
Oracle9 i

Database Performance Tuning Guide and Reference

Release 2 (9.2)

October 2002

Part No. A96533-02

Oracle9i Database Performance Tuning Guide and Reference, Release 2 (9.2)

Part No. A96533-02

Copyright © 2000, 2002 Oracle Corporation. All rights reserved.

Primary Author: Connie Dialeris Green

Graphic Designer: Valarie Moore

Contributors: James Barlow, Eric Belden, Qiang Cao, Sumanta Chatterjee, Benoit Dageville, Vinayagam
Djegaradjane, Harvey Eneman, Bjorn Engsig, Cecilia Gervasio, Ray Glasstone, Leslie Gloyd, Lester
Gutierrez, Karl Haas, Brian Hirano, Andrew Holdsworth, Mamdouh Ibrahim, Christopher Jones,
Srinivas Kareenhalli, Stella Kister, Herve Lejeune, Yunrui Li, Juan Loaiza, George Lumpkin, Joe
McDonald, Bill McKenna, Sujatha Muthulingam, Gary Ngai, Michael Orlowski, Kant C. Patel, Richard
Powell, Shankar Raman, Vinay Srihari, Sankar Subramanian, Margaret Susairaj, Hal Takahara, Nitin
Vengurlekar, Stephen Vivian, Simon Watt, Andrew Witkowski, Graham Wood, and Mohamed Zait.

The Programs (which include both the software and documentation) contain proprietary information of
Oracle Corporation; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent and other intellectual and industrial property
laws. Reverse engineering, disassembly or decompilation of the Programs, except to the extent required
to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems
in the documentation, please report them to us in writing. Oracle Corporation does not warrant that this
document is error-free. Except as may be expressly permitted in your license agreement for these
Programs, no part of these Programs may be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the programs on
behalf of the U.S. Government, the following notice is applicable:

Restricted Rights Notice Programs delivered subject to the DOD FAR Supplement are "commercial
computer software" and use, duplication, and disclosure of the Programs, including documentation,
shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement.
Otherwise, Programs delivered subject to the Federal Acquisition Regulations are "restricted computer
software" and use, duplication, and disclosure of the Programs shall be subject to the restrictions in FAR
52.227-19, Commercial Computer Software - Restricted Rights (June, 1987). Oracle Corporation, 500
Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy, and other measures to ensure the safe use of such applications if the Programs are used for
such purposes, and Oracle Corporation disclaims liability for any damages caused by such use of the
Programs.

Oracle is a registered trademark, and Oracle Expert, Oracle Store, Oracle7, Oracle8, Oracle9i, PL/SQL,
SQL*Net, SQL*Plus, and iSQL*Plus are trademarks or registered trademarks of Oracle Corporation.
Other names may be trademarks of their respective owners.

Contents

Send Us Your Comments ... xix

Preface .. xxi

Audience .. xxii
Organization... xxiii
Related Documentation .. xxvi
Conventions... xxvii
Documentation Accessibility .. xxx

What’s New in Oracle Performance? .. xxxi

Part I Writing and Tuning SQL

1 Introduction to the Optimizer

Overview of SQL Processing.. 1-2
Overview of the Optimizer ... 1-3

Features that Require the CBO ... 1-4
Optimizer Operations .. 1-5

Choosing an Optimizer Approach and Goal... 1-5
How the CBO Optimizes SQL Statements for Fast Response.. 1-9

Understanding the Cost-Based Optimizer... 1-10
Components of the CBO.. 1-11
Understanding Execution Plans ... 1-18

Understanding Access Paths for the CBO.. 1-24
iii

Full Table Scans... 1-24
Rowid Scans... 1-27
Index Scans .. 1-28
Cluster Scans ... 1-35
Hash Scans ... 1-36
Sample Table Scans... 1-36
How the CBO Chooses an Access Path ... 1-37

Understanding Joins... 1-40
How the CBO Executes Join Statements.. 1-40
How the CBO Chooses the Join Method ... 1-41
How the CBO Chooses Execution Plans for Join Types.. 1-42
Nested Loop Joins... 1-45
Hash Joins .. 1-47
Sort Merge Joins .. 1-49
Cartesian Joins... 1-50
Outer Joins ... 1-51

Setting Cost-Based Optimizer Parameters ... 1-55
Enabling CBO Features .. 1-55
Controlling the Behavior of the CBO... 1-58

Overview of the Extensible Optimizer ... 1-61
Understanding User-Defined Statistics ... 1-62
Understanding User-Defined Selectivity .. 1-62
Understanding User-Defined Costs... 1-63

2 Optimizer Operations

How the Optimizer Performs Operations .. 2-2
How the CBO Evaluates IN-List Iterators... 2-3
How the CBO Evaluates Concatenation.. 2-6
How the CBO Evaluates Remote Operations ... 2-10
How the CBO Executes Distributed Statements .. 2-13
How the CBO Executes Sort Operations ... 2-14
How the CBO Executes Views.. 2-18
How the CBO Evaluates Constants.. 2-19
How the CBO Evaluates the UNION and UNION ALL Operators.................................... 2-20
How the CBO Evaluates the LIKE Operator .. 2-22
iv

How the CBO Evaluates the IN Operator... 2-22
How the CBO Evaluates the ANY or SOME Operator ... 2-22
How the CBO Evaluates the ALL Operator ... 2-23
How the CBO Evaluates the BETWEEN Operator.. 2-24
How the CBO Evaluates the NOT Operator... 2-24
How the CBO Evaluates Transitivity .. 2-25
How the CBO Optimizes Common Subexpressions ... 2-26
How the CBO Evaluates DETERMINISTIC Functions ... 2-28

How the Optimizer Transforms SQL Statements... 2-30
How the CBO Transforms ORs into Compound Queries .. 2-30
How the CBO Unnests Subqueries .. 2-33
How the CBO Merges Views .. 2-35
How the CBO Pushes Predicates.. 2-38
How the CBO Executes Compound Queries.. 2-48

3 Gathering Optimizer Statistics

Understanding Statistics ... 3-2
Generating Statistics .. 3-3

Getting Statistics for Partitioned Schema Objects.. 3-4
Using the DBMS_STATS Package.. 3-5
Using the ANALYZE Statement... 3-13
Finding Data Distribution ... 3-13
Missing Statistics... 3-14

Using Statistics .. 3-14
Managing Statistics... 3-15
Verifying Table Statistics ... 3-16
Verifying Index Statistics... 3-17
Verifying Column Statistics .. 3-18

Using Histograms ... 3-20
When to Use Histograms... 3-21
Creating Histograms .. 3-22
Types of Histograms .. 3-23
Viewing Histograms .. 3-25
Verifying Histogram Statistics.. 3-25
v

4 Understanding Indexes and Clusters

Understanding Indexes.. 4-2
Tuning the Logical Structure... 4-2
Choosing Columns and Expressions to Index.. 4-3
Choosing Composite Indexes ... 4-4
Writing Statements That Use Indexes.. 4-6
Writing Statements That Avoid Using Indexes.. 4-6
Re-creating Indexes .. 4-7
Compacting Indexes... 4-7
Using Nonunique Indexes to Enforce Uniqueness.. 4-8
Using Enabled Novalidated Constraints... 4-8

Using Function-based Indexes ... 4-10
Setting Parameters to Use Function-Based Indexes in Queries ... 4-10

Using Index-Organized Tables... 4-12
Using Bitmap Indexes .. 4-12

When to Use Bitmap Indexes .. 4-12
Using Bitmap Indexes with Good Performance... 4-15
Initialization Parameters for Bitmap Indexing ... 4-17
Using Bitmap Access Plans on Regular B-tree Indexes... 4-18
Bitmap Index Restrictions.. 4-19

Using Bitmap Join Indexes.. 4-19
Using Domain Indexes... 4-19
Using Clusters.. 4-20
Using Hash Clusters ... 4-21

5 Optimizer Hints

Understanding Optimizer Hints .. 5-2
Specifying Hints.. 5-3

Using Optimizer Hints... 5-6
Hints for Optimization Approaches and Goals ... 5-6
Hints for Access Paths.. 5-9
Hints for Query Transformations... 5-17
Hints for Join Orders .. 5-22
Hints for Join Operations... 5-24
Hints for Parallel Execution .. 5-29
vi

Additional Hints ... 5-34
Using Hints with Views... 5-42

6 Optimizing SQL Statements

Goals for Tuning ... 6-2
Reduce the Workload... 6-2
Balance the Workload .. 6-2
Parallelize the Workload ... 6-2

Identifying and Gathering Data on Resource-Intensive SQL ... 6-3
Identifying Resource-Intensive SQL.. 6-3
Gathering Data on the SQL Identified... 6-5

Dynamic Sampling ... 6-6
How Dynamic Sampling Works... 6-7
When to Use Dynamic Sampling ... 6-7
How to Use Dynamic Sampling to Improve Performance... 6-7

Overview of SQL Statement Tuning ... 6-8
Verifying Optimizer Statistics... 6-8
Reviewing the Execution Plan .. 6-9
Restructuring the SQL Statements ... 6-10
Controlling the Access Path and Join Order with Hints... 6-18
Restructuring the Indexes ... 6-22
Modifying or Disabling Triggers and Constraints .. 6-23
Restructuring the Data... 6-23
Maintaining Execution Plans Over Time .. 6-23
Visiting Data as Few Times as Possible... 6-23

7 Using Plan Stability

Using Plan Stability to Preserve Execution Plans .. 7-2
Using Hints with Plan Stability .. 7-2
Storing Outlines .. 7-4
Enabling Plan Stability... 7-4
Using Supplied Packages to Manage Stored Outlines .. 7-4
Creating Outlines.. 7-4
Using and Editing Stored Outlines .. 7-6
Viewing Outline Data .. 7-10
vii

Moving Outline Tables .. 7-11
Using Plan Stability with the Cost-Based Optimizer .. 7-12

Using Outlines to Move to the Cost-Based Optimizer .. 7-13
Upgrading and the Cost-Based Optimizer ... 7-14

8 Using the Rule-Based Optimizer

Overview of the Rule-Based Optimizer (RBO)... 8-2
Understanding Access Paths for the RBO.. 8-3

Details of the RBO Access Paths... 8-4
Choosing Execution Plans for Joins with the RBO .. 8-15

Transforming and Optimizing Statements with the RBO .. 8-17
Transforming ORs into Compound Queries with the RBO ... 8-17
Using Alternative SQL Syntax .. 8-18

Part II SQL-Related Performance Tools

9 Using EXPLAIN PLAN

Understanding EXPLAIN PLAN.. 9-2
How Execution Plans Can Change .. 9-2
Minimizing Throw-Away.. 9-3
Looking Beyond Execution Plans... 9-4

Creating the PLAN_TABLE Output Table ... 9-4
Running EXPLAIN PLAN ... 9-5

Identifying Statements for EXPLAIN PLAN.. 9-5
Specifying Different Tables for EXPLAIN PLAN .. 9-6

Displaying PLAN_TABLE Output .. 9-6
Reading EXPLAIN PLAN Output.. 9-7

EXPLAIN PLAN Examples ... 9-8
Viewing Bitmap Indexes with EXPLAIN PLAN... 9-11
Viewing Partitioned Objects with EXPLAIN PLAN.. 9-12

Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN 9-12
Examples of Pruning Information with Composite Partitioned Objects............................ 9-14
Examples of Partial Partition-wise Joins ... 9-16
Examples of Full Partition-wise Joins .. 9-17
viii

Examples of INLIST ITERATOR and EXPLAIN PLAN ... 9-18
Example of Domain Indexes and EXPLAIN PLAN .. 9-20

Viewing Parallel Execution with EXPLAIN PLAN .. 9-20
CPU Costing Model.. 9-22
EXPLAIN PLAN Restrictions ... 9-22
PLAN_TABLE Columns .. 9-23

10 Using SQL Trace and TKPROF

Understanding SQL Trace and TKPROF ... 10-2
Understanding the SQL Trace Facility .. 10-2
Understanding TKPROF ... 10-3

Using the SQL Trace Facility and TKPROF... 10-3
Step 1: Setting Initialization Parameters for Trace File Management................................. 10-4
Step 2: Enabling the SQL Trace Facility... 10-5
Step 3: Formatting Trace Files with TKPROF... 10-6
Step 4: Interpreting TKPROF Output .. 10-12
Step 5: Storing SQL Trace Facility Statistics.. 10-17

Avoiding Pitfalls in TKPROF Interpretation .. 10-20
Avoiding the Argument Trap... 10-20
Avoiding the Read Consistency Trap.. 10-20
Avoiding the Schema Trap.. 10-21
Avoiding the Time Trap .. 10-22
Avoiding the Trigger Trap .. 10-23

Sample TKPROF Output... 10-23
Sample TKPROF Header ... 10-23
Sample TKPROF Body... 10-24
Sample TKPROF Summary... 10-30

11 Using Autotrace in SQL*Plus

Overview of the Autotrace Report... 11-2
Configuring the Autotrace Report ... 11-2
Setups Required for the Autotrace Report.. 11-2
Execution Plans for SQL Statements.. 11-3
Database Statistics for SQL Statements ... 11-4
Tracing Statements Examples ... 11-5
ix

Collecting Timing Statistics .. 11-7
Tracing Parallel and Distributed Queries .. 11-7

Monitoring Disk Reads and Buffer Gets ... 11-9
SYSTEM Variables Influencing SQL*Plus Performance... 11-9

SET APPINFO OFF... 11-9
SET ARRAYSIZE... 11-10
SET DEFINE OFF.. 11-10
SET FLUSH OFF.. 11-10
SET SERVEROUTPUT ... 11-10
SET TRIMOUT ON... 11-10
SET TRIMSPOOL ON .. 11-11

iSQL*Plus Server Statistics Report.. 11-11
 Active Statistics .. 11-12
Interpreting Active Statistics... 11-13

12 Using Oracle Trace

Overview of Oracle Trace .. 12-2
Event Data.. 12-2
Event Sets ... 12-2
Accessing Collected Data... 12-3

Collecting Oracle Trace Data .. 12-3
Using the Oracle Trace Command-Line Interface ... 12-3
Using Initialization Parameters to Control Oracle Trace.. 12-7
Controlling Oracle Trace Collections from PL/SQL ... 12-10

Accessing Oracle Trace Collection Results .. 12-12
Formatting Oracle Trace Data to Oracle Tables ... 12-13
Running the Oracle Trace Reporting Utility... 12-14

Oracle Server Events... 12-15
Data Items Collected for Events ... 12-16
Items Associated with Each Event ... 12-22

Troubleshooting Oracle Trace... 12-32
Oracle Trace Configuration ... 12-32
Formatter Tables ... 12-37
x

Part III Creating a Database for Good Performance

13 Building a Database for Performance

Initial Database Creation .. 13-2
Database Creation Using the Installer ... 13-2
Manual Database Creation.. 13-2
Parameters Necessary for Initial Database Creation... 13-2
The CREATE DATABASE Statement.. 13-3
Running Data Dictionary Scripts ... 13-5
Sizing Redo Log Files... 13-5
Creating Subsequent Tablespaces .. 13-6

Creating Tables for Good Performance .. 13-7
Data Segment Compression.. 13-9

Loading and Indexing Data .. 13-10
Using SQL*Loader for Good Performance ... 13-11
Efficient Index Creation... 13-11

Initial Instance Configuration .. 13-13
Configuring Undo Space ... 13-15

Setting up Operating System, Database, and Network Monitoring 13-15

14 Memory Configuration and Use

Understanding Memory Allocation Issues.. 14-2
Oracle Memory Caches.. 14-2
Dynamically Changing Cache Sizes .. 14-2
Application Considerations .. 14-4
Operating System Memory Use ... 14-4
Iteration During Configuration .. 14-5

Configuring and Using the Buffer Cache... 14-6
Using the Buffer Cache Effectively .. 14-6
Sizing the Buffer Cache.. 14-6
Interpreting and Using the Buffer Cache Advisory Statistics.. 14-11
Considering Multiple Buffer Pools .. 14-13
Buffer Pool Data in V$DB_CACHE_ADVICE.. 14-15
Buffer Pool Hit Ratios .. 14-15
xi

Determining Which Segments Have Many Buffers in the Pool... 14-15
KEEP Pool .. 14-17
RECYCLE Pool .. 14-18

Configuring and Using the Shared Pool and Large Pool .. 14-18
Shared Pool Concepts... 14-19
Using the Shared Pool Effectively .. 14-23
Sizing the Shared Pool ... 14-27
Interpreting Shared Pool Statistics ... 14-33
Using the Large Pool .. 14-35
Using CURSOR_SPACE_FOR_TIME .. 14-39
Caching Session Cursors.. 14-39
Configuring the Reserved Pool... 14-40
Keeping Large Objects to Prevent Aging .. 14-42
CURSOR_SHARING for Existing Applications... 14-43

Configuring and Using the Java Pool.. 14-46
Configuring and Using the Redo Log Buffer... 14-46

Sizing the Log Buffer .. 14-47
Log Buffer Statistics .. 14-47

Configuring the PGA Working Memory .. 14-48
Automatic PGA Memory Management .. 14-50
Configuring SORT_AREA_SIZE .. 14-66

15 I/O Configuration and Design

Understanding I/O .. 15-2
Designing I/O Layouts .. 15-2
Disk Performance and Reliability... 15-2
Disk Technology ... 15-3
What Is Disk Contention?.. 15-3
Load Balancing and Striping... 15-4
Striping and RAID .. 15-4
Balancing Budget, Performance, and Availability... 15-6

Basic I/O Configuration ... 15-6
Determining Application I/O Characteristics.. 15-6
I/O Configuration Decisions .. 15-10
Know Your I/O System ... 15-10
xii

Match I/O Requirements with the I/O System... 15-11
Lay Out the Files Using Operating System or Hardware Striping 15-12
Manually Distributing I/O ... 15-16
When to Separate Files... 15-17
Three Sample Configurations ... 15-19
Oracle-Managed Files .. 15-20
Choosing Data Block Size.. 15-21

16 Understanding Operating System Resources

Understanding Operating System Performance Issues .. 16-2
Using Operating System Caches .. 16-2
Memory Usage.. 16-4
Using Process Schedulers .. 16-5
Using Operating System Resource Managers .. 16-5

Solving Operating System Problems.. 16-7
Performance Hints on UNIX-Based Systems ... 16-7
Performance Hints on NT Systems.. 16-7
Performance Hints on Midrange and Mainframe Computers .. 16-8

Understanding CPU ... 16-8
Context Switching .. 16-10

Finding System CPU Utilization ... 16-11
Checking Memory Management.. 16-12
Checking I/O Management .. 16-12
Checking Network Management ... 16-12
Checking Process Management.. 16-12

17 Configuring Instance Recovery Performance

Understanding Instance Recovery... 17-2
Checkpointing and Cache Recovery ... 17-2

How Checkpoints Affect Performance.. 17-3
Reducing Checkpoint Frequency to Optimize Runtime Performance 17-3
Configuring the Duration of Cache Recovery ... 17-4

Initialization Parameters that Influence Cache Recovery Time... 17-4
Use Fast-Start Checkpointing to Limit Instance Recovery Time... 17-5
Set LOG_CHECKPOINT_TIMEOUT to Influence the Amount of Redo 17-7
xiii

Set LOG_CHECKPOINT_INTERVAL to Influence the Amount of Redo 17-7
Use Parallel Recovery to Speed up Redo Application .. 17-8

Monitoring Cache Recovery ... 17-9
Monitoring Estimated MTTR: Example Scenario .. 17-10
Calculating Performance Overhead... 17-12
Calculating Performance Overhead: Example Scenario ... 17-13
Calibrating the MTTR .. 17-15

MTTR Advisory .. 17-16
How MTTR Advisory Works.. 17-16
Enabling MTTR Advisory ... 17-16
Viewing MTTR Advisory .. 17-17

Tuning Transaction Recovery ... 17-18
Using Fast-Start On-Demand Rollback ... 17-18
Using Fast-Start Parallel Rollback .. 17-18

18 Configuring Undo and Temporary Segments

Configuring Undo Segments .. 18-2
Configuring Automatic Undo Management .. 18-2
Configuring Rollback Segments ... 18-2

Configuring Temporary Tablespaces... 18-4

19 Configuring Shared Servers

Introduction to Shared Server Performance .. 19-2
Configuring the Number of Shared Servers .. 19-2

Identifying Contention Using the Dispatcher-Specific Views ... 19-3
Reducing Contention for Dispatcher Processes ... 19-4
Reducing Contention for Shared Servers .. 19-5
Determining the Optimal Number of Dispatchers and Shared Servers............................. 19-8

Part IV System-Related Performance Tools

20 Oracle Tools to Gather Database Statistics

Overview of Tools ... 20-2
Principles of Data Gathering .. 20-2
xiv

Interpreting Statistics... 20-3
Oracle Enterprise Manager Diagnostics Pack ... 20-5
Statspack... 20-7
V$ Performance Views... 20-7

Example - Saving File I/O Data ... 20-8

21 Using Statspack

Introduction to Statspack .. 21-2
Statspack Compared with BSTAT/ESTAT.. 21-2
How Statspack Works .. 21-3
Configuring Database Space Requirements for Statspack ... 21-4
Installing Statspack .. 21-4

Interactive Statspack Installation ... 21-4
Batch Mode Statspack Installation ... 21-6

Using Statspack ... 21-6
Taking a Statspack Snapshot... 21-7
Automating Statistics Gathering .. 21-8
Running a Statspack Performance Report .. 21-9
Configuring the Amount of Data Captured in Statspack... 21-15
Time Units Used for Wait Events... 21-20
Event Timings ... 21-21
Managing and Sharing Statspack Performance Data.. 21-22
Oracle Real Application Clusters Considerations with Statspack 21-25

Removing Statspack ... 21-26
Statspack Supplied Scripts and Documentation .. 21-26

Scripts for Statspack Installation and Removal.. 21-27
Scripts for Statspack Reporting and Automation .. 21-27
Scripts for Upgrading Statspack... 21-27
Scripts for Statspack Performance Data Maintenance .. 21-28
Statspack Documentation.. 21-28
xv

Part V Optimizing Instance Performance

22 Instance Tuning

 Performance Tuning Principles ... 22-2
Baselines ... 22-2
The Symptoms and the Problems... 22-3
When to Tune .. 22-4

Performance Tuning Steps .. 22-5
Define the Problem... 22-6
Examine the Host System .. 22-7
Examine the Oracle Statistics .. 22-10
Implement and Measure Change ... 22-14

Interpreting Oracle Statistics .. 22-15
Examine Load.. 22-15
Using Wait Event Statistics to Drill Down to Bottlenecks .. 22-16
Table of Wait Events and Potential Causes... 22-19
Additional Statistics ... 22-20

Wait Events ... 22-24
SQL*Net.. 22-25
buffer busy waits .. 22-27
db file scattered read .. 22-29
db file sequential read .. 22-31
direct path read and direct path read (lob) ... 22-33
direct path write.. 22-35
enqueue .. 22-36
free buffer waits .. 22-39
latch free ... 22-41
log buffer space ... 22-46
log file switch... 22-46
log file sync .. 22-48
rdbms ipc reply ... 22-48

Idle Wait Events... 22-49
xvi

23 Tuning Networks

Understanding Connection Models .. 23-2
Detecting Network Problems ... 23-6

Using Dynamic Performance Views for Network Performance ... 23-6
Understanding Latency and Bandwidth... 23-6

Solving Network Problems... 23-8
Finding Network Bottlenecks ... 23-8
Dissecting Network Bottlenecks... 23-10
Using Array Interfaces... 23-13
Adjusting Session Data Unit Buffer Size... 23-13
Using TCP.NODELAY... 23-14
Using Connection Manager .. 23-14

Part VI Performance-Related Reference Information

24 Dynamic Performance Views for Tuning

Dynamic Performance Tables... 24-2
Current State Views.. 24-2
Counter/Accumulator Views... 24-2
Information Views.. 24-4

Description of Dynamic Performance Views .. 24-5
V$DB_OBJECT_CACHE ... 24-5
V$FILESTAT.. 24-6
V$LATCH .. 24-9
V$LATCH_CHILDREN... 24-13
V$LATCHHOLDER... 24-13
V$LIBRARYCACHE .. 24-15
V$LIBRARY_CACHE_MEMORY.. 24-16
V$LOCK... 24-17
V$MTTR_TARGET_ADVICE... 24-21
V$MYSTAT.. 24-22
V$OPEN_CURSOR .. 24-23
V$PARAMETER and V$SYSTEM_PARAMETER... 24-25
V$PROCESS... 24-26
xvii

V$ROLLSTAT.. 24-28
V$ROWCACHE .. 24-29
V$SEGMENT_STATISTICS... 24-31
V$SEGSTAT... 24-32
V$SEGSTAT_NAME .. 24-32
V$SESSION.. 24-33
V$SESSION_EVENT .. 24-36
V$SESSION_WAIT... 24-37
V$SESSTAT.. 24-41
V$SHARED_POOL_ADVICE... 24-45
V$SQL... 24-45
V$SQL_PLAN ... 24-46
V$SQL_PLAN_STATISTICS ... 24-51
V$SQL_PLAN_STATISTICS_ALL ... 24-53
V$SQLAREA ... 24-57
V$SQLTEXT... 24-59
V$STATISTICS_LEVEL ... 24-61
V$SYSSTAT ... 24-61
V$SYSTEM_EVENT ... 24-67
V$UNDOSTAT.. 24-69
V$WAITSTAT ... 24-70

A Schemas Used in Performance Examples

PER_ALL_PEOPLE_F Table .. A-2
RA_CUSTOMERS Table ... A-2
SO_HEADERS_ALL and SO_HEADERS Tables ... A-3
MTL_SYSTEM_ITEMS Table... A-3
SO_LINES_ALL and SO_LINES Tables ... A-4

Glossary

Index
xviii

Send Us Your Comments

Oracle9 i Database Performance Tuning Guide and Reference, Release 2 (9.2)

Part No. A96533-02

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

document. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most?

If you find any errors or have any other suggestions for improvement, please indicate the document

title and part number, and the chapter, section, and page number (if available). You can send com-

ments to us in the following ways:

■ Electronic mail: infodev_us@oracle.com

■ FAX: (650) 506-7227 Attn: Server Technologies Documentation Manager

■ Postal service:

Oracle Corporation

Server Technologies Documentation

500 Oracle Parkway, Mailstop 4op11

Redwood Shores, CA 94065

USA

If you would like a reply, please give your name, address, telephone number, and (optionally) elec-

tronic mail address.

If you have problems with the software, please contact your local Oracle Support Services.
xix

xx

Preface

This preface contains these topics:

■ Audience

■ Organization

■ Related Documentation

■ Conventions

■ Documentation Accessibility
xxi

Audience
Oracle9i Database Performance Tuning Guide and Reference is an aid for people

responsible for the operation, maintenance, and performance of Oracle. This book

describes detailed ways to enhance Oracle performance by writing and tuning SQL

properly, using performance tools, and optimizing instance performance. It also

explains how to create an initial database for good performance and includes

performance-related reference information.

This book could be useful for database administrators, application designers, and

programmers. Readers should be familiar with Oracle9i, Oracle9i Database
Performance Planning, the operating system, and application design before reading

this manual.

Many client/server application programmers consider SQL a messaging language,

because queries are issued and data is returned. However, client tools often

generate inefficient SQL statements. Therefore, a good understanding of the

database SQL processing engine is necessary for writing optimal SQL. This is

especially true for high transaction processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few

rows at a time. If an index can point to the exact rows that you want, then Oracle

can construct an accurate plan to access those rows efficiently through the shortest

possible path. In DSS environments, selectivity is less important, because they often

access most of a table's rows. In such situations, full table scans are common, and

indexes are not even used. This book is primarily focussed on OLTP-type

applications. For detailed information on DSS and mixed environments, see the

Oracle9i Data Warehousing Guide.

Before using this performance tuning reference, make sure you have read Oracle9i
Database Performance Planning. Oracle Corporation has designed a new performance

methodology, based on years of Oracle designing and performance experience. This

brief book explains clear and simple activities that can dramatically improve system

performance. It discusses the following topics:

■ Investment Options

■ Scalability

■ System Architecture

■ Application Design Principles

■ Workload Testing, Modeling, and Implementation

■ Deploying New Applications
xxii

Organization
This document contains:

Part I, "Writing and Tuning SQL"
This section provides information to help understand and manage SQL statements.

Chapter 1, "Introduction to the Optimizer"
This chapter discusses SQL processing, Oracle optimization, and how the Oracle

optimizer chooses how to execute SQL statements.

Chapter 2, "Optimizer Operations"
This chapter provides details of how the CBO provides specific operations.

Chapter 3, "Gathering Optimizer Statistics"
This chapter explains why statistics are important for the cost-based optimizer and

describes how to gather and use statistics.

Chapter 4, "Understanding Indexes and Clusters"
This chapter describes how to create indexes and clusters, and when to use them.

Chapter 5, "Optimizer Hints"
This chapter offers recommendations on how to use cost-based optimizer hints to

enhance Oracle performance.

Chapter 6, "Optimizing SQL Statements"
This chapter describes how Oracle optimizes SQL using the cost-based optimizer

(CBO).

Chapter 7, "Using Plan Stability"
This chapter describes how to use plan stability (stored outlines) to preserve

performance characteristics.

Chapter 8, "Using the Rule-Based Optimizer"
This chapter discusses Oracle’s rule-based optimizer (RBO).
xxiii

Part II, "SQL-Related Performance Tools"
This section provides information about Oracle SQL-related performance tools.

Chapter 9, "Using EXPLAIN PLAN"
This chapter shows how to use the SQL statement EXPLAIN PLAN and format its

output.

Chapter 10, "Using SQL Trace and TKPROF"
This chapter describes the use of the SQL trace facility and TKPROF, two basic

performance diagnostic tools that can help you monitor and tune applications that

run against the Oracle Server.

Chapter 11, "Using Autotrace in SQL*Plus"
This chapter describes the use of Autotrace, which can automatically get reports on

the execution path used by the SQL optimizer and the statement execution statistics

to help you monitor and tune statement performance.

Chapter 12, "Using Oracle Trace"
This chapter provides an overview of Oracle Trace usage and describes the Oracle

Trace initialization parameters.

Part III, "Creating a Database for Good Performance"
This section describes how to create and configure a database for good

performance.

Chapter 13, "Building a Database for Performance"
This chapter describes how to design and create a database for the intended needs.

Chapter 14, "Memory Configuration and Use"
This chapter explains how to allocate memory to database structures.

Note: Oracle Trace will be deprecated in a future release. Oracle

Corporation strongly advises the use of SQL Trace and TKPROF

instead.
xxiv

Chapter 15, "I/O Configuration and Design"
This chapter introduces fundamental I/O concepts, discusses the I/O requirements

of different parts of the database, and provides sample configurations for I/O

subsystem design.

Chapter 16, "Understanding Operating System Resources"
This chapter explains how to tune the operating system for optimal performance of

Oracle.

Chapter 17, "Configuring Instance Recovery Performance"
This chapter explains how to tune recovery performance.

Chapter 18, "Configuring Undo and Temporary Segments"
This chapter explains how to configure undo segments (using automatic undo

management or using rollback segments) and how to configure temporary

tablespaces.

Chapter 19, "Configuring Shared Servers"
This chapter explains how to identify and reduce contention for dispatcher

processes and for shared servers.

Part IV, "System-Related Performance Tools"
This section provides information about Oracle’s system-related performance tools.

Chapter 20, "Oracle Tools to Gather Database Statistics"
Oracle provides a number of tools that allow a performance engineer to gather

information regarding instance and database performance. This chapter explains

why performance data gathering is important, and it describes how to use available

tools.

Chapter 21, "Using Statspack"
This chapter describes the use of Statspack to collect, store, and analyze system

data.
xxv

Part V, "Optimizing Instance Performance"
This section describes how to tune various elements of a database system to

optimize performance of an Oracle instance.

Chapter 22, "Instance Tuning"
This chapter discusses the method used for performing tuning. It also describes

Oracle statistics and wait events.

Chapter 23, "Tuning Networks"
This chapter describes different connection models and networking issues that

affect tuning.

Part VI, "Performance-Related Reference Information"
This section provides reference information regarding dynamic performance views

and wait events.

Chapter 24, "Dynamic Performance Views for Tuning"
This chapter provides detailed information on several dynamic performance views

that can help you tune your system and investigate performance problems.

Appendix

Appendix A, "Schemas Used in Performance Examples"
This appendix describes the tables used in examples in Chapter 9, "Using EXPLAIN

PLAN".

Related Documentation
Before reading this manual, you should have already read Oracle9i Database
Performance Planning, Oracle9i Database Concepts, the Oracle9i Application Developer’s
Guide - Fundamentals, and the Oracle9i Database Administrator’s Guide.

For more information about Oracle Enterprise Manager and its optional

applications, see Oracle Enterprise Manager Concepts Guide, Oracle Enterprise Manager
Administrator’s Guide, and Database Tuning with the Oracle Tuning Pack.

For more information about tuning data warehouse environments, see the Oracle9i
Data Warehousing Guide.
xxvi

Many of the examples in this book use the sample schemas of the seed database,

which is installed by default when you install Oracle. Refer to Oracle9i Sample
Schemas for information on how these schemas were created and how you can use

them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other

collateral, please visit the Oracle Technology Network (OTN). You must register

online before using OTN; registration is free and can be done at

http://otn.oracle.com/admin/account/membership.html

If you already have a username and password for OTN, then you can go directly to

the documentation section of the OTN Web site at

http://otn.oracle.com/docs/index.htm

To access the database documentation search engine directly, please visit

http://tahiti.oracle.com

Conventions
This section describes the conventions used in the text and code examples of the

this documentation set. It describes:

■ Conventions in Text

■ Conventions in Code Examples

Conventions in Text
We use various conventions in text to help you more quickly identify special terms.

The following table describes those conventions and provides examples of their use.

Convention Meaning Example

Bold Bold typeface indicates terms that are
defined in the text or terms that appear in
a glossary, or both.

When you specify this clause, you create an
index-organized table.
xxvii

Conventions in Code Examples
Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line

statements. They are displayed in a monospace (fixed-width) font and separated

from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = ’MIGRATE’;

The following table describes typographic conventions used in code examples and

provides examples of their use.

Italics Italic typeface indicates book titles,
emphasis, syntax clauses, or placeholders.

Oracle9i Database Concepts

You can specify the parallel_clause.

Run Uold_release .SQL where old_release
refers to the release you installed prior to
upgrading.

UPPERCASE
monospace
(fixed-width font)

Uppercase monospace typeface indicates
elements supplied by the system. Such
elements include parameters, privileges,
datatypes, RMAN keywords, SQL
keywords, SQL*Plus or utility commands,
packages and methods, as well as
system-supplied column names, database
objects and structures, user names, and
roles.

You can specify this clause only for a NUMBER
column.

You can back up the database using the BACKUP
command.

Query the TABLE_NAME column in the USER_
TABLES data dictionary view.

Specify the ROLLBACK_SEGMENTS parameter.

Use the DBMS_STATS.GENERATE_STATS
procedure.

lowercase
monospace
(fixed-width font)

Lowercase monospace typeface indicates
executables and sample user-supplied
elements. Such elements include
computer and database names, net
service names, and connect identifiers, as
well as user-supplied database objects
and structures, column names, packages
and classes, user names and roles,
program units, and parameter values.

Enter sqlplus to open SQL*Plus.

The department_id , department_name ,
and location_id columns are in the
hr.departments table.

Set the QUERY_REWRITE_ENABLED
initialization parameter to true.

Connect as oe user.

Convention Meaning Example

[] Brackets enclose one or more optional
items. Do not enter the brackets.

DECIMAL (digits [, precision])

Convention Meaning Example
xxviii

{ } Braces enclose two or more items, one of
which is required. Do not enter the
braces.

{ENABLE | DISABLE}

| A vertical bar represents a choice of two
or more options within brackets or braces.
Enter one of the options. Do not enter the
vertical bar.

{ENABLE | DISABLE}

[COMPRESS | NOCOMPRESS]

... Horizontal ellipsis points indicate either:

■ That we have omitted parts of the
code that are not directly related to
the example

■ That you can repeat a portion of the
code

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , col n FROM
employees;

 .
 .
 .

Vertical ellipsis points indicate that we
have omitted several lines of code not
directly related to the example.

SQL> SELECT NAME FROM V$DATAFILE;
NAME

/fsl/dbs/tbs_01.dbf
/fs1/dbs/tbs_02.dbf
.
.
.
/fsl/dbs/tbs_09.dbf
9 rows selected.

Other notation You must enter symbols other than
brackets, braces, vertical bars, and ellipsis
points as shown.

 acctbal NUMBER(11,2);

 acct CONSTANT NUMBER(4) := 3;

Italics Italicized text indicates placeholders or
variables for which you must supply
particular values.

CONNECT SYSTEM/system_password

DB_NAME = database_name

UPPERCASE Uppercase typeface indicates elements
supplied by the system. We show these
terms in uppercase in order to distinguish
them from terms you define. Unless terms
appear in brackets, enter them in the
order with the spelling shown. However,
because these terms are not case sensitive,
you can enter them in lowercase.

SELECT last_name, employee_id FROM
employees;

SELECT * FROM USER_TABLES;

DROP TABLE hr.employees;

Convention Meaning Example
xxix

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation

accessible, with good usability, to the disabled community. To that end, our

documentation includes features that make information available to users of

assistive technology. This documentation is available in HTML format, and contains

markup to facilitate access by the disabled community. Standards will continue to

evolve over time, and Oracle Corporation is actively engaged with other

market-leading technology vendors to address technical obstacles so that our

documentation can be accessible to all of our customers. For additional information,

visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen

reader, may not always correctly read the code examples in this document. The

conventions for writing code require that closing braces should appear on an

otherwise empty line; however, JAWS may not always read a line of text that

consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation This

documentation may contain links to Web sites of other companies or organizations

that Oracle Corporation does not own or control. Oracle Corporation neither

evaluates nor makes any representations regarding the accessibility of these Web

sites.

lowercase Lowercase typeface indicates
programmatic elements that you supply.
For example, lowercase indicates names
of tables, columns, or files.

Note: Some programmatic elements use a
mixture of UPPERCASE and lowercase.
Enter these elements as shown.

SELECT last_name, employee_id FROM
employees;

sqlplus hr/my_hr_password

CREATE USER mjones IDENTIFIED BY
ty3MU9;

Convention Meaning Example
xxx

What’s New in Oracle Performance?

This section describes new performance features of Oracle9i Release 2 (9.2) and

provides pointers to additional information. The features and enhancements

described in this section comprise the overall effort to optimize server performance.

Note: Before using this performance tuning reference, make sure

you have read Oracle9i Database Performance Planning. Oracle

Corporation has designed a new performance methodology, based

on years of Oracle designing and performance experience. This

brief book explains clear and simple activities that can dramatically

improve system performance. It discusses the following topics:

■ Investment Options

■ Scalability

■ System Architecture

■ Application Design Principles

■ Workload Testing, Modeling, and Implementation

■ Deploying New Applications
xxxi

The new and updated performance features include the following:

■ Forced Rewrite

A new setting, FORCE, is available for the QUERY_REWRITE_ENABLED session

parameter.

When QUERY_REWRITE_ENABLED is set to FORCE, Oracle always uses rewrite

and does not evaluate the cost before doing so. FORCEis useful when you know

that the query will always benefit from rewrite, when reduction in compile time

is important, and when you know that the optimizer may be underestimating

the benefits of materialized views.

■ Union-All Rewrite of Queries with Grouping Sets

A new hint, EXPAND_GSET_TO_UNION, is available to force rewrite when using

function-based indexes in queries where compilation time is important and the

query always benefits from rewrite (OLAP).

The EXPAND_GSET_TO_UNION hint is used for queries containing grouping

sets (such as queries with GROUP BY GROUPING SETor GROUP BY ROLLUP). The

hint forces a query to be transformed into a corresponding query with UNION
ALL of individual groupings.

■ Dynamic Sampling for the Optimizer

The purpose of dynamic sampling is to improve server performance by

determining more accurate selectivity and cardinality estimates. More accurate

selectivity and cardinality estimates allow the optimizer to produce better

performing plans.

You can use dynamic sampling to:

■ Estimate single-table predicate selectivities when collected statistics cannot

be used or are likely to lead to significant errors in estimation.

■ Estimate table cardinality for tables without statistics or for tables whose

statistics are too out of date to trust.

The DYNAMIC_SAMPLING hint lets you control dynamic sampling to improve

server performance by determining more accurate selectivity and cardinality

See Also: "QUERY_REWRITE_ENABLED" on page 4-10

See Also: "EXPAND_GSET_TO_UNION" on page 5-19 for details

about using this hint
xxxii

estimates. You can set the value of DYNAMIC_SAMPLINGto a value from 0 to 10.

The higher the level, the more effort the compiler puts into dynamic sampling

and the more broadly it is applied. Sampling defaults to cursor level unless you

specify a table.

■ Locally Managed SYSTEM Tablespace

Oracle9i Release 2 (9.2) allows creation of a database with a locally managed

SYSTEMtablespace. Use the EXTENT MANAGEMENT LOCALclause of the CREATE
DATABASE statement to create a locally managed SYSTEM tablespace.

If you specify EXTENT MANAGEMENT LOCAL, then you must also specify the

default temporary tablespace.

■ Data Segment Compression

Data segment compression reduces disk use and memory use (specifically, the

buffer cache), often leading to a better scaleup for read-only operations. Data

segment compression can also speed up query execution.

Oracle9i Release 2 (9.2) achieves a good compression ratio in many cases with

no special tuning. However, if you need a better compression ratio, tuning can

improve it slightly in some cases and very substantially in other cases.

See Also:

■ "Dynamic Sampling" on page 6-6 for information about when

and how to use dynamic sampling

■ "DYNAMIC_SAMPLING" on page 5-39 for details about using

this hint

See Also:

■ "Creating Temporary Tablespaces" on page 13-7

■ Table 13–2, " Database Options for Initial Creation" on

page 13-3

■ Oracle9i SQL Reference for detailed information about the

CREATE DATABASE statement

See Also: "Data Segment Compression" on page 13-9
xxxiii

■ Shared Pool Advisory Statistics

The amount of memory available for the library cache can drastically affect the

parse rate of an Oracle instance. With Oracle9i, Release 2 (9.2) or higher, the

shared pool advisory statistics provide a database administrator with

information about library cache memory and predict how changes in the size of

the shared pool can affect the parse rate.

The shared pool advisory statistics track the library cache's use of shared pool

memory and predict how the library cache will behave in shared pools of

different sizes. Two fixed views provide the information to determine how

much memory the library cache is using, how much is currently pinned, how

much is on the shared pool's LRU list, as well as how much time might be lost

or gained by changing the size of the shared pool.

■ PGA Aggregate Target Advisory

Under automatic PGA memory management mode, the main goal of Oracle is

to honor the PGA_AGGREGATE_TARGET limit set by the DBA, by controlling

dynamically the amount of PGA memory allotted to SQL work areas. At the

same time, Oracle tries to maximize the performance of all the

memory-intensive SQL operators, by maximizing the number of work areas

that are using an optimal amount of PGA memory (cache memory). The rest of

the work areas are executed in one-pass mode, unless the PGA memory limit

set by the DBA with the parameter PGA_AGGREGATE_TARGET is so low that

multi-pass execution is required to reduce even more the consumption of PGA

memory and honor the PGA target limit.

When configuring a brand new instance, it is hard to know precisely the

appropriate setting for PGA_AGGREGATE_TARGET. You can determine this

setting in three stages:

1. Make a first estimate for PGA_AGGREGATE_TARGET, based on a rule of

thumb.

2. Run a representative workload on the instance and monitor performance,

using PGA statistics collected by Oracle, to see whether the maximum PGA

size is under-configured or over-configured.

3. Tune PGA_AGGREGATE_TARGET, using Oracle’s PGA advice statistics.

See Also: "Shared Pool Advisory Statistics" on page 14-31
xxxiv

■ FILESYSTEMIO_OPTIONS

With Oracle9i Release 2 (9.2), you can use the FILESYSTEMIO_OPTIONS
initialization parameter to enable or disable asynchronous I/O or direct I/O on

file system files. This parameter is platform-specific and has a default value that

is best for a particular platform. It can be dynamically changed to update the

default setting.

■ Mean Time to Recover (MTTR) Advisory

Starting with Oracle9i Release 2 (9.2), MTTR advisory is available to help you

evaluate the effect of different MTTR settings on system performance in terms

of extra physical writes.

When MTTR advisory is enabled, after the system runs a typical workload for a

while, you can query V$MTTR_TARGET_ADVICE, which tells you the ratio of

estimated number of cache writes under other MTTR settings to the number of

cache writes under the current MTTR. For instance, a ratio of 1.2 indicates 20%

more cache writes.

By looking at the different MTTR settings and their corresponding cache write

ratio, you can decide which MTTR value fits your recovery and performance

needs. V$MTTR_TARGET_ADVICE also gives the ratio on total physical writes,

including direct writes, and the ratio on total input and output, including reads.

See Also:

■ "Setting PGA_AGGREGATE_TARGET Initially" on page 14-50

■ "Monitoring the Performance of the Automatic PGA Memory

Management" on page 14-51

■ "Tuning PGA_AGGREGATE_TARGET" on page 14-59

See Also: "FILESYSTEMIO_OPTIONS Initialization Parameter"

on page 16-4

See Also:

■ "MTTR Advisory" on page 17-16

■ "V$MTTR_TARGET_ADVICE" on page 24-21
xxxv

■ Statistics Collection Level

Oracle9i Release 2 (9.2) provides the initialization parameter STATISTICS_
LEVEL, which controls all major statistics collections or advisories in the

database. This parameter sets the statistics collection level for the database.

BASIC, TYPICAL, or ALL. The default is TYPICAL.

■ Segment-Level Statistics

With Oracle9i Release 2 (9.2) and higher, you can gather segment-level statistics

to help you spot performance problems associated with individual segments.

Collecting and viewing segment-level statistics is a good way to effectively

identify the hot table or index in an instance.

After viewing wait events or system statistics to identify the performance

problem, you can use segment-level statistics to find specific tables or indexes

that are causing the problem.

You can query segment-level statistics through the new dynamic views

V$SEGMENT_STATISTICS, V$SEGSTAT, and V$SEGSTAT_NAME.

■ Runtime Row Source Statistics

Oracle9i Release 1 (9.0.1) introduced a new dynamic performance table,

V$SQL_PLAN, to show the execution plan for a cached cursor. Oracle9i Release

2 (9.2) introduces another dynamic performance table, V$SQL_PLAN_
STATISTICS . This view provides, for each cached cursor, the execution

statistics of each operation in the execution plan.

To view row source statistics in this view, the DBA must set the parameter

STATISTICS_LEVEL to ALL.

An additional view, V$SQL_PLAN_STATISTICS, concatenates information

from V$SQL_PLAN with execution statistics from V$SQL_PLAN_STATISTICS
and V$SQL_WORKAREA. V$SQL_WORKAREA contains memory usage statistics

for row sources that use SQL memory (for example, hash-join and sort).

See Also: "Setting the Level of Statistics Collection" on page 22-10

for details about what statistics are collected at each level

See Also:

■ "Segment-Level Statistics" on page 22-14

■ Chapter 24, "Dynamic Performance Views for Tuning"
xxxvi

■ Oracle Trace Removed from Future Releases

Oracle Trace will be deprecated in a future release. Oracle Corporation strongly

advises the use of SQL Trace and TKPROF instead.

