (Default FALSE)

ski p_i ndex_mai ntenance -- do not maintain i ndexes, mark affected

| ndexes
as unusable (Default FALSE)

commt discontinued -- commt |oaded rows when |oad is discontinued

(Defaul t FALSE)

PLEASE NOTE: Conmand-|ine paraneters may be specified either by
position or by keywords. An exanple of the fornmer case is "sqlload
scott/tiger foo'; an exanple of the latter is “sqglload control =foo
userid=scott/tiger'. One may specify paraneters by position before
but not after paraneters specified by keywords. For exanple,
"sqglload scott/tiger control=foo logfile=log" is allowed, but
"sqglload scott/tiger control=foo log' is not, even though the
position of the paranmeter "log' is correct.

Components of SQL*Loader

SQL*Loader isan Oracle utility that |oads data into the database from external datafiles. Figure 14.1
shows the different components of SQL* Loader.

The Control File

The control fileisthe nerve center of SQL* Loader. Thisisthe file that controls how datain the external
datafileisto be mapped into Oracle tables and columns. It should be noted that SQL* L oader input
datatypes are totally independent from the database column datatypes into which they are being |oaded.
Implicit datatype conversions will be done as necessary and errors will be trapped if the conversion fails.
The language used in the control fileis the SQL* L oader Data Definition Language (DDL). The control
file consists of multiple sections with many parameters, too many to cover in depth for the scope of this
chapter. Refer to the Oracle Server Utilities manual for full documentation on all valid syntax and
parameters of the control file. Basic syntax is covered in alater section when examples are given to
demonstrate the different uses of SQL* L oader.

Page 332

FIG. 14.1
SQL*Loader Components.

] H

SQL*Loader Input Data

SQL*Loader can accept input data files in many different formats. Files can be stored on disk, tape, or
the records themsel ves can be embedded into the control file. Record formats can be of fixed or variable
lengths. Fixed-length records are records in which every record is the same fixed length and the data
fields in each record have the same fixed length, datatype, and position. For example, the PART_NBR
dataitem in arecord would aways occupy columns 10 to 19, regardless of the actual length of the data.
If the part number were 12345, the remaining space in columns 15 to 19 would be blank. With variable-
length records, the data item would only take up as much space as necessary on each record.

In the PART_NBR example, the data item would need only five bytes with no trailing blanks. Each
record in a variable length formatted file may have different space usage for PART_NBR based on its
actual length. It isimportant to note that even though variable-length records may use less space in the
datafile, data items on each record have to have a delimiter to separate the data items.

SQL*Loader Outputs

Oracle Tables and IndexesSQL* Loader can load multiple tables and indexes in an Oracle database in the
same loader session. SQL* Loader's behavior in inserting the data and building the indexes will be
discussed later in the section covering conventional and direct path loading.

Previous | Table of Contents | Next

javascript:displayWindow('images/ch14fg01.jpg',358,333)

Previous | Table of Contents | Next

Page 326

tablespace of the user. Before Oracle can import the datainto TABLESPACE_B, you
must give alarge enough quota on the tablespace to the USER_A user. Thisisshownin
the following step.

6. Issue"ALTER USER USER_A QUOTA UNLIMITED ON TABLESPACE B;". By giving an
unlimited quota, the import will succeed, providing that TABLESPACE_B islarge enough to
handle all the database objects being imported.

7. Import the database objects that were exported. By default, the Import utility attempts to import
them into TABLESPACE_A. Because the user does not have a quota on that tablespace,
however, the objects will be created in USER_A's default tablespace TABLESPACE_B.

The preceding steps show how you can use the Import and Export utilities, along with knowledge of
SQL, to do powerful operations on data with relative ease. One of the most useful

capabilities of the Import and Export utilitiesis the use of the SHOW and INDEXFILE options,

as described in the following section.

Using the SHOW and INDEXFILE Options

Y ou can use the SHOW parameter to generate all SQL statements used to create the database structure
and all objects. Thisincludes creating comments, tablespaces, users, privilege grants, roles and their
assignments, quota definitions, rollback segments, sequences, tables, constraints, indexes, packages,
procedures, partitions, user-defined datatypes, and so on.

One powerful use of the SHOW parameter isto create a script file that can re-create part or al of the
database. The statements are listed in the proper order of dependencies—that is, atable is created before
an index, aforeign key that references a primary key is created after the

primary key, and so on. Listing 13.3 shows a sample portion of the output from specifying SHOW=Y..

Listing 13.3CHP13_3.Ist—Sample Portion of Importing with the SHOW=Y Specification

"ALTER SCHEMA = " QUE""

" CREATE UNI QUE I NDEX "I _PRICE" ON "PRI CE" ("PRODUCT_ID"
"START_DATE") PC

"TFREE 10 | NI TRANS 2 MAXTRANS 255 STORAGE (I NI TIAL 10240 NEXT 10240
M NEXTEN'

"TS 1 MAXEXTENTS 121 PCTI NCREASE 50 FREELI STS 1) TABLESPACE
"USER_DATA" LOGG

"1 NG'

"ALTER TABLE "PRICE" ADD CHECK (PRODUCT_ID I'S NOT NULL) ENABLE"
"ALTER TABLE "PRI CE" ADD CHECK (START_DATE IS NOT NULL) ENABLE"
"ALTER TABLE "PRICE" ADD CHECK (LIST PRICE IS NULL OR MN PRICE IS
NULL OR "

"M N PRI CE <= LI ST PRI CE) ENABLE"

"ALTER TABLE "PRI CE" ADD CHECK (END DATE IS NULL OR START_DATE <=
END_DATE) "

" ENABLE"

"ALTER TABLE "PRI CE" ADD PRI MARY KEY (" PRODUCT_ I D", " START_DATE")
ENABLE"

"GRANT SELECT ON "PRICE'" TO PUBLIC'

"ALTER SCHEMA = "QUE""

"COMVENT ON TABLE "PRICE" IS "Prices (both standard and m ni num of
product "

"s. Database tracks both effective dates and expiration dates for
prices.""

Page 327

"COMVENT ON COLUWN "PRICE"."PRODUCT ID" IS "Product nunber to which
price a"

"pplies. Product nane found in table PRICE ""

"COMVENT ON COLUWN "PRICE"."LIST PRICE" IS "Undiscounted price (in
U. S. dol "

“lars).""
"ALTER TABLE "PRI CE' ADD FOREI GN KEY (" PRODUCT_ | D') REFERENCES
" PRODUCT" (" P"

"RODUCT | D') ENABLE"

To make afile from the results, specify the LOG=filename parameter specification. This file may be
modified to change almost any aspect of the database. Each line begins and ends with a quotation mark.
Be sure to string these quotation marks from the beginning and ending of each line. Additionally, Oracle
does not word-wrap lines in the output. This resultsin having statements with the likelihood of words
and numbers being cut in two. To remedy this, you must manually join the lines in each statement. The
sample listing, shown in the preceding listing, could be cleaned up to look like Listing 13.4.

Listing 13.4CHP13_4.Ist—SQL Statements Resulting from Cleaning Up the Import File Created with
the SHOW=Y Specification

ALTER SCHEMA = " QUE";
CREATE UNI QUE I NDEX "I _PRICE" ON "PRI CE" ("PRCDUCT_ID" ,

"START _DATE")

PCTFREE 10 | NIl TRANS 2 MAXTRANS 255

STORAGE (I NI TIAL 10240 NEXT 10240 M NEXTENTS 1 MAXEXTENTS 121

PCTI NCREASE 50 FREELI STS 1)