See Also:

■ "V$SQL_PLAN_STATISTICS" on page 24-51

■ "V$SQL_PLAN_STATISTICS_ALL" on page 24-53

See Also: Chapter 10, "Using SQL Trace and TKPROF"
xxxvii

xxxviii

Part I

 Writing and Tuning SQL

Part I provides information on understanding and managing your SQL statements

for optimal performance. It is best to read these chapters in the order in which they

are presented.

The chapters in this part are:

■ Chapter 1, "Introduction to the Optimizer"

■ Chapter 2, "Optimizer Operations"

■ Chapter 3, "Gathering Optimizer Statistics"

■ Chapter 4, "Understanding Indexes and Clusters"

■ Chapter 5, "Optimizer Hints"

■ Chapter 6, "Optimizing SQL Statements"

■ Chapter 7, "Using Plan Stability"

■ Chapter 8, "Using the Rule-Based Optimizer"

Introduction to the Opt
1

Introduction to the Optimizer

This chapter discusses SQL processing, optimization methods, and how the

optimizer chooses a specific plan to execute SQL.

The chapter contains the following sections:

■ Overview of SQL Processing

■ Overview of the Optimizer

■ Choosing an Optimizer Approach and Goal

■ Understanding the Cost-Based Optimizer

■ Understanding Access Paths for the CBO

■ Understanding Joins

■ Setting Cost-Based Optimizer Parameters

■ Overview of the Extensible Optimizer
imizer 1-1

Overview of SQL Processing
Overview of SQL Processing
SQL processing uses the following main components to execute a SQL query:

■ The Parser checks both syntax and semantic analysis.

■ The Optimizer uses costing methods, cost-based optimizer (CBO), or internal

rules, rule-based optimizer (RBO), to determine the most efficient way of

producing the result of the query.

■ The Row Source Generator receives the optimal plan from the optimizer and

outputs the execution plan for the SQL statement.

■ The SQL Execution Engine operates on the execution plan associated with a

SQL statement and then produces the results of the query.

Figure 1–1 illustrates SQL processing.

Figure 1–1 SQL Processing Overview

Rule-Based
Optimizer

Cost-Based
Optimizer

Optimizer Mode?
CBORBO

SQL query

Query plan

User

Parser

Row Source
Generator

Statistics

Dictionary

Result

SQL
Execution
1-2 Oracle9i Database Performance Tuning Guide and Reference

Overview of the Optimizer
Overview of the Optimizer
The optimizer determines the most efficient way to execute a SQL statement after

considering many factors related to the objects referenced and the conditions

specified in the query. This determination is an important step in the processing of

any SQL statement and can greatly affect execution time.

A SQL statement can be executed in many different ways, including the following:

■ Full table scans

■ Index scans

■ Nested loops

■ Hash joins

The output from the optimizer is a plan that describes an optimum method of

execution. The Oracle server provides the cost-based (CBO) and rule-based (RBO)

optimization. In general, use the cost-based approach. Oracle Corporation is

continually improving the CBO and new features require CBO.

You can influence the optimizer’s choices by setting the optimizer approach and

goal, and by gathering representative statistics for the CBO. The optimizer goal is

either throughput or response time. See "Choosing an Optimizer Approach and

Goal" on page 1-5.

Sometimes, the application designer, who has more information about a particular

application’s data than is available to the optimizer, can choose a more effective

way to execute a SQL statement. The application designer can use hints in SQL

statements to specify how the statement should be executed.

Note: The optimizer might not make the same decisions from one

version of Oracle to the next. In recent versions, the optimizer

might make different decisions, because better information is

available.

Note: Oracle Corporation strongly advises the use of cost-based

optimization. The rule-based optimization is available for

backward compatibility with legacy applications and will be

deprecated in a future release.
Introduction to the Optimizer 1-3

Overview of the Optimizer
Features that Require the CBO
The following features require use of the CBO:

■ Partitioned tables and indexes

■ Index-organized tables

■ Reverse key indexes

■ Function-based indexes

■ SAMPLE clauses in a SELECT statement

■ Parallel query and parallel DML

■ Star transformations and star joins

■ Extensible optimizer

■ Query rewrite with materialized views

■ Enterprise Manager progress meter

■ Hash joins

■ Bitmap indexes and bitmap join indexes

■ Index skip scans

See Also:

■ "Choosing an Optimizer Approach and Goal" on page 1-5 for

more information on optimization goals

■ Chapter 3, "Gathering Optimizer Statistics" for information on

gathering and using statistics

■ Chapter 5, "Optimizer Hints" for more information about using

hints in SQL statements

Note: Using any of these features enables the CBO, even if the

parameter OPTIMIZER_MODE is set to RULE.
1-4 Oracle9i Database Performance Tuning Guide and Reference

Choosing an Optimizer Approach and Goal
Optimizer Operations
For any SQL statement processed by Oracle, the optimizer performs the operations

listed in Table 1–1.

Choosing an Optimizer Approach and Goal
By default, the goal of the CBO is the best throughput. This means that it chooses

the least amount of resources necessary to process all rows accessed by the

statement. Oracle can also optimize a statement with the goal of best response time.

This means that it uses the least amount of resources necessary to process the first

row accessed by a SQL statement.

The execution plan produced by the optimizer can vary depending on the

optimizer’s goal. Optimizing for best throughput is more likely to result in a full

table scan rather than an index scan, or a sort merge join rather than a nested loop

join. Optimizing for best response time usually results in an index scan or a nested

loop join.

Table 1–1 Optimizer Operations

Operation Description

Evaluation of expressions
and conditions

The optimizer first evaluates expressions and conditions containing constants as
fully as possible. See "How the Optimizer Performs Operations" on page 2-2.

Statement transformation For complex statements involving, for example, correlated subqueries or views,
the optimizer might transform the original statement into an equivalent join
statement. See "How the Optimizer Transforms SQL Statements" on page 2-30.

Choice of optimizer
approaches

The optimizer chooses either a cost-based or rule-based approach and determines
the goal of optimization. See "Choosing an Optimizer Approach and Goal" on
page 1-5.

Choice of access paths For each table accessed by the statement, the optimizer chooses one or more of the
available access paths to obtain table data. See "Understanding Access Paths for
the CBO" on page 1-24.

Choice of join orders For a join statement that joins more than two tables, the optimizer chooses which
pair of tables is joined first, and then which table is joined to the result, and so on.
See "How the CBO Chooses Execution Plans for Join Types" on page 1-42.

Choice of join methods For any join statement, the optimizer chooses an operation to use to perform the
join. See "How the CBO Chooses the Join Method" on page 1-41.

See Also: "How the CBO Optimizes SQL Statements for Fast

Response" on page 1-9
Introduction to the Optimizer 1-5

Choosing an Optimizer Approach and Goal
For example, suppose you have a join statement that can be executed with either a

nested loops operation or a sort-merge operation. The sort-merge operation might

return the entire query result faster, while the nested loops operation might return

the first row faster. If your goal is to improve throughput, then the optimizer is

more likely to choose a sort merge join. If your goal is to improve response time,

then the optimizer is more likely to choose a nested loop join.

Choose a goal for the optimizer based on the needs of your application:

■ For applications performed in batch, such as Oracle Reports applications,

optimize for best throughput. Usually, throughput is more important in batch

applications, because the user initiating the application is only concerned with

the time necessary for the application to complete. Response time is less

important, because the user does not examine the results of individual

statements while the application is running.

■ For interactive applications, such as Oracle Forms applications or SQL*Plus

queries, optimize for best response time. Usually, response time is important in

interactive applications, because the interactive user is waiting to see the first

row or first few rows accessed by the statement.

The optimizer’s behavior when choosing an optimization approach and goal for a

SQL statement is affected by the following factors:

■ OPTIMIZER_MODE Initialization Parameter

■ CBO Statistics in the Data Dictionary

■ Optimizer SQL Hints for Changing the CBO Goal

OPTIMIZER_MODE Initialization Parameter
The OPTIMIZER_MODE initialization parameter establishes the default behavior for

choosing an optimization approach for the instance. The possible values and

description are listed in Table 1–2.
1-6 Oracle9i Database Performance Tuning Guide and Reference

Choosing an Optimizer Approach and Goal
You can change the goal of the CBO for all SQL statements in a session by changing

the parameter value in initialization file or by the ALTER SESSION SET
OPTIMIZER_MODE statement. For example:

■ The following statement in an initialization parameter file changes the goal of

the CBO for all sessions of the instance to best response time:

OPTIMIZER_MODE = FIRST_ROWS_1

■ The following SQL statement changes the goal of the CBO for the current

session to best response time:

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_1;

If the optimizer uses the cost-based approach for a SQL statement, and if some

tables accessed by the statement have no statistics, then the optimizer uses internal

Table 1–2 OPTIMIZER_MODE Parameter Values

Value Description

CHOOSE The optimizer chooses between a cost-based approach and a rule-based approach, depending
on whether statistics are available. This is the default value.

■ If the data dictionary contains statistics for at least one of the accessed tables, then the
optimizer uses a cost-based approach and optimizes with a goal of best throughput.

■ If the data dictionary contains only some statistics, then the cost-based approach is still
used, but the optimizer must guess the statistics for the subjects without any statistics.
This can result in suboptimal execution plans.

■ If the data dictionary contains no statistics for any of the accessed tables, then the
optimizer uses a rule-based approach.

ALL_ROWS The optimizer uses a cost-based approach for all SQL statements in the session regardless of
the presence of statistics and optimizes with a goal of best throughput (minimum resource use
to complete the entire statement).

FIRST_ROWS_n The optimizer uses a cost-based approach, regardless of the presence of statistics, and
optimizes with a goal of best response time to return the first n number of rows; n can equal 1,
10, 100, or 1000.

FIRST_ROWS The optimizer uses a mix of cost and heuristics to find a best plan for fast delivery of the first
few rows.

Note: Using heuristics sometimes leads the CBO to generate a plan with a cost that is
significantly larger than the cost of a plan without applying the heuristic. FIRST_ROWS is
available for backward compatibility and plan stability.

RULE The optimizer chooses a rule-based approach for all SQL statements regardless of the presence
of statistics.
Introduction to the Optimizer 1-7

Choosing an Optimizer Approach and Goal
information, such as the number of data blocks allocated to these tables, to estimate

other statistics for these tables.

Optimizer SQL Hints for Changing the CBO Goal
To specify the goal of the CBO for an individual SQL statement, use one of the hints

in the following list. Any of these hints in an individual SQL statement can override

the OPTIMIZER_MODE initialization parameter for that SQL statement.

■ FIRST_ROWS(n), where n equals any positive integer

■ FIRST_ROWS

■ ALL_ROWS

■ CHOOSE

■ RULE

CBO Statistics in the Data Dictionary
The statistics used by the CBO are stored in the data dictionary. You can collect

exact or estimated statistics about physical storage characteristics and data

distribution in these schema objects by using the DBMS_STATS package or the

ANALYZE statement.

See Also: Chapter 5, "Optimizer Hints" for information on how to

use hints

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer will

eventually use only statistics that have been collected by DBMS_
STATS. See Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on this package.

However, you must use the ANALYZE statement rather than DBMS_
STATS for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks
1-8 Oracle9i Database Performance Tuning Guide and Reference

Choosing an Optimizer Approach and Goal
To maintain the effectiveness of the CBO, you must have statistics that are

representative of the data. For table columns that contain values with large

variations in number of duplicates, called skewed data, you should collect

histograms.

The resulting statistics provide the CBO with information about data uniqueness

and distribution. Using this information, the CBO is able to compute plan costs with

a high degree of accuracy. This enables the CBO to choose the best execution plan

based on the least cost.

How the CBO Optimizes SQL Statements for Fast Response
The CBO can optimize a SQL statement for fast response when the parameter

OPTIMIZER_MODE is set to FIRST_ROWS_n, where n is 1, 10, 100, or 1000, or

FIRST_ROWS. A hint FIRST_ROWS(n), where n is any positive integer, or FIRST_
ROWS can be used to optimize an individual SQL statement for fast response.

Fast-response optimization is suitable for online users, such as those using Oracle

Forms or Web access. Typically, online users are interested in seeing the first few

rows and seldom look at the entire query result, especially when the result size is

large. For such users, it makes sense to optimize the query to produce the first few

rows as quickly as possible, even if the time to produce the entire query result is not

minimized.

With fast-response optimization, the CBO generates a plan with the lowest cost to

produce the first row or the first few rows. The CBO employs two different

fast-response optimizations, referred to here as the old and new methods. The old

method is used with the FIRST_ROWS hint or parameter value. With the old

method, the CBO uses a mixture of costs and rules to produce a plan. It is retained

for backward compatibility reasons.

The new method is totally based on costs, and it is sensitive to the value of n. With

small values of n, the CBO tends to generate plans that consist of nested loop joins

with index lookups. With large values of n, the CBO tends to generate plans that

consist of hash joins and full table scans.

The value of n should be chosen based on the online user requirement and depends

specifically on how the result is displayed to the user. Generally, Oracle Forms users

see the result one row at a time and they are typically interested in seeing the first

few screens. Other online users see the result one group of rows at a time.

See Also: Chapter 3, "Gathering Optimizer Statistics"
Introduction to the Optimizer 1-9

Understanding the Cost-Based Optimizer
With the fast-response method, the CBO explores different plans and computes the

cost to produce the first n rows for each. It picks the plan that produces the first n
rows at lowest cost. Remember that with fast-response optimization, a plan that

produces the first n rows at lowest cost might not be the optimal plan to produce

the entire result. If the requirement is to obtain the entire result of a query, then

fast-response optimization should not be used. Instead use the ALL_ROWS
parameter value or hint.

Understanding the Cost-Based Optimizer
The CBO determines which execution plan is most efficient by considering available

access paths and by factoring in information based on statistics for the schema

objects (tables or indexes) accessed by the SQL statement. The CBO also considers

hints, which are optimization suggestions placed in a comment in the statement.

The CBO performs the following steps:

1. The optimizer generates a set of potential plans for the SQL statement based on

available access paths and hints.

2. The optimizer estimates the cost of each plan based on statistics in the data

dictionary for the data distribution and storage characteristics of the tables,

indexes, and partitions accessed by the statement.

The cost is an estimated value proportional to the expected resource use needed

to execute the statement with a particular plan. The optimizer calculates the

cost of access paths and join orders based on the estimated computer resources,

which includes I/O, CPU, and memory.

Serial plans with higher costs take more time to execute than those with smaller

costs. When using a parallel plan, however, resource use is not directly related

to elapsed time.

3. The optimizer compares the costs of the plans and chooses the one with the

lowest cost.

See Also: Chapter 5, "Optimizer Hints" for detailed information

on hints
1-10 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
Components of the CBO
The CBO consists of the following three main components:

■ Query Transformer

■ Estimator

■ Plan Generator

CBO components are illustrated in Figure 1–2.

Figure 1–2 Cost-Based Optimizer Components

Query Transformer
The input to the query transformer is a parsed query, which is represented by a set

of query blocks. The query blocks are nested or interrelated to each other. The form

of the query determines how the query blocks are interrelated to each other. The

main objective of the query transformer is to determine if it is advantageous to

change the form of the query so that it enables generation of a better query plan.

Query
Transformer

Estimator

Plan
Generator

Parsed Query
(from Parser)

Query Plan
(to Row Source Generator)

Transformed query

Query + estimates

Dictionarystatistics
Introduction to the Optimizer 1-11

Understanding the Cost-Based Optimizer
Four different query transformation techniques are employed by the query

transformer:

■ View Merging

■ Predicate Pushing

■ Subquery Unnesting

■ Query Rewrite with Materialized Views

Any combination of these transformations can be applied to a given query.

View Merging Each view referenced in a query is expanded by the parser into a

separate query block. The query block essentially represents the view definition,

and therefore the result of a view. One option for the optimizer is to analyze the

view query block separately and generate a view subplan. The optimizer then

processes the rest of the query by using the view subplan in the generation of an

overall query plan. This technique usually leads to a suboptimal query plan,

because the view is optimized separately from rest of the query.

The query transformer then removes the potentially suboptimal plan by merging

the view query block into the query block that contains the view. Most types of

views are merged. When a view is merged, the query block representing the view is

merged into the containing query block. Generating a subplan is no longer

necessary, because the view query block is eliminated.

Predicate Pushing For those views that are not merged, the query transformer can

push the relevant predicates from the containing query block into the view query

block. This technique improves the subplan of the nonmerged view, because the

pushed-in predicates can be used either to access indexes or to act as filters.

Subquery Unnesting Like a view, a subquery is represented by a separate query block.

Because a subquery is nested within the main query or another subquery, the plan

generator is constrained in trying out different possible plans before it finds a plan

with the lowest cost. For this reason, the query plan produced might not be the

optimal one. The restrictions due to the nesting of subqueries can be removed by

unnesting the subqueries and converting them into joins. Most subqueries are

unnested by the query transformer. For those subqueries that are not unnested,

separate subplans are generated. To improve execution speed of the overall query

plan, the subplans are ordered in an efficient manner.

Query Rewrite with Materialized Views A materialized view is like a query with a result

that is materialized and stored in a table. When a user query is found compatible
1-12 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
with the query associated with a materialized view, the user query can be rewritten

in terms of the materialized view. This technique improves the execution of the user

query, because most of the query result has been precomputed. The query

transformer looks for any materialized views that are compatible with the user

query and selects one or more materialized views to rewrite the user query. The use

of materialized views to rewrite a query is cost-based. That is, the query is not

rewritten if the plan generated without the materialized views has a lower cost than

the plan generated with the materialized views.

Estimator
The estimator generates three different types of measures:

■ Selectivity

■ Cardinality

■ Cost

These measures are related to each other, and one is derived from another. The end

goal of the estimator is to estimate the overall cost of a given plan. If statistics are

available, then the estimator uses them to compute the measures. The statistics

improve the degree of accuracy of the measures.

Selectivity The first measure, selectivity, represents a fraction of rows from a row set.

The row set can be a base table, a view, or the result of a join or a GROUP BY
operator. The selectivity is tied to a query predicate, such as last_name = 'Smith ',

or a combination of predicates, such as last_name = 'Smith ' AND job_type =

'Clerk '. A predicate acts as a filter that filters a certain number of rows from a row

set. Therefore, the selectivity of a predicate indicates how many rows from a row set

will pass the predicate test. Selectivity lies in a value range from 0.0 to 1.0. A

selectivity of 0.0 means that no rows will be selected from a row set, and a

selectivity of 1.0 means that all rows will be selected.

The estimator uses an internal default value for selectivity, if no statistics are

available. Different internal defaults are used, depending on the predicate type. For

example, the internal default for an equality predicate (last_name = 'Smith ') is

lower than the internal default for a range predicate (last_name > 'Smith '). The

See Also:

■ "How the Optimizer Transforms SQL Statements" on page 2-30

■ Oracle9i Data Warehousing Guide for more information on query

rewrite
Introduction to the Optimizer 1-13

Understanding the Cost-Based Optimizer
estimator makes this assumption because an equality predicate is expected to return

a smaller fraction of rows than a range predicate.

When statistics are available, the estimator uses them to estimate selectivity. For

example, for an equality predicate (last_name = 'Smith '), selectivity is set to the

reciprocal of the number n of distinct values of last_name , because the query

selects rows that all contain one out of n distinct values. If a histogram is available

on the last_name column, then the estimator uses it instead of the number of

distinct values. The histogram captures the distribution of different values in a

column, so it yields better selectivity estimates. Having histograms on columns that

contain skewed data (in other words, values with large variations in number of

duplicates) greatly helps the CBO generate good selectivity estimates.

Cardinality Cardinality represents the number of rows in a row set. Here, the row set

can be a base table, a view, or the result of a join or GROUP BY operator.

■ Base cardinality is the number of rows in a base table. The base cardinality can

be captured by analyzing the table. If table statistics are not available, then the

estimator uses the number of extents occupied by the table to estimate the base

cardinality.

■ Effective cardinality is the number of rows that are selected from a base table.

The effective cardinality depends on the predicates specified on different

columns of a base table, with each predicate acting as a successive filter on the

rows of the base table. The effective cardinality is computed as the product of

the base cardinality and combined selectivity of all predicates specified on a

table. When there is no predicate on a table, its effective cardinality equals its

base cardinality.

■ Join cardinality is the number of rows produced when two row sets are joined

together. A join is a Cartesian product of two row sets, with the join predicate

applied as a filter to the result. Therefore, the join cardinality is the product of

the cardinalities of two row sets, multiplied by the selectivity of the join

predicate.

■ Distinct cardinality is the number of distinct values in a column of a row set.

The distinct cardinality of a row set is based on the data in the column. For

example, in a row set of 100 rows, if distinct column values are found in 20

rows, then the distinct cardinality is 20.

■ Group cardinality is the number of rows produced from a row set after the

GROUP BY operator is applied. The effect of the GROUP BY operator is to

decrease the number of rows in a row set. The group cardinality depends on the
1-14 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
distinct cardinality of each of the grouping columns and on the number of rows

in the row set. For an illustration of group cardinality, see Example 1–1.

Example 1–1 Group Cardinality

If a row set of 100 rows is grouped by colx , which has a distinct cardinality of 30,

then the group cardinality is 30.

However, suppose the same row set of 100 rows is grouped by colx and coly ,

which have distinct cardinalities of 30 and 60, respectively. In this case, the group

cardinality lies between the maximum of the distinct cardinalities of colx and

coly , and the lower of the product of the distinct cardinalities of colx and coly ,

and the number of rows in the row set.

Group cardinality in this example can be represented by the following formula:

group cardinality lies between max (dist. card. colx , dist. card. coly)
 and min ((dist. card. colx * dist. card. coly) ,
 num rows in row set)

Substituting the numbers from the example, the group cardinality is between the

maximum of (30 and 60) and the minimum of (30*60 and 100). In other words, the

group cardinality is between 60 and 100.

Cost The cost represents units of work or resource used. The CBO uses disk I/O,

CPU usage, and memory usage as units of work. So, the cost used by the CBO

represents an estimate of the number of disk I/Os and the amount of CPU and

memory used in performing an operation. The operation can be scanning a table,

accessing rows from a table by using an index, joining two tables together, or

sorting a row set. The cost of a query plan is the number of work units that are

expected to be incurred when the query is executed and its result produced.

The access path determines the number of units of work required to get data from a

base table. The access path can be a table scan, a fast full index scan, or an index

scan. During table scan or fast full index scan, multiple blocks are read from the

disk in a single I/O operation. Therefore, the cost of a table scan or a fast full index

scan depends on the number of blocks to be scanned and the multiblock read count

value. The cost of an index scan depends on the levels in the B-tree, the number of

index leaf blocks to be scanned, and the number of rows to be fetched using the

rowid in the index keys. The cost of fetching rows using rowids depends on the

index clustering factor.

Although the clustering factor is a property of the index, the clustering factor

actually relates to the spread of similar indexed column values within data blocks in
Introduction to the Optimizer 1-15

Understanding the Cost-Based Optimizer
the table. A lower clustering factor indicates that the individual rows are

concentrated within fewer blocks in the table. Conversely, a high clustering factor

indicates that the individual rows are scattered more randomly across blocks in the

table. Therefore, a high clustering factor means that it costs more to use a range scan

to fetch rows by rowid, because more blocks in the table need to be visited to return

the data. Example 1–2 shows how the clustering factor can affect cost.

Example 1–2 Effects of Clustering Factor on Cost

Assume the following situation:

■ There is a table with 9 rows.

■ There is a nonunique index on col1 (in tab1).

■ The c1 column currently stores the values A, B, and C.

■ The table only has three Oracle blocks.

Case 1: The index clustering factor is low for the rows as they are arranged in the

following diagram.

 Block 1 Block 2 Block 3
 ------- ------- --------
 A A A B B B C C C

This is because the rows that have the same indexed column values for c1 are

located within the same physical blocks in the table. The cost of using a range scan

to return all of the rows that have the value A is low, because only one block in the

table needs to be read.

Case 2: If the same rows in the table are rearranged so that the index values are

scattered across the table blocks (rather than colocated), then the index clustering

factor is higher.

 Block 1 Block 2 Block 3
 ------- ------- --------
 A B C A B C A B C

This is because all three blocks in the table must be read in order to retrieve all rows

with the value A in col1 .

The join cost represents the combination of the individual access costs of the two

row sets being joined. In a join, one row set is called inner, and the other is called

outer.
1-16 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
■ In a nested loop join, for every row in the outer row set, the inner row set is

accessed to find all the matching rows to join. Therefore, in a nested loop join,

the inner row set is accessed as many times as the number of rows in the outer

row set.

cost = outer access cost + (inner access cost * outer cardinality)

■ In a sort merge join, the two row sets being joined are sorted by the join keys if

they are not already in key order.

cost = outer access cost + inner access cost + sort costs (if sort is used)

■ In a hash join, the inner row set is hashed into memory, and a hash table is built

using the join key. Each row from the outer row set is then hashed, and the hash

table is probed to join all matching rows. If the inner row set is very large, then

only a portion of it is hashed into memory. This portion is called a hash

partition.

Each row from the outer row set is hashed to probe matching rows in the hash

partition. The next portion of the inner row set is then hashed into memory,

followed by a probe from the outer row set. This process is repeated until all

partitions of the inner row set are exhausted.

cost = (outer access cost * # of hash partitions) + inner access cost

Plan Generator
The main function of the plan generator is to try out different possible plans for a

given query and pick the one that has the lowest cost. Many different plans are

possible because of the various combinations of different access paths, join

methods, and join orders that can be used to access and process data in different

ways and produce the same result.

A join order is the order in which different join items, such as tables, are accessed

and joined together. For example, in a join order of t1 , t2 , and t3 , table t1 is

accessed first. Next, t2 is accessed, and its data is joined to t1 data to produce a

join of t1 and t2 . Finally, t3 is accessed, and its data is joined to the result of the

join between t1 and t2 .

The plan for a query is established by first generating subplans for each of the

nested subqueries and nonmerged views. Each nested subquery or nonmerged

view is represented by a separate query block. The query blocks are optimized

See Also: "Understanding Joins" on page 1-40 for more

information on joins
Introduction to the Optimizer 1-17

Understanding the Cost-Based Optimizer
separately in a bottom-up order. That is, the innermost query block is optimized

first, and a subplan is generated for it. The outermost query block, which represents

the entire query, is optimized last.

The plan generator explores various plans for a query block by trying out different

access paths, join methods, and join orders. The number of possible plans for a

query block is proportional to the number of join items in the FROM clause. This

number rises exponentially with the number of join items.

The plan generator uses an internal cutoff to reduce the number of plans it tries

when finding the one with the lowest cost. The cutoff is based on the cost of the

current best plan. If the current best cost is large, then the plan generator tries

harder (in other words, explores more alternate plans) to find a better plan with

lower cost. If the current best cost is small, then the plan generator ends the search

swiftly, because further cost improvement will not be significant.

The cutoff works well if the plan generator starts with an initial join order that

produces a plan with cost close to optimal. Finding a good initial join order is a

difficult problem. The plan generator uses a simple heuristic for the initial join

order. It orders the join items by their effective cardinalities. The join item with the

smallest effective cardinality goes first, and the join item with the largest effective

cardinality goes last.

Understanding Execution Plans
To execute a SQL statement, Oracle might need to perform many steps. Each of

these steps either retrieves rows of data physically from the database or prepares

them in some way for the user issuing the statement. The combination of the steps

Oracle uses to execute a statement is called an execution plan. An execution plan

includes an access path for each table that the statement accesses and an ordering of

the tables (the join order) with the appropriate join method.

Overview of EXPLAIN PLAN
You can examine the execution plan chosen by the optimizer for a SQL statement by

using the EXPLAIN PLAN statement. When the statement is issued, the optimizer

See Also:

■ "Understanding Access Paths for the CBO" on page 1-24

■ "Understanding Access Paths for the RBO" on page 8-3

■ Chapter 9, "Using EXPLAIN PLAN"
1-18 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
chooses an execution plan and then inserts data describing the plan into a database

table. Simply issue the EXPLAIN PLAN statement and then query the output table.

These are the basics of using the EXPLAIN PLAN statement:

■ Use the SQL script UTLXPLAN.SQL to create a sample output table called PLAN_
TABLE in your schema. See "Creating the PLAN_TABLE Output Table" on

page 9-4.

■ Include the EXPLAIN PLAN FOR clause prior to the SQL statement. See

"Running EXPLAIN PLAN" on page 9-5.

■ After issuing the EXPLAIN PLAN statement, use one of the scripts provided

by Oracle to display the most recent plan table output. See "Displaying PLAN_

TABLE Output" on page 9-6.

■ The execution order in EXPLAIN PLAN output begins with the line that is the

furthest indented to the right. The next step is the parent of that line. If two

lines are indented equally, then the top line is executed first.

Example 1–3 uses EXPLAIN PLAN to examine a SQL statement that selects the

employee_id , job_title , salary , and department_name for the employees

whose IDs are less than 103.

Example 1–3 Using EXPLAIN PLAN

EXPLAIN PLAN FOR
SELECT e.employee_id, j.job_title, e.salary, d.department_name
 FROM employees e, jobs j, departments d
 WHERE e.employee_id < 103
 AND e.job_id = j.job_id
 AND e.department_id = d.department_id;

Notes:

■ The EXPLAIN PLAN output tables in this chapter were

displayed with the utlxpls.sql script.

■ The steps in the EXPLAIN PLAN output tables in this chapter

may be different on your system. Depending on database

configurations, the optimizer may choose different execution

plans.
Introduction to the Optimizer 1-19

Understanding the Cost-Based Optimizer
The resulting output table in Example 1–4 shows the execution plan chosen by the

optimizer to execute the SQL statement in the example:

Example 1–4 EXPLAIN PLAN Output

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		3	189	10 (10)
1	NESTED LOOPS		3	189	10 (10)
2	NESTED LOOPS		3	141	7 (15)
* 3	TABLE ACCESS FULL	EMPLOYEES	3	60	4 (25)
4	TABLE ACCESS BY INDEX ROWID	JOBS	19	513	2 (50)
* 5	INDEX UNIQUE SCAN	JOB_ID_PK	1		
6	TABLE ACCESS BY INDEX ROWID	DEPARTMENTS	27	432	2 (50)
* 7	INDEX UNIQUE SCAN	DEPT_ID_PK	1		

Predicate Information (identified by operation id):

 3 - filter("E"."EMPLOYEE_ID"<103)
 5 - access("E"."JOB_ID"="J"."JOB_ID")
 7 - access("E"."DEPARTMENT_ID"="D"."DEPARTMENT_ID")

Oracle provides additional graphical tools for displaying EXPLAIN PLAN output.

Figure 6–1, "Oracle SQL Analyze" on page 6-4 is an example of the SQL statement

displayed in Oracle SQL Analyze. Figure 1–3 shows a graphical EXPLAIN PLAN

for the SQL statement in Example 1–3 which has been generated in an Oracle

Enterprise Manager SQL Scratchpad window.
1-20 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
Figure 1–3 Graphical View of SQL Explain Plan in SQL Scratchpad

Note that the execution steps in Figure 1–3 are identified by the order of execution,

rather than an ID as in Example 1–4.

Steps in the Execution Plan
Each row in the output table corresponds to a single step in the execution plan.

Note that the step Ids with asterisks are listed in the Predicate Information section.

See Also: For more information about Oracle Enterprise Manager

and its optional applications, see Oracle Enterprise Manager Concepts
Guide, Oracle Enterprise Manager Administrator’s Guide, and Database
Tuning with the Oracle Tuning Pack.
Introduction to the Optimizer 1-21

Understanding the Cost-Based Optimizer
Each step of the execution plan returns a set of rows that either is used by the next

step or, in the last step, is returned to the user or application issuing the SQL

statement. A set of rows returned by a step is called a row set.

The numbering of the step Ids reflects the order in which they are displayed in

response to the EXPLAIN PLAN statement. Each step of the execution plan either

retrieves rows from the database or accepts rows from one or more row sources as

input.

■ The following steps in Example 1–4 physically retrieve data from an object in

the database:

■ Step 3 reads all rows of the employees table.

■ Step 5 looks up each job_id in JOB_ID_PK index and finds the rowids of

the associated rows in the jobs table.

■ Step 4 retrieves the rows with rowids that were returned by Step 5 from the

jobs table.

■ Step 7 looks up each department_id in DEPT_ID_PK index and finds the

rowids of the associated rows in the departments table.

■ Step 6 retrieves the rows with rowids that were returned by Step 7 from the

departments table.

■ The following steps in Example 1–4 operate on rows returned by the previous

row source:

■ Step 2 performs the nested loop operation on job_id in the jobs and

employees tables, accepting row sources from Steps 3 and 4, joining each

row from Step 3 source to its corresponding row in Step 4, and returning

the resulting rows to Step 2.

■ Step 1 performs the nested loop operation, accepting row sources from Step

2 and Step 6, joining each row from Step 2 source to its corresponding row

in Step 6, and returning the resulting rows to Step 1.

See Also:

■ "Steps in the Execution Plan" on page 1-21

■ Chapter 9, "Using EXPLAIN PLAN"
1-22 Oracle9i Database Performance Tuning Guide and Reference

Understanding the Cost-Based Optimizer
Understanding Execution Order The steps of the execution plan are not performed in

the order in which they are numbered in Example 1–3 on page 1-19. Oracle first

performs the steps that appear indented most to the right in the EXPLAIN PLAN

output. In Figure 1–3 on page 1-21, the steps are numbered in the order that they are

performed.The rows returned by each step become the row sources of its parent

step. Oracle then performs the parent steps.

Oracle performs the following steps in Example 1–4 on page 1-20 to execute the

statement in Example 1–3 on page 1-19:

■ Oracle performs Step 3 and Step 4, returning the resulting rows to Step 2. For

each row returned to Step 2, Oracle performs Step 5, returning resulting rowid

to Step 4.

■ Oracle performs Step 1, joining the single row from Step 2 with a single row

from Step 6, returning the resulting rows, if any, to the user issuing the SQL

statement. For each row returned to Step 6, Oracle performs Step 7, returning

resulting rowid to Step 4.

If a parent step requires only a single row from its child step before it can be

executed, then Oracle performs the parent step as soon as a single row has been

returned from the child step. If the parent of that parent step also can be activated

by the return of a single row, then it is executed as well.

Statement execution can cascade up the tree, possibly to encompass the rest of the

execution plan. Oracle performs the parent step and all cascaded steps once for each

row retrieved by the child step. The parent steps that are triggered for each row

returned by a child step include table accesses, index accesses, nested loop joins,

and filters.

If a parent step requires all rows from its child step before it can be executed, then

Oracle cannot perform the parent step until all rows have been returned from the

child step. Such parent steps include sorts, sort merge joins, and aggregate

functions.

See Also:

■ "Understanding Access Paths for the CBO" on page 1-24 and

"Understanding Access Paths for the RBO" on page 8-3 for

more information on access paths

■ "Understanding Joins" on page 1-40 for more information on

the methods by which Oracle joins row sources
Introduction to the Optimizer 1-23

Understanding Access Paths for the CBO
Understanding Access Paths for the CBO
Access paths are ways in which data is retrieved from the database. In general,

index access paths should be used for statements that retrieve a small subset of

table rows, while full scans are more efficient when accessing a large portion of the

table. Online transaction processing (OLTP) applications, which consist of

short-running SQL statements with high selectivity, often are characterized by the

use of index access paths. Decision support systems, on the other hand, tend to use

partitioned tables and perform full scans of the relevant partitions.

This section describes the data access paths that can be used to locate and retrieve

any row in any table.

■ Full Table Scans

■ Rowid Scans

■ Index Scans

■ Cluster Scans

■ Hash Scans

■ Sample Table Scans

■ How the CBO Chooses an Access Path

Full Table Scans
This type of scan reads all rows from a table and filters out those that do not meet

the selection criteria. During a full table scan, all blocks in the table that are under

the high water mark are scanned. Each row is examined to determine whether it

satisfies the statement's WHERE clause.

When Oracle performs a full table scan, the blocks are read sequentially. Because the

blocks are adjacent, I/O calls larger than a single block can be used to speed up the

process. The size of the read calls range from one block to the number of blocks

indicated by the initialization parameter DB_FILE_MULTIBLOCK_READ_COUNT.

Using multiblock reads means a full table scan can be performed very efficiently.

Each block is read only once.

Example 1–4, "EXPLAIN PLAN Output" on page 1-20 contains an example of a full

table scan on the employees table.
1-24 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
Why a Full Table Scan Is Faster for Accessing Large Amounts of Data
Full table scans are cheaper than index range scans when accessing a large fraction

of the blocks in a table. This is because full table scans can use larger I/O calls, and

making fewer large I/O calls is cheaper than making many smaller calls.

When the Optimizer Uses Full Table Scans
The optimizer uses a full table scan in any of the following cases:

Lack of Index If the query is unable to use any existing indexes, then it uses a full

table scan. For example, if there is a function used on the indexed column in the

query, the optimizer is unable to use the index and instead uses a full table scan as

in Example 1–5.

Example 1–5 Full Table Scan

SELECT last_name, first_name
 FROM employees
 WHERE UPPER(last_name) LIKE :b1

If you need to use the index for case-independent searches, then either do not

permit mixed-case data in the search columns or create a function-based index, such

as UPPER(last_name), on the search column. See "Using Function-based Indexes"

on page 4-10.

Large Amount of Data If the optimizer thinks that the query will access most of the

blocks in the table, then it uses a full table scan, even though indexes might be

available.

Small Table If a table contains less than DB_FILE_MULTIBLOCK_READ_COUNT
blocks under the high water mark, which can be read in a single I/O call, then a full

table scan might be cheaper than an index range scan, regardless of the fraction of

tables being accessed or indexes present.

High Degree of Parallelism A high degree of parallelism for a table skews the

optimizer toward full table scans over range scans. Examine the DEGREE column in

ALL_TABLES for the table to determine the degree of parallelism.

Full Table Scan Hints
Use the hint FULL(table alias) if you want to force the use of a full table scan.

For more information on the FULL hint, see "FULL" on page 5-10.
Introduction to the Optimizer 1-25

Understanding Access Paths for the CBO
Example 1–6 shows a query that uses an index range scan. Example 1–7 shows the

same query using the FULL hint to force a full table scan.

Example 1–6 Before Using the FULL Hint

SELECT employee_id, last_name
 FROM employees
 WHERE last_name LIKE :b1;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		5	95	3 (34)
1	TABLE ACCESS BY INDEX ROWID	EMPLOYEES	5	95	3 (34)
* 2	INDEX RANGE SCAN	EMP_NAME_IX	2		3 (34)

Predicate Information (identified by operation id):

 2 - access("EMPLOYEES"."LAST_NAME" LIKE :Z)
 filter("EMPLOYEES"."LAST_NAME" LIKE :Z)

Example 1–7 shows the Example 1–6 query using the FULL hint to force a full table

scan.

Example 1–7 After Using the FULL Hint

SELECT /*+ FULL(e) */ employee_id, last_name
 FROM employees e
 WHERE last_name LIKE :b1;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 5 | 95 | 4 (25)|
|* 1 | TABLE ACCESS FULL | EMPLOYEES | 5 | 95 | 4 (25)|

Predicate Information (identified by operation id):

 1 - filter("E"."LAST_NAME" LIKE :Z)

Assessing I/O for Blocks, not Rows
Oracle does I/O by blocks. Therefore, the optimizer’s decision to use full table scans

is influenced by the percentage of blocks accessed, not rows. This is called the index
1-26 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
clustering factor. If blocks contain single rows, then rows accessed and blocks

accessed are the same.

However, most tables have multiple rows in each block. Consequently, the desired

number of rows could be clustered together in a few blocks, or they could be spread

out over a larger number of blocks.

High Water Mark in DBA_TABLES
The data dictionary keeps track of the blocks that have been populated with rows.

The high water mark is used as the end marker during a full table scan. The high

water mark is stored in DBA_TABLES.BLOCKS. It is reset when the table is dropped

or truncated.

For example, consider a table that had a large number of rows in the past. Most of

the rows have been deleted, and now most of the blocks under the high water mark

are empty. A full table scan on this table exhibits poor performance because all the

blocks under the high water mark are scanned.

Parallel Query Execution
When a full table scan is required, response time can be improved by using multiple

parallel execution servers for scanning the table. Parallel queries are used generally

in low-concurrency data warehousing environments, because of the potential

resource usage.

Rowid Scans
The rowid of a row specifies the datafile and data block containing the row and the

location of the row in that block. Locating a row by specifying its rowid is the fastest

way to retrieve a single row, because the exact location of the row in the database is

specified.

To access a table by rowid, Oracle first obtains the rowids of the selected rows,

either from the statement’s WHERE clause or through an index scan of one or more

of the table’s indexes. Oracle then locates each selected row in the table based on its

rowid.

See Also: "Estimator" on page 1-13 for more information on the

index clustering factor

See Also: Oracle9i Data Warehousing Guide
Introduction to the Optimizer 1-27

Understanding Access Paths for the CBO
In Example 1–4, "EXPLAIN PLAN Output" on page 1-20, an index scan is

performed the jobs and departments tables. The rowids retrieved are used to

return the row data.

When the Optimizer Uses Rowids
This is generally the second step after retrieving the rowid from an index. The table

access might be required for any columns in the statement not present in the index.

Access by rowid does not need to follow every index scan. If the index contains all

the columns needed for the statement, then table access by rowid might not occur.

Index Scans
In this method, a row is retrieved by traversing the index, using the indexed column

values specified by the statement. An index scan retrieves data from an index based

on the value of one or more columns in the index. To perform an index scan, Oracle

searches the index for the indexed column values accessed by the statement. If the

statement accesses only columns of the index, then Oracle reads the indexed

column values directly from the index, rather than from the table.

The index contains not only the indexed value, but also the rowids of rows in the

table having that value. Therefore, if the statement accesses other columns in

addition to the indexed columns, then Oracle can find the rows in the table by using

either a table access by rowid or a cluster scan.

An index scan can be one of the following types:

■ Index Unique Scans

■ Index Range Scans

■ Index Range Scans Descending

■ Index Skip Scans

■ Full Scans

Note: Rowids are an internal Oracle representation of where data

is stored. They can change between versions. Accessing data based

on position is not recommended, because rows can move around

due to row migration and chaining and also after export and

import. Foreign keys should be based on primary keys. For more

information on rowids, see Oracle9i Application Developer’s Guide -
Fundamentals.
1-28 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
■ Fast Full Index Scans

■ Index Joins

■ Bitmap Joins

Index Unique Scans
This scan returns, at most, a single rowid. Oracle performs a unique scan if a

statement contains a UNIQUE or a PRIMARY KEY constraint that guarantees that

only a single row is accessed.

In Example 1–4, "EXPLAIN PLAN Output" on page 1-20, an index scan is

performed on the jobs and departments tables, using the job_id_pk and

dept_id_pk indexes respectively.

When the Optimizer Uses Index Unique Scans This access path is used when all columns

of a unique (B-tree) index are specified with equality conditions.

Index Unique Scan Hints In general, you should not need to use a hint to do a unique

scan. There might be cases where the table is across a database link and being

accessed from a local table, or where the table is small enough for the optimizer to

prefer a full table scan.

The hint INDEX(alias index_name) specifies the index to use, but not an access

path (range scan or unique scan). For more information on the INDEX hint, see

"INDEX" on page 5-12.

Index Range Scans
An index range scan is a common operation for accessing selective data. It can be

bounded (bounded on both sides) or unbounded (on one or both sides). Data is

returned in the ascending order of index columns. Multiple rows with identical

values are sorted in ascending order by rowid.

If data must be sorted by order, then use the ORDER BYclause, and do not rely on an

index. If an index can be used to satisfy an ORDER BY clause, then the optimizer

uses this option and avoids a sort.

In Example 1–8, the order has been imported from a legacy system, and you are

querying the order by the reference used in the legacy system. Assume this

reference is the order_date .

See Also: Oracle9i Database Concepts for more details on index

structures and for detailed information on how a B-tree is searched
Introduction to the Optimizer 1-29

Understanding Access Paths for the CBO
Example 1–8 Index Range Scan

SELECT order_status, order_id
 FROM orders
 WHERE order_date = :b1;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		1	20	3 (34)
1	TABLE ACCESS BY INDEX ROWID	ORDERS	1	20	3 (34)
* 2	INDEX RANGE SCAN	ORD_ORDER_DATE_IX	1		2 (50)

Predicate Information (identified by operation id):

 2 - access("ORDERS"."ORDER_DATE"=:Z)

This should be a highly selective query, and you should see the query using the

index on the column to retrieve the desired rows. The data returned is sorted in

ascending order by the rowids for the order_date . Because the index column

order_date is identical for the selected rows here, the data is sorted by rowid.

When the Optimizer Uses Index Range Scans The optimizer uses a range scan when it

finds one or more leading columns of an index specified in conditions, such as the

following:

■ col1 = :b1

■ col1 < :b1

■ col1 > :b1

■ AND combination of the preceding conditions for leading columns in the index

■ col1 like '%ASD' Wild-card searches should not be in a leading position.

The condition col1 like '%ASD' does not result in a range scan.

Range scans can use unique or nonunique indexes. Range scans avoid sorting when

index columns constitute the ORDER BY/GROUP BY clause.

Index Range Scan Hints A hint might be required if the optimizer chooses some other

index or uses a full table scan. The hint INDEX(table_alias index_name)
specifies the index to use. For more information on the INDEX hint, see "INDEX" on

page 5-12.

Suppose that order_id has a skewed distribution. The column has histograms, so

the optimizer knows about the distribution. However, with a bind variable, the
1-30 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
optimizer does not know the value and could choose a full table scan. You have two

options:

■ Use literals rather than bind variables, which can cause problems due to

nonsharing of SQL statements.

■ Use hints in order to share the statements.

Example 1–9 shows a query before using the INDEX hint.

Example 1–9 Before Using the INDEX Hint

SELECT l.line_item_id, order_id, l.unit_price * l.quantity
 FROM order_items l
 WHERE l.order_id = :b1;

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
| 0 | SELECT STATEMENT | | 6 | 90 | 4 (25)|
|* 1 | TABLE ACCESS FULL | ORDER_ITEMS | 6 | 90 | 4 (25)|
--

Predicate Information (identified by operation id):

 1 - filter("L"."ORDER_ID"=TO_NUMBER(:Z))

Example 1–10 shows the Example 1–9 query using the INDEX hint.

Example 1–10 Using Bind Variables and INDEX Hint:

SELECT /*+ INDEX(l item_order_ix) */ l.line_item_id, order_id,
 l.unit_price * l.quantity
 FROM order_items l
 WHERE l.order_id = :b1;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		6	90	10 (10)
1	TABLE ACCESS BY INDEX ROWID	ORDER_ITEMS	6	90	10 (10)
* 2	INDEX RANGE SCAN	ITEM_ORDER_IX	6		2 (50)

Predicate Information (identified by operation id):

 2 - access("L"."ORDER_ID"=TO_NUMBER(:Z))
Introduction to the Optimizer 1-31

Understanding Access Paths for the CBO
Index Range Scans Descending
An index range scan descending is identical to an index range scan, except that the

data is returned in descending order. Indexes, by default, are stored in ascending

order. Usually, this scan is used when ordering data in a descending order to return

the most recent data first, or when seeking a value less than a specified value.

Example 1–11 uses a two-column unique index on order_id , line_item_id .