TABLESPACE " USER DATA" LOGAE NG
ALTER TABLE "PRICE'" ADD CHECK (PRCDUCT ID I'S NOT NULL) ENABLE;
ALTER TABLE "PRICE'" ADD CHECK (START DATE IS NOT NULL) ENABLE;
ALTER TABLE "PRICE'" ADD CHECK (LIST PRICE IS NULL OR MN PRICE IS
NULL

OR M N PRI CE <= LI ST PRI CE) ENABLE;
ALTER TABLE "PRICE'" ADD CHECK (END DATE IS NULL OR START DATE <=
END DATE)
ENABLE;

ALTER TABLE "PRI CE'" ADD PRI MARY KEY (PRODUCT | D, START DATE) ENABLE;
GRANT SELECT ON "PRICE" TO PUBLI C;
COMVENT ON TABLE "PRICE" 1S

"Prices (both standard and mini nun) of products. Database tracks
bot h

effective dates and expiration dates for prices.';
COMVENT ON COLUWN "PRICE"."PRODUCT _ID" I'S "Product number to which
price applies.

Product name found in table PRICE. ';
COMVENT ON COLUWN "PRICE"."LIST PRICE" IS "Undiscounted price (in U
S.
dol lars).";
ALTER TABLE " PRI CE" ADD FOREI GN KEY (PRODUCT I D) REFERENCES PRODUCT
(PRODUCT _I D) ENABLE;

Y ou can use the INDEXFILE parameter to generate CREATE INDEX statements. The value of the
INDEXFILE parameter specifies the name of the file to be created. By default, Oracle appends a .SQL
extension unless otherwise specified. Generic table creation statements are shown, commented out so
that they will not execute if the script isrun. The INDEXFILE parameter does not generate CREATE
primary key or unique key clauses. Listing 13.5 isa portion of the output file X.LOG from an import
with INDEXFILE=X.LOG specified. Notice how Oracle word-wraps all lines

Page 328

appropriately and does not add quotation marks before and after each line. This allows for immediate
use of the indexfile with no further modifications.

Listing 13.5X.LOG—Sample Portion of the X.LOG File Created from
Importing with the INDEXFILE=X.LOG Specification

REM CREATE TABLE "QUE"." PRI CE" ("PRODUCT_I D' NUMBER(6, O0),

"LI ST_PRI CE"

REM NUMBER(8, 2), "M N_PRICE" NUMBER(8, 2), "START_DATE" DATE,

" END_DATE"

REM DATE) PCTFREE 10 PCTUSED 40 | NI TRANS 1 MAXTRANS 255 LOGGE NG
REM STORAGE(I NI TI AL 10240 NEXT 10240 M NEXTENTS 1 MAXEXTENTS 121
REM PCTI NCREASE 50 FREELI STS 1 FREELI ST GROUPS 1) TABLESPACE

" USER_DATA" ;

REM ... 58 rows
CONNECT QUE;
CREATE UNI QUE I NDEX "QUE"."I _PRICE" ON "PRI CE" ("PRODUCT_ID" ,

"START_DATE") PCTFREE 10 I NI TRANS 2 MAXTRANS 255 STORACE (I NI TI AL
10240

NEXT 10240 M NEXTENTS 1 MAXEXTENTS 121 PCTI NCREASE 50 FREELI STS 1)
TABLESPACE " USER_DATA" LOGE NG ;

Previous | Table of Contents | Next

Previous | Table of Contents | Next

Page 322

There should be one record for each distinct FILE_NAME. If there is not, your tablespace is fragmented.
The tables contained in the tablespaces will be made unavailable to the users during the export and
import process. Before you rely on the export and import tablespace to defragment the tablespace, you
should enter the command ALTER TABLESPA CE tablespace name COALESCE and run CHP13 1.
SQL again. If two chunks of free space are adjacent to each other, this command makes them into one
bigger chunk. If the command does not help, you must use Export and Import to defragment the

tabl espace.

Another reason to defragment atablespace isif an object within the tablespace contains multiple extents.
In most cases, you should be concerned if the object has more than five extents, after which point
performance starts to get noticeably affected. By exporting the tables with COMPRESS=Y specified,
Oracle calculates the size of the INITIAL extent so that it encompasses all the datainto one extent. This
helps to defragment the database as well. Run CHP13_2.SQL to determine which objects have more
than five extents, as shown in Listing 13.2.

Listing 13.2CHP13 2.sgl Lists All Objectsin the Database with More than Five Extents
SQL> START CHP13 2. SQL

SQL> COLUMN SEGVENT_NAME FORVAT A25
SQL> SELECT OMNER, SEGVENT_NAME, EXTENTS

2 FROM ALL_SEGVENTS

3 WHERE EXTENTS > 5 AND

4 OMER NOT IN (" SYS' ,' SYSTEM)
5 ORDER BY EXTENTS

After running the script, the server returns all objects with nore
t han
five extents:

OMNNER SEGVENT _NANE EXTENTS

DEMO EMPLOYEE 6

DEMO JOB 9

DEMO DEPARTMENT 12

SQL>

Bef ore you defragnent, nmeke sure that the people will be affected are

noti fi ed because

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

the tables within the tabl espace will becone unavail abl e for use
during this process. If

possi bl e, schedul e the process during a tine when few people are
usi ng the tables.

To use Export and Inport to defragnent a tabl espace, foll ow these
st eps:

1. Export all the tables contained within the tabl espace.
Be sure to set the
COVWPRESS=Y option of Export. This changes the
| NI TI AL storage paraneter of the tables, if
necessary, to fit wthin one extent each.

2. Manual |y drop all tables fromthe tabl espace.
Page 323
3. Coal esce the free space in the tablespace. This is

done with the

ALTER TABLESPACE t abl espace_nanme COALESCE conmand. All free
space shoul d be coal esced into one

bi g chunk, or as many chunks as there are datafiles for the
t abl espace. This is due to

havi ng no objects wthin the tabl espace.

4. | mport all tables that were contained within the
t abl espace. Oracle allocates the

proper space for each object because COVMPRESS=Y was specified
during the export.

When finished, you have a clean, unfragnmented tabl espace.

CAUTI ON
| f you export with COMPRESS=Y, any LOB data that is
exported wll not be conpressed; its original IN TlIAL and

NEXT storage paraneters renmai n unchanged.

The precedi ng nethod requires the know edge of all objects contained
wi thin a tabl espace. In

a nore time-consum ng approach, you may defragnent the entire
dat abase. This is done

by exporting the entire database, dropping and re-creating the
dat abase wth the
CREATE

DATABASE command, and then inporting the entire export file.

Moving Database Objects from One Schema to Another

Many tinmes, it is inportant to nove objects anong schemas. This would
be the case for

a devel oper who wi shes to have a set of tables to test with, but does
not want to affect data in

the original schema. This is also useful to copy tables anong

| nst ances.

First, export all objects for a given user account. Do this by

speci fying the

OMER paraneter of the Export utility. In the exanple here, you wll
be copying the DEMO schema into the

QUE schema, as shown in Figure 13.6.

FIG 13.6
Exporting all objects of

t he DEMO user

account.

javascript:displayWindow('images/ch13fg06.jpg',668,559)

Page 324

Next, create the user account that will be the new owner, if that
account does not already

exist. At this point, you can inport into the new schema by

speci fying the

FROMUSER and TOUSER

paraneters with the Inport utility, as shown in Figure 13.7.

FIG 13.7
| nporting all objects of
t he DEMO user account

i nto the QUE user

account.

javascript:displayWindow('images/ch13fg07.jpg',668,343)

| f any objects being inported are in conflict wth existing objects,
only the conflicting
obj ects are skipped.

TI P
| f you have BFILE datatypes, Oracle stores only pointers to
the files thenselves. The actual data is external to the
dat abase. If you are exporting from one database and
i nporting into another on a different server, be sure to
copy all needed external files and place themin the sane
directory path. O herw se, Oracle cannot access the BFILE s

associ ated fil es.