Example 1–11 Index Range Scan Descending Using Two-Column Unique Index

SELECT line_item_id, order_id
 FROM order_items
 WHERE order_id < :b1
 ORDER BY order_id DESC;

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		33	231	3 (34)
1	TABLE ACCESS BY INDEX ROWID	ORDER_ITEMS	33	231	3 (34)
* 2	INDEX RANGE SCAN DESCENDING	ITEM_ORDER_IX	6		3 (34)
--

Predicate Information (identified by operation id):

 2 - access("ORDER_ITEMS"."ORDER_ID"<TO_NUMBER(:Z))
 filter("ORDER_ITEMS"."ORDER_ID"<TO_NUMBER(:Z))

The data is sorted in descending order by the order_id , line_item_id , rowid
of the selected rows. However, because there is only one row for each order_id ,

line_item_id (item_order_ix is a unique index on the two columns), the rows

are sorted by order_id , line_item_id .

When the Optimizer Uses Index Range Scans Descending The optimizer uses index range

scan descending when an order by descending clause can be satisfied by an index.

Index Range Scan Descending Hints The hint INDEX_DESC(table_alias index_
name) is used for this access path. For more information on the INDEX_DESC hint,

see "INDEX_DESC" on page 5-15.

Index Skip Scans
Index skip scans improve index scans by nonprefix columns. Often, scanning index

blocks is faster than scanning table data blocks.
1-32 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
Skip scanning lets a composite index be split logically into smaller subindexes. In

skip scanning, the initial column of the composite index is not specified in the

query. In other words, it is skipped.

The number of logical subindexes is determined by the number of distinct values in

the initial column. Skip scanning is advantageous if there are few distinct values in

the leading column of the composite index and many distinct values in the

nonleading key of the index.

Example 1–12 Index Skip Scan

Consider, for example, a table employees (sex , employee_id , address) with a

composite index on (sex , employee_id). Splitting this composite index would

result in two logical subindexes, one for M and one for F.

For this example, suppose you have the following index data:

(‘F’,98)
(‘F’,100)
(‘F’,102)
(‘F’,104)
(‘M’,101)
(‘M’,103)
(‘M’,105)

The index is split logically into the following two subindexes:

■ The first subindex has the keys with the value F.

■ The second subindex has the keys with the value M.

Figure 1–4 Index Skip Scan Illustration

M F

<103 >=103

Level 1

Level 2<103 >=103
Introduction to the Optimizer 1-33

Understanding Access Paths for the CBO
The column sex is skipped in the following query:

SELECT *
 FROM employees
WHERE employee_id = 101;

A complete scan of the index is not performed, but the subindex with the value F is

searched first, followed by a search of the subindex with the value M.

Full Scans
A full scan is available if a predicate references one of the columns in the index. The

predicate does not need to be an index driver. A full scan is also available when

there is no predicate, if both the following conditions are met:

■ All of the columns in the table referenced in the query are included in the index.

■ At least one of the index columns is not null.

A full scan can be used to eliminate a sort operation, because the data is ordered by

the index key. It reads the blocks singly.

Fast Full Index Scans
Fast full index scans are an alternative to a full table scan when the index contains

all the columns that are needed for the query, and at least one column in the index

key has the NOT NULL constraint. A fast full scan accesses the data in the index

itself, without accessing the table. It cannot be used to eliminate a sort operation,

because the data is not ordered by the index key. It reads the entire index using

multiblock reads, unlike a full index scan, and can be parallelized.

Fast full scan is available only with the CBO. You can specify it with the

initialization parameter OPTIMIZER_FEATURES_ENABLE or the INDEX_FFS hint.

Fast full index scans cannot be performed against bitmap indexes.

A fast full scan is faster than a normal full index scan in that it can use multiblock

I/O and can be parallelized just like a table scan.

Fast Full Index Scan Hints The fast full scan has a special index hint, INDEX_FFS,

which has the same format and arguments as the regular INDEX hint. For more

information on the INDEX_FFS hint, see "INDEX_FFS" on page 5-16.

Fast Full Index Scan Restrictions Fast full index scans have the following restrictions:

■ At least one indexed column of the table must have the NOT NULL constraint.
1-34 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
■ There must be a parallel clause on the index if you want to perform a fast full

index scan in parallel. The parallel degree of the index is set independently. The

index does not inherit the degree of parallelism of the table.

■ You must have analyzed the index; otherwise, the optimizer might decide not

to use it.

Index Joins
An index join is a hash join of several indexes that together contain all the table

columns that are referenced in the query. If an index join is used, then no table

access is needed, because all the relevant column values can be retrieved from the

indexes. An index join cannot be used to eliminate a sort operation. The index join

is available only with the CBO.

Index Join Hints You can specify an index join with the initialization parameter

OPTIMIZER_FEATURES_ENABLE or the INDEX_JOIN hint. For more information

on the INDEX_JOIN hint, see "INDEX_JOIN" on page 5-15.

Bitmap Joins
A bitmap join uses a bitmap for key values and a mapping function that converts

each bit position to a rowid. Bitmaps can efficiently merge indexes that correspond

to several conditions in a WHERE clause, using Boolean operations to resolve AND
and OR conditions.

Bitmap access is available only with the CBO.

Cluster Scans
A cluster scan is used to retrieve, from a table stored in an indexed cluster, all rows

that have the same cluster key value. In an indexed cluster, all rows with the same

cluster key value are stored in the same data block. To perform a cluster scan,

Oracle first obtains the rowid of one of the selected rows by scanning the cluster

index. Oracle then locates the rows based on this rowid.

Note: Bitmap indexes and bitmap join indexes are available only

if you have purchased the Oracle9i Enterprise Edition.

See Also: Oracle9i Data Warehousing Guide for more information

about bitmap indexes
Introduction to the Optimizer 1-35

Understanding Access Paths for the CBO
Hash Scans
A hash scan is used to locate rows in a hash cluster, based on a hash value. In a hash

cluster, all rows with the same hash value are stored in the same data block. To

perform a hash scan, Oracle first obtains the hash value by applying a hash function

to a cluster key value specified by the statement. Oracle then scans the data blocks

containing rows with that hash value.

Sample Table Scans
A sample table scan retrieves a random sample of data from a table. This access

path is used when a statement’s FROM clause includes the SAMPLE clause or the

SAMPLE BLOCK clause. To perform a sample table scan when sampling by rows (the

SAMPLEclause), Oracle reads a specified percentage of rows in the table. To perform

a sample table scan when sampling by blocks (the SAMPLE BLOCK clause), Oracle

reads a specified percentage of table blocks.

Oracle does not support sample table scans when the query involves a join or a

remote table. However, you can perform an equivalent operation by using a

CREATE TABLE AS SELECT query to materialize a sample of an underlying table.

You then rewrite the original query to refer to the newly created table sample.

Additional queries can be written to materialize samples for other tables. Sample

table scans require the CBO.

Example 1–13 uses a sample table scan to access 1% of the employees table,

sampling by blocks.

Example 1–13 Sample Table Scan

SELECT *
 FROM employees SAMPLE BLOCK (1);

The EXPLAIN PLAN output for this statement might look like this:

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

| 0 | SELECT STATEMENT | | 1 | 68 | 3 (34)|
| 1 | TABLE ACCESS SAMPLE | EMPLOYEES | 1 | 68 | 3 (34)|

1-36 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
How the CBO Chooses an Access Path
The CBO chooses an access path based on the following factors:

■ The available access paths for the statement

■ The estimated cost of executing the statement, using each access path or

combination of paths

To choose an access path, the optimizer first determines which access paths are

available by examining the conditions in the statement’s WHEREclause and its FROM
clause for the SAMPLE or SAMPLE BLOCK clause. The optimizer then generates a set

of possible execution plans using available access paths and estimates the cost of

each plan, using the statistics for the index, columns, and tables accessible to the

statement. Finally, the optimizer chooses the execution plan with the lowest

estimated cost.

When choosing an access path, the CBO is influenced by the following:

■ Optimizer Hints

The optimizer’s choice among available access paths can be overridden with

hints, except when the statement’s FROM clause contains SAMPLE or SAMPLE
BLOCK.

■ Old Statistics

For example, if a table has not been analyzed since it was created, and if it has

less than DB_FILE_MULTIBLOCK_READ_COUNT blocks under the high water

mark, then the optimizer thinks that the table is small and uses a full table scan.

Review the LAST_ANALYZEDand BLOCKScolumns in the ALL_TABLEStable to

see what the statistics reflect.

Choosing an Access Path Examples
This section discusses how the optimizer chooses an access path.

Case 1 In Example 1–14 the query uses an equality condition in its WHERE clause to

select all employees named Jackson .

See Also: Chapter 5, "Optimizer Hints" for information about

hints in SQL statements
Introduction to the Optimizer 1-37

Understanding Access Paths for the CBO
Example 1–14 Access Path Selection

SELECT *
 FROM employees
 WHERE last_name = ’JACKSON’;

If the last_name column is a unique or primary key, then the optimizer

determines that there is only one employee named Jackson, and the query returns

only one row. In this case, the query is very selective, and the optimizer is most

likely to access the table using a unique scan on the index that enforces the unique

or primary key.

Case 2 Consider again the query in Example 1–14. If the last_name column is not

a unique or primary key, then the optimizer can use the following statistics to

estimate the query’s selectivity:

■ USER_TAB_COLUMNS.NUM_DISTINCT, which is the number of values for each

column in the table

■ USER_TABLES.NUM_ROWS, which is the number of rows in each table

By dividing the number of rows in the employees table by the number of distinct

values in the last_name column, the optimizer estimates what percentage of

employees have the same name. By assuming that the last_name values are

distributed uniformly, the optimizer uses this percentage as the estimated

selectivity of the query.

Case 3 The following query selects all employees with employee ID numbers less

than 7500:

SELECT *
 FROM employees
 WHERE employee_id < 7500;

To estimate the selectivity of the query, the optimizer uses the boundary value of

7500 in the WHERE clause condition and the values of the HIGH_VALUE and LOW_
VALUE statistics for the employee_id column, if available. These statistics can be

found in the USER_TAB_COL_STATISTICSview or the USER_TAB_COLUMNSview.

The optimizer assumes that employee_id values are distributed evenly in the

range between the lowest value and highest value. The optimizer then determines

what percentage of this range is less than the value 7500 and uses this value as the

estimated selectivity of the query.

Case 4 The following query uses a bind variable rather than a literal value for the

boundary value in the WHERE clause condition:
1-38 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the CBO
SELECT *
 FROM employees
 WHERE employee_id < :e1;

The optimizer does not know the value of the bind variable e1 . The value of e1
might be different each time the query is executed. For this reason, the optimizer

cannot use the means described in the previous example to determine selectivity of

this query. In this case, the optimizer heuristically guesses a small value for the

selectivity, using an internal default value. The optimizer makes this assumption

whenever a bind variable is used as a boundary value in a condition with one of the

following operators: <, >, <=, or >=.

The optimizer’s treatment of bind variables can cause it to choose different

execution plans for SQL statements that differ only in the use of bind variables

rather than constants. For example, the optimizer might choose different execution

plans for an embedded SQL statement with a bind variable in an Oracle

precompiler program and the same SQL statement with a constant in SQL*Plus.

Case 5 The following query uses two bind variables as boundary values in the

condition with the BETWEEN operator:

SELECT *
 FROM employees
 WHERE employee_id BETWEEN :low_e AND :high_e;

The optimizer rewrites the BETWEEN condition as the following two conditions:

employee_id >= :low_e
employee_id <= :high_e

The optimizer heuristically estimates a small selectivity (an internal default value)

for indexed columns in order to favor the use of the index.

Case 6 The following query uses the BETWEEN operator to select all employees with

employee ID numbers between 7500 and 7800:

SELECT *
 FROM employees
 WHERE employee_id BETWEEN 7500 AND 7800;

To determine the selectivity of this query, the optimizer rewrites the WHERE clause

condition into the following two conditions:

employee_id >= 7500
employee_id <= 7800
Introduction to the Optimizer 1-39

Understanding Joins
The optimizer estimates the individual selectivity of each condition, using the

means described in Case 4 on page 1-38. The optimizer then uses these selectivities

(S1 and S2) and the absolute value function (ABS) to estimate the selectivity (S) of

the BETWEEN condition, as follows:

S = ABS(S1 + S2 - 1)

Understanding Joins
Joins are statements that retrieve data from more than one table. A join is

characterized by multiple tables in the FROM clause, and the relationship between

the tables is defined through the existence of a join condition in the WHERE clause.

This section discusses:

■ How the CBO Executes Join Statements

■ How the CBO Chooses the Join Method

■ How the CBO Chooses Execution Plans for Join Types

■ Join Methods:

■ Nested Loop Joins

■ Hash Joins

■ Sort Merge Joins

■ Cartesian Joins

■ Outer Joins

How the CBO Executes Join Statements
To choose an execution plan for a join statement, the optimizer must make these

interrelated decisions:

Access Paths As for simple statements, the optimizer must choose an access path

to retrieve data from each table in the join statement.

Join Method To join each pair of row sources, Oracle must perform a join operation.

Join methods include nested loop, sort merge, cartesian, and hash joins.

See Also: A discussion of joins in the Oracle9i SQL Reference
1-40 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
Join Order To execute a statement that joins more than two tables, Oracle joins two

of the tables and then joins the resulting row source to the next table. This process is

continued until all tables are joined into the result.

How the CBO Chooses the Join Method
The optimizer estimates the cost of each join method and chooses the method with

the least cost. If a join returns many rows, then the optimizer considers the

following three factors:

■ A nested loop join is inefficient when a join returns a large number of rows

(typically, more than 10,000 rows is considered large), and the optimizer might

choose not to use it. The cost of a nested loop join is calculated by the following

formula:

cost= access cost of A + (access cost of B * number of rows from A)

■ If you are using the CBO, then a hash join is the most efficient join when a join

returns a large number or rows. The cost of a hash join is calculated by the

following formula:

cost= (access cost of A * number of hash partitions of B) + access cost of B

■ If you are using the RBO, then a merge join is the most efficient join when a join

returns a large number or rows. The cost of a merge join is calculated by the

following formula:

cost= access cost of A + access cost of B +(sort cost of A + sort cost of B)

When the data is presorted, the sort costs are both zero.

See Also:

"Understanding Access Paths for the RBO" on page 8-3

"Understanding Access Paths for the CBO" on page 1-24

Note: Oracle Corporation strongly advises the use of cost-based

optimization. Rule-based optimization will be deprecated in a

future release.
Introduction to the Optimizer 1-41

Understanding Joins
How the CBO Chooses Execution Plans for Join Types
The following considerations apply to both the cost-based and rule-based

approaches:

■ The optimizer first determines whether joining two or more tables definitely

results in a row source containing at most one row. The optimizer recognizes

such situations based on UNIQUEand PRIMARY KEYconstraints on the tables. If

such a situation exists, then the optimizer places these tables first in the join

order. The optimizer then optimizes the join of the remaining set of tables.

■ For join statements with outer join conditions, the table with the outer join

operator must come after the other table in the condition in the join order. The

optimizer does not consider join orders that violate this rule.

With the CBO, the optimizer generates a set of execution plans, according to

possible join orders, join methods, and available access paths. The optimizer then

estimates the cost of each plan and chooses the one with the lowest cost. The

optimizer estimates costs in the following ways:

■ The cost of a nested loops operation is based on the cost of reading each

selected row of the outer table and each of its matching rows of the inner table

into memory. The optimizer estimates these costs using the statistics in the data

dictionary.

■ The cost of a sort merge join is based largely on the cost of reading all the

sources into memory and sorting them.

The optimizer also considers other factors when determining the cost of each

operation. For example:

■ A smaller sort area size is likely to increase the cost for a sort merge join

because sorting takes more CPU time and I/O in a smaller sort area. Sort area

size is specified by the initialization parameter SORT_AREA_SIZE.

■ A larger multiblock read count is likely to decrease the cost for a sort merge join

in relation to a nested loop join. If a large number of sequential blocks can be

read from disk in a single I/O, then an index on the inner table for the nested

Note: Oracle does not recommend using the SORT_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends instead that you enable automatic

sizing of SQL work areas by setting PGA_AGGREGATE_TARGET.

SORT_AREA_SIZE is retained only for backward compatibility.
1-42 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
loop join is less likely to improve performance over a full table scan. The

multiblock read count is specified by the initialization parameter DB_FILE_
MULTIBLOCK_READ_COUNT.

With the CBO, the optimizer’s choice of join orders can be overridden with the

ORDEREDhint. If the ORDEREDhint specifies a join order that violates the rule for an

outer join, then the optimizer ignores the hint and chooses the order. Also, you can

override the optimizer’s choice of join method with hints.

How the CBO Executes Anti-joins
An anti-join returns rows from the left side of the predicate for which there are no

corresponding rows on the right side of the predicate. That is, it returns rows that

fail to match (NOT IN) the subquery on the right side. For example, an anti-join can

select a list of employees who are not in a particular set of departments:

Example 1–15 Anti-join on Employees and Departments

SELECT * FROM employees
 WHERE department_id NOT IN
 (SELECT department_id FROM departments
 WHERE location_id = 1700);

The optimizer uses a nested loops algorithm for NOT IN subqueries by default.

However, if the MERGE_AJ, HASH_AJ, or NL_AJ hint is used and various required

conditions are met, the NOT IN uncorrelated subquery can be changed into a sort

merge or hash antijoin.

How the CBO Executes Semi-joins
A semi-join returns rows that match an EXISTS subquery without duplicating rows

from the left side of the predicate when multiple rows on the right side satisfy the

criteria of the subquery. For example:

Example 1–16 Semi-join on Employees and Departments

SELECT * FROM departments
 WHERE EXISTS
 (SELECT * FROM employees
 WHERE departments.department_id = employees.department_id
 AND employees.salary > 2500);

See Also: Chapter 5, "Optimizer Hints" for more information

about optimizer hints
Introduction to the Optimizer 1-43

Understanding Joins
In this query, only one row needs to be returned from departments , even though

many rows in employees might match the subquery. If there is no index on the

salary column in employees , then a semi-join can be used to improve query

performance.

The optimizer uses a nested loops algorithm by default for IN or EXISTS
subqueries that cannot be merged with the containing query. However, if the

MERGE_SJ, HASH_SJ, or NL_SJ hint is used and various required conditions are

met, the subquery can be changed into a sort merge or hash semi-join.

How the CBO Executes Star Queries
Some data warehouses are designed around a star schema, which includes a large

fact table and several small dimension (lookup) tables. The fact table stores primary

information. Each dimension table stores information about an attribute in the fact

table.

A star query is a join between a fact table and a number of lookup tables. Each

lookup table is joined by its primary keys to the corresponding foreign keys of the

fact table, but the lookup tables are not joined to each other.

The CBO recognizes star queries and generates efficient execution plans for them.

Star queries are not recognized by the RBO.

A typical fact table contains keys and measures. For example, a simple fact table

might contain the measure Sales , and the keys Time , Product , and Market. In

this case there would be corresponding dimension tables for Time , Product , and

Market . The Product dimension table, for example, typically contains information

about each product number that appears in the fact table.

A star join uses a join of foreign keys in a fact table to the corresponding primary

keys in dimension tables. The fact table normally has a concatenated index on the

foreign key columns to facilitate this type of join, or it has a separate bitmap index

on each foreign key column.

See Also: Chapter 5, "Optimizer Hints" for information about

optimizer hints

Note: Semi-join transformation cannot be done if the subquery is

on an OR branch. This also applies to anti-joins.
1-44 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
Nested Loop Joins
Nested loop joins are useful when small subsets of data are being joined and if the

join condition is an efficient way of accessing the second table.

It is very important to ensure that the inner table is driven from (dependent on) the

outer table. If the inner table’s access path is independent of the outer table, then the

same rows are retrieved for every iteration of the outer loop, degrading

performance considerably. In such cases, hash joins joining the two independent

row sources perform better.

A nested loop join involves the following steps:

1. The optimizer determines the driving table and designates it as the outer table.

2. The other table is designated as the inner table.

3. For every row in the outer table, Oracle accesses all the rows in the inner table.

The outer loop is for every row in outer table and the inner loop is for every

row in the inner table. The outer loop appears before the inner loop in the

execution plan, as follows:

NESTED LOOPS
outer_loop
inner_loop

Nested Loop Example
This section discusses the outer and inner loops for the following nested loops in

the query in Example 1–3.

...
2	NESTED LOOPS		3	141	7 (15)
* 3	TABLE ACCESS FULL	EMPLOYEES	3	60	4 (25)
4	TABLE ACCESS BY INDEX ROWID	JOBS	19	513	2 (50)
* 5	INDEX UNIQUE SCAN	JOB_ID_PK	1		
...

In this example, the outer loop retrieves all the rows of the employees table. For

every employee retrieved by the outer loop, the inner loop retrieves the associated

row in the jobs table.

See Also: Oracle9i Data Warehousing Guide for more information

about tuning star queries

See Also: "Cartesian Joins" on page 1-50
Introduction to the Optimizer 1-45

Understanding Joins
Outer loop In the execution plan in Example 1–4, the outer loop and the equivalent

statement are as follows:

3 | TABLE ACCESS FULL | EMPLOYEES

SELECT e.employee_id, e.salary
 FROM employees e
 WHERE e.employee_id < 103

Inner loop The execution plan in Example 1–4 shows the inner loop being iterated

for every row fetched from the outer loop, as follows:

4 | TABLE ACCESS BY INDEX ROWID| JOBS
5 | INDEX UNIQUE SCAN | JOB_ID_PK

SELECT j.job_title
 FROM jobs j
 WHERE e.job_id = j.job_id

When the Optimizer Uses Nested Loop Joins
The optimizer uses nested loop joins when joining small number of rows, with a

good driving condition between the two tables. You drive from the outer loop to the

inner loop, so the order of tables in the execution plan is important.

The outer loop is the driving row source. It produces a set of rows for driving the

join condition. The row source can be a table accessed using an index scan or a full

table scan. Also, the rows can be produced from any other operation. For example,

the output from a nested loop join can be used as a row source for another nested

loop join.

The inner loop is iterated for every row returned from the outer loop, ideally by an

index scan. If the access path for the inner loop is not dependent on the outer loop,

then you can end up with a Cartesian product; for every iteration of the outer loop,

the inner loop produces the same set of rows. Therefore, you should use other join

methods when two independent row sources are joined together.

Nested Loop Join Hints
If the optimizer is choosing to use some other join method, you can use the USE_
NL(table1 table2) hint, where table1 and table2 are the aliases of the tables

being joined.

For some SQL examples, the data is small enough for the optimizer to prefer full

table scans and use hash joins. This is the case for the SQL example shown in

Example 1–17, "Hash Joins" on page 1-48. However, you can add a USE_NLhint that
1-46 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
changes the join method to nested loop. For more information on the USE_NL hint,

see "USE_NL" on page 5-24.

Nesting Nested Loops
The outer loop of a nested loop can be a nested loop itself. You can nest two or more

outer loops together to join as many tables as needed. Each loop is a data access

method, as follows:

SELECT STATEMENT
 NESTED LOOP 3
 NESTED LOOP 2 (OUTER LOOP 3.1)
 NESTED LOOP 1 (OUTER LOOP 2.1)
 OUTER LOOP 1.1 - #1
 INNER LOOP 1.2 - #2
 INNER LOOP 2.2 - #3
 INNER LOOP 3.2 - #4

Hash Joins
Hash joins are used for joining large data sets. The optimizer uses the smaller of two

tables or data sources to build a hash table on the join key in memory. It then scans

the larger table, probing the hash table to find the joined rows.

This method is best used when the smaller table fits in available memory. The cost is

then limited to a single read pass over the data for the two tables.

However, if the hash table grows too big to fit into the memory, then the optimizer

breaks it up into different partitions. As the partitions exceed allocated memory,

parts are written to temporary segments on disk. Larger temporary extent sizes lead

to improved I/O when writing the partitions to disk; the recommended temporary

extent is about 1 MB. Temporary extent size is specified by INITIAL and NEXT for

permanent tablespaces and by UNIFORM SIZE for temporary tablespaces.

After the hash table is complete, the following processes occur:

1. The second, larger table is scanned.

2. It is broken up into partitions like the smaller table.

3. The partitions are written to disk.

When the hash table build is complete, it is possible that an entire hash table

partition is resident in memory. Then, you do not need to build the corresponding

partition for the second (larger) table. When that table is scanned, rows that hash to

the resident hash table partition can be joined and returned immediately.
Introduction to the Optimizer 1-47

Understanding Joins
Each hash table partition is then read into memory, and the following processes

occur:

1. The corresponding partition for the second table is scanned.

2. The hash table is probed to return the joined rows.

This process is repeated for the rest of the partitions. The cost can increase to two

read passes over the data and one write pass over the data.

If the hash table does not fit in the memory, it is possible that parts of it may need to

be swapped in and out, depending on the rows retrieved from the second table.

Performance for this scenario can be extremely poor.

When the Optimizer Uses Hash Joins
The optimizer uses a hash join to join two tables if they are joined using an equijoin

and if either of the following conditions are true:

■ A large amount of data needs to be joined.

■ A large fraction of the table needs to be joined.

In Example 1–17, the table orders is used to build the hash table, and order_
items is the larger table, which is scanned later.

Example 1–17 Hash Joins

SELECT o.customer_id, l.unit_price * l.quantity
 FROM orders o ,order_items l
 WHERE l.order_id = o.order_id;

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		665	13300	8 (25)
* 1	HASH JOIN		665	13300	8 (25)
2	TABLE ACCESS FULL	ORDERS	105	840	4 (25)
3	TABLE ACCESS FULL	ORDER_ITEMS	665	7980	4 (25)
--

Predicate Information (identified by operation id):

 1 - access("L"."ORDER_ID"="O"."ORDER_ID")
1-48 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
Hash Join Hints
Apply the USE_HASH hint to advise the optimizer to use a hash join when joining

two tables together. If you are having trouble getting the optimizer to use hash

joins, investigate the values for the HASH_AREA_SIZE and HASH_JOIN_ENABLED
parameters.

For more information on the USE_HASH hint, see "USE_HASH" on page 5-26.

Sort Merge Joins
Sort merge joins can be used to join rows from two independent sources. Hash joins

generally perform better than sort merge joins. On the other hand, sort merge joins

can perform better than hash joins if both of the following conditions exist:

■ The row sources are sorted already.

■ A sort operation does not have to be done.

However, if a sort merge join involves choosing a slower access method (an index

scan as opposed to a full table scan), then the benefit of using a sort merge might be

lost.

Sort merge joins are useful when the join condition between two tables is an

inequality condition (but not a nonequality) like <, <=, >, or >=. Sort merge joins

perform better than nested loop joins for large data sets. You cannot use hash joins

unless there is an equality condition.

In a merge join, there is no concept of a driving table. The join consists of two steps:

1. Sort join operation: Both the inputs are sorted on the join key.

2. Merge join operation: The sorted lists are merged together.

If the input is already sorted by the join column, then a sort join operation is not

performed for that row source.

Note: Oracle does not recommend using the HASH_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends instead that you enable automatic

sizing of SQL work areas by setting PGA_AGGREGATE_TARGET.

HASH_AREA_SIZE is retained only for backward compatibility.
Introduction to the Optimizer 1-49

Understanding Joins
When the Optimizer Uses Sort Merge Joins
The optimizer can choose a sort merge join over a hash join for joining large

amounts of data if any of the following conditions are true:

■ The join condition between two tables is not an equi-join.

■ OPTIMIZER_MODE is set to RULE.

■ HASH_JOIN_ENABLED is false.

■ Because of sorts already required by other operations, the optimizer finds it is

cheaper to use a sort merge than a hash join.

■ The optimizer thinks that the cost of a hash join is higher, based on the settings

of HASH_AREA_SIZE and SORT_AREA_SIZE.

Sort Merge Join Hints
To advise the optimizer to use a sort merge join, apply the USE_MERGE hint. You

might also need to give hints to force an access path.

There are situations where it is better to override the optimize with the USE_MERGE
hint. For example, the optimizer can choose a full scan on a table and avoid a sort

operation in a query. However, there is an increased cost because a large table is

accessed through an index and single block reads, as opposed to faster access

through a full table scan.

For more information on the USE_MERGE hint, see "USE_MERGE" on page 5-25.

Cartesian Joins
A Cartesian join is used when one or more of the tables does not have any join

conditions to any other tables in the statement. The optimizer joins every row from

one data source with every row from the other data source, creating the Cartesian

product of the two sets.

Note: Oracle does not recommend using the HASH_AREA_SIZE
and SORT_AREA_SIZE parameters unless the instance is

configured with the shared server option. Oracle recommends

instead that you enable automatic sizing of SQL work areas by

setting PGA_AGGREGATE_TARGET. HASH_AREA_SIZE and SORT_
AREA_SIZE are retained only for backward compatibility.
1-50 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
When the Optimizer Uses Cartesian Joins
The optimizer uses Cartesian joins when it is asked to join two tables with no join

conditions. In some cases, a common filter condition between the two tables could

be picked up by the optimizer as a possible join condition. This is even more

dangerous, because the joins are not flagged in the execution plan as being a

Cartesian product.

Cartesian joins generally result from poorly written SQL. You should specify join

criteria and avoid Cartesian products. In some situations, a query can involve a

large number of tables and an extra table is contained in the FROM clause, but not in

the WHERE clause. With such queries, a DISTINCT clause can weed out multiple

rows. However, while the DISTINCT clause can be used to remove the extra tuples

generated by the Cartesian product, the performance can be severely degraded.

In a SQL query where the inner table of a nested loop operation is not driven from

the outer table, but from an independent row source, then the rows accessed can be

the same as in a Cartesian product. Because the join condition is present but is

applied after accessing the table, the result is not a Cartesian product. However, the

cost of accessing the table (rows accessed) is about the same.

Cartesian Join Hints
Applying the ORDERED hint, causes the optimizer uses a Cartesian join. By

specifying a table before its join table is specified, the optimizer does a Cartesian

join. For more information on the ORDERED hint, see "ORDERED" on page 5-23.

Outer Joins
An outer join extends the result of a simple join. An outer join returns all rows that

satisfy the join condition and also returns some or all of those rows from one table

for which no rows from the other satisfy the join condition.

Nested Loop Outer Joins
This operation is used when an outer join is used between two tables. The outer join

returns the outer (preserved) table rows, even when there are no corresponding

rows in the inner (optional) table.

In a regular outer join, the optimizer chooses the order of tables (driving and

driven) based on the cost. However, in a nested loop outer join, the order of tables is

determined by the join condition. The outer table, with rows that are being

preserved, is used to drive to the inner table.
Introduction to the Optimizer 1-51

Understanding Joins
The optimizer uses nested loop joins to process an outer join in the following

circumstances:

■ It is possible to drive from the outer table to inner table.

■ Data volume is low enough to make the nested loop method efficient.

For an example of a nested loop outer join, you can add the USE_NL hint to

Example 1–18 to ensure that a nested loop is used. For example:

SELECT /*+ USE_NL(c o) */ cust_last_name, sum(nvl2(o.customer_id,0,1)) "Count"

Hash Join Outer Joins
The optimizer uses hash joins for processing an outer join if the data volume is high

enough to make the hash join method efficient or if it is not possible to drive from

the outer table to inner table.

Like an outer join, the order of tables is not determined by the cost, but by the join

condition. The outer table (with preserved rows) is used to build the hash table, and

the inner table is used to probe the hash table.

Example 1–18 shows a typical hash join outer join query. In this example, all the

customers with credit limits greater than 1000 are queried. An outer join is needed

so that you do not miss the customers who do not have any orders.

Example 1–18 Hash Join Outer Joins

SELECT cust_last_name, sum(nvl2(o.customer_id,0,1)) "Count"
 FROM customers c, orders o
 WHERE c.credit_limit > 1000
 AND c.customer_id = o.customer_id(+)
 GROUP BY cust_last_name;

| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|

0	SELECT STATEMENT		168	3192	11 (28)
1	SORT GROUP BY		168	3192	11 (28)
* 2	HASH JOIN OUTER		260	4940	10 (20)
* 3	TABLE ACCESS FULL	CUSTOMERS	260	3900	6 (17)
* 4	TABLE ACCESS FULL	ORDERS	105	420	4 (25)

1-52 Oracle9i Database Performance Tuning Guide and Reference

Understanding Joins
Predicate Information (identified by operation id):

 2 - access("C"."CUSTOMER_ID"="O"."CUSTOMER_ID"(+))
 3 - filter("C"."CREDIT_LIMIT">1000)
 4 - filter("O"."CUSTOMER_ID"(+)>0)

The query looks for customers which satisfy various conditions. An outer join

returns NULL for the inner table columns along with the outer (preserved) table

rows when it does not find any corresponding rows in the inner table. This

operation finds all the customers rows that do not have any orders rows.

In this case, the outer join condition is the following:

customers.customer_id = orders.customer_id(+)

The components of this condition represent the following:

■ The outer table is customers .

■ The inner table is orders .

■ The join preserves the customers rows, including those rows without a

corresponding row in orders .

■ The hash table is built using customers .

■ The hash table is probed using orders .

You could use a NOT EXISTS subquery to return the rows. However, because you

are querying all the rows in the table, the hash join performs better (unless the NOT
EXISTS subquery is not nested).

In Example 1–19, the outer join is to a multitable view. The optimizer cannot drive

into the view like in a normal join or push the predicates, so it builds the entire row

set of the view.

Example 1–19 Outer Join to a Multitable View

SELECT c.cust_last_name, sum(revenue)
 FROM customers c, v_orders o
 WHERE c.credit_limit > 2000
 AND o.customer_id(+) = c.customer_id
 GROUP BY c.cust_last_name;
Introduction to the Optimizer 1-53

Understanding Joins
--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)|
--
0	SELECT STATEMENT		144	4608	16 (32)
1	SORT GROUP BY		144	4608	16 (32)
* 2	HASH JOIN OUTER		663	21216	15 (27)
* 3	TABLE ACCESS FULL	CUSTOMERS	195	2925	6 (17)
4	VIEW	V_ORDERS	665	11305	
5	SORT GROUP BY		665	15960	9 (34)
* 6	HASH JOIN		665	15960	8 (25)
* 7	TABLE ACCESS FULL	ORDERS	105	840	4 (25)
8	TABLE ACCESS FULL	ORDER_ITEMS	665	10640	4 (25)
--

Predicate Information (identified by operation id):

 2 - access("O"."CUSTOMER_ID"(+)="C"."CUSTOMER_ID")
 3 - filter("C"."CREDIT_LIMIT">2000)
 6 - access("O"."ORDER_ID"="L"."ORDER_ID")
 7 - filter("O"."CUSTOMER_ID">0)

The view definition is as follows:

CREATE OR REPLACE view v_orders AS
SELECT l.product_id, SUM(l.quantity*unit_price) revenue,
 o.order_id, o.customer_id
 FROM orders o, order_items l
 WHERE o.order_id = l.order_id
 GROUP BY l.product_id, o.order_id, o.customer_id;

Sort Merge Outer Joins
When an outer join cannot drive from the outer (preserved) table to the inner

(optional) table, it cannot use a hash join or nested loop joins. Then it uses the sort

merge outer join for performing the join operation.

The optimizer uses sort merge for an outer join if a nested loop join is inefficient. A

nested loop join can be inefficient because of data volumes; or if, because of sorts

already required by other operations, the optimizer finds it is cheaper to use a sort

merge over a hash join.

Full Outer Joins
A full outer join acts like a combination of the left and right outer joins. In addition

to the inner join, rows from both tables that have not been returned in the result of

the inner join are preserved and extended with nulls. In other words, full outer joins
1-54 Oracle9i Database Performance Tuning Guide and Reference

Setting Cost-Based Optimizer Parameters
let you join tables together, yet still show rows that do not have corresponding rows

in the joined tables.

The query in Example 1–20 retrieves all departments and all employees in each

department, but also includes:

■ Any employees without departments

■ Any departments without employees

Example 1–20 Full Outer Join

SELECT d.department_id, e.employee_id
 FROM employees e
 FULL OUTER JOIN departments d
 ON e.department_id = d.department_id
 ORDER BY d.department_id;

The statement produces the following output:

DEPARTMENT_ID EMPLOYEE_ID
------------- -----------
 10 200
 20 201
 20 202
 30 114
 30 115
 30 116
...
 270
 280
 178
 207

125 rows selected.

Setting Cost-Based Optimizer Parameters
This section contains some of the parameters specific to the optimizer. The

following sections are especially useful when tuning Oracle applications.

Enabling CBO Features
You enable optimizer features by setting the OPTIMIZER_FEATURES_ENABLE
initialization parameter.
Introduction to the Optimizer 1-55

Setting Cost-Based Optimizer Parameters
OPTIMIZER_FEATURES_ENABLE Parameter
The OPTIMIZER_FEATURES_ENABLE parameter acts as an umbrella parameter for

the CBO. This parameter can be used to enable a series of CBO-related features,

depending on the release. It accepts one of a list of valid string values

corresponding to the release numbers, such as 8.0.4, 8.1.5, and so on. For example,

the following statement enables the use of the optimizer features in Oracle9i,
Release 2 (9.2).

OPTIMIZER_FEATURES_ENABLE=9.2.0;

This statement causes the Release 2 (9.2) optimizer features to be used in generating

query plans. For example, you can use ALL_ROWS or FIRST_ROWS optimizer mode

for recursive user SQL generated by PL/SQL procedures. Prior to Oracle8i Release

8.1.6, only RULE or CHOOSE optimizer mode was used for such recursive SQL, and

when the user explicitly set the OPTIMIZER_MODE parameter to FIRST_ROWS or

ALL_ROWS, a CHOOSE mode was used instead.

The OPTIMIZER_FEATURES_ENABLEparameter was introduced in Oracle8, release

8.0.4. The main goal was to allow customers the ability to upgrade the Oracle server,

yet preserve the old behavior of the CBO after the upgrade. For example, when you

upgrade the Oracle server from release 8.1.5 to release 8.1.6, the default value of the

OPTIMIZER_FEATURES_ENABLE parameter changes from 8.1.5 to 8.1.6. This

upgrade results in the CBO enabling optimization features based on 8.1.6, as

opposed to 8.1.5.

For plan stability or backward compatibility reasons, you might not want the query

plans to change because of new optimizer features in a new release. In such a case,

you can set the OPTIMIZER_FEATURES_ENABLE parameter to an earlier version.

For example, to preserve the behavior of the CBO to release 8.1.5, set the parameter

as follows:

OPTIMIZER_FEATURES_ENABLE=8.1.5;

This statement disables all new optimizer features that were added in releases

following release 8.1.5.

Note: If you upgrade to a new release and you want to enable the

features available with that release, then you do not need to

explicitly set the OPTIMIZER_FEATURES_ENABLE parameter.
1-56 Oracle9i Database Performance Tuning Guide and Reference

Setting Cost-Based Optimizer Parameters
Oracle Corporation does not recommend explicitly setting the OPTIMIZER_
FEATURES_ENABLE parameter to an earlier release. Instead, execution plan or

query performance issues should be resolved on a case-by-case basis.

Table 1–3 describes some of the optimizer features that are enabled when you set

the OPTIMIZER_FEATURES_ENABLE parameter to each of the following release

values.

Table 1–3 Features Included with the OPTIMIZER_FEATURES_ENABLE Parameter

Set to Value New Features include

8.0.4 Index fast full scan

Ordered nested loop join method

8.0.5 No new features

8.0.6 Improved outer join cardinality estimation

8.1.4 No new features

8.1.5 Improved verification of NULLs inclusion in B-tree indexes

8.1.6 Use of FIRST_ROWS or ALL_ROWS mode for user recursive SQL

Random distribution of left input of nested loop join

Improved row-length calculation

Improved method of computing selectivity based on histogram

Partition pruning based on predicates in a subquery

8.1.7 Common subexpression optimization

Statistics of a column imbedded in some selected functions such as TO_CHAR
to compute selectivity

Improved partition statistics aggregation

9.0.1 Peeking of user-defined bind variables

Complex view merging

Push-join predicate

Consideration of bitmap access paths for tables with only B-tree indexes

Subquery unnesting

Index joins

9.0.2 Parallel broadcast in parallel query using joins to small reference or lookup
tables
Introduction to the Optimizer 1-57

Setting Cost-Based Optimizer Parameters
Peeking of User-Defined Bind Variables
The CBO peeks at the values of user-defined bind variables on the first invocation

of a cursor. This feature lets the optimizer determine the selectivity of any WHERE
clause condition, as well as if literals have been used instead of bind variables. On

subsequent invocations of the cursor, no peeking takes place, and the cursor is

shared, based on the standard cursor-sharing criteria, even if subsequent

invocations use different bind values.

When bind variables are used in a statement, it is assumed that cursor sharing is

intended and that different invocations are supposed to use the same execution

plan. If different invocations of the cursor would significantly benefit from different

execution plans, then bind variables may have been used inappropriately in the

SQL statement.

Controlling the Behavior of the CBO
This section lists some initialization parameters that can be used to control the

behavior of the cost-based optimizer. These parameters can be used to enable

various optimizer features in order to improve the performance of SQL execution.

CURSOR_SHARING
This parameter converts literal values in SQL statements to bind variables.

Converting the values improves cursor sharing and can affect the execution plans of

SQL statements. The optimizer generates the execution plan based on the presence

of the bind variables and not the actual literal values.

DB_FILE_MULTIBLOCK_READ_COUNT
This parameter specifies the number of blocks that are read in a single I/O during a

full table scan or index fast full scan. The optimizer uses the value of DB_FILE_
MULTIBLOCK_READ_COUNT to cost full table scans and index fast full scans. Larger

values result in a cheaper cost for full table scans and can result in the optimizer

choosing a full table scan over an index scan.

HASH_AREA_SIZE
This parameter specifies the amount of memory (in bytes) to be used for hash joins.

The CBO uses this parameter to cost a hash join operation. Larger values for HASH_
AREA_SIZE reduce the cost of hash joins.
1-58 Oracle9i Database Performance Tuning Guide and Reference

Setting Cost-Based Optimizer Parameters
HASH_JOIN_ENABLED
This parameter can be used to enable or disable the use of hash joins as a join

method chosen by the optimizer. When set to true , the optimizer considers hash

joins as a possible join method. The CBO chooses a hash join if the cost is better than

other join methods, such as nested loops or sort merge joins.

OPTIMIZER_INDEX_CACHING
This parameter controls the costing of an index probe in conjunction with a nested

loop. The range of values 0 to 100 for OPTIMIZER_INDEX_CACHING indicates

percentage of index blocks in the buffer cache, which modifies the optimizer’s

assumptions about index caching for nested loops and IN-list iterators. A value of

100 infers that 100% of the index blocks are likely to be found in the buffer cache

and the optimizer adjusts the cost of an index probe or nested loop accordingly. Use

caution when using this parameter because execution plans can change in favor of

index caching.

OPTIMIZER_INDEX_COST_ADJ
This parameter can be used to adjust the cost of index probes. The range of values is

1 to 10000 . The default value is 100 , which means that indexes are evaluated as an

access path based on the normal costing model. A value of 10 means that the cost of

an index access path is one-tenth the normal cost of an index access path.

OPTIMIZER_MAX_PERMUTATIONS
This parameter controls the maximum number of permutations that the CBO

considers when generating execution plans for SQL statements with joins. The

range of values is 4 to 80000 . A value of 80000 corresponds to no limit. Setting

this parameter to a value less than 1000 normally ensures parse times of a few

seconds or less.

The OPTIMIZER_MAX_PERMUTATIONS parameter can be used to reduce parse

times for complex SQL statements that join a large number of tables. However,

reducing its value can result in the optimizer missing an optimal join permutation.

Note: Oracle does not recommend using the HASH_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends instead that you enable automatic

sizing of SQL work areas by setting PGA_AGGREGATE_TARGET.

HASH_AREA_SIZE is retained only for backward compatibility.
Introduction to the Optimizer 1-59

Setting Cost-Based Optimizer Parameters
OPTIMIZER_MODE
This initialization parameter sets the mode of the optimizer at instance startup. The

possible values are RULE, CHOOSE, ALL_ROWS, FIRST_ROWS_n, and FIRST_ROWS.
For description of these parameter values, see "OPTIMIZER_MODE Initialization

Parameter" on page 1-6.

PARTITION_VIEW_ENABLED
This parameter enables the partition view pruning feature. If set to true , then the

CBO scans only the required partitions, based on the view predicates or filters.

QUERY_REWRITE_ENABLED
This parameter enables the query rewrite feature, which works in conjunction with

materialized views. If set to true , then the CBO considers query rewrites, using

materialized views to satisfy the original query. This parameter also controls

whether or not function-based indexes are used.

SORT_AREA_SIZE
This parameter specifies the amount of memory (in bytes) that will be used to

perform sorts. If a sort operation is performed, and if the amount of data to be

sorted exceeds the value of SORT_AREA_SIZE, then data beyond the value of

SORT_AREA_SIZE is written to the temporary tablespace. The CBO uses the value

of SORT_AREA_SIZE to cost sort operations including sort merge joins. Larger

values for SORT_AREA_SIZE result in cheaper CBO costs for sort operations.

Note: Oracle Corporation strongly advises the use of cost-based

optimization. Rule-based optimization will be deprecated in a

future release.

Note: Oracle does not recommend using the SORT_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends instead that you enable automatic

sizing of SQL work areas by setting PGA_AGGREGATE_TARGET.

SORT_AREA_SIZE is retained only for backward compatibility.
1-60 Oracle9i Database Performance Tuning Guide and Reference

Overview of the Extensible Optimizer
STAR_TRANSFORMATION_ENABLED
This parameter, if set to true , enables the CBO to cost a star transformation for star

queries. The star transformation combines the bitmap indexes on the various fact

table columns rather than using a Cartesian approach.

Overview of the Extensible Optimizer
The extensible optimizer is part of the CBO. It allows the authors of user-defined

functions and domain indexes to control the three main components that the CBO

uses to select an execution plan: statistics, selectivity, and cost evaluation.

The extensible optimizer lets you:

■ Associate cost function and default costs with domain indexes, indextypes,

packages, and standalone functions

■ Associate selectivity function and default selectivity with methods of object

types, package functions, and standalone functions

■ Associate statistics collection functions with domain indexes and columns

of tables

■ Order predicates with functions based on cost

■ Select a user-defined access path (domain index) for a table based on access cost

■ Use the DBMS_STATS package or the ANALYZE statement to invoke

user-defined statistics collection and deletion functions

See Also: Oracle9i Database Reference for complete information

about each parameter
Introduction to the Optimizer 1-61

Overview of the Extensible Optimizer
■ Use new data dictionary views to include information about the statistics

collection, cost, or selectivity functions associated with columns, domain

indexes, indextypes, or functions

■ Add a hint to preserve the order of evaluation for function predicates

Understanding User-Defined Statistics
You can define statistics collection functions for domain indexes, individual

columns of a table, and user-defined datatypes.

Whenever a domain index is analyzed to gather statistics, Oracle calls the associated

statistics collection function. Whenever a column of a table is analyzed, Oracle

collects the standard statistics for that column and calls any associated statistics

collection function. If a statistics collection function exists for a datatype, then

Oracle calls it for each column that has that datatype in the table being analyzed.

Understanding User-Defined Selectivity
The selectivity of a predicate in a SQL statement is used to estimate the cost of a

particular access path; it is also used to determine the optimal join order. The

optimizer cannot compute an accurate selectivity for predicates that contain

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer will

eventually use only statistics that have been collected by DBMS_
STATS. See Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on this package.