Mul tiple Objects and Multiple Object Types

| f you want to nove a subset of tables fromone schema to another,
for backup purposes,

you need to specify the list of objects in the

TABLES paraneter specification during the export.

This nust be used in conjunction with the FROMJUSER and

TOUSER for the inport.

or

To export a table, specify the owner, followed by a period and the

t abl e nanme, such

as Owner. Tabl e_Nane. To export a partition, specify the owner,

foll owed by a period and the

tabl e nanme, followed by a colon, followed by the partition nanme, such
as Owner. Tabl e_Nane: Partition_Nane.

Figure 13.8 shows an exanple of exporting nultiple objects and
mul ti pl e object types:

the PRICE table, along with two of five partitions for the EMP table
(LOW SALARY

and MEDI UM _SALARY) .

To inport the nultiple objects and object types into a different user
account, i nport

speci fying the FROMWSER and TOUSER cl auses. If you wish to inport
into the sane user, use either

t he FULL=Y or OMNER paraneter specification.

Page 325

FIG 13.8

Sanpl e of exporting

mul ti pl e objects and

mul tiple object types.

Identifying Behavior When Tablespaces Don't Match

When an object is inported, Oracle attenpts to create it within the
sane tabl espace

fromwhich it was exported. Sonetines, when an export is perforned on
one dat abase, and

| nported into anot her database, the tabl espaces do not al ways match.
An object fromthe

exported database was stored in the DBA TOOLS tabl espace, for

exanple. In the database

to which the object is being inported, there is no DBA TOOLS

t abl espace.

In such a scenario, during the Inport process, the Inport utility
attenpts to create the

object in the DBA TOOLS but fails because there is no such tabl espace
I n the target database.

| nport then tries to create the table into the default tabl espace for

javascript:displayWindow('images/ch13fg08.jpg',668,319)

the owner of the object. If there

I s enough space, and the owner has an appropriate quota on the

t abl espace, the object is

| nported. OGtherwi se an error occurs and the object is not inported.

Moving Database Objects from One Tablespace to Another

By default, Inport attenpts to create objects into the sane

t abl espace from which they

were exported. |If the user does not have perm ssion to that

t abl espace, or that tabl espace no

| onger exists, Oracle creates the database objects into the default
t abl espace for that user

account. These properties may be utilized to nove dat abase objects
fromone tabl espace to

anot her using Export and Inport. To nove all objects from
TABLESPACE A to TABLESPACE B for USER A, follow these steps:

1. Export all objects in the
TABLESPACE_A for USER_A.
2. | ssue "REVOKE UNLI M TED TABLESPACE ON

TABLESPACE A FROM USER A;" to revoke any unlimted tabl espace
privileges granted to the user account.

3. | ssue "ALTER USER USER_A QUOTA 0
on tabl espace a;" to allow no objects to be created in
TABLESPACE A by the USER A user account.

4. Drop all objects owned by USER A in
TABLESPACE_A.

| ssue "ALTER USER USER_A DEFAULT TABLESPACE
TABLESPACE B;" to nmake TABLESPACE B the default tabl espace for
t he
USER A user account. Oracle will try to inport the objects into
TABLESPACE A, where they were exported from Notice
that the user does not have a quota on
TABLESPACE A, and then ook to the default

Previous | Table of Contents | Next

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch13/0317-0321.html

Previous | Table of Contents | Next

Page 333

The Bad FileSQL* Loader goes through a two-stage process in validating data for insertion into the
database. Thefirst stage is validating the format of the data according to the specifications in the control
file. If the dataformat or length is inconsistent with the specifications, SQL* L oader writes that record to
the bad file. When records pass the first stage of validation, it is passed to the database for insertion.

The second stage of validation then takes place in the database. The database may reject the record for
many reasons, some of which could be database check constraints and datatype conversion errors.
Second stage validation rejections are also written to the bad file. If the number of rejections reaches a
certain threshold (default = 50), the SQL* L oader session is aborted. This threshold can be set at the
command line with the errors parameter. The bad file is written in the same format as the original input
datafile, which enables the bad file records to be loaded using the same control file after the necessary
corrections are made.

The Discard FileSQL* Loader writes records to the discard file if there are conditions present in the
control file and the record fails al of the conditions. For example, a condition in the control file states
that records must have an " X" in column one. Records that do not have an X will not be inserted into the
database and will be written to the discard file. Unlike the bad file, the default threshold of discard
records isto allow al discards. This threshold can be set lower at the command line with the discardmax
parameter.

The Log FilewWhen SQL* Loader begins execution, it creates alog file. Any situations that prevent this
log file from being successfully created terminate the loader session. The default filename for the log file
is the control filename with the .log extension. It isimportant to note that if you do not give it a new
name at the command line using the log parameter, the loader session automatically overwrites the last
log with the same name. The log file has multiple sections showing the environment at which the loader
session ran with results and summary statistics. Samples of log files are included in the Examples
section.

Control File Syntax
Most control files begin with the keywords:
LOAD DATA

Other keywords that may precede these are --, which are comments, and options, which enable
command-line options previously discussed to be included in the control file.

Thisisfollowed by the definition to indicate the source externa datafile to use for the load:
| NFI LE " nydat a. dat"*
Multiple data files can be loaded in the same session by specifying multiple INFILE statements:

| NFI LE " nydat al. dat'
| NFI LE " nydat a2. dat'

If the file extension is not specified, SQL* Loader defaults the extension to .dat. Although it is not
required to enclose the datafile in single quotes, it is highly recommended to avoid incorrect special
character trand ations when specifying full data paths.

Page 334

Thisisthen followed by the loading method (see Table 14.1) to be used for al tablesin the loading
session.

Table 14.1Table Loading Methods

Method Description

Thisisthe default method. It assumes that the
INSERT table is empty before loading. If there are still
rows within the table, SQL* L oader will abort.

This method allows rows to be added to the
table without affecting existing rows.

This method del etes existing rows in the table
first and then starts loading the new rows. Note
that any delete triggers on the table fire when
the old rows are del eted.

This method uses the SQL command
TRUNCATE to remove the old rows before
loading. Thisis much quicker than REPLACE
because delete triggers fire and no rollback is
generated. TRUNCATE is not arecoverable
command. In order to use this method, the
table'sreferential integrity constraints must be
disabled.

APPEND

REPLACE

TRUNCATE

Thisisfollowed by the table definition:

INTO TABLE tablename method

in which method is the same as above, but this method only applies to the table specified on thisINTO
TABLE line.

What follows after the INTO TABLE keywords are the field and datatype specifications. Instead of
reviewing all the different options, it issimpler to look at the different examplesin the following section.

Looking at SQL*Loader Examples

All examples use the following schema consisting of four tables (see Listing 14.2). This schema
simulates a banking schema with customer, account, and transaction tables. For the purposes of
demonstrating loading into a partitioned table, the partition xact table is a duplicate of the transaction
table, with the data partitioned based on the quarter in which the transaction took place.

Listing 14.2L1ST1.1—Sample Schema

create table custoner (

cust _nbr nunber (7) not null,
cust _nane var char 2(100) not null,
cust addr1l var char 2(50),
cust addr?2 var char 2(50),
cust _city var char 2(30),
Page 335
cust _state var char 2(2),
cust _zip var char 2(10),
cust _phone var char 2(20),
cust birthday dat e)
/
create table account (
cust _nbr nunber (7) not null,
acct _nbr nunber (10) not null,
acct _nane var char 2(40) not null)
/
create table transaction (
acct _nbr nunber (10) not null,
xact _ant nunber (10, 2) not null,
xact _fl ag char not null,
xact date dat e not null)

create table partition_xact (

acct _nbr nunber (10) not null,
xact _ant nunmber (10, 2) not null,
xact _fl ag char not null,
xact date dat e not null)