However, you must use the ANALYZE statement rather than DBMS_
STATS for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks

See Also: Oracle9i Data Cartridge Developer’s Guide for details

about the extensible optimizer
1-62 Oracle9i Database Performance Tuning Guide and Reference

Overview of the Extensible Optimizer
user-defined operators, because it does not have any information about these

operators.

You can define selectivity functions for predicates containing user-defined

operators, standalone functions, package functions, or type methods. The optimizer

calls the user-defined selectivity function whenever it encounters a predicate that

contains the operator, function, or method in one of the following relations with a

constant: <, <=, =, >=, >, or LIKE .

Understanding User-Defined Costs
The optimizer cannot compute an accurate estimate of the cost of a domain index

because it does not know the internal storage structure of the index. Also, the

optimizer might underestimate the cost of a user-defined function that invokes

PL/SQL, uses recursive SQL, accesses a BFILE , or is CPU-intensive.

You can define costs for domain indexes and user-defined standalone functions,

package functions, and type methods. These user-defined costs can be in the form

of default costs that the optimizer simply looks up, or they can be full-fledged cost

functions that the optimizer calls to compute the cost.
Introduction to the Optimizer 1-63

Overview of the Extensible Optimizer
1-64 Oracle9i Database Performance Tuning Guide and Reference

Optimizer Opera
2

Optimizer Operations

This chapter expands on the ideas introduced in Chapter 1, "Introduction to the

Optimizer" and explains optimizer actions in greater detail for specific cases. This

chapter describes how the cost-based optimizer evaluates expressions and performs

specific operations. It also explains how the CBO transforms some SQL statements

into others to achieve the same goal more efficiently.

The chapter contains the following sections:

■ How the Optimizer Performs Operations

■ How the Optimizer Transforms SQL Statements
tions 2-1

How the Optimizer Performs Operations
How the Optimizer Performs Operations
The optimizer fully evaluates expressions whenever possible and translates certain

syntactic constructs into equivalent constructs. Constructs are translated in the

following cases:

■ Oracle can more quickly evaluate the resulting expression than the original

expression.

■ The original expression is a syntactic equivalent of the resulting expression.

Sometimes, different SQL constructs can operate identically. For example,

Oracle maps = ANY (subquery) and IN (subquery) to a single construct.

This section contains the following discussions:

■ How the CBO Evaluates IN-List Iterators

■ How the CBO Evaluates Concatenation

■ How the CBO Evaluates Remote Operations

■ How the CBO Executes Distributed Statements

■ How the CBO Executes Sort Operations

■ How the CBO Executes Views

■ How the CBO Evaluates Constants

■ How the CBO Evaluates the UNION and UNION ALL Operators

■ How the CBO Evaluates the LIKE Operator

■ How the CBO Evaluates the IN Operator

■ How the CBO Evaluates the ANY or SOME Operator

■ How the CBO Evaluates the ALL Operator

■ How the CBO Evaluates the BETWEEN Operator

■ How the CBO Evaluates the NOT Operator

■ How the CBO Evaluates Transitivity

■ How the CBO Optimizes Common Subexpressions

■ How the CBO Evaluates DETERMINISTIC Functions
2-2 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
How the CBO Evaluates IN-List Iterators
The IN -list iterator is used when a query contains an IN clause with values. The

execution plan is identical to what would result for a statement with an equality

clause instead of IN except for one additional step. That extra step occurs when the

IN -list iterator feeds the equality clause with unique values from the IN -list.

Both of the statements in Example 2–1 and Example 2–1 are equivalent and produce

the same plan.

Example 2–1 IN-List Iterators Initial Statement

SELECT header_id, line_id, revenue_amount
 FROM so_lines_all
 WHERE header_id IN (1011,1012,1013);

SELECT header_id, line_id, revenue_amount
 FROM so_lines_all
 WHERE header_id = 1011
 OR header_id = 1012
 OR header_id = 1013;

Plan

SELECT STATEMENT
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1

An equivalent statement in Example 2–1 binds :b1 to the different unique values

by the IN -list iterator.

Example 2–2 Alternate Statement with Equality

SELECT header_id, line_id, revenue_amount
 FROM so_lines_all l
 WHERE header_id = :b1;

Plan

SELECT STATEMENT
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1
Optimizer Operations 2-3

How the Optimizer Performs Operations
Example 2–3 uses a unique index. Because there is a sort involved on the IN -list,

even with complete keys of unique indexes, there is still a range scan.

Example 2–3 IN-List Iterator with Unique Index

SELECT header_id, line_id, revenue_amount
 FROM so_lines_all
 WHERE line_id IN (1011,1012,1013);

Plan

SELECT STATEMENT
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_U1

In Example 2–4, the IN-list operator can be used when driving into a table with a

nested loop operation.

Example 2–4 IN-List Iterator with a Nested Loop

SELECT h.header_id, l.line_id, l.revenue_amount
 FROM so_headers_all h, so_lines_all l
 WHERE l.inventory_item_id = :b1
 AND h.order_number = l.header_id
 AND h.order_type_id IN (1,2,3);

Plan

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N5
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_U2

The IN -list operator is especially useful if there is an expensive first step that you do

not want to repeat for every IN -list element. In Example 2–5, even though there are

three IN -list elements, the full scan on so_lines_all happens only once.
2-4 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
Example 2–5 Using the IN-List Iterator to Avoid an Expensive First Step

SELECT h.header_id, l.line_id, l.revenue_amount
 FROM so_headers_all h, so_lines_all l
 WHERE l.s7 = :b1
 AND h.order_number = l.header_id
 AND h.order_type_id IN (1,2,3);

Plan

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_U2

When the Optimizer Uses IN-List Iterators
The optimizer uses an IN -list iterator when an IN clause is specified with values,

and the optimizer finds a selective index for that column. If there are multiple OR
clauses using the same index, then the optimizer chooses this operation rather than

CONCATENATION or UNION ALL, because it is more efficient.

IN-List Iterator Hints
There are no hints for this operation. You can provide a hint to use the relevant

index, which can cause this operation. Example 2–6 shows a query without an

INDEX hint, and the resulting execution plan.

Example 2–6 Calling the IN-List Iterator without the INDEX Hint

SELECT h.customer_id, l.line_id, l.revenue_amount
 FROM so_lines_all l, so_headers_all h
 WHERE l.s7 = 20
 AND h.original_system_reference = l.attribute5
 AND h.original_system_source_code IN (1013,1014);

Plan
--
SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N5
Optimizer Operations 2-5

How the Optimizer Performs Operations
Example 2–7 shows a query with an INDEX hint, and the resulting execution plan.

Example 2–7 Calling the IN-List Iterator with the INDEX Hint

SELECT /*+INDEX(h so_headers_n9 */ h.customer_id, l.line_id, l.revenue_amount
 FROM so_lines_all l, so_headers_all h
 WHERE l.s7 = 20
 AND h.original_system_reference = l.attribute5
 AND h.original_system_source_code IN (1013,1014);

Plan
--
SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N9

How the CBO Evaluates Concatenation
Concatenation is useful for statements with different conditions combined with an

OR clause. With concatenation, you get a good execution plan with appropriate

indexes. Examples 2–8 and 2–9 show two plans, each accessing the table through

the appropriate index and combined using concatenation.

The plan in Example 2–8 does not return duplicate rows, so for each component it

appends a negation of the previous components.

Example 2–8 How the CBO Evaluates Concatenation

SELECT l.header_id, l.line_id, l.revenue_amount
 FROM so_lines_all l
 WHERE l.parent_line_id = :b1
 OR l.service_parent_line_id = :b1;

Plan

SELECT STATEMENT
 CONCATENATION
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N20
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N17
2-6 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
In Example 2–8, the components are the following:

■ l.parent_line_id = :b1

■ l.service_parent_line_id = :b1 and l.parent_line_id != :b1

Example 2–9 shows how the optimizer uses concatenation to optimize a nested OR
statement.

Example 2–9 Concatenation of a Query with a Nested OR Statement

SELECT p.header_id, l.line_id, l.revenue_amount
 FROM so_lines_all p , so_lines_all l
 WHERE p.header_id = :b1
 AND (l.parent_line_id = p.line_id
 OR l.service_parent_line_id = p.line_id);

Plan

SELECT STATEMENT
 CONCATENATION
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N20
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N17

Example 2–10 shows the resulting execution plan for the same query shown in

Example 2–9, but with concatenation specifically disabled by the NO_EXPAND hint.

Example 2–10 Query with Nested OR with Concatenation Disabled

SELECT /*+NO_EXPAND */ p.header_id, l.line_id, l.revenue_amount
 FROM so_lines_all p, so_lines_all l
 WHERE p.header_id = :b1
 AND (l.parent_line_id = p.line_id
 OR l.service_parent_line_id = p.line_id);
Optimizer Operations 2-7

How the Optimizer Performs Operations
Plan

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1
 TABLE ACCESS FULL SO_LINES_ALL

Trying to execute the statement in a single query produces a poor execution plan.

Because the optimizer has two paths to follow and has been instructed not to

decompose the query, it needs to access all the rows in the second table to see if any

rows match one of the conditions.

Concatenation Hints
Use the hint USE_CONCAT for this operation.

When Not to Use Concatenation
Concatenation is expensive in the following cases and should not be used:

■ When OR conditions are on same column and can use the IN -list operator,

which is more efficient than concatenation

■ If an expensive step gets repeated for every concatenation

Example 2–11 illustrates this point.

Example 2–11 When Not to Use Concatenation

Consider the following statement:

SELECT h.customer_id, l.line_id, l.revenue_amount
 FROM so_lines_all l, so_headers_all h
 WHERE l.s7 = 20
 AND h.original_system_reference = l.attribute5
 AND h.original_system_source_code IN (1013,1014);

Plan
--
SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N5
2-8 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
The initial statement calls for a full scan on so_lines_all as the first stage. The

optimizer chooses to use a single column index for the second table, but we want it

to use a two-column index.

You could use a hint to force concatenation as in shown in Example 2–12, but the

initial full scan is still repeated which is not desirable.

Example 2–12 Using the Concatenation Hint

SELECT /*+USE_CONCAT*/ h.customer_id, l.line_id, l.revenue_amount
 FROM so_lines_all l, so_headers_all h
 WHERE l.s7 = 20
 AND h.original_system_reference = l.attribute5
 AND h.original_system_source_code IN (1013,1014);

Plan
--
SELECT STATEMENT
 CONCATENATION
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N9
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N9

If, instead, you provide a hint to use the two-column index, then the optimizer

switches to that with an IN -list iterator. The initial scan is not repeated, and a better

execution plan results, as follows:

Example 2–13 Using the Index Hint

SELECT /*+INDEX(h so_headers_n9 */ h.customer_id, l.line_id, l.revenue_amount
 FROM so_lines_all l, so_headers_all h
 WHERE l.s7 = 20
 AND h.original_system_reference = l.attribute5
 AND h.original_system_source_code IN (1013,1014);
Optimizer Operations 2-9

How the Optimizer Performs Operations
Plan
--
SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL SO_LINES_ALL
 INLIST ITERATOR
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N9

How the CBO Evaluates Remote Operations
The remote operation indicates that there is a table from another database being

accessed through a database link. Example 2–14 has a remote driving table:

Example 2–14 How the CBO Evaluates a Query with a Remote Driving Table

SELECT c.customer_name, count(*)
 FROM ra_customers c, so_headers_all@oe h
 WHERE c.customer_id = h.customer_id
 AND h.order_number = :b1
GROUP BY c.customer_name;

Plan
--
SELECT STATEMENT
 SORT GROUP BY
 NESTED LOOPS
 REMOTE
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX UNIQUE SCAN RA_CUSTOMERS_U1

Remote Database Query Obtained from the Library Cache
SELECT "ORDER_NUMBER","CUSTOMER_ID"
 FROM "SO_HEADERS_ALL" "H"
 WHERE "ORDER_NUMBER"=:"SYS_B_0";

Example 2–15 has a local driving table.

Example 2–15 How the CBO Evaluates a Query with a Local Driving Table

SELECT c.customer_name, h.order_number
 FROM ra_customers c, so_headers_all@oe h
 WHERE c.customer_id = h.customer_id
 AND c.customer_name LIKE :b1;
2-10 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
Plan
--
SELECT STATEMENT
 MERGE JOIN
 REMOTE
 SORT JOIN
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX RANGE SCAN RA_CUSTOMERS_N1

Remote Database Query Obtained from the Library Cache
SELECT "ORDER_NUMBER","CUSTOMER_ID"
 FROM "SO_HEADERS_ALL" "H"
 WHERE "CUSTOMER_ID" IS NOT NULL
ORDER BY "CUSTOMER_ID";

A couple of factors influence the execution plan:

■ Network round trips can be several orders of magnitude more expensive than

the physical and logical I/Os.

■ The optimizer does not have any statistics on the remote database, which might

not be an Oracle database.

In general, the optimizer chooses to access the remote tables first, before accessing

the local tables. This works well for cases like Example 2–14, where the driving

table is the remote table. However, if the driving table is the local table, then there

might not be any selective way of accessing the remote table without first accessing

the local tables. In such cases, you might need to provide appropriate hints to avoid

performance problems.

Example 2–16 How the CBO Evaluates a Query with a Local Driving Table and a
Nested Loops Hint

SELECT /*+USE_NL(c h) */ c.customer_name, h.order_number
 FROM ra_customers c, so_headers_all@oe h
 WHERE c.customer_id = h.customer_id
 AND c.customer_name LIKE :b1;

Plan
--
SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX RANGE SCAN RA_CUSTOMERS_N1
 REMOTE
Optimizer Operations 2-11

How the Optimizer Performs Operations
Remote Database Query Obtained from the Library Cache
SELECT /*+ USE_NL("H") */ "ORDER_NUMBER","CUSTOMER_ID"
 FROM "SO_HEADERS_ALL" "H" WHERE :1="CUSTOMER_ID"
FILTER;

The construct used by the optimizer is applying a filter condition to filter out rows;

this filter could not be applied when the table was accessed. Example 2–17 uses no

filter.

Example 2–17 Querying a Remote Table Using No Filter

SELECT h.order_number
 FROM so_headers_all h
 WHERE h.open_flag = 'Y'
 AND attribute1 IS NOT NULL;

Plan
--
SELECT STATEMENT
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N2

Besides the conditions used in the access path, a table might have additional

conditions to filter rows when the table is visited. Conditions that get applied when

the table is accessed, like attribute1 IS NOT NULL , do not show up as FILTER .

Example 2–18 and Example 2–19 illustrate such conditions.

Example 2–18 shows a query with a GROUP BY condition that creates a filter.

Example 2–18 Querying with a Filter Created by a GROUP BY Condition

SELECT h.order_number, count(*)
 FROM so_headers_all h
 WHERE h.open_flag = 'Y'
 AND attribute1 IS NOT NULL
GROUP BY h.order_number
HAVING COUNT(*) = 1 ß Filter condition;

Plan
--
SELECT STATEMENT
 FILTER
 SORT GROUP BY
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N2
2-12 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
Example 2–19 shows a query with a subquery that creates a filter.

Example 2–19 Querying with a Filter Created by a Subquery

SELECT h.order_number
 FROM so_headers_all h
 WHERE h.open_flag = 'Y'
 AND EXISTS (SELECT null FROM so_lines_all l
 WHERE l.header_id = h.header_id
 AND l.revenue_amount > 10000);

Plan
--
SELECT STATEMENT
 FILTER
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N2
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1

In this example, for every row meeting the condition of the outer query, the

correlated EXISTS subquery is executed. If a row meeting the condition is found in

the so_lines_all table, then the row from so_headers_all is returned.

How the CBO Executes Distributed Statements
The optimizer chooses execution plans for SQL statements that access data on

remote databases in much the same way that it chooses execution plans for

statements that access only local data:

■ If all the tables accessed by a SQL statement are located together on the same

remote database, then Oracle sends the SQL statement to that remote database.

The remote Oracle instance executes the statement and sends only the results

back to the local database.

■ If a SQL statement accesses tables that are located on different databases, then

Oracle decomposes the statement into individual fragments, each of which

accesses tables on a single database. Oracle then sends each fragment to the

database that it accesses. The remote Oracle instance for each of these databases

executes its fragment and returns the results to the local database, where the

local Oracle instance can perform any additional processing that the statement

requires.
Optimizer Operations 2-13

How the Optimizer Performs Operations
When choosing a cost-based execution plan for a distributed statement, the

optimizer considers the available indexes on remote databases, just as it considers

indexes on the local database. The optimizer also considers statistics on remote

databases for the CBO. Furthermore, the optimizer considers the location of data

when estimating the cost of accessing it. For example, a full scan of a remote table

has a greater estimated cost than a full scan of an identical local table.

For a rule-based execution plan, the optimizer does not consider indexes on

remote tables.

How the CBO Executes Sort Operations
Sort operations result when users specify some operation that requires a sort.

Commonly encountered operations include the following:

■ SORT UNIQUE

■ SORT AGGREGATE

■ SORT GROUP BY

■ SORT JOIN

■ SORT ORDER BY

SORT UNIQUE
SORT UNIQUE occurs if a user specifies a DISTINCT clause (Example 2–20) or if an

operation requires unique values for the next step (Example 2–21).

Example 2–20 DISTINCT Clause Causing SORT UNIQUE

SELECT DISTINCT last_name, first_name
 FROM per_all_people_f
 WHERE full_name LIKE :b1;

Plan
--
SELECT STATEMENT
 SORT UNIQUE
 TABLE ACCESS BY INDEX ROWID PER_ALL_PEOPLE_F
 INDEX RANGE SCAN PER_PEOPLE_F_N54

See Also: Chapter 6, "Optimizing SQL Statements" for more

information on tuning distributed queries
2-14 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
Example 2–21 IN Subquery Causing SORT UNIQUE

SORT UNIQUE provides the outer query with a unique list of header_id s. The plan

shows that the IN subquery has been un-nested and transformed into VW_NSO_1.

SELECT c.customer_name, h.order_number
 FROM ra_customers c, so_headers_all h
 WHERE c.customer_id = h.customer_id
 AND h.header_id in
 (SELECT l.header_id FROM so_lines_all l
 WHERE l.inventory_item_id = :b1
 AND ordered_quantity > 10);

Plan
--
SELECT STATEMENT
 NESTED LOOPS
 NESTED LOOPS
 VIEW VW_NSO_1
 SORT UNIQUE
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N5
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX UNIQUE SCAN SO_HEADERS_U1
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX UNIQUE SCAN RA_CUSTOMERS_U1

If the optimizer can guarantee (with unique keys) that duplicate values will not be

passed, then a sort can be avoided, as in Example 2–22.

Example 2–22 IN Subquery That Does Not Cause SORT UNIQUE

UPDATE so_lines_all l
 SET line_status = 'HOLD'
 WHERE l.header_id IN
 (SELECT h.header_id FROM so_headers_all h
 WHERE h.customer_id = :b1);

Plan
--
UPDATE STATEMENT
 UPDATE SO_LINES_ALL
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N1
 INDEX RANGE SCAN SO_LINES_N1
Optimizer Operations 2-15

How the Optimizer Performs Operations
SORT AGGREGATE
SORT AGGREGATE does not actually involve a sort. It is used when aggregates are

being computed across the whole set of rows, as shown in Example 2–23.

Example 2–23 Query Causing SORT AGGREGATE

SELECT SUM(l.revenue_amount)
 FROM so_lines_all l
 WHERE l.header_id = :b1;

Plan
--
SELECT STATEMENT
 SORT AGGREGATE
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1

SORT GROUP BY
SORT GROUP BY is used when aggregates are being computed for different groups

in the data. The sort is required to separate the rows into different groups, as shown

in Example 2–24.

Example 2–24 Query That Causes SORT GROUP BY

SELECT created_by, SUM(l.revenue_amount)
 FROM so_lines_all l
 WHERE header_id > :b1
GROUP BY created_by;

Plan
--
SELECT STATEMENT
 SORT GROUP BY
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1
2-16 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
SORT JOIN
SORT JOIN happens during a SORT MERGE JOIN, if the rows need to be sorted by

the join key, as shown in Example 2–25.

Example 2–25 Query Causing SORT JOIN

SELECT SUM(l.revenue_amount), l2.creation_date
 FROM so_lines_all l, so_lines_All l2
 WHERE l.creation_date < l2.creation_date
 AND l.header_id <> l2.header_id
GROUP BY l2.creation_date, l2.line_id;

Plan
--
SELECT STATEMENT
 SORT GROUP BY
 MERGE JOIN
 SORT JOIN
 TABLE ACCESS FULL SO_LINES_ALL
 FILTER
 SORT JOIN
 TABLE ACCESS FULL SO_LINES_ALL

SORT ORDER BY
SORT ORDER BY is required when the statement specifies an ORDER BY that cannot

be satisfied by one of the indexes, as shown in Example 2–26.

Example 2–26 Query Causing SORT ORDER BY

SELECT h.order_number
 FROM so_headers_all h
 WHERE h.customer_id = :b1
 ORDER BY h.creation_date DESC;

Plan
--
SELECT STATEMENT
 SORT ORDER BY
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N1
Optimizer Operations 2-17

How the Optimizer Performs Operations
How the CBO Executes Views
Either of the following can result in creation of a view by the CBO:

■ A complex view has not been decomposed (Example 2–27).

■ A temporary or inline view is being used (Examples 2–28 and 2–29).

Example 2–27 Query Causing a View

SELECT order_id
FROM orders
 WHERE customer_id = :b1
 AND revenue > :b2;

Plan
--
SELECT STATEMENT
 VIEW ORDERS
 FILTER
 SORT GROUP BY
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N1
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1

In Example 2–28, a view is created because the IN subquery requires a SORT
UNIQUE on the values being selected. This view would be unnecessary if the

columns being selected were unique, not requiring a sort.

Example 2–28 IN Subquery Causing a View

SELECT c.customer_name, h.order_number
 FROM ra_customers c, so_headers_all h
 WHERE c.customer_id = h.customer_id
 AND h.header_id IN
 (SELECT l.header_id FROM so_lines_all l
 WHERE l.inventory_item_id = :b1
 AND ordered_quantity > 10);
Plan
--
SELECT STATEMENT
 NESTED LOOPS
 NESTED LOOPS
 VIEW VW_NSO_1
2-18 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
 SORT UNIQUE
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N5
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX UNIQUE SCAN SO_HEADERS_U1
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX UNIQUE SCAN RA_CUSTOMERS_U1

The query in Example 2–29 examines the distribution of orders and revenue by the

number of lines in each order. The CBO uses temporary inline views to do the

double grouping.

Example 2–29 Inline Query Causing a View

SELECT COUNT(*) "Orders", cnt "Lines", sum(rev) "Revenue"
FROM (SELECT header_id, COUNT(*) cnt, SUM(revenue_amount) rev
 FROM so_lines_all
 GROUP BY header_id)
GROUP BY cnt;

Plan
--
SELECT STATEMENT
 SORT GROUP BY
 VIEW
 SORT GROUP BY
 TABLE ACCESS FULL SO_LINES_ALL

How the CBO Evaluates Constants
Computation of constants is performed only once, when the statement is optimized,

rather than each time the statement is executed.

For example, the following conditions all test for monthly salaries greater than 2000:

salary > 24000/12
salary > 2000
salary*12 > 24000

If a SQL statement contains the first condition, then the optimizer simplifies it into

the second condition.
Optimizer Operations 2-19

How the Optimizer Performs Operations
How the CBO Evaluates the UNION and UNION ALL Operators
This operator is useful for combining OR clauses into one compound statement or

for breaking up a complex statement into a compound statement containing simpler

select statements that are easier to optimize and understand.

As with concatenation, you do not want to duplicate expensive operations by using

UNION ALL.

When the Optimizer Uses UNION or UNION ALL
The optimizer uses UNION or UNION ALL when the SQL statement contains UNION
or UNION ALL clauses.

Example 2–30 shows a query without a UNION clause. The query finds customers

who are new or have open orders.

Example 2–30 Query Without UNION Clause

SELECT c.customer_name, c.creation_date
 FROM ra_customers c
 WHERE c.creation_date > SYSDATE - 30
 OR customer_id IN
 (SELECT customer_id FROM so_headers_all h
 WHERE h.open_flag = 'Y');

Plan
--
SELECT STATEMENT
 FILTER
 TABLE ACCESS FULL RA_CUSTOMERS
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N1

Because the driving conditions come from different tables, you cannot execute the

query effectively in a single statement.

Note: The optimizer does not simplify expressions across

comparison operators: In the preceding examples, the optimizer

does not simplify the third expression into the second. For this

reason, application developers write conditions that compare

columns with constants whenever possible, rather than conditions

with expressions involving columns.
2-20 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
With a UNION clause, you can break the query into two statements:

■ New customers

■ Customers with open orders

These two statements can be optimized easily. Because you do not want duplicates

(some customers meet both criteria), use UNION, which eliminates duplicates by

using a sort. If you use two disjoint sets, then you can use UNION ALL, eliminating

the sort. The query from Example 2–30 is shown using UNION in Example 2–31.

Example 2–31 Query Using the UNION Clause

SELECT c.customer_name, c.creation_date
 FROM ra_customers c
 WHERE c.creation_date > SYSDATE - 30
UNION ALL
SELECT c.customer_name, c.creation_date
 FROM ra_customers c
 WHERE customer_id IN
 (SELECT customer_id FROM so_headers_all h
 WHERE h.open_flag = 'Y');

Plan
--
SELECT STATEMENT
 SORT UNIQUE
 UNION-ALL
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX RANGE SCAN RA_CUSTOMERS_N2
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N2
 TABLE ACCESS BY INDEX ROWID RA_CUSTOMERS
 INDEX UNIQUE SCAN RA_CUSTOMERS_U1

UNION and UNION ALL Hints
There are no hints for this operation.
Optimizer Operations 2-21

How the Optimizer Performs Operations
How the CBO Evaluates the LIKE Operator
The optimizer simplifies conditions that use the LIKE comparison operator to

compare an expression with no wildcard characters into an equivalent condition

that uses an equality operator instead.

In the following example, the optimizer simplifies the first condition into the

second:

last_name LIKE ’SMITH’

is transformed into

last_name = ’SMITH’

The optimizer can simplify these expressions only when the comparison involves

variable-length datatypes. For example, if last_name was of type CHAR(10), then

the optimizer cannot transform the LIKE operation into an equality operation due

to the equality operator following blank-padded semantics and LIKE not following

blank-padded semantics.

How the CBO Evaluates the IN Operator
The optimizer expands a condition that uses the IN comparison operator to an

equivalent condition that uses equality comparison operators and OR logical

operators.

In the following example, the optimizer expands the first condition into the second:

last_name IN (’SMITH’, ’KING’, ’JONES’)

is transformed into

last_name = ’SMITH’ OR last_name = ’KING’ OR last_name = ’JONES’

How the CBO Evaluates the ANY or SOME Operator
The optimizer expands a condition that uses the ANY or SOME comparison operator

followed by a parenthesized list of values into an equivalent condition that uses

equality comparison operators and OR logical operators.

In the following example, the optimizer expands the first condition into the second:

salary > ANY (:first_sal, :second_sal)

See Also: "How the CBO Merges an IN Subquery" on page 2-38
2-22 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
is transformed into

salary > :first_sal OR salary > :second_sal

The optimizer transforms a condition that uses the ANY or SOME operator followed

by a subquery into a condition containing the EXISTS operator and a correlated

subquery.

In the following example, the optimizer transforms the first condition into the

second:

x > ANY (SELECT salary
 FROM employees
 WHERE job_id = ’IT_PROG’)

is transformed into

EXISTS (SELECT salary
 FROM employees
 WHERE job_id = ’IT_PROG’
 AND x > salary)

How the CBO Evaluates the ALL Operator
The optimizer expands a condition that uses the ALL comparison operator followed

by a parenthesized list of values into an equivalent condition that uses equality

comparison operators and AND logical operators.

In the following example, the optimizer expands the first condition into the second:

salary > ALL (:first_sal, :second_sal)

is transformed into

salary > :first_sal AND salary > :second_sal

The optimizer transforms a condition that uses the ALL comparison operator

followed by a subquery into an equivalent condition that uses the ANY comparison

operator and a complementary comparison operator. In the following example, the

optimizer transforms the first condition into the second:

x > ALL (SELECT salary
 FROM employees
 WHERE department_id = 50)

is transformed into
Optimizer Operations 2-23

How the Optimizer Performs Operations
NOT (x <= ANY (SELECT salary
 FROM employees
 WHERE department_id = 50))

The optimizer then further transforms the second query into the following query

using the rule for transforming conditions with the ANY comparison operator,

followed by a correlated subquery:

NOT EXISTS (SELECT salary
 FROM employees
 WHERE department_id = 50
 AND x <= salary)

How the CBO Evaluates the BETWEEN Operator
The optimizer always replaces a condition that uses the BETWEEN comparison

operator with an equivalent condition that uses the >= and <= comparison

operators. In the following example, the optimizer replaces the first condition with

the second:

salary BETWEEN 2000 AND 3000

is transformed into

salary >= 2000 AND salary <= 3000

How the CBO Evaluates the NOT Operator
The optimizer simplifies a condition to eliminate the NOT logical operator. The

simplification involves removing the NOT logical operator and replacing a

comparison operator with its opposite comparison operator. In Example 2–32, the

optimizer simplifies the first condition into the second one:

Example 2–32 How the CBO Evaluates the NOT Operator

NOT department_id = (SELECT department_id FROM employees WHERE last_name = ’Taylor’)

is transformed into

department_id <> (SELECT department_id FROM employees WHERE last_name = ’Taylor’)

Often, a condition containing the NOT logical operator can be written in many

different ways. The optimizer attempts to transform such a condition so that the

subconditions negated by NOTs are as simple as possible, even if the resulting
2-24 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
condition contains more NOTs. In Example 2–33, the optimizer simplifies the first

condition into the second, and then into the third.

Example 2–33 How the CBO Simplifies a NOT Statement

NOT (salary < 1000 OR commission_pct IS NULL)

is transformed into

NOT salary < 1000 AND commission_pct IS NOT NULL

which is further transformed into

salary >= 1000 AND commission_pct IS NOT NULL

How the CBO Evaluates Transitivity
If two conditions in the WHERE clause involve a common column, then the

optimizer sometimes can infer a third condition, using the transitivity principle. The

optimizer can then use the inferred condition to optimize the statement. The

inferred condition can make available an index access path that was not made

available by the original conditions.

Consider a WHERE clause containing two conditions of these forms:

WHERE column1 comp_oper constant
 AND column1 = column2

In this case, the optimizer infers the condition:

column2 comp_oper constant

where:

■ comp_oper is any of the comparison operators =, != , ^= , <, <>, >, <=, or >=

■ constant is any constant expression involving operators, SQL functions,

literals, bind variables, and correlation variables

In Example 2–34, the WHERE clause contains two conditions, each of which uses the

employees .department_id column.

Note: Transitivity is used only by the CBO.
Optimizer Operations 2-25

How the Optimizer Performs Operations
Example 2–34 Query Causing Transitivity Evaluation

SELECT *
 FROM employees, departments
 WHERE employees.department_id = 20
 AND employees.department_id = departments.department_id;

Using transitivity, the optimizer infers the following condition:

departments.department_id = 20

If an index exists on the departments .department_id column, then this

condition makes available access paths using that index.

The optimizer only infers conditions that relate columns to constant expressions,

rather than columns to other columns. Consider a WHERE clause containing two

conditions of these forms:

WHERE column1 comp_oper column3
 AND column1 = column2

In this case, the optimizer does not infer the condition, column2 comp_oper
column3 .

How the CBO Optimizes Common Subexpressions
Common subexpression optimization is an optimization heuristic that identifies,

removes, and collects common subexpressions from disjunctive (OR) branches of a

query. In most cases, it reduces the number of joins to be performed. This

optimization is enabled with the OPTIMIZER_FEATURES_ENABLE initialization

parameter.

A query is considered valid for common subexpression optimization if its WHERE
clause is in the following form:

■ The top-level is a disjunction (a list of ORed logs).

■ Each disjunct is either a simple predicate or a conjunction (a list of ANDed logs).

■ Each conjunct is either a simple predicate or a disjunction of simple predicates.

(A predicate is considered simple if it does not contain AND or OR.)

■ The expression appears in all the disjunctive branches of the query.
2-26 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
Examples of Common Subexpression Optimization
The query in Example 2–35 finds names of employees who work in a department

located in London and who make more than 60K or who are accountants. The query

contains common subexpressions in its two disjunctive branches.

Example 2–35 Optimization of Common Subexpressions in Two OR Branches

Initial Query
SELECT employees.last_name
 FROM employees E, departments D
 WHERE (D.department_id = E.department_id AND E.job_id = ’AC_ACCOUNT’ AND
D.location = 2400)
 OR
 E.department_id = D.department_id AND E.salary > 60000 AND D.location = 2400);

The elimination of the common subexpressions transforms this query into the

following query, reducing the number of joins from two to one.

Optimized Query
SELECT employees.last_name
FROM employees E, departments D
WHERE (D.department_id = E.department_id AND D.location = 2400)
 AND (E.job_id = ’AC_ACCOUNT’ OR E.salary > 60000);

The query in Example 2–36 contains common subexpression in three disjunctive

branches.

Example 2–36 Optimization of Common Subexpressions in Three OR Branches

Initial Query
SELECT SUM (l_extendedprice* (1 - l_discount))
FROM PARTS, LINEITEM
WHERE (p_partkey = l_partkey
 AND p_brand = 'Brand#12'
 AND p_container IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
 AND l_quantity >= 1 AND l_quantity <= 1 + 10
 AND p_size >= 1 AND p_size <= 5
 AND l_shipmode IN ('AIR', 'REG AIR')
 AND l_shipinstruct = 'DELIVER IN PERSON')
 OR (l_partkey = p_partkey)
 AND p_brand = 'Brand#23'
 AND p_container IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
 AND l_quantity >= 10 AND l_quantity <= 10 + 10
Optimizer Operations 2-27

How the Optimizer Performs Operations
 AND p_size >= 1 AND p_size <= 10 AND p_size BETWEEN 1 AND 10
 AND l_shipmode IN ('AIR', 'REG AIR')
 AND l_shipinstruct = 'DELIVER IN PERSON')
 OR (p_partkey = l_partkey
 AND p_brand = 'Brand#34'
 AND p_container IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
 AND l_quantity >= 20 AND l_quantity <= 20 + 10
 AND p_size >= 1 AND p_size <= 15
 AND l_shipmode IN ('AIR', 'REG AIR')
 AND l_shipinstruct = 'DELIVER IN PERSON');

This query is transformed by common subexpression optimization to the following

query, reducing the number joins from three to one.

Optimized Query
SELECT SUM (l_extendedprice* (1 - l_discount))
FROM PARTS, LINEITEM
WHERE (p_partkey = l_partkey /* these are the four common subexpressions */
 AND p_size >= 1
 AND l_shipmode IN ('AIR', 'REG AIR')
 AND l_shipinstruct = 'DELIVER IN PERSON')
 AND
 ((p_brand = 'Brand#12'
 AND p_container IN ('SM CASE', 'SM BOX', 'SM PACK', 'SM PKG')
 AND l_quantity >= 1 AND l_quantity <= 1 + 10
 AND p_size <= 5)
 OR (p_brand = 'Brand#23'
 AND p_container IN ('MED BAG', 'MED BOX', 'MED PKG', 'MED PACK')
 AND l_quantity >= 10 AND l_quantity <= 10 + 10
 AND p_size <= 10)
 OR (p_brand = 'Brand#34'
 AND p_container IN ('LG CASE', 'LG BOX', 'LG PACK', 'LG PKG')
 AND l_quantity >= 20 AND l_quantity <= 20 + 10
AND p_size <= 15));

How the CBO Evaluates DETERMINISTIC Functions
In some cases, the optimizer can use a previously calculated value rather than

executing a user-written function. This is only safe for functions that behave in a

restricted manner. The function must return the same output return value for any

given set of input argument values.

The function's result must not differ because of differences in the content of package

variables or the database, or session parameters such as the globalization support
2-28 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Performs Operations
parameters. Furthermore, if the function is redefined in the future, then its output

return value must be the same as that calculated with the prior definition for any

given set of input argument values. Finally, there must be no meaningful side

effects to using a precalculated value instead of executing the function again.

The creator of a function can promise to the Oracle server that the function behaves

according to these restrictions by using the keyword DETERMINISTIC when

declaring the function with a CREATE FUNCTION statement or in a CREATE
PACKAGE or CREATE TYPE statement. The server does not attempt to verify this

declaration—even a function that obviously manipulates the database or package

variables can be declared DETERMINISTIC. It is the programmer's responsibility to

use this keyword only when appropriate.

Calls to a DETERMINISTIC function might be replaced by the use of an already

calculated value when the function is called multiple times within the same query,

or if there is a function-based index or a materialized view defined that includes a

relevant call to the function.

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals for more

information on DETERMINISTIC functions

■ Oracle9i SQL Reference for descriptions of CREATE FUNCTION,
CREATE INDEX, and CREATE MATERIALIZED VIEW

■ Oracle9i Database Concepts for a description of function-based

indexes

■ Oracle9i Data Warehousing Guide for detailed information about

materialized views
Optimizer Operations 2-29

How the Optimizer Transforms SQL Statements
How the Optimizer Transforms SQL Statements
SQL is a very flexible query language; there are often many statements you could

use to achieve the same goal. Sometimes, the optimizer (Query Transformer)

transforms one such statement into another that achieves the same goal if the

second statement can be executed more efficiently.

This section discusses the following topics:

■ How the CBO Transforms ORs into Compound Queries

■ How the CBO Unnests Subqueries

■ How the CBO Merges Views

■ How the CBO Pushes Predicates

■ How the CBO Executes Compound Queries

How the CBO Transforms ORs into Compound Queries
If a query contains a WHERE clause with multiple conditions combined with OR
operators, then the optimizer transforms it into an equivalent compound query that

uses the UNION ALL set operator, if this makes the query execute more efficiently:

■ If each condition individually makes an index access path available, then the

optimizer can make the transformation. The optimizer chooses an execution

plan for the resulting statement that accesses the table multiple times using the

different indexes and then puts the results together.

■ If any condition requires a full table scan because it does not make an index

available, then the optimizer does not transform the statement. The optimizer

chooses a full table scan to execute the statement, and Oracle tests each row in

the table to determine whether it satisfies any of the conditions.

■ For statements that use the CBO, the optimizer might use statistics to determine

whether to make the transformation, by estimating and then comparing

execution costs of the original statement and the resulting statement.

■ The CBO does not use the OR transformation for IN -lists or ORs on the same

column; instead, it uses the INLIST iterator operator.

See Also: "Understanding Joins" on page 1-40 for additional

information about optimizing statements that contain joins,

semi-joins, or anti-joins
2-30 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
Example 2–37 shows how an OR query is transformed into a compound query. In

this example, the WHERE clause contains two conditions combined with an OR
operator.

Example 2–37 Transforming an OR Query into a Compound Query

Initial Query
SELECT *
 FROM employees
 WHERE job_id = ’ST_CLERK’
 OR department_id = 50;

If there are indexes on both the job_id and department_id columns, then the

optimizer might transform this query into the following equivalent query:

Optimized Query
SELECT *
 FROM employees
 WHERE job_id = ’ST_CLERK’
UNION ALL
SELECT *
 FROM employees
 WHERE department_id = 50
 AND job_id <> ’ST_CLERK’;

When the CBO is deciding whether to make a transformation, the optimizer

compares the cost of executing the original query using a full table scan with that of

executing the resulting query.

The execution plan for the transformed statement might look like the illustration in

Figure 2–1. The shaded boxes indicate steps that physically retrieve data and the

clear boxes indicate steps that operate on data returned from the previous step.

See Also: "Understanding Access Paths for the RBO" on page 8-3

and "How the CBO Chooses an Access Path" on page 1-37 for

information on access paths and how indexes make them available
Optimizer Operations 2-31

How the Optimizer Transforms SQL Statements
Figure 2–1 Execution Plan for a Transformed Query Containing OR

To execute the transformed query, Oracle performs the steps in Figure 2–1 in the

following order:

1. Steps 3 and 5 scan the indexes on the job_id and department_id columns

using the conditions of the component queries. These steps obtain rowids of the

rows that satisfy the component queries.

2. Steps 2 and 4 use the rowids from steps 3 and 5 to locate the rows that satisfy

each component query.

3. Step 1 puts together the row sources returned by steps 2 and 4.

If either the job_id column or the department_id column is not indexed, then

the optimizer does not even consider the transformation, because the resulting

compound query would require a full table scan to execute one of its component

queries. Executing the compound query with a full table scan in addition to an

index scan could not possibly be faster than executing the original query with a full

table scan.

TABLE ACCESS
(BY ROWID)
employees

2 4

TABLE ACCESS
(BY ROWID)
employees

5

INDEX
(RANGE SCAN)

emp_job_ix

3

INDEX
(RANGE SCAN)

emp_department_ix

1

CONCATENATION
2-32 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
Example 2–38 shows the kind of query that is not transformed. The query in this

example assumes that there is an index on the last_name column only:

Example 2–38 Query Containing OR That Is Not Transformed

SELECT *
 FROM employees
 WHERE last_name = ’Smith’
 OR salary > commission_pct*100000;

Transforming this query would result in the compound query in Example 2–39.

Example 2–39 Compound Query Containing OR That Is Transformed

SELECT *
 FROM employees
 WHERE last_name = ’Smith’
UNION ALL
SELECT *
 FROM employees
 WHERE salary > commission_pct*100000;

Because the condition in the WHEREclause of the second component query (salary
> commission_pct) does not make an index available, the compound query

requires a full table scan. For this reason, the optimizer does not make the

transformation, but chooses a full table scan to execute the original statement.

How the CBO Unnests Subqueries
To optimize a complex statement, the optimizer chooses to do one of the following:

■ Transform the complex statement into an equivalent join statement, and then

optimize the join statement

■ Optimize the complex statement as it is

The optimizer transforms a complex statement into a join statement whenever the

resulting join statement is guaranteed to return exactly the same rows as the

complex statement. This transformation allows Oracle to execute the statement by

taking advantage of join optimizer techniques.

Example 2–40 shows how the optimizer uses a join to unnest a subquery. The

complex statement in this example selects all rows from the orders table for which

owners appear in the customers table.
Optimizer Operations 2-33

How the Optimizer Transforms SQL Statements
Example 2–40 How the CBO Unnests Subqueries

Initial Query
SELECT *
 FROM orders
 WHERE customer_id IN
 (SELECT customer_id FROM customers);

If the customer_id of the customers table is a primary key or has a UNIQUE
constraint, then the optimizer can transform the complex query into the following

join statement that is guaranteed to return the same data:

Optimized Query
SELECT orders.*
 FROM orders, customers
 WHERE orders.customer_id = customers.customer_id;

To execute this statement, Oracle performs a nested-loops join operation. The

execution plan for this statement might look like Figure 2–2.

Figure 2–2 Execution Plan for a Nested Loops Join

If the optimizer cannot transform a complex statement into a join statement, then it

chooses execution plans for the parent statement and the subquery as though they

were separate statements. Oracle then executes the subquery and uses the rows

returned to execute the parent query.

TABLE ACCESS
(FULL)
orders

2 3

INDEX ACCESS
(UNIQUE SCAN)
customers_pk

1

NESTED LOOPS
2-34 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
Example 2–41 shows the kind of statement is not transformed. The complex

statement in this example returns all rows from the customers table that have

credit limits greater than the average credit limit.

Example 2–41 Complex Statement That Is Not Transformed

SELECT *
 FROM customers
 WHERE credit_limit >
 (SELECT AVG(credit_limit) FROM customers);

No join statement can perform the function of this statement, so the optimizer does

not transform the statement.

How the CBO Merges Views
To merge the view’s query into a referencing query block in the accessing statement,

the optimizer replaces the name of the view with the names of its base tables in the

query block and adds the condition of the view’s query’s WHERE clause to the

accessing query block’s WHERE clause.

This optimization applies to select-project-join views, which are views that contain

only selections, projections, and joins. This means that these views do not contain

items such as set operators, aggregate functions, DISTINCT , GROUP BY, and

CONNECT BY. See "Mergeable and Nonmergeable Views" on page 2-36.

Example 2–42 shows how the CBO merges views. The view in this example is of all

employees who work in department 10:

Example 2–42 How the CBO Merges Views

CREATE VIEW emp_10
 AS SELECT employee_id, last_name, job_id, manager_id, hire_date, salary,
commission_pct, department_id
 FROM employees
 WHERE department_id = 10;

Note: Complex queries whose subqueries contain aggregate

functions such as AVG cannot be transformed into join statements.

See Also: "Understanding Joins" on page 1-40 for information on

nested loops joins
Optimizer Operations 2-35

How the Optimizer Transforms SQL Statements
The following query accesses the view. The query selects the Ids greater than 170 of

employees who work in department 10:

SELECT employee_id
 FROM emp_10
 WHERE employee_id > 170;

The optimizer transforms the query into the following query that accesses the

view’s base table:

SELECT employee_id
 FROM employees
 WHERE department_id = 10
 AND employee_id > 170;

If there are indexes on the department_id or employee_id columns, then the

resulting WHERE clause makes them available.

Mergeable and Nonmergeable Views The optimizer can merge a view into a referencing

query block when the view has one or more base tables, provided the view does not

contain any of the following:

■ Set operators (UNION, UNION ALL, INTERSECT, MINUS)

■ A CONNECT BY clause

■ A ROWNUM pseudocolumn

■ Aggregate functions (AVG, COUNT, MAX, MIN, SUM) in the select list

When a view contains one of the following structures, it can be merged into a

referencing query block only if Complex View Merging is enabled:

■ A GROUP BY clause

■ A DISTINCT operator in the select list

View merging is not possible for a view that has multiple base tables, if it is on the

right side of an outer join. However, if a view on the right side of an outer join has

only one base table, then the optimizer can use complex view merging, even if an

expression in the view can return a nonnull value for a NULL.

If a query has a CURSOR expression, then no view merging will take place, even for

views which would normally be mergeable. An example is the following:

CREATE VIEW emp_v AS
 SELECT last_name,employee_id FROM employees;
SELECT CURSOR(select * from sys.dual), last_name, employee_id from emp_v;
2-36 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
This query will not merge the emp_v view.

Complex View Merging If a view’s query contains a GROUP BY clause or DISTINCT
operator in the select list, then the optimizer can merge the view’s query into the

accessing statement only if complex view merging is enabled. Complex merging of

a view with a GROUP BY clause is illustrated in Example 2–43.

Complex merging can also be used to merge an IN subquery into the accessing

statement if the subquery is uncorrelated, as shown in Example 2–44. Complex

merging is not cost-based; it must be enabled with the initialization parameter

OPTIMIZER_FEATURES_ENABLEor the MERGEhint. Without this hint or parameter

setting, the optimizer uses another approach, pushing predicates.

Example 2–43 How the CBO Merges a View with a GROUP BY Clause

The view avg_salary_view contains the average salaries for each department:

CREATE VIEW avg_salary_view AS
 SELECT department_id, AVG(salary) AS avg_sal_dept,
 FROM employees
 GROUP BY department_id;

If complex view merging is enabled, then the optimizer can transform the following

query, which finds the average salaries of departments in London:

SELECT departments.location_id, avg_sal_dept
 FROM departments, avg_salary_view
 WHERE departments.department_id = avg_salary_view.department_id
 AND departments.location_id = 2400;

into the following query:

SELECT departments.loc, AVG(salary)
 FROM departments, employees
 WHERE departments.department_id = employees.department_id

See Also: "Understanding Joins" on page 1-40

See Also:

■ "How the CBO Pushes Predicates" on page 2-38 for an alternate

approach

■ Chapter 5, "Optimizer Hints" for details about the MERGE and

NO_MERGE hints
Optimizer Operations 2-37

How the Optimizer Transforms SQL Statements
 AND departments.location_id = 2400
 GROUP BY departments.rowid, departments.location_id;

The transformed query accesses the view’s base table, selecting only the rows of

employees who work in London and grouping them by department.

Example 2–44 How the CBO Merges an IN Subquery

Complex merging can be used for an IN clause with a noncorrelated subquery, as

well as for views. The view min_salary_view contains the minimum salaries for

each department:

CREATE VIEW min_salary_view AS
SELECT department_id, MIN(salary) min_sal
 FROM employees
 GROUP BY department_id;

If complex merging is enabled, then the optimizer can transform the following

query, which finds all employees who earn the minimum salary for their

department in London:

SELECT employees.last_name, employees.salary
 FROM employees, departments
 WHERE (employees.department_id, employees.salary) IN
 (select department_id, min_sal from min_salary_view)
 AND employees.department_id = departments.department_id
 AND departments.location_id = 2400;

into the following query (where e1 and e2 represent the employees table as it is

referenced in the accessing query block and the view’s query block, respectively):

SELECT e1.last_name, e1.salary
 FROM employees e1, departments, employees e2
 WHERE e1.department_id = departments.department_id
 AND departments.location_id = 2400
 AND e1.department_id = e2.department_id
 GROUP BY e1.rowid, departments.rowid, e1.last_name, e1.salary
HAVING e1.salary = MIN(e2.salary);

How the CBO Pushes Predicates
The optimizer can transform a query block that accesses a nonmergeable view by

pushing the query block’s predicates inside the view’s query. Examples 2–45 and

2–46 illustrate this process.
2-38 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
In Example 2–45, the two_emp_tables view is the union of two employee tables.

The view is defined with a compound query that uses the UNION set operator.

Example 2–45 How the CBO Pushes Predicates - the UNION Set Operator

CREATE VIEW two_emp_tables
 (employee_id, last_name, job_id, manager_id, hire_date, salary,
 commission_pct, department_id) AS
 SELECT employee_id, last_name, job_id, manager_id, hire_date, salary,
commission_pct, department_id
 FROM emp1
 UNION
 SELECT employee_id, last_name, job_id, manager_id, hire_date,
 salary, commission_pct, department_id
 FROM emp2;

The following query accesses the view. The query selects the IDs and names of all

employees in either table who work in department 50:

SELECT employee_id, last_name
 FROM two_emp_tables
 WHERE department_id = 50;

Because the view is defined as a compound query, the optimizer cannot merge the

view’s query into the accessing query block. Instead, the optimizer can transform

the accessing statement by pushing its predicate, the WHERE clause condition

(department_id = 50), into the view’s compound query.

The resulting statement looks like the following:

SELECT employee_id, last_name
 FROM (SELECT employee_id, last_name, job_id, manager_id, hire_date,
 salary, commission_pct, department_id
 FROM emp1
 WHERE department_id = 50
 UNION
 SELECT employee_id, last_name, job_id, manager_id, hire_date,
 salary, commission_pct, department_id
 FROM emp2
 WHERE department_id = 50);

If there is an index on the department_id column, then the resulting WHERE
clauses make it available.

Figure 2–3 shows the execution plan of the resulting statement.
Optimizer Operations 2-39

How the Optimizer Transforms SQL Statements
Figure 2–3 Accessing a View Defined with the UNION Set Operator

TABLE ACCESS
(FULL)
emp1

5 6

TABLE ACCESS
(FULL)
emp2

4

UNION-ALL

3

SORT
(UNIQUE)

2

PROJECTION

1

VIEW
two_emp_tables
2-40 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
To execute this statement, Oracle performs the steps in Figure 2–3 in the following

order:

1. Steps 5 and 6 perform full scans of the emp1 and emp2 tables.

2. Step 4 performs a UNION-ALL operation returning all rows returned by either

step 5 or step 6, including all copies of duplicates.

3. Step 3 sorts the result of step 4, eliminating duplicate rows.

4. Step 2 extracts the desired columns from the result of step 3.

5. Step 1 indicates that the view’s query was not merged into the accessing query.

In Example 2–46, the view emp_group_by_deptno contains the department

number, average salary, minimum salary, and maximum salary of all departments

that have employees.

Example 2–46 How the CBO Pushes Predicates - the GROUP BY Clause

CREATE VIEW emp_group_by_deptno
 AS SELECT department_id,
 AVG(salary) avg_sal,
 MIN(salary) min_sal,
 MAX(salary) max_sal
 FROM employees
 GROUP BY department_id;

The following query selects the average, minimum, and maximum salaries of

department 50 from the emp_group_by_deptno view:

SELECT *
 FROM emp_group_by_deptno
 WHERE department_id = 50;

The optimizer transforms the statement by pushing its predicate (the WHERE clause

condition) into the view’s query. The resulting statement looks like the following:

SELECT department_id,
 AVG(salary) avg_sal,
 MIN(salary) min_sal,
 MAX(salary) max_sal,
 FROM employees
 WHERE department_id = 50
 GROUP BY department_id;
Optimizer Operations 2-41

How the Optimizer Transforms SQL Statements
If there is an index on the department_id column, then the resulting WHERE
clause makes it available. Figure 2–4 shows the execution plan for the resulting

statement. The execution plan uses an index on the department_id column.

Figure 2–4 Accessing a View Defined with a GROUP BY Clause

4

INDEX
(RANGE SCAN)

emp_department_ix

3

TABLE ACCESS
(BY ROWID)
employees

2

SORT
(GROUP BY)

1

VIEW
emp_group_by

_deptno
2-42 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
To execute this statement, Oracle performs the steps in Figure 2–4 in the following

order:

1. Step 4 performs a range scan on the index emp_department_ix (an index on

the department_id column of the employees table) to retrieve the rowids of

all rows in the employees table with a department_id value of 50.

2. Step 3 accesses the employees table using the rowids retrieved by step 4.

3. Step 2 sorts the rows returned by step 3 to calculate the average, minimum, and

maximum salary values.

4. Step 1 indicates that the view’s query was not merged into the accessing query.

How the CBO Applies an Aggregate Function to the View The optimizer can transform a

query that contains an aggregate function (AVG, COUNT, MAX, MIN, SUM) by applying

the function to the view’s query.

The query in Figure 2–47 accesses the emp_group_by_deptno view defined in

Figure 2–46. The query derives the averages for the average department salary, the

minimum department salary, and the maximum department salary from the

employee table.

Example 2–47 How the CBO Applies an Aggregate Function to a View

SELECT AVG(avg_sal), AVG(min_sal), AVG(max_sal)
 FROM emp_group_by_deptno;

The optimizer transforms this statement by applying the AVG aggregate function to

the select list of the view’s query:

SELECT AVG(AVG(salary)), AVG(MIN(salary)), AVG(MAX(salary))
 FROM employees
 GROUP BY department_id;

Figure 2–5 shows the execution plan of the resulting statement.
Optimizer Operations 2-43

How the Optimizer Transforms SQL Statements
Figure 2–5 Applying Aggregate Functions to a View Defined with GROUP BY Clause

4

TABLE ACCESS
(FULL)

employees

3

SORT
(GROUP BY)

2

VIEW
emp_group_by

_deptno

1

AGGREGATE
(GROUP BY)
2-44 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
To execute this statement, Oracle performs the steps in Figure 2–5 in the following

order:

1. Step 4 performs a full scan of the employees table.

2. Step 3 sorts the rows returned by step 4 into groups based on their

department_id values and calculates the average, minimum, and maximum

salary value of each group.

3. Step 2 indicates that the view’s query was not merged into the accessing query.

4. Step 1 calculates the averages of the values returned by step 2.

How the CBO Executes Views in Outer Joins
For a view that is on the right side of an outer join, the optimizer can use one of two

methods, depending on how many base tables the view accesses:

■ If the view has only one base table, then the optimizer can use view merging.

■ If the view has multiple base tables, then the optimizer can push the join

predicate into the view.

How the CBO Accesses the View’s Rows with the Original Statement
The optimizer cannot transform all statements that access views into equivalent

statements that access base table(s). For example, if a query accesses a ROWNUM
pseudocolumn in a view, then the view cannot be merged into the query, and the

query’s predicate cannot be pushed into the view.

To execute a statement that cannot be transformed into one that accesses base tables,

Oracle issues the view’s query, collects the resulting set of rows, and then accesses

this set of rows with the original statement as though it were a table. Example 2–48

illustrates this process.

Example 2–48 How the CBO Accesses the View’s Rows

Consider the emp_group_by_deptno view defined in Figure 2–46:

CREATE VIEW emp_group_by_deptno
 AS SELECT department_id,
 AVG(salary) avg_sal,
 MIN(salary) min_sal,
 MAX(salary) max_sal
 FROM employees
 GROUP BY department_id;
Optimizer Operations 2-45

How the Optimizer Transforms SQL Statements
The following query accesses this view. The query joins the average, minimum, and

maximum salaries from each department represented in the view to the name and

location of the department in the departments table.

SELECT emp_group_by_deptno.department_id, avg_sal, min_sal,
 max_sal, department_name, location_id
 FROM emp_group_by_deptno, departments
 WHERE emp_group_by_deptno.department_id = departments.department_id;

Because there is no equivalent statement that accesses only base tables, the

optimizer cannot transform this statement. Instead, the optimizer chooses an

execution plan that issues the view’s query and then uses the resulting set of rows

as it would the rows resulting from a table access.

Figure 2–6 shows the execution plan for this statement.

See Also: "Understanding Joins" on page 1-40 for more

information on how Oracle performs a nested loops join operation
2-46 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
Figure 2–6 Joining a View Defined with a GROUP BY Clause to a Table

To execute this statement, Oracle performs the steps in Figure 2–6 in the following

order:

1. Step 4 performs a full scan of the employees table.

2. Step 3 sorts the results of step 4 and calculates the average, minimum, and

maximum salary values selected by the query for the emp_group_by_
deptno view.

VIEW
emp_group_by

_deptno

2 5

TABLE ACCESS
(BY ROWID)
departments

6

INDEX
(UNIQUE SCAN)

dept_id_pk

4

TABLE ACCESS
(FULL)

employees

3

SORT
(GROUP BY)

1

NESTED LOOPS
Optimizer Operations 2-47

How the Optimizer Transforms SQL Statements
3. Step 2 used the data from the previous two steps for a view.

4. For each row returned by step 2, step 6 uses the department_id value to

perform a unique scan of the dept_id_pk index.

5. Step 5 uses each rowid returned by step 6 to locate the row in the

departments table with the matching department_id value.

6. Oracle combines each row returned by step 2 with the matching row returned

by step 5 and returns the result.

How the CBO Executes Compound Queries
To choose the execution plan for a compound query, the optimizer chooses an

execution plan for each of its component queries, and then combines the resulting

row sources with the union, intersection, or minus operation, depending on the set

operator used in the compound query. Examples 2–49, 2–50 and 2–51 illustrate the

process.

The query in Example 2–49 uses the UNION ALL operator to select all occurrences of

all parts in either the orders1 table or the orders2 table.

Example 2–49 How the CBO Executes Compound Queries with UNION ALL

SELECT part FROM orders1
 UNION ALL
SELECT part FROM orders2;

Figure 2–7 shows the execution plan for this statement:
2-48 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
Figure 2–7 Compound Query with UNION ALL Set Operator

To execute this statement, Oracle performs the steps in Figure 2–7 in the following

order:

1. Steps 2 and 3 perform full table scans on the orders1 and orders2 tables.

2. Step 1 performs a UNION-ALL operation returning all rows that are returned by

either step 2 or step 3 including all copies of duplicates.

The query in Example 2–50 uses the UNION operator to select all parts that appear

in either the orders1 or orders2 table.

Example 2–50 How the CBO Executes Compound Queries with UNION

SELECT part FROM orders1
 UNION
SELECT part FROM orders2;

Figure 2–8 shows the execution plan for this statement:

TABLE ACCESS
(FULL)
orders1

2 3

TABLE ACCESS
(FULL)
orders2

1

UNION-ALL
Optimizer Operations 2-49

How the Optimizer Transforms SQL Statements
Figure 2–8 Compound Query with UNION Set Operator

This execution plan is identical to the one for the UNION ALL operator shown in

Figure 2–7, except that in this case, Oracle uses the SORT operation to eliminate the

duplicates returned by the UNION ALL operation.

The query in Example 2–51 uses the INTERSECT operator to select only those parts

that appear in both the orders1 and orders2 tables.

Example 2–51 How the CBO Executes Compound Queries with INTERSECT

SELECT part FROM orders1
INTERSECT
SELECT part FROM orders2;

Figure 2–9 shows the execution plan for this statement:

TABLE ACCESS
(FULL)
orders1

3 4

TABLE ACCESS
(FULL)
orders2

2

UNION-ALL

1

SORT
(UNIQUE)
2-50 Oracle9i Database Performance Tuning Guide and Reference

How the Optimizer Transforms SQL Statements
Figure 2–9 Compound Query with INTERSECT Set Operator

To execute this statement, Oracle performs the steps in Figure 2–9 in the following

order:

1. Steps 3 and 5 perform full table scans of the orders1 and orders2 tables.

2. Steps 2 and 4 sort the results of steps 3 and 5, eliminating duplicates in each

row source.

3. Step 1 performs an INTERSECTION operation that returns only rows that are

returned by both steps 2 and 4.

3

TABLE ACCESS
(FULL)
orders1

SORT
(UNIQUE)

2 4

SORT
(UNIQUE)

5

TABLE ACCESS
(FULL)
orders2

1

INTERSECTION
Optimizer Operations 2-51

How the Optimizer Transforms SQL Statements
2-52 Oracle9i Database Performance Tuning Guide and Reference

Gathering Optimizer Sta
3

Gathering Optimizer Statistics

This chapter explains why statistics are important for the cost-based optimizer and

how to gather and use statistics.

The chapter contains the following sections:

■ Understanding Statistics

■ Generating Statistics

■ Using Statistics

■ Using Histograms
tistics 3-1

Understanding Statistics
Understanding Statistics
As database administrator, you can generate statistics that quantify the data

distribution and storage characteristics of tables, columns, indexes, and partitions.

The cost-based optimization approach uses these statistics to calculate the

selectivity of predicates and to estimate the cost of each execution plan. Selectivity
is the fraction of rows in a table that the SQL statement’s predicate chooses. The

optimizer uses the selectivity of a predicate to estimate the cost of a particular

access method and to determine the optimal join order and join method.

The statistics are stored in the data dictionary and can be exported from one

database and imported into another. For example, you might want to transfer your

statistics to a test system to simulate your production environment.

You should gather statistics periodically for objects where the statistics become stale

over time because of changing data volumes or changes in column values. New

statistics should be gathered after a schema object’s data or structure are modified

in ways that make the previous statistics inaccurate. For example, after loading a

significant number of rows into a table, collect new statistics on the number of rows.

After updating data in a table, you do not need to collect new statistics on the

number of rows, but you might need new statistics on the average row length.

Use the DBMS_STATS package to generate statistics.

Statistics generated include the following:

■ Table statistics

– Number of rows

– Number of blocks

– Average row length

■ Column statistics

– Number of distinct values (NDV) in column

– Number of nulls in column

Note: The statistics mentioned in this section are CBO statistics,

not instance performance statistics visible through V$ views.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference
3-2 Oracle9i Database Performance Tuning Guide and Reference

Generating Statistics
– Data distribution (histogram)

■ Index statistics

– Number of leaf blocks

– Levels

– Clustering factor

■ System statistics

– I/O performance and utilization

– CPU performance and utilization

Generating Statistics
Because the cost-based approach relies on statistics, you should generate statistics

for all tables and clusters and all indexes accessed by your SQL statements before

using the cost-based approach. If the size and data distribution of the tables change

frequently, then regenerate these statistics regularly to ensure the statistics

accurately represent the data in the tables.

Oracle generates statistics using the following techniques:

■ Estimation based on random data sampling

■ Exact computation

■ User-defined statistics collection methods

To perform an exact computation, Oracle requires enough space to perform a scan

and sort of the table. If there is not enough space in memory, then temporary space

might be required. For estimations, Oracle requires enough space to perform a scan

and sort of only the rows in the requested sample of the table. For indexes,

computation does not take up as much time or space.

Some statistics are computed exactly, such as the number of data blocks currently

containing data in a table or the depth of an index from its root block to its leaf

blocks.

Oracle Corporation recommends setting the ESTIMATE_PERCENT parameter of the

DBMS_STATS gathering procedures to DBMS_STATS.AUTO_SAMPLE_SIZE to
maximize performance gains while achieving necessary statistical accuracy. AUTO_
SAMPLE_SIZE lets Oracle determine the best sample size for good statistics. For

example, to collect table and column statistics for all tables in the OE schema with

auto-sampling:
Gathering Optimizer Statistics 3-3

Generating Statistics
EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS('OE',DBMS_STATS.AUTO_SAMPLE_SIZE);

To estimate statistics, Oracle selects a random sample of data. You can specify the

sampling percentage and whether sampling should be based on rows or blocks.

Oracle Corporation recommends using DBMS_STATS.AUTO_SAMPLE_SIZE for the

sampling percentage. When in doubt, choose row sampling.

■ Row sampling reads rows without regard to their physical placement on disk.

This provides the most random data for estimates, but it can result in reading

more data than necessary. For example, in the worst case a row sample might

select one row from each block, requiring a full scan of the table or index.

■ Block sampling reads a random sample of blocks and uses all of the rows in

those blocks for estimates. This reduces the amount of I/O activity for a given

sample size, but it can reduce the randomness of the sample if rows are not

randomly distributed on disk. Block sampling is not available for index

statistics.

When you generate statistics for a table, column, or index, if the data dictionary

already contains statistics for the object, then Oracle updates the existing statistics.

Oracle also invalidates any currently parsed SQL statements that access the object.

The next time such a statement executes, the optimizer automatically chooses a new

execution plan based on the new statistics. Distributed statements issued on remote

databases that access the analyzed objects use the new statistics the next time Oracle

parses them.

When you associate a statistics type with a column or domain index, Oracle calls

the statistics collection method in the statistics type, if you analyze the column or

domain index.

Getting Statistics for Partitioned Schema Objects
Partitioned schema objects can contain multiple sets of statistics. They can have

statistics that refer to any of the following:

■ The entire schema object as a whole (global statistics)

■ An individual partition

■ An individual subpartition of a composite partitioned object

Unless the query predicate narrows the query to a single partition, the optimizer

uses the global statistics. Because most queries are not likely to be this restrictive, it

is most important to have accurate global statistics. Intuitively, it can seem that

generating global statistics from partition-level statistics is straightforward;
3-4 Oracle9i Database Performance Tuning Guide and Reference

Generating Statistics
however, this is true only for some of the statistics. For example, it is very difficult

to figure out the number of distinct values for a column from the number of distinct

values found in each partition, because of the possible overlap in values. Therefore,

actually gathering global statistics with the DBMS_STATS package is highly

recommended, rather than calculating them with the ANALYZE statement.

Using the DBMS_STATS Package
The PL/SQL package DBMS_STATS lets you generate and manage statistics for

cost-based optimization. You can use this package to gather, modify, view, export,

import, and delete statistics. You can also use this package to identify or name

statistics gathered.

The DBMS_STATS package can gather statistics on indexes, tables, columns, and

partitions, as well as statistics on all schema objects in a schema or database. It does

not gather cluster statistics—you can use DBMS_STATS to gather statistics on the

individual tables instead of the whole cluster.

The statistics-gathering operations can run either serially or in parallel. Index

statistics are not gathered in parallel.

For partitioned tables and indexes, DBMS_STATS can gather separate statistics for

each partition, as well as global statistics for the entire table or index. Similarly, for

composite partitioning, DBMS_STATS can gather separate statistics for

subpartitions, partitions, and the entire table or index. Depending on the SQL

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer will

eventually use only statistics that have been collected by DBMS_
STATS. See Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on this package.

However, you must use the ANALYZE statement rather than DBMS_
STATS for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks
Gathering Optimizer Statistics 3-5

Generating Statistics
statement being optimized, the optimizer can choose to use either the partition (or

subpartition) statistics or the global statistics.

DBMS_STATS gathers only statistics needed for cost-based optimization; it does not

gather other statistics. For example, the table statistics gathered by DBMS_STATS
include the number of rows, number of blocks currently containing data, and

average row length, but not the number of chained rows, average free space, or

number of unused data blocks.

Gathering Statistics with the DBMS_STATS Package
Table 3–1 lists the procedures in the DBMS_STATS package for gathering statistics:

Gathering System Statistics
System statistics enable the optimizer to consider a system's I/O and CPU

performance and utilization. For each plan candidate, the optimizer computes

estimates for I/O and CPU costs. It is important to know the system characteristics

to pick the most efficient plan with optimal proportion between I/O and CPU cost.

See Also:

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information about the DBMS_STATS package

■ Oracle9i Data Cartridge Developer’s Guide for more information

about user-defined statistics

Table 3–1 Statistics Gathering Procedures in the DBMS_STATS Package

Procedure Collects

GATHER_INDEX_STATS Index statistics

GATHER_TABLE_STATS Table, column, and index statistics

GATHER_SCHEMA_STATS Statistics for all objects in a schema

GATHER_DATABASE_STATS Statistics for all objects in a database

GATHER_SYSTEM_STATS CPU and I/O statistics for the system

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

syntax and examples of all DBMS_STATS procedures
3-6 Oracle9i Database Performance Tuning Guide and Reference

Generating Statistics
System I/O characteristics depend on many factors and do not stay constant all the

time. Using system statistics management routines, database administrators can

capture statistics in the interval of time when the system has the most common

workload. For example, database applications can process OLTP transactions

during the day and run OLAP reports at night. Administrators can gather statistics

for both states and activate appropriate OLTP or OLAP statistics when needed. This

enables the optimizer to generate relevant costs with respect to available system

resource plans.

When Oracle generates system statistics, it analyzes system activity in a specified

period of time. Unlike table, index, or column statistics, Oracle does not invalidate

already parsed SQL statements when system statistics get updated. All new SQL

statements are parsed using new statistics. Oracle Corporation highly recommends

that you gather system statistics.

The DBMS_STATS.GATHER_SYSTEM_STATS routine collects system statistics in a

user-defined timeframe. You can also set system statistics values explicitly using

DBMS_STATS.SET_SYSTEM_STATS. Use DBMS_STATS.GET_SYSTEM_STATS to
verify system statistics.

Example 3–1 shows database applications processing OLTP transactions during the

day and running reports at night. First, system statistics must be collected. The

values in this example are user-defined; in other words, you must determine an

appropriate time interval and name for your environment.

Example 3–1 Generating System Statistics

Gather statistics during the day. Gathering ends after 720 minutes and is stored in

the mystats table:

BEGIN
DBMS_STATS.GATHER_SYSTEM_STATS(
 gathering_mode => 'interval',
 interval => 720,
 stattab => 'mystats',
 statid => 'OLTP');
END;
/

Note: You must have DBA privileges to update dictionary system

statistics.
Gathering Optimizer Statistics 3-7

Generating Statistics
Gather statistics during the night. Gathering ends after 720 minutes and is stored in

the mystats table:

BEGIN
DBMS_STATS.GATHER_SYSTEM_STATS(
 gathering_mode => 'interval',
 interval => 720,
 stattab => 'mystats',
 statid => 'OLAP');
END;
/

If appropriate, you can switch between the statistics gathered. It is possible to

automate this process by submitting a job to update the dictionary with appropriate

statistics.

During the day, the following jobs import the OLTP statistics for the daytime run:

VARIABLE jobno number;
BEGIN
 DBMS_JOB.SUBMIT(:jobno,
 'DBMS_STATS.IMPORT_SYSTEM_STATS(''mystats'',''OLTP'');'
 SYSDATE, 'SYSDATE + 1');
 COMMIT;
END;
/

During the night, the following jobs import the OLAP statistics for the nighttime

run:

BEGIN
 DBMS_JOB.SUBMIT(:jobno,
 'DBMS_STATS.IMPORT_SYSTEM_STATS(''mystats'',''OLAP'');'
 SYSDATE + 0.5, 'SYSDATE + 1');
 COMMIT;
END;
/

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information on the procedures in the DBMS_STATS
package for implementing system statistics
3-8 Oracle9i Database Performance Tuning Guide and Reference

Generating Statistics
Gathering Index Statistics
Oracle can gather some statistics automatically while creating or rebuilding a B-tree

or bitmap index. The COMPUTE STATISTICS option of CREATE INDEX or ALTER
INDEX ... REBUILD enables this gathering of statistics.

The statistics that Oracle gathers for the COMPUTE STATISTICS option depend on

whether the index is partitioned or nonpartitioned.

■ For a nonpartitioned index, Oracle gathers index, table, and column statistics

while creating or rebuilding the index. In a concatenated-key index, the column

statistics refer only to the leading column of the key.

■ For a partitioned index, Oracle does not gather any table or column statistics

while creating the index or rebuilding its partitions.

– While creating a partitioned index, Oracle gathers index statistics for each

partition and for the entire index. If the index uses composite partitioning,

then Oracle also gathers statistics for each subpartition.

– While rebuilding a partition or subpartition of an index, Oracle gathers

index statistics only for that partition or subpartition.

To ensure correctness of the statistics, Oracle always uses base tables when creating

an index with the COMPUTE STATISTICS option, even if another index is available

that could be used to create the index.

If you do not use the COMPUTE STATISTICSclause, or if you have made significant

changes to the data, then use the DBMS_STATS.GATHER_INDEX_STATS procedure

to collect index statistics.

Gathering Statistics for Function-Based Indexes You should analyze the table after

creating a function-based index, to allow Oracle to collect column statistics

equivalent information for the expression. Optionally, you can collect histograms

for the index expressions by specifying for all hidden columns size number_
of_buckets in the METHOD_OPT argument to the DBMS_STATS procedures.

See Also: Oracle9i SQL Reference for more information about the

COMPUTE STATISTICS clause

See Also:

■ "Using Histograms" on page 3-24

■ Oracle9i Supplied PL/SQL Packages and Types Reference for the

syntax of the METHOD_OPT argument
Gathering Optimizer Statistics 3-9

Generating Statistics
Gathering New Optimizer Statistics
Before gathering new statistics for a particular schema, use the DBMS_
STATS.EXPORT_SCHEMA_STATS procedure to extract and save existing statistics.

Then use DBMS_STATS.GATHER_SCHEMA_STATS to gather new statistics. You can

implement both of these with a single call to the GATHER_SCHEMA_STATS
procedure, by specifying additional parameters.

If key SQL statements experience significant performance degradation, then you

can either gather statistics again using a larger sample size or perform the following

steps:

1. Use DBMS_STATS.EXPORT_SCHEMA_STATS to save the new statistics in a

different statistics table or a statistics table with a different statistics identifier.

2. Use DBMS_STATS.IMPORT_SCHEMA_STATS to restore the old statistics. The

application is now ready to run again.

You might want to use the new statistics if they result in improved performance for

the majority of SQL statements and if the number of problem SQL statements is

small. In this case, perform the following steps:

1. Create a stored outline for each problematic SQL statement, using the old

statistics. Stored outlines are precompiled execution plans that Oracle can use to

mimic proven application performance characteristics.

2. Use DBMS_STATS.IMPORT_SCHEMA_STATS to restore the new statistics. The

application is now ready to run with the new statistics. However, you will

continue to achieve the previous performance levels for the problem SQL

statements.

Gathering Automated Statistics
You can automatically gather statistics or create lists of tables that have stale or no

statistics. To automatically gather statistics, run the DBMS_STATS.GATHER_
SCHEMA_STATS and DBMS_STATS.GATHER_DATABASE_STATS procedures with

the OPTIONS and objlist parameters. Use the values listed in Table 3–2 for the

options parameter.

See Also: "Preserving Versions of Statistics" on page 3-12

See Also: Chapter 7, "Using Plan Stability"
3-10 Oracle9i Database Performance Tuning Guide and Reference

Generating Statistics
The objlist parameter identifies an output parameter for the LIST STALE and

LIST EMPTYoptions. The objlist parameter is of type DBMS_STATS.OBJECTTAB.

Designating Tables for Monitoring and Automated Statistics Gathering Before you can

utilize automated statistics gathering for a particular table, you must bring either

the tables of a specific schema or a complete database into the monitoring mode. Do

this with the DBMS_STATS.ALTER_SCHEMA_TAB_MONITORING or DBMS_
STATS.ALTER_DATABASE_TAB_MONITORING procedures. Alternatively, you can

enable the monitoring attribute using the MONITORING keyword. This keyword is

part of the CREATE TABLE and ALTER TABLE statement syntax. Monitoring tracks

the approximate number of INSERTs, UPDATEs, and DELETEs for that table since

the last time statistics were gathered. Oracle uses this data to identify tables with

stale statistics. Then, you can enable automated statistics gathering by setting up a

recurring job (perhaps by using job queues) that invokes DBMS_STATS.GATHER_
TABLE_STATS with the GATHER STALE option at an appropriate interval for your

application.

Objects are considered stale when 10% of the total rows have been changed. When

you issue GATHER_TABLE_STATS with GATHER STALE, the procedure checks the

USER_TAB_MODIFICATIONS view. If a monitored table has been modified more

than 10%, then statistics are gathered again. The information about changes of

tables, as shown in the USER_TAB_MODIFICATIONS view, can be flushed from the

SGA into the data dictionary with the DBMS_STATS.FLUSH_DATABASE_
MONITORING_INFO procedure.

Table 3–2 Options Parameters for Gathering Statistics

Value Meaning

GATHER STALE Gathers statistics on tables with stale statistics.

GATHER Gathers statistics on all tables. (default)

GATHER EMPTY Gathers statistics only on tables without statistics.

LIST STALE Creates a list of tables with stale statistics.

LIST EMPTY Creates a list of tables that do not have statistics.

GATHER AUTO Gathers all the statistics for the objects of a specific schema (or
database with DBMS_STATS.GATHER_DATABASE_STATS()) that are
not up-to-date.
Gathering Optimizer Statistics 3-11

Generating Statistics
To disable monitoring, use the DBMS_STATS.ALTER_SCHEMA_TAB_MONITORING
or DBMS_STATS.ALTER_DATABASE_TAB_MONITORING procedures, or use the

NOMONITORING keyword.

Enabling Automated Statistics Gathering The GATHER STALE option gathers statistics

only for tables that have stale statistics and for which you have enabled monitoring.

The GATHER STALE option maintains up-to-date statistics for the cost-based

optimizer. Using this option at regular intervals also avoids the overhead associated

with gathering statistics on all tables at one time. The GATHER option can incur

much more overhead, because this option generally gathers statistics for a greater

number of tables than GATHER STALE.

Use a script or job scheduling tool for the GATHER_SCHEMA_STATS and GATHER_
DATABASE_STATS procedures to establish a frequency of statistics collection that is

appropriate for the application. The frequency of collection intervals should balance

the task of providing accurate statistics for the optimizer against the processing

overhead incurred by the statistics collection process.

Creating Lists of Tables with Stale or No Statistics You can use the GATHER_SCHEMA_
STATS and GATHER_DATABASE_STATS procedures to create a list of tables with

stale statistics. You can also use these procedures to create a list of tables with no

statistics. Use the lists to identify tables for which you want to gather manual

statistics.

Preserving Versions of Statistics
You can preserve versions of statistics for tables by specifying the stattab ,

statid , and statown parameters in the DBMS_STATS package. Use stattab to

identify a destination table for archiving previous versions of statistics. Further

identify these versions using statid to denote the date and time the version was

made. Use statown to identify a destination schema, if it is different from the

schema(s) of the actual tables. You must first create such a table, using the CREATE_
STAT_TABLE procedure of the DBMS_STATS package.

Note: There can be a few minutes delay while Oracle propagates

information to this view.

See Also: Oracle9i SQL Reference for more information about the

CREATE TABLE and ALTER TABLE syntax and the MONITORING
and NOMONITORING keywords
3-12 Oracle9i Database Performance Tuning Guide and Reference

Generating Statistics
Using the ANALYZE Statement
You can use the ANALYZE statement to generate statistics for cost-based

optimization.

Finding Data Distribution
The statistics gathered help you determine how the data is distributed across the

tables. The optimizer assumes that the data is uniformly distributed. You can

analyze the actual data distribution in the tables by viewing the appropriate

dictionary table: DBA_TABLES for tables and DBA_TAB_COL_STATISTICS for

column statistics.

You can use histograms to determine attribute skew.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on DBMS_STATS procedures and parameters

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer will

eventually use only statistics that have been collected by DBMS_
STATS. See Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on this package.

However, you must use the ANALYZE statement rather than DBMS_
STATS for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks

See Also:

■ "Understanding Statistics" on page 3-2

■ "Using Histograms" on page 3-20
Gathering Optimizer Statistics 3-13

Using Statistics
Missing Statistics
When statistics do not exist, the optimizer uses the default values shown in

Table 3–4 and Table 3–4.

Using Statistics
This section provides guidelines on how to use and view statistics. This includes:

■ Managing Statistics

■ Verifying Table Statistics

■ Verifying Index Statistics

■ Verifying Column Statistics

■ Using Histograms

Table 3–3 Default Table Values When Statistics are Missing

Table Statistic Default Value Used by Optimizer

Cardinality num_of_blocks * (block_size - cache_layer) / avg_row_len

Average row length 100 bytes

Number of blocks

Remote cardinality 2000 rows

Remote average row
length

100 bytes

Table 3–4 Default Index Values When Statistics are Missing

Index Statistic Default Value Used by Optimizer

Levels 1

Leaf blocks 25

Leaf blocks/key 1

Data blocks/key 1

Distinct keys 100

Clustering factor 800 (8 * number of blocks)
3-14 Oracle9i Database Performance Tuning Guide and Reference

Using Statistics
Managing Statistics
This section describes statistics tables and lists the views that display information

about statistics stored in the data dictionary.

Using Statistics Tables
The DBMS_STATS package lets you store statistics in a statistics table. You can

transfer the statistics for a column, table, index, or schema into a statistics table and

subsequently restore those statistics to the data dictionary. The optimizer does not

use statistics that are stored in a statistics table.

Statistics tables enable you to experiment with different sets of statistics. For

example, you can back up a set of statistics before you delete them, modify them, or

generate new statistics. You can then compare the performance of SQL statements

optimized with different sets of statistics, and if the statistics stored in a table give

the best performance, you can restore them to the data dictionary.

A statistics table can keep multiple distinct sets of statistics, or you can create

multiple statistics tables to store distinct sets of statistics separately.

Viewing Statistics
Use the DBMS_STATS package to view the statistics stored in the data dictionary or

in a statistics table. Example 3–2 queries a statistics table.

Example 3–2 Viewing Statistics in a Statistics Table

DECLARE
 num_rows NUMBER;
 num_blocks NUMBER;
 avg_row_len NUMBER;

BEGIN
 -- retrieve the values of table statistics on OE.ORDERS
 -- statistics table name: OE.SAVESTATS statistics ID: TEST1

 DBMS_STATS.GET_TABLE_STATS('OE','ORDERS',null,
 'SAVESTATS','TEST1',
 num_rows,num_blocks,avg_row_len);

 -- print the values
DBMS_OUTPUT.PUT_LINE('num_rows='||num_rows||',num_blocks='||num_blocks||
 ',avg_row_len='||avg_row_len);
END;
Gathering Optimizer Statistics 3-15

Using Statistics
To view statistics in the data dictionary, query the appropriate data dictionary view

(USER_, ALL_, or DBA_). The following list shows the DBA_ views:

■ DBA_TABLES

■ DBA_TAB_COL_STATISTICS

■ DBA_INDEXES

■ DBA_CLUSTERS

■ DBA_TAB_PARTITIONS

■ DBA_TAB_SUBPARTITIONS

■ DBA_IND_PARTITIONS

■ DBA_IND_SUBPARTITIONS

■ DBA_PART_COL_STATISTICS

■ DBA_SUBPART_COL_STATISTICS

Verifying Table Statistics
To verify that the table statistics are available, query the data dictionary view DBA_
TABLES, using a statement like the one in Example 3–3:

Example 3–3 Verifying Table Statistics

SQL> SELECT TABLE_NAME, NUM_ROWS, BLOCKS, AVG_ROW_LEN,
 TO_CHAR(LAST_ANALYZED, ’MM/DD/YYYY HH24:MI:SS’)
 FROM DBA_TABLES
 WHERE TABLE_NAME IN (’SO_LINES_ALL’,’SO_HEADERS_ALL’,'SO_LAST_ALL');

Note: Statistics held in a statistics table are held in a form that is

only understood by using DBMS_STATS package.

See Also: Oracle9i Database Reference for information on the

statistics in these views
3-16 Oracle9i Database Performance Tuning Guide and Reference

Using Statistics
This returns the following typical data:

TABLE_NAME NUM_ROWS BLOCKS AVG_ROW_LEN LAST_ANALYZED
------------------------ -------- ------- ----------- -------------------
SO_HEADERS_ALL 1632264 207014 449 07/29/1999 00:59:51
SO_LINES_ALL 10493845 1922196 663 07/29/1999 01:16:09
SO_LAST_ALL ...

Verifying Index Statistics
To verify that index statistics are available and decide which are the best indexes to

use in an application, query the data dictionary view DBA_INDEXES, using a

statement like the one in Example 3–4:

Example 3–4 Verifying Index Statistics

SQL> SELECT INDEX_NAME "NAME", NUM_ROWS, DISTINCT_KEYS "DISTINCT",
 1 LEAF_BLOCKS, CLUSTERING_FACTOR "CF", BLEVEL "LEVEL",
 2 AVG_LEAF_BLOCKS_PER_KEY "ALFBPKEY"
 3 FROM DBA_INDEXES
 4 WHERE OWNER = 'SH'
 5* ORDER BY INDEX_NAME;

Typical output is:

NAME NUM_ROWS DISTINCT LEAF_BLOCKS CF LEVEL ALFBPKEY
-------------------------- -------- -------- ----------- ------- ------- ----------
CUSTOMERS_PK 50000 50000 454 4405 2 1
PRODUCTS_PK 10000 10000 90 1552 1 1
PRODUCTS_PROD_CAT_IX 10000 4 99 4422 1 24
PRODUCTS_PROD_SUBCAT_IX 10000 37 170 6148 2 4
SALES_PROD_BIX 6287 909 1480 6287 1 1
SALES_PROMO_BIX 4727 459 570 4727 1 1

6 rows selected.

Optimizer Index Determination Criteria
The optimizer uses the following criteria when determining which index to use:

■ Number of rows in the index (cardinality).

Note: Because the table SO_LAST_ALL has no statistics, it returns

blanks for all columns.
Gathering Optimizer Statistics 3-17

Using Statistics
■ Number of distinct keys. These define the selectivity of the index.

■ Level or height of the index. This indicates how deeply the data probe must

search in order to find the data.

■ Number of leaf blocks in the index. This is the number of I/Os needed to find

the desired rows of data.

■ Clustering factor (CF). This is the collocation amount of the index block relative

to data blocks. The higher the CF, the less likely the optimizer is to select this

index.

■ Average leaf blocks for each key (ALFBKEY). Average number of leaf blocks in

which each distinct value in the index appears, rounded to the nearest integer.

For indexes that enforce UNIQUE and PRIMARY KEY constraints, this value is

always one.

Determining if You Have Chosen the Right Index
Use the following notes to assist you in deciding whether you have chosen an

appropriate index for a table, data, and query:

DISTINCT Consider index ap_invoices_n3 , having two distinct keys. The

resulting selectivity based on index ap_invoices_n3 is poor, and the optimizer is

not likely to use this index. Using this index fetches 50% of the data in the table. In

this case, a full table scan is cheaper than using index ap_invoices_n3 .

Index Cost Tie The optimizer uses alphabetic determination. If the optimizer

determines that the selectivity, cost, and cardinality of two finalist indexes is the

same, then it looks at the names of the indexes and chooses the name that begins

with the lower alphabetic letter or number.

Verifying Column Statistics
To verify that column statistics are available, query the data dictionary view DBA_
TAB_COL_STATISTICS, using a statement like the one in Example 3–5:

Example 3–5 Verifying Column Statistics

SQL> SELECT COLUMN_NAME, NUM_DISTINCT, NUM_NULLS, NUM_BUCKETS, DENSITY
FROM DBA_TAB_COL_STATISTICS
WHERE TABLE_NAME ="PA_EXPENDITURE_ITEMS_ALL"
ORDER BY COLUMN_NAME;

This returns the following data:
3-18 Oracle9i Database Performance Tuning Guide and Reference

Using Statistics
COLUMN_NAME NUM_DISTINCT NUM_NULLS NUM_BUCKETS DENSITY
------------------------------ ------------ ---------- ----------- ----------
BURDEN_COST 4300 71957 1 .000232558
BURDEN_COST_RATE 675 7376401 1 .001481481
CONVERTED_FLAG 1 16793903 1 1
COST_BURDEN_DISTRIBUTED_FLAG 2 15796 1 .5
COST_DISTRIBUTED_FLAG 2 0 1 .5
COST_IND_COMPILED_SET_ID 87 6153143 1 .011494253
EXPENDITURE_ID 1171831 0 1 8.5337E-07
TASK_ID 8648 0 1 .000115634
TRANSFERRED_FROM_EXP_ITEM_ID 1233787 15568891 1 8.1051E-07

Verifying column statistics are important for the following conditions:

■ Join conditions

■ When the WHERE clause includes a column(s) with a bind variable; for example:

column x = :variable_y

In these cases, you can use the stored column statistics to get a representative

cardinality estimation for the given expression.

The following subsections examine the data returned by the query in Example 3–5.

NUM_DISTINCT Column Statistic
NUM_DISTINCT indicates the number of distinct values for a column.

Low In Example 3–5, the number of distinct values for the column CONVERTED_
FLAG is 1. In this case, this column has only one value. If there is a bind variable on

column CONVERTED_FLAG in the WHERE clause (for example, CONVERTED_FLAG
=:variable_y), then this leads to poor selectivity, and CONVERTED_FLAG is a

poor candidate to be used as the index.

Column COST_BURDEN_DISTRIBUTED_FLAG: NUM_DISTINCT = 2. Likewise, this

value is low. COST_BURDEN_DISTRIBUTED_FLAG is not a good candidate for an

index unless there is much skew or there are a lot of nulls. If there is data skew of,

say, 90%, then 90% of the data has one particular value and 10% of the data has

another value. If the query only needs to access the 10%, then a histogram is needed

on that column in order for the optimizer to recognize the skew and use an index on

this column.

High In Example 3–5, NUM_DISTINCT is more than 1 million for column

EXPEDITURE_ID. If there is a bind variable on column EXPENDITURE_ID, then
Gathering Optimizer Statistics 3-19

Using Histograms
this leads to high selectivity (implying high density of data on this column). In other

words, EXPENDITURE_ID is a good candidate to be used as the index.

NUM_NULL Column Statistic
NUM_NULLS indicates the number of null values for that column.

Low If a single column index has few nulls, such as the COST_DISTRIBUTED_
FLAG column in Example 3–5, and if this column is used as the index, then the

resulting data set is large.

High If there are many nulls on a particular column, such as the CONVERTED_FLAG
column in Example 3–5, and if this column is used as the index, then the resulting

data set is small. This means that COST_DISTRIBUTED_FLAGis a more appropriate

column to index.

DENSITY Column Statistic
This indicates the density of the values of that column. This is calculated as 1

divided by NUM_DISTINCT.

Column Statistics and Join Methods
Column statistics are useful to help determine the most efficient join method,

which, in turn, is also based on the number of rows returned.

Using Histograms
The cost-based optimizer can use data value histograms to get accurate estimates of

the distribution of column data. A histogram partitions the values in the column

into bands, so that all column values in a band fall within the same range.

Histograms provide improved selectivity estimates in the presence of data skew,

resulting in optimal execution plans with nonuniform data distributions.

One of the fundamental tasks of the cost-based optimizer is determining the

selectivity of predicates that appear in queries. Selectivity estimates are used to

decide when to use an index and the order in which to join tables. Some attribute

domains (a table’s columns) are not uniformly distributed.

The cost-based optimizer uses height-based histograms on specified attributes to

describe the distributions of nonuniform domains. In a height-based histogram, the

column values are divided into bands so that each band contains approximately the
3-20 Oracle9i Database Performance Tuning Guide and Reference

Using Histograms
same number of values. The useful information that the histogram provides, then, is

where in the range of values the endpoints fall.

Consider a column C with values between 1 and 100 and a histogram with 10

buckets. If the data in C is uniformly distributed, then the histogram looks similar

to Figure 3–1, where the numbers are the endpoint values.

Figure 3–1 Histogram with Uniform Distribution

The number of rows in each bucket is one tenth the total number of rows in the

table. Four-tenths of the rows have values between 60 and 100 in this example of

uniform distribution.

If the data is not uniformly distributed, then the histogram might look similar to

Figure 3–2.

Figure 3–2 Histogram with Non-Uniform Distribution

In this case, most of the rows have the value 5 for the column; only 1/10 of the rows

have values between 60 and 100.

When to Use Histograms
Histograms can affect performance and should be used only when they

substantially improve query plans. Histogram statistics data is persistent, so the

space required to save the data depends on the sample size. In general, create

histograms on columns that are used frequently in WHERE clauses of queries and

have a highly skewed data distribution. For uniformly distributed data, the

cost-based optimizer can make fairly accurate guesses about the cost of executing a

particular statement without the use of histograms.

Histograms, like all other optimizer statistics, are static. They are useful only when

they reflect the current data distribution of a given column. (The data in the column

See Also: "Types of Histograms" on page 3-23

1 10 20 30 40 50 60 70 80 90 100

1 5 5 5 5 10 10 20 35 60 100
Gathering Optimizer Statistics 3-21

Using Histograms
can change as long as the distribution remains constant.) If the data distribution of a

column changes frequently, you must recompute its histogram frequently.

Histograms are not useful for columns with the following characteristics:

■ All predicates on the column use bind variables.

■ The column data is uniformly distributed.

■ The column is unique and is used only with equality predicates.

Creating Histograms
You generate histograms by using the DBMS_STATS package. You can generate

histograms for columns of a table or partition. For example, to create a 10-bucket

histogram on the SAL column of the emp table, issue the following statement:

EXECUTE DBMS_STATS.GATHER_TABLE_STATS
(’scott’,’emp’, METHOD_OPT => ’FOR COLUMNS SIZE 10 sal’);

The SIZE keyword declares the maximum number of buckets for the histogram.

You would create a histogram on the SAL column if there were an unusually high

number of employees with the same salary and few employees with other salaries.

You can also collect histograms for a single partition of a table.

Oracle Corporation recommends using the DBMS_STATS package to have the

database automatically decide which columns need histograms. This is done by

specifying SIZE AUTO.

Choosing the Number of Buckets for a Histogram
If the number of frequently occurring distinct values in a column is relatively small,

then set the number of buckets to be greater than that number. The default number

of buckets for a histogram is 75. This value provides an appropriate level of detail

for most data distributions. However, because the number of buckets and the data

distribution both affect a histogram’s usefulness, you might need to experiment

with different numbers of buckets to obtain optimal results.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on the DBMS_STATS package
3-22 Oracle9i Database Performance Tuning Guide and Reference

Using Histograms
Types of Histograms
There are two types of histograms:

■ Understanding Height-Based Histograms

■ Understanding Value-Based Histograms

Understanding Height-Based Histograms
Height-based histograms place approximately the same number of values into each

range, so that the endpoints of the range are determined by how many values are in

that range. Only the last (largest) values in each bucket appear as bucket (end point)

values.