PARTI TI ON BY RANGE (xact date)
(PARTI TION P1 VALUES LESS THAN (to date(' 01- APR-1997',' DD- MON-
YYYY')),
PARTI TI ON P2 VALUES LESS THAN (to date('01-JUL-1997',"' DD- MON-
YYYY')),
PARTI TI ON P3 VALUES LESS THAN (to _date(' 01-OCT-1997', "' DD- MON-
YYYY')),
PARTI TI ON P4 VALUES LESS THAN (MAXVALUE))
/

All examples use the following datafiles (see Listings 14.3, 14.4, and 14.5).

Listing 14.3cust.dat—Description of the Listing

0000001BOB MARI N 123 MAI N ST. TOPEKA
KS12345

A999- 555- 1234 20- APR- 55

0000002MARY JOHNSON 18 HOPE LANE SAN FRANCI SCO
CA94054

A415- 555- 1299 32- JAN- 69

0000003RI CHARD W LLI AMS 1225 DAFFODI L LANE BOSTON
MA98377

0000004WALTER SI M5 1888 PROSPECT AVE. BROOKLYN
NY11218
A718- 555- 3420
0000005LARRY HATFI ELD TWO FI ELDS CT. SOVERSET
NJO7689
A732-555- 2454 25- DEC- 60
0000006LAURA LAU 25 CHRI STOPHER LN SAN BRUNO
CA90234
A510- 555- 4834
0000123PRI SCl LLA WONG 888 FORTUNE COURT PHI LADELPH A
PA35545

A 01- JAN- 65
0000068SONNY BALRUP 27 KAMA ST. JACKSON HEI GHTS
NY10199
A718- 555- 9876 07- MAY- 61

0023494RUPAL PARI KH 2 FORCE BLVD NEW YORK

NY10105

A212- 555- 5887 31- DEC- 72

0000324CRAI G SI LVEI RA 1674 | SLAND ST SM THTOM
NY12467

A516- 555- 5534 27- OCT- 74

0000010DANI EL SM TH 35 DI RECT DRI VE BERGEN
NJ07899

A201- 555- 3734

conti nues

Previous | Table of Contents | Next

Page 336

Listing 14.3Continued

0011102STEPHEN LEUNG

CA96688

A650- 555- 1248
0011102ALI CI A LOARY
GA47730

0002340JENNI FER LEUNG

CT78835
A203- 555- 7564

1003423HORACE M CHAEL

MNI77788
A

0000223CHRI STOPHER YEE

M 45345
A777-555-7785

0009032JAMES BORI OTTI

OH37485

A904- 555- 5674
0000088H REN PATEL
NY12445

A212- 555- 7822
0000100RI CHARD JI
KS12009

A999- 555- 5824
0000046DAVI D CHOW
NY10199

A718- 555- 4367
0000758HENRY WALKER
| L33890

A312- 555- 5567
0002993GEORGE BLOOM
CA90475

A650- 555- 2838
0009488LI SA JONES
FL23899

Previous | Table of Contents | Next

16 STANFORD CT

05- SEP- 76
5678 TI MOTHY DR

1 MURRAY HILL

90 M NI STER ST

18- MAR- 65
9077 MJSI C AVE

22-JUL- 75

65 FI REMENS LANE

69 CLUB ST.

12- APR- 70
1225 STEER ST

10- OCT- 74

49 HUGO DRI VE

12 S| GMUND ST.

09- APR- 45
28 BRI DGEWATER ST

25- MAY- 63
30 M SSI ON ST

STANFORD

ATLANTA

GREENW CH

M NNEAPQOLI S

DETRO T

COLUMBUS

NEW YORK

KOBE

FLUSHI NG

CHI CAGO

SAN MATEO

UNI TY

file:///E|/Computer%20Books/Oracle/using_oracle_8/ch14/0341-0344.html

Lis