Consider that a table’s query results in the following four sample values: 4, 18, 30,

and 35.

For a height-based histogram, each of these values occupies a portion of one bucket,

in proportion to their size. The resulting selectivity is computed with the following

formula:

S = Height(35) / Height(4 + 18 + 30 + 35)

Understanding Value-Based Histograms
Value-based histograms are created when the number of distinct values is less than

or equal to the number of histogram buckets specified. In value-based histograms,

all the values in the column have corresponding buckets, and the bucket number

reflects the repetition count of each value. These can also be known as frequency

histograms.

Consider the same four sample values in the previous example. In a value-based

histogram, a bucket is used to represent each of the four distinct values. In other

words, one bucket represents 4, one bucket represents 18, another represents 30, and

another represents 35. The resulting selectivity is computed with the following

formula:

S = [#rows(35)/(#rows(4) + #rows(18) + #rows(30) + #rows(35))] / #buckets

If there are many different values anticipated for a particular column of table, it is

preferable to use the value-based histogram rather than the height-based histogram.

This is because if there is much data skew in the height, then the skew can offset the

selectivity calculation and give a nonrepresentative selectivity value.
Gathering Optimizer Statistics 3-23

Using Histograms
Using Histograms
Example 3–6 illustrates the use of a histogram in order to improve the execution

plan and demonstrate the skewed behavior of the s6 indexed column.

Example 3–6 Using a Histogram to Improve an Execution Plan

UPDATE so_lines l
SET open_flag=null,
 s6=10,
 s6_date=sysdate,
WHERE l.line_type_code in ('REGULAR','DETAIL','RETURN') AND
 l.open_flag = 'Y' AND NVL(l.shipped_quantity, 0)=0 OR
 NVL(l.shipped_quantity, 0) != 0 AND

l.shipped_quantity +NVL(l.cancelled_quantity, 0)= l.ordered_quantity)) AND
 l.s6=18

This query shows the skewed distribution of data values for s6 . In this case, there

are two distinct non-null values: 10 and 18. The majority of the rows consists of s6
= 10 (1,589,464), while a small number of rows consist of s6 = 18 (13,091).

S6: COUNT(*)
======================
10 1,589,464
18 13,091
NULL 21,889

The selectivity of column s6 , where s6 = 18 :

S = 13,091 / (13,091 + 1,589,464) = 0.008

If No Histogram is Used: The selectivity of column s6 is assumed to be 50%,

uniformly distributed across 10 and 18. This is not selective; therefore, s6 is not an

ideal choice for use as an index.

If a Histogram is Used: The data distribution information is stored in the dictionary.

This allows the optimizer to use this information and compute the correct

selectivity based on the data distribution. In Example 3–6, the selectivity, based on

the histogram data, is 0.008. This is a relatively high, or good, selectivity, which

leads the optimizer to use an index on column s6 in the execution plan.
3-24 Oracle9i Database Performance Tuning Guide and Reference

Using Histograms
Viewing Histograms
To view histogram information, query the appropriate data dictionary view (USER_,
ALL_, or DBA_). The following list shows the DBA_ views:

■ DBA_HISTOGRAMS

■ DBA_PART_HISTOGRAMS

■ DBA_SUBPART_HISTOGRAMS

■ DBA_TAB_COL_STATISTICS

Number of Rows View the DBA_HISTOGRAMS dictionary table for the number of

buckets (in other words, the number of rows) for each column:

■ ENDPOINT_NUMBER

■ ENDPOINT_VALUE

Verifying Histogram Statistics
To verify that histogram statistics are available, query the data dictionary’s DBA_
HISTOGRAMS table, using a statement similar to Example 3–7.

Example 3–7 Verifying Histogram Statistics

SQL> SELECT ENDPOINT_NUMBER, ENDPOINT_VALUE
 FROM DBA_HISTOGRAMS
 WHERE TABLE_NAME ="SO_LINES_ALL" AND COLUMN_NAME="S2"
 ORDER BY ENDPOINT_NUMBER;

This query returns the following typical data:

ENDPOINT_NUMBER ENDPOINT_VALUE
--------------- ---------------
 1365 4
 1370 5
 2124 8
 2228 18

One row corresponds to one bucket in the histogram. Consider the differences

between ENDPOINT_NUMBER values in Example 3–7 listed in Table 3–5.

See Also: Oracle9i Database Reference for column descriptions of

data dictionary views, as well as histogram use and restrictions
Gathering Optimizer Statistics 3-25

Using Histograms
Table 3–5 shows that the buckets hold very different numbers of values. The data is

skewed: 754 values are between 5 and 8, but only 104 are between 8 and 18. More

buckets should be used.

Table 3–5 ENDPOINT_NUMBER Differences

Bucket (values) ENDPOINT_NUMBER Difference Number of Values in Bucket

1 (0 to 4) N/A N/A

2 (4 to 5) 1370 - 1365 5

3 (5 to 8) 2124 - 1370 754

4 (8 to 18) 2228 - 2124 104
3-26 Oracle9i Database Performance Tuning Guide and Reference

Understanding Indexes and Clu
4

Understanding Indexes and Clusters

This chapter provides an overview of data access methods using indexes and

clusters that can enhance or degrade performance.

The chapter contains the following sections:

■ Understanding Indexes

■ Using Function-based Indexes

■ Using Index-Organized Tables

■ Using Bitmap Indexes

■ Using Bitmap Join Indexes

■ Using Domain Indexes

■ Using Clusters

■ Using Hash Clusters
sters 4-1

Understanding Indexes
Understanding Indexes
This section describes the following:

■ Tuning the Logical Structure

■ Choosing Columns and Expressions to Index

■ Choosing Composite Indexes

■ Writing Statements That Use Indexes

■ Writing Statements That Avoid Using Indexes

■ Re-creating Indexes

■ Using Nonunique Indexes to Enforce Uniqueness

■ Using Enabled Novalidated Constraints

Tuning the Logical Structure
Although cost-based optimization helps avoid the use of nonselective indexes

within query execution, the SQL engine must continue to maintain all indexes

defined against a table, regardless of whether they are used. Index maintenance can

present a significant CPU and I/O resource demand in any write-intensive

application. In other words, do not build indexes unless necessary.

To maintain optimal performance, drop indexes that an application is not using.

You can find indexes that are not being used by using the ALTER INDEX
MONITORING USAGE functionality over a period of time that is representative of

your workload. This monitoring feature records whether or not an index has been

used. If you find that an index has not been used, then drop it. Be careful to select a

representative workload to monitor.

Indexes within an application sometimes have uses that are not immediately

apparent from a survey of statement execution plans. An example of this is a

foreign key index on a parent table, which prevents share locks from being taken

out on a child table.

If you are deciding whether to create new indexes to tune statements, then you can

also use the EXPLAIN PLAN statement to determine whether the optimizer will

choose to use these indexes when the application is run. If you create new indexes

to tune a statement that is currently parsed, then Oracle invalidates the statement.

See Also: Oracle9i SQL Reference
4-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding Indexes
When the statement is next executed, the optimizer automatically chooses a new

execution plan that could potentially use the new index. If you create new indexes

on a remote database to tune a distributed statement, then the optimizer considers

these indexes when the statement is next parsed.

Also keep in mind that the way you tune one statement can affect the optimizer’s

choice of execution plans for other statements. For example, if you create an index

to be used by one statement, then the optimizer can choose to use that index for

other statements in the application as well. For this reason, reexamine the

application’s performance and rerun the SQL trace facility after you have tuned

those statements that you initially identified for tuning.

Choosing Columns and Expressions to Index
A key is a column or expression on which you can build an index. Follow these

guidelines for choosing keys to index:

■ Consider indexing keys that are used frequently in WHERE clauses.

■ Consider indexing keys that are used frequently to join tables in SQL

statements. For more information on optimizing joins, see the section "Using

Hash Clusters" on page 4-21.

■ Index keys that have high selectivity. The selectivity of an index is the

percentage of rows in a table having the same value for the indexed key. An

index’s selectivity is optimal if few rows have the same value.

Note: You can use the Oracle Index Tuning Wizard to detect tables

with inefficient indexes. The Oracle Index Tuning wizard is an

Oracle Enterprise Manager integrated application available with

the Oracle Tuning Pack. Similar functionality is available from the

Virtual Index Advisor (a feature of SQL Analyze) and Oracle

Expert.

See Also: Database Tuning with the Oracle Tuning Pack

Note: Oracle automatically creates indexes, or uses existing

indexes, on the keys and expressions of unique and primary keys

that you define with integrity constraints.
Understanding Indexes and Clusters 4-3

Understanding Indexes
Indexing low selectivity columns can be helpful if the data distribution is

skewed so that one or two values occur much less often than other values.

■ Do not use standard B-tree indexes on keys or expressions with few distinct

values. Such keys or expressions usually have poor selectivity and therefore do

not optimize performance unless the frequently selected key values appear less

frequently than the other key values. You can use bitmap indexes effectively in

such cases, unless a high concurrency OLTP application is involved where the

index is modified frequently.

■ Do not index columns that are modified frequently. UPDATE statements that

modify indexed columns and INSERT and DELETE statements that modify

indexed tables take longer than if there were no index. Such SQL statements

must modify data in indexes as well as data in tables. They also generate

additional undo and redo.

■ Do not index keys that appear only in WHERE clauses with functions or

operators. A WHERE clause that uses a function, other than MIN or MAX, or an

operator with an indexed key does not make available the access path that uses

the index except with function-based indexes.

■ Consider indexing foreign keys of referential integrity constraints in cases in

which a large number of concurrent INSERT, UPDATE, and DELETE statements

access the parent and child tables. Such an index allows UPDATEs and DELETEs
on the parent table without share locking the child table.

■ When choosing to index a key, consider whether the performance gain for

queries is worth the performance loss for INSERTs, UPDATEs, and DELETEs and

the use of the space required to store the index. You might want to experiment

by comparing the processing times of the SQL statements with and without

indexes. You can measure processing time with the SQL trace facility.

Choosing Composite Indexes
A composite index contains more than one key column. Composite indexes can

provide additional advantages over single-column indexes:

■ Improved selectivity

Sometimes two or more columns or expressions, each with poor selectivity, can

be combined to form a composite index with higher selectivity.

■ Reduced I/O

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information on the effects of foreign keys on locking
4-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding Indexes
If all columns selected by a query are in a composite index, then Oracle can

return these values from the index without accessing the table.

A SQL statement can use an access path involving a composite index if the

statement contains constructs that use a leading portion of the index.

A leading portion of an index is a set of one or more columns that were specified

first and consecutively in the list of columns in the CREATE INDEX statement that

created the index. Consider this CREATE INDEX statement:

CREATE INDEX comp_ind
ON table1(x, y, z);

■ x , xy , and xyz combinations of columns are leading portions of the index

■ yz , y, and z combinations of columns are not leading portions of the index

Choosing Keys for Composite Indexes
Follow these guidelines for choosing keys for composite indexes:

■ Consider creating a composite index on keys that are used together frequently

in WHERE clause conditions combined with AND operators, especially if their

combined selectivity is better than the selectivity of either key individually.

■ If several queries select the same set of keys based on one or more key values,

then consider creating a composite index containing all of these keys.

Of course, consider the guidelines associated with the general performance

advantages and trade-offs of indexes described in the previous sections.

Ordering Keys for Composite Indexes
Follow these guidelines for ordering keys in composite indexes:

■ Create the index so the keys used in WHERE clauses make up a leading portion.

■ If some keys are used in WHERE clauses more frequently, then be sure to create

the index so that the more frequently selected keys make up a leading portion

to allow the statements that use only these keys to use the index.

Note: This is no longer the case with index skip scans. See "Index

Skip Scans" on page 1-32.
Understanding Indexes and Clusters 4-5

Understanding Indexes
■ If all keys are used in WHERE clauses equally often, then ordering these keys

from most selective to least selective in the CREATE INDEX statement best

improves query performance.

■ If all keys are used in the WHERE clauses equally often but the data is physically

ordered on one of the keys, then place that key first in the composite index.

Writing Statements That Use Indexes
Even after you create an index, the optimizer cannot use an access path that uses the

index simply because the index exists. The optimizer can choose such an access

path for a SQL statement only if it contains a construct that makes the access path

available. To allow the CBO the option of using an index access path, ensure that

the statement contains a construct that makes such an access path available.

Writing Statements That Avoid Using Indexes
In some cases, you might want to prevent a SQL statement from using an access

path that uses an existing index. You might want to do this if you know that the

index is not very selective and that a full table scan would be more efficient. If the

statement contains a construct that makes such an index access path available, then

you can force the optimizer to use a full table scan through one of the following

methods:

■ Use the NO_INDEX hint to give the CBO maximum flexibility while disallowing

the use of a certain index.

■ Use the FULL hint to force the optimizer to choose a full table scan instead of an

index scan.

■ Use the INDEX, INDEX_COMBINE, or AND_EQUALhints to force the optimizer to

use one index or a set of listed indexes instead of another.

Parallel execution uses indexes effectively. It does not perform parallel index range

scans, but it does perform parallel index lookups for parallel nested loop join

execution. If an index is very selective (there are few rows for each index entry),

then it might be better to use sequential index lookup rather than parallel table

scan.

See Also: Chapter 5, "Optimizer Hints" for more information on

the NO_INDEX, FULL, INDEX, INDEX_COMBINE, and AND_EQUAL
hints
4-6 Oracle9i Database Performance Tuning Guide and Reference

Understanding Indexes
Re-creating Indexes
You might want to re-create an index to compact it and minimize fragmented space,

or to change the index’s storage characteristics. When creating a new index that is a

subset of an existing index or when rebuilding an existing index with new storage

characteristics, Oracle might use the existing index instead of the base table to

improve the performance of the index build.

However, there are cases where it can be beneficial to use the base table instead of

the existing index. Consider an index on a table on which a lot of DML has been

performed. Because of the DML, the size of the index can increase to the point

where each block is only 50% full, or even less. If the index refers to most of the

columns in the table, then the index could actually be larger than the table. In this

case, it is faster to use the base table rather than the index to re-create the index.

Use the ALTER INDEX ... REBUILD statement to reorganize or compact an existing

index or to change its storage characteristics. The REBUILD statement uses the

existing index as the basis for the new one. All index storage statements are

supported, such as STORAGE (for extent allocation), TABLESPACE (to move the

index to a new tablespace), and INITRANS (to change the initial number of entries).

Usually, ALTER INDEX... REBUILD is faster than dropping and re-creating an index,

because this statement uses the fast full scan feature. It reads all the index blocks

using multiblock I/O, then discards the branch blocks. A further advantage of this

approach is that the old index is still available for queries while the rebuild is in

progress.

Compacting Indexes
You can coalesce leaf blocks of an index by using the ALTER INDEX statement with

the COALESCE option. This option lets you combine leaf levels of an index to free

blocks for reuse. You can also rebuild the index online.

Note: To avoid calling DBMS_STATS after the index creation or

rebuild, include the COMPUTE STATISTICS statement on the

CREATE or REBUILD. You can use the Oracle Enterprise Manager

Reorg Wizard to identify indexes that require rebuilding. The Reorg

Wizard can also be used to rebuild the indexes.

See Also: Oracle9i SQL Reference for more information about the

CREATE INDEX and ALTER INDEX statements, as well as

restrictions on rebuilding indexes
Understanding Indexes and Clusters 4-7

Understanding Indexes
Using Nonunique Indexes to Enforce Uniqueness
You can use an existing nonunique index on a table to enforce uniqueness, either for

UNIQUE constraints or the unique aspect of a PRIMARY KEY constraint. The

advantage of this approach is that the index remains available and valid when the

constraint is disabled. Therefore, enabling a disabled UNIQUE or PRIMARY KEY
constraint does not require rebuilding the unique index associated with the

constraint. This can yield significant time savings on enable operations for large

tables.

Using a nonunique index to enforce uniqueness also lets you eliminate redundant

indexes. You do not need a unique index on a primary key column if that column

already is included as the prefix of a composite index. You can use the existing

index to enable and enforce the constraint. You also save significant space by not

duplicating the index. However, if the existing index is partitioned, then the

partitioning key of the index must also be a subset of the UNIQUE key; otherwise,

Oracle creates an additional unique index to enforce the constraint.

Using Enabled Novalidated Constraints
An enabled novalidated constraint behaves similarly to an enabled validated

constraint for new data. Placing a constraint in the enabled novalidated state

signifies that any new data entered into the table must conform to the constraint.

Existing data is not checked. By placing a constraint in the enabled novalidated

state, you enable the constraint without locking the table.

If you change a constraint from disabled to enabled, then the table must be locked.

No new DML, queries, or DDL can occur, because there is no mechanism to ensure

that operations on the table conform to the constraint during the enable operation.

The enabled novalidated state prevents operations violating the constraint from

being performed on the table.

An enabled novalidated constraint can be validated with a parallel, consistent-read

query of the table to determine whether any data violates the constraint. No locking

is performed, and the enable operation does not block readers or writers to the

table. In addition, enabled novalidated constraints can be validated in parallel:

Multiple constraints can be validated at the same time and each constraint's validity

check can be determined using parallel query.

See Also: Oracle9i SQL Reference and Oracle9i Database
Administrator’s Guide for more information about the syntax for this

statement
4-8 Oracle9i Database Performance Tuning Guide and Reference

Understanding Indexes
Use the following approach to create tables with constraints and indexes:

1. Create the tables with the constraints. NOT NULL constraints can be unnamed

and should be created enabled and validated. All other constraints (CHECK,
UNIQUE, PRIMARY KEY, and FOREIGN KEY) should be named and created

disabled.

2. Load old data into the tables.

3. Create all indexes, including indexes needed for constraints.

4. Enable novalidate all constraints. Do this to primary keys before foreign keys.

5. Allow users to query and modify data.

6. With a separate ALTER TABLE statement for each constraint, validate all

constraints. Do this to primary keys before foreign keys. For example,

CREATE TABLE t (a NUMBER CONSTRAINT apk PRIMARY KEY DISABLE,
b NUMBER NOT NULL);
CREATE TABLE x (c NUMBER CONSTRAINT afk REFERENCES t DISABLE);

Now you can use Import or Fast Loader to load data into table t .

CREATE UNIQUE INDEX tai ON t (a);
CREATE INDEX tci ON x (c);
ALTER TABLE t MODIFY CONSTRAINT apk ENABLE NOVALIDATE;
ALTER TABLE x MODIFY CONSTRAINT afk ENABLE NOVALIDATE;

At this point, users can start performing INSERTs, UPDATEs, DELETEs, and

SELECTs on table t .

ALTER TABLE t ENABLE CONSTRAINT apk;
ALTER TABLE x ENABLE CONSTRAINT afk;

Now the constraints are enabled and validated.

Note: By default, constraints are created in the ENABLED state.

See Also: Oracle9i Database Concepts for a complete discussion of

integrity constraints
Understanding Indexes and Clusters 4-9

Using Function-based Indexes
Using Function-based Indexes
A function-based index includes columns that are either transformed by a function,

such as the UPPER function, or included in an expression, such as col1 + col2 .

Defining a function-based index on the transformed column or expression allows

that data to be returned using the index when that function or expression is used in

a WHERE clause or an ORDER BY clause. Therefore, a function-based index can be

beneficial when frequently-executed SQL statements include transformed columns,

or columns in expressions, in a WHERE or ORDER BY clause.

Function-based indexes defined with the UPPER(column_name) or

LOWER(column_name) keywords allow case-insensitive searches. For example, the

following index:

CREATE INDEX uppercase_idx ON employees (UPPER(last_name));

facilitates processing queries such as:

SELECT * FROM employees
 WHERE UPPER(last_name) = ’MARKSON’;

Setting Parameters to Use Function-Based Indexes in Queries
To use function-based indexes in queries, you need to set the QUERY_REWRITE_
ENABLED and QUERY_REWRITE_INTEGRITY parameters.

QUERY_REWRITE_ENABLED
To enable function-based indexes for queries, set the QUERY_REWRITE_ENABLED
session parameter to TRUE. QUERY_REWRITE_ENABLED can be set to the following

values:

■ TRUE: cost - based rewrite

■ FALSE: no rewrite

■ FORCE: forced rewrite

When QUERY_REWRITE_ENABLED is set to FALSE, then function-based indexes are

not used for obtaining the values of an expression in the function-based index.

However, function-based indexes can still be used for obtaining values in real

columns.

When QUERY_REWRITE_ENABLED is set to FORCE, Oracle always uses rewrite and

does not evaluate the cost before doing so. FORCEis useful when you know that the

query will always benefit from rewrite, when reduction in compile time is
4-10 Oracle9i Database Performance Tuning Guide and Reference

Using Function-based Indexes
important, and when you know that the optimizer may be underestimating the

benefits of materialized views.

QUERY_REWRITE_ENABLED is a session-level and also an instance-level parameter.

QUERY_REWRITE_INTEGRITY
 Setting the value of the QUERY_REWRITE_INTEGRITY parameter determines how

function-based indexes are used,

■ If the QUERY_REWRITE_INTEGRITY parameter is set to ENFORCED (the

default), then Oracle uses function-based indexes to derive values of SQL

expressions only. This also includes SQL functions.

■ If QUERY_REWRITE_INTEGRITYis set to any value other than ENFORCED, then

Oracle uses the function-based index, even if it is based on a user-defined,

rather than SQL, function.

Function-based indexes are an efficient mechanism for evaluating statements that

contain functions in WHERE clauses. You can create a function-based index to store

computation-intensive expressions in the index. This permits Oracle to bypass

computing the value of the expression when processing SELECT and DELETE
statements. When processing INSERT and UPDATE statements, however, Oracle

evaluates the function to process the statement.

For example, if you create the following index:

CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

then Oracle can use it when processing queries such as:

SELECT a
 FROM table_1
 WHERE a + b * (c - 1) < 100;

You can also use function-based indexes for linguistic sort indexes that provide

efficient linguistic collation in SQL statements.

Oracle treats descending indexes as function-based indexes. The columns marked

DESC are sorted in descending order.
Understanding Indexes and Clusters 4-11

Using Index-Organized Tables
Using Index-Organized Tables
An index-organized table differs from an ordinary table in that the data for the table

is held in its associated index. Changes to the table data, such as adding new rows,

updating rows, or deleting rows, result only in updating the index. Because data

rows are stored in the index, index-organized tables provide faster key-based access

to table data for queries that involve exact match or range search or both.

Using Bitmap Indexes
This section describes:

■ When to Use Bitmap Indexes

■ Using Bitmap Indexes with Good Performance

■ Initialization Parameters for Bitmap Indexing

■ Using Bitmap Access Plans on Regular B-tree Indexes

■ Bitmap Index Restrictions

When to Use Bitmap Indexes
This section describes three aspects of indexing that you must evaluate when

deciding whether to use bitmap indexing on a given table:

■ Performance Considerations for Bitmap Indexes

■ Comparing B-tree Indexes to Bitmap Indexes

See Also:

■ Oracle9i Application Developer’s Guide - Fundamentals and

Oracle9i Database Administrator’s Guide for more information on

using function-based indexes

■ Oracle9i SQL Reference for more information on the CREATE
INDEX statement

See Also: Oracle9i Database Concepts

See Also: Oracle9i Database Concepts and Oracle9i Data
Warehousing Guide for more information on bitmap indexing
4-12 Oracle9i Database Performance Tuning Guide and Reference

Using Bitmap Indexes
■ Maintenance Considerations for Bitmap Indexes

Performance Considerations for Bitmap Indexes
Bitmap indexes can substantially improve performance of queries that have all of

the following characteristics:

■ The WHERE clause contains multiple predicates on low- or medium-cardinality

columns.

■ The individual predicates on these low- or medium-cardinality columns select a

large number of rows.

■ Bitmap indexes have been created on some or all of these low- or

medium-cardinality columns.

■ The tables being queried contain many rows.

You can use multiple bitmap indexes to evaluate the conditions on a single table.

Bitmap indexes are thus highly advantageous for complex ad hoc queries that

contain lengthy WHERE clauses. Bitmap indexes can also provide optimal

performance for aggregate queries and for optimizing joins in star schemas.

Comparing B-tree Indexes to Bitmap Indexes
Bitmap indexes can provide considerable storage savings over the use of B-tree

indexes. In databases containing only B-tree indexes, you must anticipate the

columns that are commonly accessed together in a single query, and create a

composite B-tree index on these columns.

Not only would this B-tree index require a large amount of space, it would also be

ordered. That is, a B-tree index on (marital_status , region , gender) is useless

for queries that only access region and gender . To completely index the database,

you must create indexes on the other permutations of these columns. For the simple

case of three low-cardinality columns, there are six possible composite B-tree

indexes. You must consider the trade-offs between disk space and performance

needs when determining which composite B-tree indexes to create.

Bitmap indexes solve this dilemma. Bitmap indexes can be efficiently combined

during query execution, so three small single-column bitmap indexes can do the job

of six three-column B-tree indexes.

See Also: Oracle9i Database Concepts for more information on

optimizing anti-joins and semi-joins
Understanding Indexes and Clusters 4-13

Using Bitmap Indexes
Bitmap indexes are much more efficient than B-tree indexes, especially in data

warehousing environments. Bitmap indexes are created not only for efficient space

usage but also for efficient execution, and the latter is somewhat more important.

Do not create bitmap indexes on unique key columns. However, for columns where

each value is repeated hundreds or thousands of times, a bitmap index typically is

less than 25% of the size of a regular B-tree index. The bitmaps themselves are

stored in compressed format.

Simply comparing the relative sizes of B-tree and bitmap indexes is not an accurate

measure of effectiveness, however. Because of their different performance

characteristics, keep B-tree indexes on high-cardinality columns, while creating

bitmap indexes on low-cardinality columns.

Maintenance Considerations for Bitmap Indexes
Bitmap indexes benefit data warehousing applications, but they are not appropriate

for OLTP applications with a heavy load of concurrent INSERTs, UPDATEs, and

DELETEs. In a data warehousing environment, data is maintained usually by way of

bulk inserts and updates. Index maintenance is deferred until the end of each DML

operation. For example, when you insert 1000 rows, the inserted rows are placed

into a sort buffer and then the updates of all 1000 index entries are batched. (This is

why SORT_AREA_SIZE must be set properly for good performance with inserts

and updates on bitmap indexes.) Thus, each bitmap segment is updated only once

in each DML operation, even if more than one row in that segment changes.

DML and DDL statements, such as UPDATE, DELETE, and DROP TABLE, affect

bitmap indexes the same way they do traditional indexes; the consistency model is

the same. A compressed bitmap for a key value is made up of one or more bitmap

segments, each of which is at most half a block in size (although it can be smaller).

The locking granularity is one such bitmap segment. This can affect performance in

environments where many transactions make simultaneous updates. If numerous

DML operations have caused increased index size and decreasing performance for

Note: The sorts described previously are regular sorts and use the

regular sort area, determined by SORT_AREA_SIZE. The BITMAP_
MERGE_AREA_SIZE and CREATE_BITMAP_AREA_SIZE
initialization parameters described in "Initialization Parameters for

Bitmap Indexing" on page 4-17 affect only the specific operations

indicated by the parameter names.
4-14 Oracle9i Database Performance Tuning Guide and Reference

Using Bitmap Indexes
queries, then you can use the ALTER INDEX ... REBUILD statement to compact the

index and restore efficient performance.

A B-tree index entry contains a single rowid. Therefore, when the index entry is

locked, a single row is locked. With bitmap indexes, an entry can potentially contain

a range of rowids. When a bitmap index entry is locked, the entire range of rowids

is locked. The number of rowids in this range affects concurrency. As the number of

rowids increases in a bitmap segment, concurrency decreases.

Locking issues affect DML operations and can affect heavy OLTP environments.

Locking issues do not, however, affect query performance. As with other types of

indexes, updating bitmap indexes is a costly operation. Nonetheless, for bulk inserts

and updates where many rows are inserted or many updates are made in a single

statement, performance with bitmap indexes can be better than with regular B-tree

indexes.

Using Bitmap Indexes with Good Performance
This section discusses performance issues with bitmap indexes.

Using Hints with Bitmap Indexes
The INDEX hint works with bitmap indexes in the same way as with traditional

indexes.

The INDEX_COMBINE hint identifies the most cost effective indexes for the

optimizer. The optimizer recognizes all indexes that can potentially be combined,

given the predicates in the WHERE clause. However, it might not be cost effective to

use all of them. Oracle recommends using INDEX_COMBINE rather than INDEX for

bitmap indexes, because it is a more versatile hint.

In deciding which of these hints to use, the optimizer includes nonhinted indexes

that appear cost effective, as well as indexes named in the hint. If certain indexes are

given as arguments for the hint, then the optimizer tries to use some combination of

those particular bitmap indexes.

If the hint does not name indexes, then all indexes are considered hinted. Hence, the

optimizer tries to combine as many as possible, given the WHERE clause, without

regard to cost effectiveness. The optimizer always tries to use hinted indexes in the

plan, regardless of whether it considers them cost effective.

See Also: Chapter 5, "Optimizer Hints" for more information on

the INDEX_COMBINE hint
Understanding Indexes and Clusters 4-15

Using Bitmap Indexes
Performance Tips for Bitmap Indexes
When creating bitmap indexes, Oracle needs to consider the theoretical maximum

number of rows that will fit in a data block. For this reason, to get optimal

performance and disk space usage with bitmap indexes, consider the following tips:

■ To make compressed bitmaps as small as possible, declare NOT NULLconstraints

on all columns that cannot contain null values.

■ Fixed-length datatypes are more amenable to a compact bitmap representation

than variable length datatypes.

Mapping Bitmaps to Rowids Efficiently
Use SQL statements with the ALTER TABLE syntax to optimize the mapping of

bitmaps to rowids. The MINIMIZE RECORDS_PER_BLOCK clause enables this

optimization, and the NOMINIMIZE RECORDS_PER_BLOCK clause disables it.

When MINIMIZE RECORDS_PER_BLOCK is enabled, Oracle scans the table and

determines the maximum number of records in any block and restricts this table to

this maximum number. This enables bitmap indexes to allocate fewer bits for each

block and results in smaller bitmap indexes. The block and record allocation

restrictions that this statement places on the table are beneficial only to bitmap

indexes. Therefore, Oracle does not recommend using this mapping on tables that

are not heavily indexed with bitmap indexes.

Using Bitmap Indexes on Index-Organized Tables
The rowids used in bitmap indexes on index-organized tables are in a mapping

table, not in the base table. The mapping table maintains a mapping of logical

rowids (needed to access the index-organized table) to physical rowids (needed by

the bitmap index code). Each index-organized table has one mapping table, used by

all the bitmap indexes created on that table.

See Also: Chapter 9, "Using EXPLAIN PLAN" for more

information about bitmap EXPLAIN PLAN output

See Also:

■ "Using Bitmap Indexes" on page 4-12 for more information

■ Oracle9i SQL Reference for syntax on MINIMIZE and

NOMINIMIZE
4-16 Oracle9i Database Performance Tuning Guide and Reference

Using Bitmap Indexes
Indexing Null Values
Bitmap indexes index nulls, whereas all other index types do not. Consider, for

example, a table with STATE and PARTY columns, on which you want to perform

the following query:

SELECT COUNT(*)
FROM people
WHERE state=’CA’

AND party !=’D’;

Indexing nulls enables a bitmap minus plan where bitmaps for party equal to D and

NULL are subtracted from state bitmaps equal to CA. The EXPLAIN PLAN output

looks like the following:

SELECT STATEMENT
 SORT AGGREGATE
 BITMAP CONVERSION COUNT
 BITMAP MINUS
 BITMAP MINUS
 BITMAP INDEX SINGLE VALUE STATE_BM
 BITMAP INDEX SINGLE VALUE PARTY_BM
 BITMAP INDEX SINGLE VALUE PARTY_BM

If a NOT NULL constraint exists on party, then the second minus operation (where

party is null) is left out, because it is not needed.

Initialization Parameters for Bitmap Indexing
The following initialization parameters affect the use of bitmap indexes:

■ CREATE_BITMAP_AREA_SIZE affects memory allocated for bitmap creation.

■ BITMAP_MERGE_AREA_SIZE affects memory used to merge bitmaps from an

index range scan.

■ SORT_AREA_SIZE affects memory used when inserting or updating bitmap

indexes.

Note: Moving rows in an index-organized table does not make the

bitmap indexes built on that index-organized table unusable.

See Also: Oracle9i Database Concepts for information on bitmap

indexes and index-organized tables
Understanding Indexes and Clusters 4-17

Using Bitmap Indexes
Using Bitmap Access Plans on Regular B-tree Indexes
If there is at least one bitmap index on the table, then the optimizer considers using

a bitmap access path using regular B-tree indexes for that table. This access path can

involve combinations of B-tree and bitmap indexes, but might not involve any

bitmap indexes at all. However, the optimizer does not generate a bitmap access

path using a single B-tree index unless instructed to do so by a hint.

To use bitmap access paths for B-tree indexes, the rowids stored in the indexes must

be converted to bitmaps. After such a conversion, the various Boolean operations

available for bitmaps can be used. As an example, consider the following query,

where there is a bitmap index on column c1 , and regular B-tree indexes on columns

c2 and c3 .

EXPLAIN PLAN FOR
SELECT COUNT(*)
FROM t
WHERE c1 = 2 AND c2 = 6
OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT
 SORT AGGREGATE
 BITMAP CONVERSION COUNT
 BITMAP OR
 BITMAP AND
 BITMAP INDEX c1_ind SINGLE VALUE
 BITMAP CONVERSION FROM ROWIDS
 INDEX c2_ind RANGE SCAN
 BITMAP CONVERSION FROM ROWIDS
 SORT ORDER BY
 INDEX c3_ind RANGE SCAN

Here, a COUNT option for the BITMAP CONVERSION row source counts the number

of rows matching the query. There are also conversions from rowids in the plan to

generate bitmaps from the rowids retrieved from the B-tree indexes. The ORDER BY

See Also: Oracle9i Database Reference for more information on

these parameters

Note: This statement is executed by accessing indexes only, so no

table access is necessary.
4-18 Oracle9i Database Performance Tuning Guide and Reference

Using Domain Indexes
sort appears in the plan because the conditions on column c3 result in the return of

more than one list of rowids from the B-tree index. These lists are sorted before

being converted into a bitmap.

Bitmap Index Restrictions
Bitmap indexes have the following restrictions:

■ For bitmap indexes with direct load, the SORTED_INDEX flag does not apply.

■ Bitmap indexes are not considered by the rule-based optimizer.

■ Bitmap indexes cannot be used for referential integrity checking.

Using Bitmap Join Indexes
In addition to a bitmap index on a single table, you can create a bitmap join index,

which is a bitmap index for the join of two or more tables. A bitmap join index is a

space-saving way to reduce the volume of data that must be joined, by performing

restrictions in advance. For each value in a column of a table, a bitmap join index

stores the rowids of corresponding rows in another table. In a data warehousing

environment, the join condition is an equi-inner join between the primary key

column(s) of the dimension tables and the foreign key column(s) in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views,

an alternative for materializing joins in advance. This is because the materialized

join views do not compress the rowids of the fact tables.

Using Domain Indexes
Domain indexes are built using the indexing logic supplied by a user-defined

indextype. An indextype provides an efficient mechanism to access data that satisfy

certain operator predicates. Typically, the user-defined indextype is part of an

Oracle option, like the Spatial option. For example, the SpatialIndextype allows

efficient search and retrieval of spatial data that overlap a given bounding box.

The cartridge determines the parameters you can specify in creating and

maintaining the domain index. Similarly, the performance and storage

characteristics of the domain index are presented in the specific cartridge

documentation.

See Also: Oracle9i Data Warehousing Guide for examples and

restrictions of bitmap join indexes
Understanding Indexes and Clusters 4-19

Using Clusters
Refer to the appropriate cartridge documentation for information such as the

following:

■ What datatypes can be indexed?

■ What indextypes are provided?

■ What operators does the indextype support?

■ How can the domain index be created and maintained?

■ How do we efficiently use the operator in queries?

■ What are the performance characteristics?

Using Clusters
Clusters are groups of one or more tables that are physically stored together

because they share common columns and usually are used together. Because related

rows are physically stored together, disk access time improves.

To create a cluster, use the CREATE CLUSTER statement.

Follow these guidelines when deciding whether to cluster tables:

■ Cluster tables that are accessed frequently by the application in join statements.

■ Do not cluster tables if the application joins them only occasionally or modifies

their common column values frequently. Modifying a row’s cluster key value

takes longer than modifying the value in an unclustered table, because Oracle

might need to migrate the modified row to another block to maintain the

cluster.

■ Do not cluster tables if the application often performs full table scans of only

one of the tables. A full table scan of a clustered table can take longer than a full

Note: You can also create index types with the CREATE
INDEXTYPE statement.

See Also: Oracle Spatial User’s Guide and Reference for information

about the SpatialIndextype

See Also: Oracle9i Database Concepts for more information on

clusters
4-20 Oracle9i Database Performance Tuning Guide and Reference

Using Hash Clusters
table scan of an unclustered table. Oracle is likely to read more blocks, because

the tables are stored together.

■ Cluster master-detail tables if you often select a master record and then the

corresponding detail records. Detail records are stored in the same data block(s)

as the master record, so they are likely still to be in memory when you select

them, requiring Oracle to perform less I/O.

■ Store a detail table alone in a cluster if you often select many detail records of

the same master. This measure improves the performance of queries that select

detail records of the same master, but does not decrease the performance of a

full table scan on the master table. An alternative is to use an index organized

table.

■ Do not cluster tables if the data from all tables with the same cluster key value

exceeds more than one or two Oracle blocks. To access a row in a clustered

table, Oracle reads all blocks containing rows with that value. If these rows take

up multiple blocks, then accessing a single row could require more reads than

accessing the same row in an unclustered table.

■ Do not cluster tables when the number of rows for each cluster key value varies

significantly. This causes waste of space for the low cardinality key value; it

causes collisions for the high cardinality key values. Collisions degrade

performance.

Consider the benefits and drawbacks of clusters with respect to the needs of the

application. For example, you might decide that the performance gain for join

statements outweighs the performance loss for statements that modify cluster key

values. You might want to experiment and compare processing times with the

tables both clustered and stored separately.

Using Hash Clusters
Hash clusters group table data by applying a hash function to each row’s cluster

key value. All rows with the same cluster key value are stored together on disk.

Consider the benefits and drawbacks of hash clusters with respect to the needs of

the application. You might want to experiment and compare processing times with

a particular table as it is stored in a hash cluster, and as it is stored alone with an

index.

Follow these guidelines for choosing when to use hash clusters:

See Also: Oracle9i Database Administrator’s Guide for more

information on creating clusters
Understanding Indexes and Clusters 4-21

Using Hash Clusters
■ Use hash clusters to store tables accessed frequently by SQL statements with

WHERE clauses, if the WHERE clauses contain equality conditions that use the

same column or combination of columns. Designate this column or combination

of columns as the cluster key.

■ Store a table in a hash cluster if you can determine how much space is required

to hold all rows with a given cluster key value, including rows to be inserted

immediately as well as rows to be inserted in the future.

■ Do not store a table in a hash cluster if the application often performs full table

scans and if you must allocate a great deal of space to the hash cluster in

anticipation of the table growing. Such full table scans must read all blocks

allocated to the hash cluster, even though some blocks might contain few rows.

Storing the table alone reduces the number of blocks read by full table scans.

■ Do not store a table in a hash cluster if the application frequently modifies the

cluster key values. Modifying a row’s cluster key value can take longer than

modifying the value in an unclustered table, because Oracle might need to

migrate the modified row to another block to maintain the cluster.

Storing a single table in a hash cluster can be useful, regardless of whether the table

is joined frequently with other tables, as long as hashing is appropriate for the table

based on the points in this list.
4-22 Oracle9i Database Performance Tuning Guide and Reference

Optimizer
5

Optimizer Hints

Optimizer hints can be used with SQL statements to alter execution plans. This

chapter explains how to use hints to force various approaches.

The chapter contains the following sections:

■ Understanding Optimizer Hints

■ Using Optimizer Hints
 Hints 5-1

Understanding Optimizer Hints
Understanding Optimizer Hints
Hints let you make decisions usually made by the optimizer. As an application

designer, you might know information about your data that the optimizer does not

know.

For example, you might know that a certain index is more selective for certain

queries. Based on this information, you might be able to choose a more efficient

execution plan than the optimizer. In such a case, use hints to force the optimizer to

use the optimal execution plan.

You can use hints to specify the following:

■ The optimization approach for a SQL statement

■ The goal of the cost-based optimizer for a SQL statement

■ The access path for a table accessed by the statement

■ The join order for a join statement

■ A join operation in a join statement

Hints provide a mechanism to direct the optimizer to choose a certain query

execution plan based on the following criteria:

■ Join order

■ Join method

■ Access path

■ Parallelization

Hints (except for the RULE hint) invoke the cost-based optimizer (CBO). If you have

not gathered statistics, then defaults are used.

Note: The use of hints involves extra code that must be managed,

checked, and controlled.

See Also: Chapter 3, "Gathering Optimizer Statistics" for more

information on default values
5-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding Optimizer Hints
Specifying Hints
Hints apply only to the optimization of the statement block in which they appear. A

statement block is any one of the following statements or parts of statements:

■ A simple SELECT, UPDATE, or DELETE statement.

■ A parent statement or subquery of a complex statement.

■ A part of a compound query.

For example, a compound query consisting of two component queries combined by

the UNION operator has two statement blocks, one for each component query. For

this reason, hints in the first component query apply only to its optimization, not to

the optimization of the second component query.

You can send hints for a SQL statement to the optimizer by enclosing them in a

comment within the statement.

A statement block can have only one comment containing hints. This comment can

only follow the SELECT, UPDATE, or DELETE keyword.

The following syntax shows hints contained in both styles of comments that Oracle

supports within a statement block.

{DELETE|INSERT|SELECT|UPDATE} /*+ hint [text] [hint[text]]... */

or

{DELETE|INSERT|SELECT|UPDATE} --+ hint [text] [hint[text]]...

where:

■ DELETE, INSERT, SELECT, and UPDATE are keywords that begin a statement

block. Comments containing hints can appear only after these keywords.

■ + c auses Oracle to interpret the comment as a list of hints. The plus sign must

immediately follow the comment delimiter; no space is permitted.

See Also: Oracle9i SQL Reference for more information on

comments

Exception: The APPEND hint always follows the INSERT
keyword, and the PARALLEL hint can follow the INSERT keyword.
Optimizer Hints 5-3

Understanding Optimizer Hints
■ hint is one of the hints discussed in this section. If the comment contains

multiple hints, then each hint must be separated from the others by at least one

space.

■ text is other commenting text that can be interspersed with the hints.

If you specify hints incorrectly, then Oracle ignores them but does not return an

error:

■ Oracle ignores hints if the comment containing them does not follow a DELETE,
SELECT, or UPDATE keyword.

■ Oracle ignores hints containing syntax errors, but considers other correctly

specified hints within the same comment.

■ Oracle ignores combinations of conflicting hints, but considers other hints

within the same comment.

■ Oracle ignores hints in all SQL statements in those environments that use

PL/SQL version 1, such as Forms version 3 triggers, Oracle Forms 4.5, and

Oracle Reports 2.5. These hints can be passed to the server, but the server

ignores them.

The optimizer recognizes hints only when using the cost-based approach. If you

include a hint (except the RULE hint) in a statement block, then the optimizer

automatically uses the cost-based approach.

Specifying a Full Set of Hints
When using hints, in some cases, you might need to specify a full set of hints in

order to ensure the optimal execution plan. For example, if you have a very

complex query, which consists of many table joins, and if you specify only the

INDEX hint for a given table, then the optimizer needs to determine the remaining

access paths to be used, as well as the corresponding join methods. Therefore, even

though you gave the INDEX hint, the optimizer might not necessarily use that hint,

because the optimizer might have determined that the requested index cannot be

used due to the join methods and access paths selected by the optimizer.

In Example 5–1, the ORDERED hint specifies the exact join order to be used; the join

methods to be used on the different tables are also specified.

See Also:

■ "Using Optimizer Hints" on page 5-6 for the syntax of each hint

■ "INDEX" on page 5-12 and following sections, for conditions

specific to index type
5-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding Optimizer Hints
Example 5–1 Specifying a Full Set of Hints

SELECT /*+ ORDERED INDEX (b, jl_br_balances_n1) USE_NL (j b)
 USE_NL (glcc glf) USE_MERGE (gp gsb) */
 b.application_id ,
 b.set_of_books_id ,
 b.personnel_id,
 p.vendor_id Personnel,
 p.segment1 PersonnelNumber,
 p.vendor_name Name
FROM jl_br_journals j,
 jl_br_balances b,
 gl_code_combinations glcc,
 fnd_flex_values_vl glf,
 gl_periods gp,
 gl_sets_of_books gsb,
 po_vendors p
WHERE ...

Note that the hints could have been also been in this format:

SELECT --+ ORDERED INDEX (b, jl_br_balances_n1) USE_NL (j b)
 USE_NL (glcc glf) USE_MERGE (gp gsb)

Using Hints Against Views
By default, hints do not propagate inside a complex view. For example, if you

specify a hint in a query that selects against a complex view, then that hint is not

honored, because it is not pushed inside the view.

Unless the hints are inside the base view, they might not be honored from a query

against the view.

Local Hints Compared with Global Hints
Table hints (in other words, hints that specify a table) generally refer to tables in the

DELETE, SELECT, or UPDATEstatement in which the hint occurs, not to tables inside

any views referenced by the statement. When you want to specify hints for tables

that appear inside views, Oracle recommends using global hints instead of

embedding the hint in the view. Any table hint described in this chapter can be

transformed into a global hint by using an extended syntax for the table name.

Note: If the view is a single-table, then the hint is not propagated.
Optimizer Hints 5-5

Using Optimizer Hints
Using Optimizer Hints
Optimizer hints can be categorized as follows:

■ Hints for Optimization Approaches and Goals

■ Hints for Access Paths

■ Hints for Query Transformations

■ Hints for Join Orders

■ Hints for Join Operations

■ Hints for Parallel Execution

■ Additional Hints

Hints for Optimization Approaches and Goals
The hints described in this section let you choose between the cost-based and the

rule-based optimization approaches. With the cost-based approach, this also

includes the goal of best throughput or best response time.

■ ALL_ROWS

■ FIRST_ROWS(n)

■ CHOOSE

■ RULE

Note: The SQL Analyze tool that is available with the Oracle

Tuning Pack, provides a graphical user interface for working with

optimizer hints. The Hint Wizard, a feature of SQL Analyze, helps

you easily add or modify hints in SQL statements.

See Also:

■ "Global Hints" on page 5-44 for information on how to create

global hints

■ Database Tuning with the Oracle Tuning Pack for more

information on Oracle SQL Analyze
5-6 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
If a SQL statement has a hint specifying an optimization approach and goal, then

the optimizer uses the specified approach regardless of the presence or absence of

statistics, the value of the OPTIMIZER_MODE initialization parameter, and the

OPTIMIZER_MODE parameter of the ALTER SESSION statement.

ALL_ROWS
The ALL_ROWS hint explicitly chooses the cost-based approach to optimize a

statement block with a goal of best throughput (that is, minimum total resource

consumption).

all_rows_hint::=

For example, the optimizer uses the cost-based approach to optimize this statement

for best throughput:

SELECT /*+ ALL_ROWS */ employee_id, last_name, salary, job_id
FROM employees
WHERE employee_id = 7566;

FIRST_ROWS(n)
The hints FIRST_ROWS(n) (where n is any positive integer) or FIRST_ROWS
instruct Oracle to optimize an individual SQL statement for fast response. FIRST_
ROWS(n) affords greater precision, because it instructs Oracle to choose the plan that

returns the first n rows most efficiently. The FIRST_ROWS hint, which optimizes for

the best plan to return the first single row, is retained for backward compatibility

and plan stability.

first_rows_hint::=

Note: The optimizer goal applies only to queries submitted

directly. Use hints to determine the access path for any SQL

statements submitted from within PL/SQL. The ALTER SESSION...
SET OPTIMIZER_MODE statement does not affect SQL that is run

from within PL/SQL.

/*+ ALL_ROWS */

/*+ FIRST_ROWS (n) */
Optimizer Hints 5-7

Using Optimizer Hints
For example, the optimizer uses the cost-based approach to optimize this statement

for best response time:

SELECT /*+ FIRST_ROWS(10) */ employee_id, last_name, salary, job_id
FROM employees
WHERE department_id = 20;

In this example each department contains many employees. The user wants the first

10 employees of department #20 to be displayed as quickly as possible.

The optimizer ignores this hint in DELETE and UPDATE statement blocks and in

SELECT statement blocks that contain any of the following syntax:

■ Set operators (UNION, INTERSECT, MINUS, UNION ALL)

■ GROUP BY clause

■ FOR UPDATE clause

■ Aggregate functions

■ DISTINCT operator

■ ORDER BY clauses, when there is no index on the ordering columns

These statements cannot be optimized for best response time, because Oracle must

retrieve all rows accessed by the statement before returning the first row. If you

specify this hint in any of these statements, then the optimizer uses the cost-based

approach and optimizes for best throughput.

If you specify either the ALL_ROWS or the FIRST_ROWS hint in a SQL statement,

and if the data dictionary does not have statistics about tables accessed by the

statement, then the optimizer uses default statistical values (such as allocated

storage for such tables) to estimate the missing statistics and, subsequently, to

choose an execution plan.

These estimates might not be as accurate as those gathered by the DBMS_STATS
package. Therefore, use the DBMS_STATS package to gather statistics. If you specify

hints for access paths or join operations along with either the ALL_ROWS or FIRST_
ROWS hint, then the optimizer gives precedence to the access paths and join

operations specified by the hints.

See Also: "How the CBO Optimizes SQL Statements for Fast

Response" on page 1-9 for an explanation of the difference between

FIRST_ROWS(n) and FIRST_ROWS
5-8 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
CHOOSE
The CHOOSE hint causes the optimizer to choose between the rule-based and

cost-based approaches for a SQL statement. The optimizer bases its selection on the

presence of statistics for the tables accessed by the statement. If the data dictionary

has statistics for at least one of these tables, then the optimizer uses the cost-based

approach and optimizes with the goal of best throughput. If the data dictionary

does not have statistics for these tables, then it uses the rule-based approach.

choose_hint::=

For example:

SELECT /*+ CHOOSE */ employee_id, last_name, salary, job_id
FROM employees
WHERE employee_id = 7566;

RULE
rule_hint::=

For example:

SELECT /*+ RULE */
employee_id, last_name, salary, job_id
FROM employees
WHERE employee_id = 7566;

Hints for Access Paths
Each hint described in this section suggests an access path for a table.

■ FULL

■ ROWID

■ CLUSTER

Note: Oracle Corporation strongly advises the use of cost-based

optimization. Rule-based optimization will be deprecated in a

future release.

/*+ CHOOSE */

/*+ RULE */
Optimizer Hints 5-9

Using Optimizer Hints
■ HASH

■ INDEX

■ INDEX_ASC

■ INDEX_COMBINE

■ INDEX_JOIN

■ INDEX_DESC

■ INDEX_FFS

■ NO_INDEX

■ AND_EQUAL

Specifying one of these hints causes the optimizer to choose the specified access

path only if the access path is available based on the existence of an index or cluster

and on the syntactic constructs of the SQL statement. If a hint specifies an

unavailable access path, then the optimizer ignores it.

You must specify the table to be accessed exactly as it appears in the statement. If

the statement uses an alias for the table, then use the alias rather than the table

name in the hint. The table name within the hint should not include the schema

name if the schema name is present in the statement.

FULL
The FULL hint explicitly chooses a full table scan for the specified table.

full_hint::=

Note: For access path hints, Oracle ignores the hint if you specify

the SAMPLE option in the FROM clause of a SELECT statement.

See Also: Oracle9i SQL Reference for more information on the

SAMPLE option

/*+ FULL (table) */
5-10 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
where table specifies the name or alias of the table on which the full table scan is

to be performed. If the statement does not use aliases, then the table name is the

default alias.

For example:

SELECT /*+ FULL(e) */ employee_id, last_name
 FROM employees e
 WHERE last_name LIKE :b1;

Oracle performs a full table scan on the employees table to execute this statement,

even if there is an index on the last_name column that is made available by the

condition in the WHERE clause.

ROWID
The ROWID hint explicitly chooses a table scan by rowid for the specified table.

rowid_hint::=

where table specifies the name or alias of the table on which the table access by

rowid is to be performed.

For example:

SELECT /*+ROWID(employees)*/ *
FROM employees
WHERE rowid > 'AAAAtkAABAAAFNTAAA' AND employee_id = 155;

CLUSTER
The CLUSTER hint explicitly chooses a cluster scan to access the specified table. It

applies only to clustered objects.

cluster_hint::=

Note: Because the employees table has alias e the hint must refer

to the table by its alias rather than by its name. Also, do not specify

schema names in the hint even if they are specified in the FROM
clause.

/*+ ROWID (table) */

/*+ CLUSTER (table) */
Optimizer Hints 5-11

Using Optimizer Hints
where table specifies the name or alias of the table to be accessed by a cluster scan.

For example:

SELECT /*+ CLUSTER */
employees.last_name, department_id
FROM employees, departments
WHERE department_id = 10
AND employees.department_id = departments.department_id;

HASH
The HASH hint explicitly chooses a hash scan to access the specified table. It applies

only to tables stored in a cluster.

hash_hint::=

where table specifies the name or alias of the table to be accessed by a hash scan.

INDEX
The INDEX hint explicitly chooses an index scan for the specified table. You can use

the INDEX hint for domain, B-tree, bitmap, and bitmap join indexes. However,

Oracle recommends using INDEX_COMBINE rather than INDEX for bitmap indexes,

because it is a more versatile hint.

index_hint::=

where:

■ table specifies the name or alias of the table associated with the index to be

scanned.

■ index specifies an index on which an index scan is to be performed.

This hint can optionally specify one or more indexes:

■ If this hint specifies a single available index, then the optimizer performs a scan

on this index. The optimizer does not consider a full table scan or a scan on

another index on the table.

/*+ HASH (table) */

/*+ INDEX (table
index

) */
5-12 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
■ If this hint specifies a list of available indexes, then the optimizer considers the

cost of a scan on each index in the list and then performs the index scan with

the lowest cost. The optimizer can also choose to scan multiple indexes from

this list and merge the results, if such an access path has the lowest cost. The

optimizer does not consider a full table scan or a scan on an index not listed in

the hint.

■ If this hint specifies no indexes, then the optimizer considers the cost of a scan

on each available index on the table and then performs the index scan with the

lowest cost. The optimizer can also choose to scan multiple indexes and merge

the results, if such an access path has the lowest cost. The optimizer does not

consider a full table scan.

For example, consider this query that selects the name, height, and weight of all

male patients in a hospital:

SELECT name, height, weight
FROM patients
WHERE sex = ’m’;

Assume that there is an index on the SEX column and that this column contains the

values m and f . If there are equal numbers of male and female patients in the

hospital, then the query returns a relatively large percentage of the table’s rows, and

a full table scan is likely to be faster than an index scan. However, if a very small

percentage of the hospital’s patients are male, then the query returns a relatively

small percentage of the table’s rows, and an index scan is likely to be faster than a

full table scan.

Barring the use of frequency histograms, the number of occurrences of each distinct

column value is not available to the optimizer. The cost-based approach assumes

that each value has an equal probability of appearing in each row. For a column

having only two distinct values, the optimizer assumes each value appears in 50%

of the rows, so the cost-based approach is likely to choose a full table scan rather

than an index scan.

If you know that the value in the WHERE clause of the query appears in a very small

percentage of the rows, then you can use the INDEX hint to force the optimizer to

choose an index scan. In this statement, the INDEX hint explicitly chooses an index

scan on the sex_index , the index on the sex column:

SELECT /*+ INDEX(patients sex_index) use sex_index because there are few
 male patients */ name, height, weight
FROM patients
WHERE sex = ’m’;
Optimizer Hints 5-13

Using Optimizer Hints
The INDEX hint applies to IN -list predicates; it forces the optimizer to use the

hinted index, if possible, for an IN -list predicate. Multicolumn IN -lists will not use

an index.

INDEX_ASC
The INDEX_ASC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in ascending

order of their indexed values.

index_asc_hint::=

Each parameter serves the same purpose as in the INDEX hint.

Because Oracle’s default behavior for a range scan is to scan index entries in

ascending order of their indexed values, this hint does not specify anything more

than the INDEX hint. However, you might want to use the INDEX_ASC hint to

specify ascending range scans explicitly should the default behavior change.

INDEX_COMBINE
The INDEX_COMBINE hint explicitly chooses a bitmap access path for the table. If

no indexes are given as arguments for the INDEX_COMBINEhint, then the optimizer

uses whatever Boolean combination of bitmap indexes has the best cost estimate for

the table. If certain indexes are given as arguments, then the optimizer tries to use

some Boolean combination of those particular bitmap indexes.

index_combine_hint::=

For example:

SELECT /*+INDEX_COMBINE(employees salary_bmi hire_date_bmi)*/ *
FROM employees
WHERE salary < 50000 AND hire_date < '01-JAN-1990';

/*+ INDEX_ASC (table
index

) */

/*+ INDEX_COMBINE (table
index

) */
5-14 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
INDEX_JOIN
The INDEX_JOIN hint explicitly instructs the optimizer to use an index join as an

access path. For the hint to have a positive effect, a sufficiently small number of

indexes must exist that contain all the columns required to resolve the query.

index_join_hint::=

where:

■ table specifies the name or alias of the table associated with the index to be

scanned.

■ index specifies an index on which an index scan is to be performed.

For example, the following query uses an index join to access the employee_id
and department_id columns, both of which are indexed in the employees table.

SELECT /*+index_join(employees emp_emp_id_pk emp_department_ix)*/
 employee_id, department_id
 FROM employees
 WHERE department_id > 50;

INDEX_DESC
The INDEX_DESC hint explicitly chooses an index scan for the specified table. If the

statement uses an index range scan, then Oracle scans the index entries in

descending order of their indexed values. In a partitioned index, the results are in

descending order within each partition.

index_desc_hint::=

Each parameter serves the same purpose as in the INDEX hint. For example:

SELECT /*+ INDEX_DESC(a ord_order_date_ix) */
 a.order_date, a.promotion_id, a.order_id
 FROM orders a
 WHERE a.order_date = :b1;

/*+ INDEX_JOIN (table
index

) */

/*+ INDEX_DESC (table
index

) */
Optimizer Hints 5-15

Using Optimizer Hints
INDEX_FFS
The INDEX_FFS hint causes a fast full index scan to be performed rather than a full

table scan.

index_ffs_hint::=

For example:

SELECT /*+ INDEX_FFS (o order_pk) */ COUNT(*)
FROM order_items l, orders o
WHERE l.order_id > 50
 AND l.order_id = o.order_id;

NO_INDEX
The NO_INDEX hint explicitly disallows a set of indexes for the specified table.

no_index_hint::=

■ If this hint specifies a single available index, then the optimizer does not

consider a scan on this index. Other indexes not specified are still considered.

■ If this hint specifies a list of available indexes, then the optimizer does not

consider a scan on any of the specified indexes. Other indexes not specified in

the list are still considered.

■ If this hint specifies no indexes, then the optimizer does not consider a scan on

any index on the table. This behavior is the same as a NO_INDEX hint that

specifies a list of all available indexes for the table.

The NO_INDEX hint applies to function-based, B-tree, bitmap, cluster, or domain

indexes. If a NO_INDEX hint and an index hint (INDEX, INDEX_ASC, INDEX_DESC,
INDEX_COMBINE, or INDEX_FFS) both specify the same indexes, then both the NO_
INDEX hint and the index hint are ignored for the specified indexes and the

optimizer considers the specified indexes.

See Also: "Full Scans" on page 1-34

/*+ INDEX_FFS (table
index

) */

/*+ NO_INDEX (table
index

) */
5-16 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
For example:

SELECT /*+NO_INDEX(employees emp_empid)*/ employee_id
FROM employees
WHERE employee_id > 200;

AND_EQUAL
The AND_EQUAL hint explicitly chooses an execution plan that uses an access path

that merges the scans on several single-column indexes.

and_equal_hint::=

where:

■ table specifies the name or alias of the table associated with the indexes to be

merged.

■ index specifies an index on which an index scan is to be performed. You must

specify at least two indexes. You cannot specify more than five.

Hints for Query Transformations
Each hint described in this section suggests a SQL query transformation.

■ USE_CONCAT

■ NO_EXPAND

■ REWRITE

■ EXPAND_GSET_TO_UNION

■ NOREWRITE

■ MERGE

■ NO_MERGE

■ STAR_TRANSFORMATION

■ FACT

■ NO_FACT

/*+ AND_EQUAL (table index index
index index index

) */
Optimizer Hints 5-17

Using Optimizer Hints
USE_CONCAT
The USE_CONCAT hint forces combined OR conditions in the WHERE clause of a

query to be transformed into a compound query using the UNION ALL set operator.

Generally, this transformation occurs only if the cost of the query using the

concatenations is cheaper than the cost without them.

The USE_CONCAT hint turns off IN -list processing and OR-expands all disjunctions,

including IN -lists.

use_concat_hint::=

For example:

SELECT /*+USE_CONCAT*/ *
FROM employees
WHERE employee_id > 50 OR salary < 50000;

NO_EXPAND
The NO_EXPAND hint prevents the cost-based optimizer from considering

OR-expansion for queries having OR conditions or IN -lists in the WHERE clause.

Usually, the optimizer considers using OR expansion and uses this method if it

decides that the cost is lower than not using it.

no_expand_hint::=

For example:

SELECT /*+NO_EXPAND*/ *
FROM employees
WHERE employee_id = 50 OR employee_id = 100;

REWRITE
The REWRITE hint forces the cost-based optimizer to rewrite a query in terms of

materialized views, when possible, without cost consideration. Use the REWRITE
hint with or without a view list. If you use REWRITE with a view list and the list

contains an eligible materialized view, then Oracle uses that view regardless of its

cost.

/*+ USE_CONCAT */

/*+ NO_EXPAND */
5-18 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
Oracle does not consider views outside of the list. If you do not specify a view list,

then Oracle searches for an eligible materialized view and always uses it regardless

of its cost.

rewrite_hint::=

EXPAND_GSET_TO_UNION
The EXPAND_GSET_TO_UNION hint is used for queries containing grouping sets

(such as queries with GROUP BY GROUPING SETor GROUP BY ROLLUP). The hint

forces a query to be transformed into a corresponding query with UNION ALL of

individual groupings.

expand_gset_to_union_hint::=

For example:

SELECT year, quarter, month, sum(sales)
FROM T
GROUP BY year, rollup(quarter, month)

is first transformed to

SELECT year, quarter, month, sum(sales)
FROM T
GROUP BY year, quarter, month UNION ALL
SELECT year, quarter, null, sum(sales)
FROM T
GROUP BY year, quarter UNION ALL
SELECT year, null, null, sum(sales)
FROM T
GROUP BY year

See Also:

■ Oracle9i Database Concepts and Oracle9i Advanced Replication for

more information on materialized views

■ Oracle9i Data Warehousing Guide for more information on using

REWRITE with materialized views

/*+ REWRITE
(view)

*/

/*+ EXPAND_GSET_TO_UNION */
Optimizer Hints 5-19

Using Optimizer Hints
Then, for each branch of the UNION ALL, Oracle tries a rewrite with a materialized

view. The rewrite may do a joinback and rollup of the materialized view. Finally,

Oracle looks at the branches not rewritten and tries to represent them as a single

query block with grouping sets. So for example, if only the last branch of the UNION
ALL was rewritten with materialized view MV, Oracle replaces the first two branches

with a the equivalent GROUPING SET query, as follows:

SELECT year, quarter, month, sum(sales)
FROM T
GROUP BY grouping set ((year, quarter, month), (year, quarter)) UNION ALL
SELECT year, null, null, sum_sales
FROM MV

NOREWRITE
The NOREWRITE hint disables query rewrite for the query block, overriding the

setting of the parameter QUERY_REWRITE_ENABLED. Use the NOREWRITE hint on

any query block of a request.

norewrite_hint::=

MERGE
The MERGE hint lets you merge a view for each query.

If a view’s query contains a GROUP BYclause or DISTINCT operator in the SELECT
list, then the optimizer can merge the view’s query into the accessing statement

only if complex view merging is enabled. Complex merging can also be used to

merge an IN subquery into the accessing statement if the subquery is uncorrelated.

Complex merging is not cost-based; that is, the accessing query block must include

the MERGE hint. Without this hint, the optimizer uses another approach.

merge_hint::=

Note: The NOREWRITE hint disables the use of function-based

indexes.

/*+ NOREWRITE */

/*+ MERGE (table) */
5-20 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
For example:

SELECT /*+MERGE(v)*/ e1.last_name, e1.salary, v.avg_salary
FROM employees e1,
 (SELECT department_id, avg(salary) avg_salary
 FROM employees e2
 GROUP BY department_id) v
WHERE e1.department_id = v.department_id AND e1.salary > v.avg_salary;

NO_MERGE
The NO_MERGE hint causes Oracle not to merge mergeable views.

no_merge_hint::=

This hint lets the user have more influence over the way in which the view is

accessed.

For example:

SELECT /*+NO_MERGE(dallas_dept)*/ e1.last_name, dallas_dept.dname
FROM employees e1,
 (SELECT department_id, dname
 FROM departments
 WHERE loc = 'DALLAS') dallas_dept
WHERE e1.department_id = dallas_dept.department_id;

This causes view dallas_dept not to be merged.

When the NO_MERGE hint is used without an argument, it should be placed in the

view query block. When NO_MERGE is used with the view name as an argument, it

should be placed in the surrounding query.

STAR_TRANSFORMATION
The STAR_TRANSFORMATION hint makes the optimizer use the best plan in which

the transformation has been used. Without the hint, the optimizer could make a

cost-based decision to use the best plan generated without the transformation,

instead of the best plan for the transformed query.

Note: This example requires that complex view merging be

enabled.

/*+ NO_MERGE (table) */
Optimizer Hints 5-21

Using Optimizer Hints
Even if the hint is given, there is no guarantee that the transformation will take

place. The optimizer only generates the subqueries if it seems reasonable to do so. If

no subqueries are generated, then there is no transformed query, and the best plan

for the untransformed query is used, regardless of the hint.

star_transformation_hint::=

FACT
The FACT hint is used in the context of the star transformation to indicate to the

transformation that the hinted table should be considered as a fact table.

fact_hint::=

NO_FACT
The NO_FACT hint is used in the context of the star transformation to indicate to the

transformation that the hinted table should not be considered as a fact table.

no_fact_hint::=

Hints for Join Orders
The hints in this section suggest join orders:

■ ORDERED

■ STAR

See Also:

■ Oracle9i Database Concepts for a full discussion of star

transformation.

■ Oracle9i Database Reference for more information on the STAR_
TRANSFORMATION_ENABLED initialization parameter.

/*+ STAR_TRANSFORMATION */

/*+ FACT (table) */

/*+ NO_FACT (table) */
5-22 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
ORDERED
The ORDERED hint causes Oracle to join tables in the order in which they appear in

the FROM clause.

If you omit the ORDERED hint from a SQL statement performing a join, then the

optimizer chooses the order in which to join the tables. You might want to use the

ORDERED hint to specify a join order if you know something about the number of

rows selected from each table that the optimizer does not. Such information lets you

choose an inner and outer table better than the optimizer could.

ordered_hint::=

The following query is an example of the use of the ORDERED hint:

SELECT /*+ORDERED */ o.order_id, c.customer_id, l.unit_price * l.quantity
 FROM customers c, order_items l, orders o
 WHERE c.cust_last_name = :b1
 AND o.customer_id = c.customer_id
 AND o.order_id = l.order_id;

STAR
The STAR hint forces a star query plan to be used, if possible. A star plan has the

largest table in the query last in the join order and joins it with a nested loops join

on a concatenated index. The STAR hint applies when there are at least three tables,

the large table’s concatenated index has at least three columns, and there are no

conflicting access or join method hints. The optimizer also considers different

permutations of the small tables.

star_hint::=

Usually, if you analyze the tables, then the optimizer selects an efficient star plan.

You can also use hints to improve the plan. The most precise method is to order the

tables in the FROM clause in the order of the keys in the index, with the large table

last. Then use the following hints:

/*+ ORDERED USE_NL(FACTS) INDEX(facts fact_concat) */

where facts is the table and fact_concat is the index. A more general method is

to use the STAR hint.

/*+ ORDERED */

/*+ STAR */
Optimizer Hints 5-23

Using Optimizer Hints
Hints for Join Operations
Each hint described in this section suggests a join operation for a table.

■ USE_NL

■ USE_MERGE

■ USE_HASH

■ DRIVING_SITE

■ LEADING

■ HASH_AJ, MERGE_AJ, and NL_AJ

■ HASH_SJ, MERGE_SJ, and NL_SJ

In the hint you must specify a table exactly the same way it appears in the

statement. If the statement uses an alias for the table, then you must use the alias

rather than the table name in the hint. However, the table name within the hint

should not include the schema name, if the schema name is present in the statement.

Use of the USE_NL and USE_MERGE hints is recommended with the ORDERED hint.

Oracle uses these hints when the referenced table is forced to be the inner table of a

join; the hints are ignored if the referenced table is the outer table.

USE_NL
The USE_NL hint causes Oracle to join each specified table to another row source

with a nested loops join, using the specified table as the inner table.

use_nl_hint::=

where table is the name or alias of a table to be used as the inner table of a nested

loops join.

For example, consider this statement, which joins the accounts and customers
tables. Assume that these tables are not stored together in a cluster:

SELECT accounts.balance, customers.last_name, customers.first_name
 FROM accounts, customers
 WHERE accounts.customer_id = customers.customer_id;

Because the default goal of the cost-based approach is best throughput, the

optimizer chooses either a nested loops operation, a sort-merge operation, or a hash

/*+ USE_NL (table) */
5-24 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
operation to join these tables, depending on which is likely to return all the rows

selected by the query more quickly.

However, you might want to optimize the statement for best response time or the

minimal elapsed time necessary to return the first row selected by the query, rather

than best throughput. If so, then you can force the optimizer to choose a nested

loops join by using the USE_NL hint. In this statement, the USE_NL hint explicitly

chooses a nested loops join with the customers table as the inner table:

SELECT /*+ ORDERED USE_NL(customers) to get first row faster */
 accounts.balance, customers.last_name, customers.first_name
FROM accounts, customers
WHERE accounts.customer_id = customers.customer_id;

In many cases, a nested loops join returns the first row faster than a sort merge join.

A nested loops join can return the first row after reading the first selected row from

one table and the first matching row from the other and combining them, while a

sort merge join cannot return the first row until after reading and sorting all

selected rows of both tables and then combining the first rows of each sorted row

source.

In the following statement where a nested loop is forced through a hint, orders is

accessed through a full table scan and the filter condition l.order_id =
h.order_id is applied to every row. For every row that meets the filter condition,

order_items is accessed through the index order_id .

SELECT /*+ USE_NL(l h) */ h.customer_id, l.unit_price * l.quantity
 FROM orders h ,order_items l
 WHERE l.order_id = h.order_id;

Adding an INDEX hint to the query could avoid the full table scan on orders ,

resulting in an execution plan similar to one used on larger systems, even though it

might not be particularly efficient here.

USE_MERGE
The USE_MERGE hint causes Oracle to join each specified table with another row

source, using a sort-merge join.

use_merge_hint::=

/*+ USE_MERGE (table) */
Optimizer Hints 5-25

Using Optimizer Hints
where table is a table to be joined to the row source resulting from joining the

previous tables in the join order using a sort merge join.

For example:

SELECT /*+USE_MERGE(employees departments)*/ *
FROM employees, departments
WHERE employees.department_id = departments.department_id;

The following query shows an inventory usage report in which the optimizer

avoids a sort for the GROUP BY operation by using the sort merge operation

specified by the USE_MERGE hint.

SELECT /*+ USE_MERGE(inv l) */inv.product_id, SUM(l.quantity)
 FROM inventories inv, order_items l
 WHERE inv.product_id = l.product_id(+)
 GROUP BY inv.product_id;

The following is a query applying the USE_MERGE hint with the FULL hint.

SELECT /*+USE_MERGE(h l) FULL(h l) */ h.customer_id, l.unit_price * l.quantity
 FROM orders h ,order_items l
 WHERE l.order_id = h.order_id;

USE_HASH
The USE_HASH hint causes Oracle to join each specified table with another row

source, using a hash join.

use_hash_hint::=

where table is a table to be joined to the row source resulting from joining the

previous tables in the join order using a hash join.

For example:

SELECT /*+USE_HASH(l l2) */ l.order_date, l.order_id, l2.product_id,
 SUM(l2.unit_price*quantity)
 FROM orders l, order_items l2
 WHERE l.order_id = l2.order_id
GROUP BY l2.product_id, l.order_date, l.order_id;

Another example:

/*+ USE_HASH (table) */
5-26 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
SELECT /*+use_hash(employees departments)*/ *
FROM employees, departments
WHERE employees.department_id = departments.department_id;

DRIVING_SITE
The DRIVING_SITE hint forces query execution to be done at a different site than

that selected by Oracle. This hint can be used with either rule-based or cost-based

optimization.

driving_site_hint::=

where table is the name or alias for the table at which site the execution should

take place.

For example:

SELECT /*+DRIVING_SITE(departments)*/ *
FROM employees, departments@rsite
WHERE employees.department_id = departments.department_id;

If this query is executed without the hint, then rows from departments are sent to

the local site, and the join is executed there. With the hint, the rows from

employees are sent to the remote site, and the query is executed there, returning

the result to the local site.

This hint is useful if you are using distributed query optimization.

LEADING
The LEADING hint causes Oracle to use the specified table as the first table in the

join order.

If you specify two or more LEADING hints on different tables, then all of them are

ignored. If you specify the ORDERED hint, then it overrides all LEADING hints.

leading_hint::=

where table is the name or alias of a table to be used as the first table in the join

order.

/*+ DRIVING_SITE (table) */

/*+ LEADING (table) */
Optimizer Hints 5-27

Using Optimizer Hints
HASH_AJ, MERGE_AJ, and NL_AJ
For a specific query, place the MERGE_AJ, HASH_AJ, or NL_AJ hint into the NOT IN
subquery. MERGE_AJ uses a sort-merge anti-join, HASH_AJ uses a hash anti-join,

and NL_AJ uses a nested loop anti-join.

As illustrated in Figure 5–1, the SQL IN predicate can be evaluated using a join to

intersect two sets. Thus, employees .department_id can be joined to

departments .department_id to yield a list of employees in a set of

departments.

Figure 5–1 Parallel Hash Anti-join

Alternatively, the SQL predicate NOT IN can be evaluated using an anti-join to

subtract two sets. Thus, employees .department_id can be anti-joined to

departments .department_id to select all employees who are not in a set of

departments, and you can get a list of all employees who are not in the shipping or

receiving departments.

HASH_SJ, MERGE_SJ, and NL_SJ
For a specific query, place the HASH_SJ, MERGE_SJ, or NL_SJ hint into the EXISTS
subquery. HASH_SJ uses a hash semi-join, MERGE_SJ uses a sort merge semi-join,

and NL_SJ uses a nested loop semi-join.

For example:

SELECT * FROM departments
WHERE exists (SELECT /*+HASH_SJ*/ *
 FROM employees
 WHERE employees.department_id = departments.department_id
 AND salary > 200000);

EMP DEPT EMP DEPT

IN, JOIN NOT IN, ANTI-JOIN

Employees in
(Shipping, Receiving)

Employees not in
(Shipping, Receiving)
5-28 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
This converts the subquery into a special type of join between t1 and t2 that

preserves the semantics of the subquery. That is, even if there is more than one

matching row in t2 for a row in t1 , the row in t1 is returned only once.

A subquery is evaluated as a semi-join only with these limitations:

■ There can only be one table in the subquery.

■ The outer query block must not itself be a subquery.

■ The subquery must be correlated with an equality predicate.

■ The subquery must have no GROUP BY, CONNECT BY, or ROWNUM references.

Hints for Parallel Execution
The hints described in this section determine how statements are parallelized or not

parallelized when using parallel execution.

■ PARALLEL

■ NOPARALLEL

■ PQ_DISTRIBUTE

■ PARALLEL_INDEX

■ NOPARALLEL_INDEX

PARALLEL
The PARALLEL hint lets you specify the desired number of concurrent servers that

can be used for a parallel operation. The hint applies to the SELECT, INSERT,

UPDATE, and DELETE portions of a statement, as well as to the table scan portion.

If any parallel restrictions are violated, then the hint is ignored.

See Also: Oracle9i SQL Reference for more information about joins

See Also: Oracle9i Data Warehousing Guide for more information

on parallel execution

Note: The number of servers that can be used is twice the value in

the PARALLEL hint, if sorting or grouping operations also take

place.
Optimizer Hints 5-29

Using Optimizer Hints
parallel_hint::=

The PARALLEL hint must use the table alias, if an alias is specified in the query. The

hint can then take two values, separated by commas after the table name. The first

value specifies the degree of parallelism for the given table, and the second value

specifies how the table is to be split among the Oracle Real Application Clusters

instances. Specifying DEFAULT or no value signifies that the query coordinator

should examine the settings of the initialization parameters to determine the default

degree of parallelism. In the following example, the PARALLEL hint overrides the

degree of parallelism specified in the employees table definition:

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, 5) */ last_name
FROM hr.employees hr_emp;

In the next example, the PARALLEL hint overrides the degree of parallelism

specified in the employees table definition and tells the optimizer to use the

default degree of parallelism determined by the initialization parameters. This hint

also specifies that the table should be split among all of the available instances, with

the of parallelism on each instance.

SELECT /*+ FULL(hr_emp) PARALLEL(hr_emp, DEFAULT,DEFAULT) */ last_name
FROM hr.employees hr_emp;

NOPARALLEL
The NOPARALLEL hint overrides a PARALLEL specification in the table clause. In

general, hints take precedence over table clauses.

noparallel_hint::=

The following example illustrates the NOPARALLEL hint:

SELECT /*+ NOPARALLEL(hr_emp) */ last_name
FROM hr.employees hr_emp;

/*+ PARALLEL (table

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

/*+ NOPARALLEL (table) */
5-30 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
PQ_DISTRIBUTE
The PQ_DISTRIBUTEhint improves the performance of parallel join operations. Do

this by specifying how rows of joined tables should be distributed among producer

and consumer query servers. Using this hint overrides decisions the optimizer

would normally make.

Use the EXPLAIN PLAN statement to identify the distribution chosen by the

optimizer. The optimizer ignores the distribution hint, if both tables are serial.

pq_distribute_hint::=

where:

■ table_name is the name or alias of a table to be used as the inner table of a

join.

■ outer_distribution is the distribution for the outer table.

■ inner_distribution is the distribution for the inner table.

There are six combinations for table distribution. Only a subset of distribution

method combinations for the joined tables is valid, as explained in Table 5–1.

See Also: Oracle9i Database Concepts for more information on how

Oracle parallelizes join operations

Table 5–1 Distribution Hint Combinations

Distribution Interpretation

Hash, Hash Maps the rows of each table to consumer query servers, using a
hash function on the join keys. When mapping is complete, each
query server performs the join between a pair of resulting partitions.
This hint is recommended when the tables are comparable in size
and the join operation is implemented by hash-join or sort merge
join.

Broadcast, None All rows of the outer table are broadcast to each query server. The
inner table rows are randomly partitioned. This hint is
recommended when the outer table is very small compared to the
inner table. As a general rule, use the Broadcast/None hint when
inner table size * number of query servers > outer table size.

/*+ PQ_DISTRIBUTE (table
,

outer_distribution , inner_distribution) */
Optimizer Hints 5-31

Using Optimizer Hints
For example: Given two tables, r and s , that are joined using a hash-join, the

following query contains a hint to use hash distribution:

SELECT column_list /*+ORDERED PQ_DISTRIBUTE(s HASH, HASH) USE_HASH (s)*/
FROM r,s
WHERE r.c=s.c;

To broadcast the outer table r , the query is:

SELECT column list /*+ORDERED PQ_DISTRIBUTE(s BROADCAST, NONE) USE_HASH (s) */
FROM r,s
WHERE r.c=s.c;

None, Broadcast All rows of the inner table are broadcast to each consumer query
server. The outer table rows are randomly partitioned. This hint is
recommended when the inner table is very small compared to the
outer table. As a general rule, use the None/Broadcast hint when
inner table size * number of query servers < outer table size.

Partition, None Maps the rows of the outer table, using the partitioning of the inner
table. The inner table must be partitioned on the join keys. This hint
is recommended when the number of partitions of the outer table is
equal to or nearly equal to a multiple of the number of query
servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the inner table is not
partitioned or not equijoined on the partitioning key.

None, Partition Maps the rows of the inner table using the partitioning of the outer
table. The outer table must be partitioned on the join keys. This hint
is recommended when the number of partitions of the outer table is
equal to or nearly equal to a multiple of the number of query
servers; for example, 14 partitions and 15 query servers.

Note: The optimizer ignores this hint if the outer table is not
partitioned or not equijoined on the partitioning key.

None, None Each query server performs the join operation between a pair of
matching partitions, one from each table. Both tables must be
equipartitioned on the join keys.

Table 5–1 (Cont.) Distribution Hint Combinations

Distribution Interpretation
5-32 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
PARALLEL_INDEX
The PARALLEL_INDEX hint specifies the desired number of concurrent servers that

can be used to parallelize index range scans for partitioned indexes.

parallel_index_hint::=

where:

■ table is the name or alias of the table associated with the index to be scanned.

■ index is the index on which an index scan is to be performed (optional).

The hint can take two values, separated by commas after the table name. The first

value specifies the degree of parallelism for the given table. The second value

specifies how the table is to be split among the Oracle Real Application Clusters

instances. Specifying DEFAULT or no value signifies the query coordinator should

examine the settings of the initialization parameters to determine the default degree

of parallelism.

For example:

SELECT /*+ PARALLEL_INDEX(table1, index1, 3, 2) +/

In this example, there are three parallel execution processes to be used on each of

two instances.

NOPARALLEL_INDEX
The NOPARALLEL_INDEX hint overrides a PARALLEL attribute setting on an index

to avoid a parallel index scan operation.

noparallel_index_hint::=

/*+ PARALLEL_INDEX (table
index

,

, integer

, DEFAULT

,

, integer

, DEFAULT

) */

/*+ NOPARALLEL_INDEX (table
index

) */
Optimizer Hints 5-33

Using Optimizer Hints
Additional Hints
Several additional hints are included in this section:

■ APPEND

■ NOAPPEND

■ CACHE

■ NOCACHE

■ UNNEST

■ NO_UNNEST

■ PUSH_PRED

■ NO_PUSH_PRED

■ PUSH_SUBQ

■ NO_PUSH_SUBQ

■ ORDERED_PREDICATES

■ CURSOR_SHARING_EXACT

■ DYNAMIC_SAMPLING

APPEND
The APPEND hint lets you enable direct-path INSERT if your database is running in

serial mode. Your database is in serial mode if you are not using Enterprise Edition.

Conventional INSERT is the default in serial mode, and direct-path INSERT is the

default in parallel mode.

In direct-path INSERT, data is appended to the end of the table, rather than using

existing space currently allocated to the table. As a result, direct-path INSERT can

be considerably faster than conventional INSERT.

append_hint::=

NOAPPEND
The NOAPPEND hint enables conventional INSERT by disabling parallel mode for

the duration of the INSERT statement. (Conventional INSERT is the default in serial

mode, and direct-path INSERT is the default in parallel mode).

/*+ APPEND */
5-34 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
noappend_hint::=

CACHE
The CACHE hint specifies that the blocks retrieved for the table are placed at the

most recently used end of the LRU list in the buffer cache when a full table scan is

performed. This option is useful for small lookup tables.

cache_hint::=

In the following example, the CACHE hint overrides the table’s default caching

specification:

SELECT /*+ FULL (hr_emp) CACHE(hr_emp) */ last_name
FROM hr.employees hr_emp;

NOCACHE
The NOCACHE hint specifies that the blocks retrieved for the table are placed at the

least recently used end of the LRU list in the buffer cache when a full table scan is

performed. This is the normal behavior of blocks in the buffer cache.

nocache_hint::=

For example:

SELECT /*+ FULL(hr_emp) NOCACHE(hr_emp) */ last_name
FROM hr.employees hr_emp;

Automatic Caching of Small Tables Starting with Oracle9i, Release 2 (9.2), small tables

are automatically cached, according to the criteria in Table 5–2.

Note: The CACHEand NOCACHEhints affect system statistics "table

scans(long tables)" and "table scans(short tables)", as shown in the

V$SYSSTAT view.

/*+ NOAPPEND */

/*+ CACHE (table) */

/*+ NOCACHE (table) */
Optimizer Hints 5-35

Using Optimizer Hints
Automatic caching of small tables is disabled for tables that are created or altered

with the CACHE attribute.

UNNEST
The UNNEST hint specifies subquery unnesting. Subquery unnesting unnests and

merges the body of the subquery into the body of the statement that contains it,

allowing the optimizer to consider them together when evaluating access paths and

joins.

If the UNNEST hint is used, Oracle first verifies if the statement is valid. If the

statement is not valid, then subquery unnesting cannot proceed. The statement

must then must pass a heuristic test.

The UNNEST hint tells Oracle to check the subquery block for validity only. If the

subquery block is valid, then subquery unnesting is enabled without Oracle’s

checking the heuristics.

Table 5–2 Table Caching Criteria

Table Size Size Criteria Caching

Small Number of blocks < 20 or
2% of total cached blocks,
whichever is larger

Always cached

Medium Larger than a small table,
but < 10% of total cached
blocks

Oracle decides whether to cache a table on the
basis of its table scan and workload history. It
caches the table only if a future table scan is
likely to find the cached blocks.

Large > 10% of total cached blocks Not cached

See Also:

■ Oracle9i SQL Reference for more information on unnesting

nested subqueries and the conditions that make a subquery

block valid

■ "Subquery Unnesting" on page 1-12 and "How the CBO

Unnests Subqueries" on page 2-33 for more information on the

use of unnesting
5-36 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
unnest_hint::=

NO_UNNEST
Use of the NO_UNNEST hint turns off unnesting for specific subquery blocks.

no_unnest_hint::=

PUSH_PRED
The PUSH_PRED hint forces pushing of a join predicate into the view.

push_pred_hint::=

For example:

SELECT /*+ PUSH_PRED(v) */ t1.x, v.y
FROM t1
 (SELECT t2.x, t3.y
 FROM t2, t3
 WHERE t2.x = t3.x) v
WHERE t1.x = v.x and t1.y = 1;

NO_PUSH_PRED
The NO_PUSH_PRED hint prevents pushing of a join predicate into the view.

no_push_pred_hint::=

PUSH_SUBQ
The PUSH_SUBQ hint causes non-merged subqueries to be evaluated at the earliest

possible step in the execution plan. Generally, subqueries that are not merged are

executed as the last step in the execution plan. If the subquery is relatively

inexpensive and reduces the number of rows significantly, then it improves

performance to evaluate the subquery earlier.

/*+ UNNEST */

/*+ NO_UNNEST */

/*+ PUSH_PRED (table) */

/*+ NO_PUSH_PRED (table) */
Optimizer Hints 5-37

Using Optimizer Hints
This hint has no effect if the subquery is applied to a remote table or one that is

joined using a merge join.

push_subq_hint::=

NO_PUSH_SUBQ
The NO_PUSH_SUBQ hint causes non-merged subqueries to be evaluated as the last

step in the execution plan. If the subquery is relatively expensive or does not reduce

the number of rows significantly, then it improves performance to evaluate the

subquery last.

no_push_subq_hint::=

ORDERED_PREDICATES
The ORDERED_PREDICATES hint forces the optimizer to preserve the order of

predicate evaluation, except for predicates used as index keys. Use this hint in the

WHERE clause of SELECT statements.

If you do not use the ORDERED_PREDICATES hint, then Oracle evaluates all

predicates in the following order:

1. Predicates without user-defined functions, type methods, or subqueries are

evaluated first, in the order specified in the WHERE clause.

2. Predicates with user-defined functions and type methods that have

user-computed costs are evaluated next, in increasing order of their cost.

3. Predicates with user-defined functions and type methods without

user-computed costs are evaluated next, in the order specified in the WHERE
clause.

4. Predicates not specified in the WHERE clause (for example, predicates

transitively generated by the optimizer) are evaluated next.

5. Predicates with subqueries are evaluated last, in the order specified in the

WHERE clause.

/*+ PUSH_SUBQ */

/*+ NO_PUSH_SUBQ */
5-38 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
ordered_predicates_hint::=

CURSOR_SHARING_EXACT
Oracle can replace literals in SQL statements with bind variables, if it is safe to do

so. This is controlled with the CURSOR_SHARING startup parameter. The CURSOR_
SHARING_EXACT hint causes this behavior to be switched off. In other words,

Oracle executes the SQL statement without any attempt to replace literals by bind

variables.

cursor_sharing_exact_hint::=

DYNAMIC_SAMPLING
The DYNAMIC_SAMPLING hint lets you control dynamic sampling to improve

server performance by determining more accurate selectivity and cardinality

estimates. You can set the value of DYNAMIC_SAMPLINGto a value from 0 to 10. The

higher the level, the more effort the compiler puts into dynamic sampling and the

more broadly it is applied. Sampling defaults to cursor level unless you specify a

table.

dynamic_sampling_hint::=

where:

■ table specifies the name or alias of the table on which the dynamic sampling is

to be performed.

■ integer is a value from 0 to 10 indicating the degree of sampling. If the

statement does not use aliases, then the table name is the default alias.

Note: Remember, you cannot use the ORDERED_PREDICATES
hint to preserve the order of predicate evaluation on index keys.

See Also: Oracle9i Database Concepts

/*+ ORDERED_PREDICATES */

/*+ CURSOR_SHARING_EXACT */

/*+ DYNAMIC_SAMPLING (
table

integer) */
Optimizer Hints 5-39

Using Optimizer Hints
For example:

SELECT /*+ dynamic_sampling(1) */ *
FROM ...

enables dynamic sampling if all of the following conditions are true:

■ There is more than one table in the query.

■ Some table has not been analyzed and has no indexes.

■ The optimizer determines that a relatively expensive table scan would be

required for this table that has not been analyzed.

The sampling levels are as follows if the dynamic sampling level used is from a

cursor hint or from the optimizer_dynamic_sampling parameter:

■ Level 0: Do not use dynamic sampling.

■ Level 1: Sample all tables that have not been analyzed if the following criteria

are met: (1) there is at least 1 unanalyzed table in the query; (2) this unanalyzed

table is joined to another table or appears in a subquery or non-mergeable view;

(3) this unanalyzed table has no indexes; (4) this unanalyzed table has more

blocks than the number of blocks that would be used for dynamic sampling of

this table. The number of blocks sampled is the default number of dynamic

sampling blocks (32).

■ Level 2: Apply dynamic sampling to all unanalyzed tables. The number of

blocks sampled is the default number of dynamic sampling blocks.

■ Level 3: Apply dynamic sampling to all tables that meet Level 2 criteria, plus all

tables for which standard selectivity estimation used a guess for some predicate

that is a potential dynamic sampling predicate. The number of blocks sampled

is the default number of dynamic sampling blocks.

■ Level 4: Apply dynamic sampling to all tables that meet Level 3 criteria, plus all

tables that have single-table predicates that reference 2 or more columns. The

number of blocks sampled is the default number of dynamic sampling blocks.

■ Level 5: Apply dynamic sampling to all tables that meet the Level 4 criteria

using 2 times the default number of dynamic sampling blocks.

■ Level 6: Apply dynamic sampling to all tables that meet the Level 5 criteria

using 4 times the default number of dynamic sampling blocks.

■ Level 7: Apply dynamic sampling to all tables that meet the Level 6 criteria

using 8 times the default number of dynamic sampling blocks.
5-40 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
■ Level 8: Apply dynamic sampling to all tables that meet the Level 7 criteria

using 32 times the default number of dynamic sampling blocks.

■ Level 9: Apply dynamic sampling to all tables that meet the Level 8 criteria

using 128 times the default number of dynamic sampling blocks.

■ Level 10: Apply dynamic sampling to all tables that meet the Level 9 criteria

using all blocks in the table.

The sampling levels are as follows if the dynamic sampling level used is from a

table hint:

■ Level 0: Do not use dynamic sampling.

■ Level 1: The number of blocks sampled is the default number of dynamic

sampling blocks (32).

■ Level 2: The number of blocks sampled is 2 times the default number of

dynamic sampling blocks.

■ Level 3: The number of blocks sampled is 4 times the default number of

dynamic sampling blocks.

■ Level 4: The number of blocks sampled is 8 times the default number of

dynamic sampling blocks.

■ Level 5: The number of blocks sampled is 16 times the default number of

dynamic sampling blocks.

■ Level 6: The number of blocks sampled is 32 times the default number of

dynamic sampling blocks.

■ Level 7: The number of blocks sampled is 64 times the default number of

dynamic sampling blocks.

■ Level 8: The number of blocks sampled is 128 times the default number of

dynamic sampling blocks.

■ Level 9: The number of blocks sampled is 256 times the default number of

dynamic sampling blocks.

■ Level 10: Read all blocks in the table.

To apply dynamic sampling to a specific table, use the following form of the hint:

SELECT /*+ dynamic_sampling(employees 1) */ *
FROM employees
WHERE ..,
Optimizer Hints 5-41

Using Optimizer Hints
If there is a table hint, dynamic sampling is used unless the table is analyzed and

there are no predicates on the table. For example, the following query will not result

in any dynamic sampling if employees is analyzed:

SELECT /*+ dynamic_sampling(e 1) */ count(*)
FROM employees e;

The cardinality statistic is used, if it exists. If there is a predicate, dynamic sampling

is done with a table hint and cardinality is not estimated.

To force cardinality estimation even for an analyzed table, you can use a further

hint, dynamic_sampling_est_cdn , as in the following example:

SELECT /*+ dynamic_sampling(e 1) dynamic_sampling_est_cdn(t) */ count(*)
FROM employees e;

This forces cardinality estimation for employees , even if the table is analyzed. The

following query does both selectivity and cardinality estimation for employees :

SELECT /*+ dynamic_sampling(e 1) dynamic_sampling_est_cdn(e) */ count(*)
FROM employees e
WHERE cols > 3;

Using Hints with Views
Oracle does not encourage the use of hints inside or on views (or subqueries). This

is because you can define views in one context and use them in another. However,

such hints can result in unexpected execution plans. In particular, hints inside views

or on views are handled differently, depending on whether the view is mergeable

into the top-level query.

If you decide, nonetheless, to use hints with views, the following sections describe

the behavior in each case.

■ Hints and Mergeable Views

■ Hints and Nonmergeable Views

If you want to specify a hint for a table in a view or subquery, then the global hint

syntax is recommended. The following section describes this in detail.

■ Global Hints

Hints and Mergeable Views
This section describes hint behavior with mergeable views.
5-42 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
Optimization Approaches and Goal Hints Optimization approach and goal hints can

occur in a top-level query or inside views.

■ If there is such a hint in the top-level query, then that hint is used regardless of

any such hints inside the views.

■ If there is no top-level optimizer mode hint, then mode hints in referenced

views are used as long as all mode hints in the views are consistent.

■ If two or more mode hints in the referenced views conflict, then all mode hints

in the views are discarded and the session mode is used, whether default or

user-specified.

Access Path and Join Hints on Views Access path and join hints on referenced views

are ignored, unless the view contains a single table (or references an Additional

Hints view with a single table). For such single-table views, an access path hint or a

join hint on the view applies to the table inside the view.

Access Path and Join Hints Inside Views Access path and join hints can appear in a

view definition.

■ If the view is a subquery (that is, if it appears in the FROM clause of a SELECT
statement), then all access path and join hints inside the view are preserved

when the view is merged with the top-level query.

■ For views that are not subqueries, access path and join hints in the view are

preserved only if the top-level query references no other tables or views (that is,

if the FROM clause of the SELECT statement contains only the view).

Parallel Execution Hints on Views PARALLEL, NOPARALLEL, PARALLEL_INDEX, and

NOPARALLEL_INDEX hints on views are applied recursively to all the tables in the

referenced view. Parallel execution hints in a top-level query override such hints

inside a referenced view.

Parallel Execution Hints Inside Views PARALLEL, NOPARALLEL, PARALLEL_INDEX,

and NOPARALLEL_INDEX hints inside views are preserved when the view is

merged with the top-level query. Parallel execution hints on the view in a top-level

query override such hints inside a referenced view.

Hints and Nonmergeable Views
With nonmergeable views, optimization approach and goal hints inside the view

are ignored; the top-level query decides the optimization mode.
Optimizer Hints 5-43

Using Optimizer Hints
Because nonmergeable views are optimized separately from the top-level query,

access path and join hints inside the view are preserved. For the same reason, access

path hints on the view in the top-level query are ignored.

However, join hints on the view in the top-level query are preserved because, in this

case, a nonmergeable view is similar to a table.

Global Hints
Table hints (hints that specify a table) normally refer to tables in the DELETE,
SELECT, or UPDATE statement in which the hint occurs, not to tables inside any

views referenced by the statement. When you want to specify hints for tables that

appear inside views, use global hints instead of embedding the hint in the view. You

can transform any table hint in this chapter into a global hint by using an extended

syntax for the table name, described as follows.

Consider the following view definitions and SELECT statement:

CREATE OR REPLACE VIEW v1 AS
 SELECT *
 FROM employees
 WHERE employee_id < 150;

CREATE OR REPLACE VIEW v2 AS
 SELECT v1.employee_id employee_id, departments.department_id department_id
 FROM v1, departments
 WHERE v1.department_id = departments.department_id;

SELECT /*+ INDEX(v2.v1.employees emp_emp_id_pk) FULL(v2.departments) */ *
 FROM v2
 WHERE department_id = 30;

The view V1 retrieves all employees whose employee number is less than 150. The

view V2 performs a join between the view V1 and the department table. The

SELECT statement retrieves rows from the view V2 restricting it to the department

whose number is 30.

There are two global hints in the SELECTstatement. The first hint specifies an index

scan for the employee table referenced in the view V1, which is referenced in the

view V2. The second hint specifies a full table scan for the department table

referenced in the view V2. Note the dotted syntax for the view tables.

A hint such as:

INDEX(employees emp_emp_id_pk)
5-44 Oracle9i Database Performance Tuning Guide and Reference

Using Optimizer Hints
in the SELECT statement is ignored because the employee table does not appear in

the FROM clause of the SELECT statement.

The global hint syntax also applies to unmergeable views. Consider the following

SELECT statement:

SELECT /*+ NO_MERGE(v2) INDEX(v2.v1.employees emp_emp_id_pk)
 FULL(v2.departments) */ *
FROM v2
WHERE department_id = 30;

It causes V2 not to be merged and specifies access path hints for the employee and

department tables. These hints are pushed down into the (nonmerged) view V2.

If a global hint references a UNION or UNION ALL view, then the hint is applied to

the first branch that contains the hinted table. Consider the INDEX hint in the

following SELECT statement:

SELECT /*+ INDEX(v.employees emp_emp_id_pk) */ *
FROM (SELECT *
 FROM employees
 WHERE employee_id < 150
 UNION ALL
 SELECT *
 FROM employees
 WHERE employee_id > 175) v
WHERE department_id = 30;

The INDEX hint applies to the employee table in the first branch of the UNION ALL
view v, not to the employee table in the second branch.
Optimizer Hints 5-45

Using Optimizer Hints
5-46 Oracle9i Database Performance Tuning Guide and Reference

Optimizing SQL Statem
6

Optimizing SQL Statements

This chapter describes how to identify high-resource SQL statements, explains what

should be collected, and provides tuning suggestions.

This chapter contains the following sections:

■ Goals for Tuning

■ Identifying and Gathering Data on Resource-Intensive SQL

■ Dynamic Sampling

■ Overview of SQL Statement Tuning
ents 6-1

Goals for Tuning
Goals for Tuning
The objective of tuning a system is either to reduce the response time for end users

of the system, or to reduce the resources used to process the same work. You can

accomplish both of these objectives in several ways:

■ Reduce the Workload

■ Balance the Workload

■ Parallelize the Workload

Reduce the Workload
This is what commonly constitutes SQL tuning: finding more efficient ways to

process the same workload. It is possible to change the execution plan of the

statement without altering the functionality to reduce the resource consumption.

Two examples of how resource usage can be reduced are:

1. If a commonly executed query needs to access a small percentage of data in the

table, then it can be executed more efficiently by using an index. By creating

such an index, you reduce the amount of resources used.

2. If a user is looking at the first twenty rows of the 10,000 rows returned in a

specific sort order, and if the query (and sort order) can be satisfied by an index,

then the user does not need to access and sort the 10,000 rows to see the first 20

rows.

Balance the Workload
Systems often tend to have peak usage in the daytime when real users are

connected to the system, and low usage in the nighttime. If noncritical reports and

batch jobs can be scheduled to run in the nighttime and their concurrency during

day time reduced, then it frees up resources for the more critical programs in the

day.

Parallelize the Workload
Queries that access large amounts of data (typical data warehouse queries) often

can be parallelized. This is extremely useful for reducing the response time in low

concurrency data warehouse. However, for OLTP environments, which tend to be

high concurrency, this can adversely impact other users by increasing the overall

resource usage of the program.
6-2 Oracle9i Database Performance Tuning Guide and Reference

Identifying and Gathering Data on Resource-Intensive SQL
Identifying and Gathering Data on Resource-Intensive SQL
This section describes the steps involved in identifying and gathering data on

poorly-performing SQL statements.

Identifying Resource-Intensive SQL
The first step in identifying resource-intensive SQL is to categorize the problem you

are attempting to fix: is the problem specific to a single program (or small number

of programs), or is the problem generic over the application?

Tuning a Specific Program
If you are tuning a specific program (GUI or 3GL), then identifying the SQL to

examine is a simple matter of looking at the SQL executed within the program.

If it is not possible to identify the SQL (for example, the SQL is generated

dynamically), then use SQL_TRACE to generate a trace file that contains the SQL

executed, then use TKPROF to generate an output file.

The SQL statements in the TKPROF output file can be ordered by various

parameters, such as the execution elapsed time (exeela), which usually assists in

the identification by ordering the SQL statements by elapsed time (with highest

elapsed time SQL statements at the top of the file). This makes the job of identifying

the poorly performing SQL easier if there are many SQL statements in the file.

Oracle SQL Analyze can be used for identifying resource intensive SQL statements,

generating explain plans, and evaluating SQL performance. Figure 6–1 is an

illustration of SQL Analyze displaying the SQL statement used in Example 1–3,

"Using EXPLAIN PLAN" on page 1-19.

See Also: Chapter 10, "Using SQL Trace and TKPROF"
Optimizing SQL Statements 6-3

Identifying and Gathering Data on Resource-Intensive SQL
Figure 6–1 Oracle SQL Analyze

Tuning an Application / Reducing Load
If your whole application is performing suboptimally, or if you are attempting to

reduce the overall CPU or I/O load on the database server, then identifying

resource-intensive SQL involves the following steps:

1. Determine which period in the day you would like to examine; typically this is

the application’s peak processing time.

2. Gather operating system and Oracle statistics over that period. The minimum of

Oracle statistics gathered should be file I/O (V$FILESTAT), system statistics

See Also: For more information on Oracle SQL Analyze, see the

Database Tuning with the Oracle Tuning Pack manual
6-4 Oracle9i Database Performance Tuning Guide and Reference

Identifying and Gathering Data on Resource-Intensive SQL
(V$SYSSTAT), and SQL statistics (V$SQLAREA or V$SQL, V$SQLTEXT and

V$SQL_PLAN).

3. Using the data collected in step two, identify the SQL statements using the most

resources. A good way to identify candidate SQL statements is to query

V$SQLAREA. V$SQLAREA contains resource usage information for all SQL

statements in the shared pool. The data in V$SQLAREA should be ordered by

resource usage. The most common resources are:

■ Buffer gets (V$SQLAREA.BUFFER_GETS, for high CPU using statements)

■ Disk reads (V$SQLAREA.DISK_READS, for high I/O statements)

■ Sorts (V$SQLAREA.SORTS, for many sorts)

One method to identify which SQL statements are creating the highest load is to

compare the resources used by a SQL statement to the total amount of that resource

used in the period. For BUFFER_GETS, divide each SQL statement's BUFFER_GETS
by the total number of buffer gets during the period. The total number of buffer gets

in the system is available in the V$SYSSTAT table, for the statistic session logical

reads.

Similarly, it is possible to apportion the percentage of disk reads a statement

performs out of the total disk reads performed by the system by dividing V$SQL_
AREA.DISK_READS by the value for the V$SYSSTAT statistic physical reads. The

SQL sections of the Statspack report include this data, so you do not need to

perform the percentage calculations manually.

After you have identified the candidate SQL statements, the next stage is to gather

information that enables you to examine the statements and tune them.

Gathering Data on the SQL Identified
If you are most concerned with CPU, then examine the top SQL statements that

performed the most BUFFER_GETS during that interval. Otherwise, start with the

SQL statement that performed the most DISK_READS.

See Also: Chapter 21, "Using Statspack" for information on how

to use Statspack to gather Oracle instance performance data for you

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

for more information on V$SQLAREA and V$SQL
Optimizing SQL Statements 6-5

Dynamic Sampling
Information to Gather During Tuning
The tuning process begins by determining the structure of the underlying tables

and indexes.

Information gathered includes the following:

1. Complete SQL text from V$SQLTEXT

2. Structure of the tables referenced in the SQL statement (usually by describing

the table in SQL*Plus)

3. Definitions of any indexes (columns, column orderings), and whether the

indexes are unique or nonunique

4. CBO statistics for the segments (including the number of rows each table,

selectivity of the index columns), including the date when the segments were

last analyzed

5. Definitions of any views referred to in the SQL statement

6. Repeat steps two and three for any tables referenced in the view definitions

found in step four

7. Optimizer plan for the SQL statement (either from EXPLAIN PLAN, V$SQL_
PLAN, or the TKPROF output)

8. Any previous optimizer plans for that SQL statement

Dynamic Sampling
The purpose of dynamic sampling is to improve server performance by

determining more accurate selectivity and cardinality estimates. More accurate

selectivity and cardinality estimates allow the optimizer to produce better

performing plans.

You can use dynamic sampling to:

Note: It is important to generate and review execution plans for

all of the key SQL statements in your application. Doing so lets you

compare the optimizer execution plans of a SQL statement when

the statement performed well to the plan when that the statement is

not performing well. Having the comparison, along with

information such as changes in data volumes, can assist in

identifying the cause of performance degradation.
6-6 Oracle9i Database Performance Tuning Guide and Reference

Dynamic Sampling
■ Estimate single-table predicate selectivities when collected statistics cannot be

used or are likely to lead to significant errors in estimation.

■ Estimate table cardinality for tables without statistics or for tables whose

statistics are too out of date to trust.

How Dynamic Sampling Works
The primary performance attribute is compile time. Oracle determines at compile

time whether a query would benefit from dynamic sampling. If so, a recursive SQL

statement is issued to scan a small random sample of the table's blocks, and to

apply the relevant single table predicates to estimate predicate selectivities. The

sample cardinality can also be used, in some cases, to estimate table cardinality.

Depending on the value of the OPTIMIZER_DYNAMIC_SAMPLING initialization

parameter, a certain number of blocks are read by the dynamic sampling query.

When to Use Dynamic Sampling
For a query that normally completes quickly (in less than a few seconds), you will

not want to incur the cost of dynamic sampling. However, dynamic sampling can

be beneficial under any of the following conditions:

■ A better plan can be found using dynamic sampling.

■ The sampling time is a small fraction of total execution time for the query.

■ The query will be executed many times.

Dynamic sampling can be applied to a subset of a single table's predicates and

combined with standard selectivity estimates of predicates for which dynamic

sampling is not done.

How to Use Dynamic Sampling to Improve Performance
You control dynamic sampling with the OPTIMIZER_DYNAMIC_SAMPLING
parameter, which can be set to a value from 0 to 10 .

■ A value of 0 means dynamic sampling will not be done.

■ A value of 1 (the default) means dynamic sampling will be performed if all of

the following conditions are true:

– There is more than one table in the query.

– Some table has not been analyzed and has no indexes.
Optimizing SQL Statements 6-7

Overview of SQL Statement Tuning
– The optimizer determines that a relatively expensive table scan would be

required for this unanalyzed table.

■ Increasing the value of the parameter results in more aggressive application of

dynamic sampling, in terms of both the type of tables sampled (analyzed or

unanalyzed) and the amount of I/O spent on sampling.

Dynamic sampling is repeatable if no rows have been inserted, deleted, or updated

in the table being sampled.

The parameter OPTIMIZER_FEATURES_ENABLE turns off dynamic sampling if set

to a version prior to 9.0.2.

Overview of SQL Statement Tuning
This section describes ways you can improve SQL statement efficiency:

■ Verifying Optimizer Statistics

■ Reviewing the Execution Plan

■ Restructuring the SQL Statements

■ Restructuring the Indexes

■ Modifying or Disabling Triggers and Constraints

■ Restructuring the Data

■ Maintaining Execution Plans Over Time

■ Visiting Data as Few Times as Possible

Verifying Optimizer Statistics
The CBO uses statistics gathered on tables and indexes when determining the

optimal execution plan. If these statistics have not been gathered, or if the statistics

See Also: "DYNAMIC_SAMPLING" on page 5-39 for details

about using this hint

Note: The guidelines described in this section are oriented to

production SQL that will be executed frequently. Most of the

techniques that are discouraged here can legitimately be employed

in ad hoc statements or in applications run infrequently where

performance is not critical.
6-8 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
are no longer representative of the data stored within the database, then the

optimizer does not have sufficient information to generate the best plan.

Things to check:

■ If you gather statistics for some tables in your database, then it is probably best

to gather statistics for all tables. This is especially true if your application

includes SQL statements that perform joins.

■ If the optimizer statistics in the data dictionary are no longer representative of

the data in the tables and indexes, then gather new statistics. One way to check

whether the dictionary statistics are stale is to compare the real cardinality (row

count) of a table to the value of DBA_TABLES.NUM_ROWS. If there is significant

data skew on predicate columns, then consider using histograms.

Reviewing the Execution Plan
When tuning (or writing) a SQL statement in an OLTP environment, the goal is to

drive from the table that has the most selective filter. This means that there are

fewer rows passed to the next step. If the next step is a join, then this means that

fewer rows are joined. Check to see whether the access paths are optimal.

When examining the optimizer execution plan, look for the following:

■ The plan is such that the driving table has the best filter.

■ The join order in each step means that the fewest number of rows are being

returned to the next step (that is, the join order should reflect, where possible,

going to the best not-yet-used filters).

■ The join method is appropriate for the number of rows being returned. For

example, nested loop joins through indexes may not be optimal when many

rows are being returned.

■ Views are used efficiently. Look at the SELECT list to see whether access to the

view is necessary.

■ There are any unintentional Cartesian products (even with small tables).

■ Each table is being accessed efficiently:

Consider the predicates in the SQL statement and the number of rows in the

table. Look for suspicious activity, such as a full table scans on tables with large

number of rows, which have predicates in the where clause. Determine why an

index is not used for such a selective predicate.
Optimizing SQL Statements 6-9

Overview of SQL Statement Tuning
A full table scan does not mean inefficiency. It might be more efficient to

perform a full table scan on a small table, or to perform a full table scan to

leverage a better join method (for example, hash_join) for the number of rows

returned.

If any of these conditions are not optimal, then consider restructuring the SQL

statement or the indexes available on the tables.

Restructuring the SQL Statements
Often, rewriting an inefficient SQL statement is easier than repairing it. If you

understand the purpose of a given statement, then you might be able to quickly and

easily write a new statement that meets the requirement.

Compose Predicates Using AND and =
To improve SQL efficiency, use equijoins whenever possible. Statements that

perform equijoins on untransformed column values are the easiest to tune.

Avoid Transformed Columns in the WHERE Clause
Use untransformed column values. For example, use:

WHERE a.order_no = b.order_no

rather than:

WHERE TO_NUMBER (SUBSTR(a.order_no, INSTR(b.order_no, ’.’) - 1))
= TO_NUMBER (SUBSTR(a.order_no, INSTR(b.order_no, ’.’) - 1))

Do not use SQL functions in predicate clauses or WHERE clauses. Any expression

using a column, such as a function having the column as its argument, causes the

optimizer to ignore the possibility of using an index on that column, even a unique

index, unless there is a function-based index defined that can be used.

Avoid mixed-mode expressions, and beware of implicit type conversions. When

you want to use an index on the VARCHAR2column charcol , but the WHEREclause

looks like this:

AND charcol = numexpr

where numexpr is an expression of number type (for example, 1,

USERENV('SESSIONID'), numcol , numcol +0,...), Oracle translates that expression

into:

AND TO_NUMBER(charcol) = numexpr
6-10 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Avoid the following kinds of complex expressions:

■ col1 = NVL (:b1 ,col1)

■ NVL (col1,-999) = ….

■ TO_DATE(), TO_NUMBER(), and so on

These expressions prevent the optimizer from assigning valid cardinality or

selectivity estimates and can in turn affect the overall plan and the join method.

Add the predicate versus using NVL() technique.

For example:

SELECT employee_num, full_name Name, employee_id
FROM mtl_employees_current_view
WHERE (employee_num = NVL (:b1,employee_num)) AND (organization_id=:1)
ORDER BY employee_num;

Also:

SELECT employee_num, full_name Name, employee_id
FROM mtl_employees_current_view
WHERE (employee_num = :b1) AND (organization_id=:1)
ORDER BY employee_num;

When you need to use SQL functions on filters or join predicates, do not use them

on the columns on which you want to have an index; rather, use them on the

opposite side of the predicate, as in the following statement:

TO_CHAR(numcol) = varcol

rather than

varcol = TO_CHAR(numcol)

Write Separate SQL Statements for Specific Tasks
SQL is not a procedural language. Using one piece of SQL to do many different

things usually results in a less-than-optimal result for each task. If you want SQL to

accomplish different things, then write various statements, rather than writing one

statement to do different things depending on the parameters you give it.

See Also: Chapter 4, "Understanding Indexes and Clusters" for

more information on function-based indexes
Optimizing SQL Statements 6-11

Overview of SQL Statement Tuning
It is always better to write separate SQL statements for different tasks, but if you

must use one SQL statement, then you can make a very complex statement slightly

less complex by using the UNION ALL operator.

Optimization (determining the execution plan) takes place before the database

knows what values will be substituted into the query. An execution plan cannot,

therefore, depend on what those values are. For example:

SELECT info
FROM tables
WHERE ...

AND somecolumn BETWEEN DECODE(:loval, 'ALL', somecolumn, :loval)
AND DECODE(:hival, 'ALL', somecolumn, :hival);

Written as shown, the database cannot use an index on the somecolumn column,

because the expression involving that column uses the same column on both sides

of the BETWEEN.

This is not a problem if there is some other highly selective, indexable condition you

can use to access the driving table. Often, however, this is not the case. Frequently,

you might want to use an index on a condition like that shown but need to know

the values of :loval , and so on, in advance. With this information, you can rule out

the ALL case, which should not use the index.

If you want to use the index whenever real values are given for :loval and :hival
(if you expect narrow ranges, even ranges where :loval often equals :hival), then

you can rewrite the example in the following logically equivalent form:

SELECT /* change this half of UNION ALL if other half changes */ info
FROM tables
WHERE ...

AND somecolumn BETWEEN :loval AND :hival
AND (:hival != 'ALL' AND :loval != 'ALL')

Note: Oracle Forms and Reports are powerful development tools

that allow application logic to be coded using PL/SQL (triggers or

program units). This helps reduce the complexity of SQL by

allowing complex logic to be handled in the Forms or Reports. You

can also invoke a server side PL/SQL package that performs the

few SQL statements in place of a single large complex SQL

statement. Because the package is a server-side unit, there are no

issues surrounding client to database round-trips and network

traffic.
6-12 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
UNION ALL
SELECT /* Change this half of UNION ALL if other half changes. */ info
FROM tables
WHERE ...

AND (:hival = 'ALL' OR :loval = 'ALL');

If you run EXPLAIN PLAN on the new query, then you seem to get both a desirable

and an undesirable execution plan. However, the first condition the database

evaluates for either half of the UNION ALL is the combined condition on whether

:hival and :loval are ALL. The database evaluates this condition before actually

getting any rows from the execution plan for that part of the query.

When the condition comes back false for one part of the UNION ALL query, that part

is not evaluated further. Only the part of the execution plan that is optimum for the

values provided is actually carried out. Because the final conditions on :hival and

:loval are guaranteed to be mutually exclusive, only one half of the UNION ALL
actually returns rows. (The ALL in UNION ALL is logically valid because of this

exclusivity. It allows the plan to be carried out without an expensive sort to rule out

duplicate rows for the two halves of the query.)

Use of EXISTS versus IN for Subqueries
In certain circumstances, it is better to use IN rather than EXISTS. In general, if the

selective predicate is in the subquery, then use IN . If the selective predicate is in the

parent query, then use EXISTS.

Note: This discussion is most applicable in an OLTP environment,

where the access paths either to the parent SQL or subquery are

through indexed columns with high selectivity. In a DSS

environment, there can be low selectivity in the parent SQL or

subquery, and there might not be any indexes on the join columns.

In a DSS environment, consider using semi-joins for the EXISTS
case.

See Also:

■ "How the CBO Executes Anti-joins" on page 1-43

■ "HASH_AJ, MERGE_AJ, and NL_AJ" on page 5-28 and

"HASH_SJ, MERGE_SJ, and NL_SJ" on page 5-28

■ Oracle9i Data Warehousing Guide
Optimizing SQL Statements 6-13

Overview of SQL Statement Tuning
Sometimes, Oracle can rewrite a subquery when used with an IN clause to take

advantage of selectivity specified in the subquery. This is most beneficial when the

most selective filter appears in the subquery and there are indexes on the join

columns. Conversely, using EXISTS is beneficial when the most selective filter is in

the parent query. This allows the selective predicates in the parent query to be

applied before filtering the rows against the EXISTS criteria.

Below are two examples that demonstrate the benefits of IN and EXISTS. Both

examples use the same schema with the following characteristics:

■ There is a unique index on the employees .employee_id field.

■ There is an index on the orders .customer_id field.

■ There is an index on the employees .department_id field.

■ The employees table has 27,000 rows.

■ The orders table has 10,000 rows.

■ The OE and HR schemas, which own these segments, were both analyzed with

COMPUTE.

Example 1: Using IN - Selective Filters in the Subquery This example demonstrates how

rewriting a query to use IN can improve performance. This query identifies all

employees who have placed orders on behalf of customer 144.

The following SQL statement uses EXISTS:

 SELECT /* EXISTS example */
 e.employee_id
 , e.first_name
 , e.last_name
 , e.salary
 FROM employees e
 WHERE EXISTS (SELECT 1 FROM orders o /* Note 1 */
 WHERE e.employee_id = o.sales_rep_id /* Note 2 */
 AND o.customer_id = 144); /* Note 3 */

Note: You should verify the CBO cost of the statement with the

actual number of resources used (BUFFER_GETS, DISK_READS,
CPU_TIME from V$SQL or V$SQLAREA). Situations such as data

skew (without the use of histograms) can adversely affect the

optimizer's estimated cost for an operation.
6-14 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Below is the execution plan (from V$SQL_PLAN) for the preceding statement. The

plan requires a full table scan of the employees table, returning many rows. Each

of these rows is then filtered against the orders table (through an index).

 ID OPERATION OPTIONS OBJECT_NAME OPT COST
---- -------------------- --------------- ---------------------- --- ----------
 0 SELECT STATEMENT CHO
 1 FILTER
 2 TABLE ACCESS FULL EMPLOYEES ANA 155
 3 TABLE ACCESS BY INDEX ROWID ORDERS ANA 3
 4 INDEX RANGE SCAN ORD_CUSTOMER_IX ANA 1

Rewriting the statement using IN results in significantly fewer resources used.

The SQL statement using IN :

 SELECT /* IN example */
 e.employee_id
 , e.first_name
 , e.last_name
 , e.salary
 FROM employees e
 WHERE e.employee_id IN (SELECT o.sales_rep_id /* Note 4 */
 FROM orders o
 WHERE o.customer_id = 144); /* Note 3 */

Notes:

■ Note 1: This shows the line containing EXISTS.

■ Note 2: This shows the line that makes the subquery a

correlated subquery.

■ Note 3: This shows the line where the correlated subqueries

include the highly selective predicate customer_id = number .
Optimizing SQL Statements 6-15

Overview of SQL Statement Tuning
Below is the execution plan (from V$SQL_PLAN) for the preceding statement. The

optimizer rewrites the subquery into a view, which is then joined through a unique

index to the employees table. This results in a significantly better plan, because the

view (that is, subquery) has a selective predicate, thus returning only a few

employee_ids . These few employee_ids are then used to access the employees
table through the unique index.

 ID OPERATION OPTIONS OBJECT_NAME OPT COST
---- -------------------- --------------- ---------------------- --- ----------
 0 SELECT STATEMENT CHO
 1 NESTED LOOPS 5
 2 VIEW 3
 3 SORT UNIQUE 3
 4 TABLE ACCESS FULL ORDERS ANA 1
 5 TABLE ACCESS BY INDEX ROWID EMPLOYEES ANA 1
 6 INDEX UNIQUE SCAN EMP_EMP_ID_PK ANA

Example 2: Using EXISTS - Selective Predicate in the Parent This example demonstrates

how rewriting a query to use EXISTS can improve performance. This query

identifies all employees from department 80 who are sales reps who have placed

orders.

The following SQL statement uses IN :

 SELECT /* IN example */
 e.employee_id
 , e.first_name
 , e.last_name
 , e.department_id
 , e.salary
 FROM employees e
 WHERE e.department_id = 80 /* Note 5 */
 AND e.job_id = 'SA_REP' /* Note 6 */
 AND e.employee_id IN (SELECT o.sales_rep_id FROM orders o); /* Note 4 */

Note:

■ Note 3: This shows the line where the correlated subqueries

include the highly selective predicate customer_id = number

■ Note 4: This indicates that an IN is being used. The subquery is

no longer correlated, because the IN clause replaces the join in

the subquery.
6-16 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Below is the execution plan (from V$SQL_PLAN) for the preceding statement. The

SQL statement was rewritten by the optimizer to use a view on the orders table,

which requires sorting the data to return all unique employee_ids existing in the

orders table. Because there is no predicate, many employee_ids are returned.

The large list of resulting employee_ids are then used to access the employees
table through the unique index.

 ID OPERATION OPTIONS OBJECT_NAME OPT COST
---- -------------------- --------------- ---------------------- --- ----------
 0 SELECT STATEMENT CHO
 1 NESTED LOOPS 125
 2 VIEW 116
 3 SORT UNIQUE 116
 4 TABLE ACCESS FULL ORDERS ANA 40
 5 TABLE ACCESS BY INDEX ROWID EMPLOYEES ANA 1
 6 INDEX UNIQUE SCAN EMP_EMP_ID_PK ANA

The following SQL statement uses EXISTS:

 SELECT /* EXISTS example */
 e.employee_id
 , e.first_name
 , e.last_name
 , e.salary
 FROM employees e
 WHERE e.department_id = 80 /* Note 5 */
 AND e.job_id = 'SA_REP' /* Note 6 */
 AND EXISTS (SELECT 1 /* Note 1 */
 FROM orders o
 WHERE e.employee_id = o.sales_rep_id); /* Note 2 */

Note:

■ Note 4: This indicates that an IN is being used. The subquery is

no longer correlated, because the IN clause replaces the join in

the subquery.

■ Note 5 and 6: These are the selective predicates in the parent

SQL.
Optimizing SQL Statements 6-17

Overview of SQL Statement Tuning
Below is the execution plan (from V$SQL_PLAN) for the preceding statement. The

cost of the plan is reduced by rewriting the SQL statement to use an EXISTS. This

plan is more effective, because two indexes are used to satisfy the predicates in the

parent query, thus returning only a few employee_ids . The employee_ids are

then used to access the orders table through an index.

 ID OPERATION OPTIONS OBJECT_NAME OPT COST
---- -------------------- --------------- ---------------------- --- ----------
 0 SELECT STATEMENT CHO
 1 FILTER
 2 TABLE ACCESS BY INDEX ROWID EMPLOYEES ANA 98
 3 AND-EQUAL
 4 INDEX RANGE SCAN EMP_JOB_IX ANA
 5 INDEX RANGE SCAN EMP_DEPARTMENT_IX ANA
 6 INDEX RANGE SCAN ORD_SALES_REP_IX ANA 8

Controlling the Access Path and Join Order with Hints
You can influence the optimizer’s choices by setting the optimizer approach and

goal, and by gathering representative statistics for the CBO. Sometimes, the

application designer, who has more information about a particular application’s

data than is available to the optimizer, can choose a more effective way to execute a

SQL statement. You can use hints in SQL statements to specify how the statement

should be executed.

Hints, such as /*+FULL */ control access paths. For example:

SELECT /*+ FULL(e) */ e.ename
FROM emp e
WHERE e.job = ’CLERK';

Note:

■ Note 1: This shows the line containing EXISTS.

■ Note 2: This shows the line that makes the subquery a

correlated subquery.

■ Note 5 & 6:These are the selective predicates in the parent SQL.

Note: An even more efficient approach is to have a concatenated

index on department_id and job_id . This eliminates the need

to access two indexes and reduces the resources used.
6-18 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Join order can have a significant effect on performance. The main objective of SQL

tuning is to avoid performing unnecessary work to access rows that do not affect

the result. This leads to three general rules:

■ Avoid a full-table scan if it is more efficient to get the required rows through an

index.

■ Avoid using an index that fetches 10,000 rows from the driving table if you

could instead use another index that fetches 100 rows.

■ Choose the join order so as to join fewer rows to tables later in the join order.

The following example shows how to tune join order effectively:

SELECT info
FROM taba a, tabb b, tabc c
WHERE a.acol BETWEEN 100 AND 200

AND b.bcol BETWEEN 10000 AND 20000
AND c.ccol BETWEEN 10000 AND 20000
AND a.key1 = b.key1
AND a.key2 = c.key2;

1. Choose the driving table and the driving index (if any).

The first three conditions in the previous example are filter conditions applying

to only a single table each. The last two conditions are join conditions.

Filter conditions dominate the choice of driving table and index. In general, the

driving table is the one containing the filter condition that eliminates the

highest percentage of the table. Thus, because the range of 100 to 200 is narrow

compared with the range of acol , but the ranges of 10000 and 20000 are

relatively large, taba is the driving table, all else being equal.

With nested loop joins, the joins all happen through the join indexes, the

indexes on the primary or foreign keys used to connect that table to an earlier

table in the join tree. Rarely do you use the indexes on the nonjoin conditions,

except for the driving table. Thus, after taba is chosen as the driving table, use

the indexes on b.key1 and c .key2 to drive into tabb and tabc , respectively.

2. Choose the best join order, driving to the best unused filters earliest.

See Also: Chapter 1, "Introduction to the Optimizer" and

Chapter 5, "Optimizer Hints"
Optimizing SQL Statements 6-19

Overview of SQL Statement Tuning
The work of the following join can be reduced by first joining to the table with

the best still-unused filter. Thus, if "bcol BETWEEN..." is more restrictive (rejects

a higher percentage of the rows seen) than "ccol BETWEEN ...", the last join can

be made easier (with fewer rows) if tabb is joined before tabc .

3. You can use the ORDERED or STAR hint to force the join order.

Use Caution When Managing Views
Be careful when joining views, when performing outer joins to views, and when

reusing an existing view for a new purpose.

Use Caution When Joining Complex Views Joins to complex views are not

recommended, particularly joins from one complex view to another. Often this

results in the entire view being instantiated, and then the query is run against the

view data.

For example, the following statement creates a view that lists employees and

departments:

CREATE OR REPLACE VIEW emp_dept
AS
SELECT d.department_id
 , d.department_name
 , d.location_id
 , e.employee_id
 , e.last_name
 , e.first_name
 , e.salary
 , e.job_id
FROM departments d
 ,employees e
WHERE e.department_id (+) = d.department_id
/

The following query finds employees in a specified state:

SELECT v.last_name, v.first_name, l.state_province
FROM locations l, emp_dept v
WHERE l.state_province = 'California'
AND v.location_id = l.location_id (+)
/

In the following plan, note that the emp_dept view is instantiated:

See Also: "Hints for Join Orders" on page 5-22
6-20 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT						
FILTER						
NESTED LOOPS OUTER						
VIEW	EMP_DEPT					
NESTED LOOPS OUTER						
TABLE ACCESS FULL	DEPARTMEN					
TABLE ACCESS BY INDEX	EMPLOYEES					
INDEX RANGE SCAN	EMP_DEPAR					
TABLE ACCESS BY INDEX R	LOCATIONS					
INDEX UNIQUE SCAN	LOC_ID_PK					
--

Do Not Recycle Views Beware of writing a view for one purpose and then using it for

other purposes to which it might be ill-suited. Querying from a view requires all

tables from the view to be accessed for the data to be returned. Before reusing a

view, determine whether all tables in the view need to be accessed to return the

data. If not, then do not use the view. Instead, use the base table(s), or if necessary,

define a new view. The goal is to refer to the minimum number of tables and views

necessary to return the required data.

Consider the following example:

SELECT dname
FROM emp_dept
WHERE deptno=10;

The entire view is first instantiated by performing a join of the emp and dept tables

and then aggregating the data. However, you can obtain dname and deptno
directly from the dept table. It is inefficient to obtain this information by querying

the dx view (which was declared in the earlier example).

Use Caution When Unnesting Subqueries Subquery unnesting merges the body of the

subquery into the body of the statement that contains it, allowing the optimizer to

consider them together when evaluating access paths and joins.

See Also: Oracle9i Data Warehousing Guide for an explanation of

the dangers with subquery unnesting
Optimizing SQL Statements 6-21

Overview of SQL Statement Tuning
Use Caution When Performing Outer Joins to Views In the case of an outer join to a

multitable view, the CBO (in Release 8.1.6 and later) can drive from an outer join

column, if an equality predicate is defined on it.

An outer join within a view is problematic because the performance implications of

the outer join are not visible.

Store Intermediate Results
Intermediate, or staging, tables are quite common in relational database systems,

because they temporarily store some intermediate results. In many applications

they are useful, but Oracle requires additional resources to create them. Always

consider whether the benefit they could bring is more than the cost to create them.

Avoid staging tables when the information is not reused multiple times.

Some additional considerations:

■ Storing intermediate results in staging tables could improve application

performance. In general, whenever an intermediate result is usable by multiple

following queries, it is worthwhile to store it in a staging table. The benefit of

not retrieving data multiple times with a complex statement already at the

second usage of the intermediate result is better than the cost to materialize it.

■ Long and complex queries are hard to understand and optimize. Staging tables

can break a complicated SQL statement into several smaller statements, and

then store the result of each step.

■ Consider using materialized views. These are precomputed tables comprising

aggregated or joined data from fact and possibly dimension tables.

Restructuring the Indexes
Often, there is a beneficial impact on performance by restructuring indexes. This

can involve the following:

■ Remove nonselective indexes to speed the DML.

■ Index performance-critical access paths.

■ Consider reordering columns in existing concatenated indexes.

■ Add columns to the index to improve selectivity.

See Also: Oracle9i Data Warehousing Guide for detailed

information on using materialized views
6-22 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Do not use indexes as a panacea. Application developers sometimes think that

performance will improve if they create more indexes. If a single programmer

creates an appropriate index, then this might indeed improve the application’s

performance. However, if 50 programmers each create an index, then application

performance will probably be hampered.

Modifying or Disabling Triggers and Constraints
Using triggers consumes system resources. If you use too many triggers, then you

can find that performance is adversely affected and you might need to modify or

disable them.

Restructuring the Data
After restructuring the indexes and the statement, you can consider restructuring

the data.

■ Introduce derived values. Avoid GROUP BY in response-critical code.

■ Review your data design. Change the design of your system if it can improve

performance.

■ Consider partitioning, if appropriate.

Maintaining Execution Plans Over Time
You can maintain the existing execution plan of SQL statements over time either

using stored statistics or stored SQL execution plans. Storing optimizer statistics for

tables will apply to all SQL statements that refer to those tables. Storing an

execution plan (that is, plan stability) maintains the plan for a single SQL statement.

If both statistics and a stored plan are available for a SQL statement, then the

optimizer uses the stored plan.

Visiting Data as Few Times as Possible
Applications should try to access each row only once. This reduces network traffic

and reduces database load. Consider doing the following:

■ Combine Multiples Scans with CASE Statements

See Also:

■ Chapter 3, "Gathering Optimizer Statistics"

■ Chapter 7, "Using Plan Stability"
Optimizing SQL Statements 6-23

Overview of SQL Statement Tuning
■ Use DML with RETURNING Clause

■ Modify All the Data Needed in One Statement

Combine Multiples Scans with CASE Statements
Often, it is necessary to calculate different aggregates on various sets of tables.

Usually, this is done with multiple scans on the table, but it is easy to calculate all

the aggregates with one single scan. Eliminating n-1 scans can greatly improve

performance.

Combining multiple scans into one scan can be done by moving the WHERE
condition of each scan into a CASE statement, which filters the data for the

aggregation. For each aggregation, there could be another column that retrieves the

data.

The following example asks for the count of all employees who earn less then 2000,

between 2000 and 4000, and more than 4000 each month. This can be done with

three separate queries:

SELECT COUNT (*)
FROM employees
WHERE salary < 2000;

SELECT COUNT (*)
FROM employees
WHERE salary BETWEEN 2000 AND 4000;

SELECT COUNT (*)
FROM employees
WHERE salary>4000;

However, it is more efficient to run the entire query in a single statement. Each

number is calculated as one column. The count uses a filter with the CASEstatement

to count only the rows where the condition is valid. For example:

SELECT COUNT (CASE WHEN salary < 2000
 THEN 1 ELSE null END) count1,
 COUNT (CASE WHEN salary BETWEEN 2001 AND 4000
 THEN 1 ELSE null END) count2,
 COUNT (CASE WHEN salary > 4000
 THEN 1 ELSE null END) count3
 FROM employees;

This is a very simple example. The ranges could be overlapping, the functions for

the aggregates could be different, and so on.
6-24 Oracle9i Database Performance Tuning Guide and Reference

Overview of SQL Statement Tuning
Use DML with RETURNING Clause
When appropriate, use INSERT, UPDATE, or DELETE... RETURNING to select and

modify data with a single call. This technique improves performance by reducing

the number of calls to the database.

Modify All the Data Needed in One Statement
When possible, use array processing. This means that an array of bind variable

values is passed to Oracle for repeated execution. This is appropriate for iterative

processes in which multiple rows of a set are subject to the same operation.

For example:

BEGIN
 FOR pos_rec IN (SELECT *
 FROM order_positions
 WHERE order_id = :id) LOOP
 DELETE FROM order_positions
 WHERE order_id = pos_rec.order_id AND
 order_position = pos_rec.order_position;
 END LOOP;
 DELETE FROM orders
 WHERE order_id = :id;
END;

Alternatively, you could define a cascading constraint on orders . In the previous

example, one SELECT and n DELETEs are executed. When a user issues the DELETE
on orders DELETE FROM orders WHERE order_id = :id , the database

automatically deletes the positions with a single DELETE statement.

See Also: Oracle9i SQL Reference for syntax on the INSERT,

UPDATE, and DELETE statements

See Also: Oracle9i Database Administrator’s Guide or Oracle9i
Heterogeneous Connectivity Administrator’s Guide for information on

tuning distributed queries
Optimizing SQL Statements 6-25

Overview of SQL Statement Tuning
6-26 Oracle9i Database Performance Tuning Guide and Reference

Using Plan St
7

Using Plan Stability

This chapter describes how to use plan stability to preserve performance

characteristics.

This chapter contains the following sections:

■ Using Plan Stability to Preserve Execution Plans

■ Using Plan Stability with the Cost-Based Optimizer
ability 7-1

Using Plan Stability to Preserve Execution Plans
Using Plan Stability to Preserve Execution Plans
Plan stability prevents certain database environment changes from affecting the

performance characteristics of applications. Such changes include changes in

optimizer statistics, changes to the optimizer mode settings, and changes to

parameters affecting the sizes of memory structures, such as SORT_AREA_SIZEand

BITMAP_MERGE_AREA_SIZE. Plan stability is most useful when you cannot risk

any performance changes in an application.

Plan stability preserves execution plans in stored outlines. Oracle can create a public

or private stored outline for one or all SQL statements. The optimizer then

generates equivalent execution plans from the outlines when you enable the use of

stored outlines. You can group outlines into categories and control which category

of outlines Oracle uses to simplify outline administration and deployment.

The plans Oracle maintains in stored outlines remain consistent despite changes to

a system’s configuration or statistics. Using stored outlines also stabilizes the

generated execution plan if the optimizer changes in subsequent Oracle releases.

Plan stability also facilitates migration from the rule-based optimizer to the

cost-based optimizer when you upgrade to a new Oracle release.

Using Hints with Plan Stability
The degree to which plan stability controls execution plans is dictated by how much

Oracle’s hint mechanism controls execution plans, because Oracle uses hints to

record stored plans.

There is a one-to-one correspondence between SQL text and its stored outline. If

you specify a different literal in a predicate, then a different outline applies. To

avoid this, replace literals in applications with bind variables.

Note: If you develop applications for mass distribution, then you

can use stored outlines to ensure that all customers access the same

execution plans.
7-2 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability to Preserve Execution Plans
Plan stability relies on preserving execution plans at a point in time when

performance is satisfactory. In many environments, however, attributes for

datatypes such as dates or order numbers can change rapidly. In these cases,

permanent use of an execution plan can result in performance degradation over

time as the data characteristics change.

This implies that techniques that rely on preserving plans in dynamic environments

are somewhat contrary to the purpose of using cost-based optimization. Cost-based

optimization attempts to produce execution plans based on statistics that accurately

reflect the state of the data. Thus, you must balance the need to control plan stability

with the benefit obtained from the optimizer’s ability to adjust to changes in data

characteristics.

How Outlines Use Hints
An outline consists primarily of a set of hints that is equivalent to the optimizer’s

results for the execution plan generation of a particular SQL statement. When

Oracle creates an outline, plan stability examines the optimization results using the

same data used to generate the execution plan. That is, Oracle uses the input to the

execution plan to generate an outline, and not the execution plan itself.

See Also: Oracle can force similar statements to share SQL by

replacing literals with system-generated bind variables. This works

with plan stability if the outline was generated using the CREATE_
STORED_OUTLINES parameter, not the CREATE OUTLINE
statement. Also, the outline must have been created with the

CURSOR_SHARING parameter set to SIMILAR or FORCE, and the

parameter must also set to SIMILAR or FORCE when attempting to

use the outline. See Chapter 14, "Memory Configuration and Use"

for more information.

Note: Oracle creates the USER_OUTLINES and USER_OUTLINE_
HINTS views in the SYS tablespace based on data in the OL$ and

OL$HINTS tables, respectively. Direct manipulation of the OL$,

OL$HINTS, and OL$NODES tables is prohibited.

You can embed hints in SQL statements, but this has no effect on

how Oracle uses outlines. Oracle considers a SQL statement that

you revised with hints to be different from the original SQL

statement stored in the outline.
Using Plan Stability 7-3

Using Plan Stability to Preserve Execution Plans
Storing Outlines
Oracle stores outline data in the OL$, OL$HINTS, and OL$NODES tables. Unless you

remove them, Oracle retains outlines indefinitely.

The only effect outlines have on caching execution plans is that the outline’s

category name is used in addition to the SQL text to identify whether the plan is in

cache. This ensures that Oracle does not use an execution plan compiled under one

category to execute a SQL statement that Oracle should compile under a different

category.

Enabling Plan Stability
Settings for several parameters, especially those ending with the suffix _ENABLED,
must be consistent across execution environments for outlines to function properly.

These parameters are:

■ QUERY_REWRITE_ENABLED

■ STAR_TRANSFORMATION_ENABLED

■ OPTIMIZER_FEATURES_ENABLE

Using Supplied Packages to Manage Stored Outlines
The DBMS_OUTLN and DBMS_OUTLN_EDIT package provides procedures used for

managing stored outlines and their outline categories.

Users need the EXECUTE_CATALOG_ROLE role to execute DBMS_OUTLN, but public

has execute privileges on DBMS_OUTLN_EDIT. The DBMS_OUTLN_EDIT package is

an invoker's rights package.

Creating Outlines
Oracle can automatically create outlines for all SQL statements, or you can create

them for specific SQL statements. In either case, the outlines derive their input from

the optimizer.

Oracle creates stored outlines automatically when you set the parameter CREATE_
STORED_OUTLINES to true . When activated, Oracle creates outlines for all

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information on using DBMS_OUTLN and DBMS_OUTLN_
EDIT procedures
7-4 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability to Preserve Execution Plans
compiled SQL statements. You can create stored outlines for specific statements

using the CREATE OUTLINE statement.

The CREATE_EDIT_TABLES procedure in the DBMS_OUTLN_EDIT package creates

tables in the invoker’s schema. This is necessary for editing private outlines. This is

callable by anyone with EXECUTE privilege on DBMS_OUTLN_EDIT.

Using Category Names for Stored Outlines
Outlines can be categorized to simplify the management task. The CREATE
OUTLINE statement allows for specification of a category. The DEFAULT category is

chosen if unspecified. Likewise, the CREATE_STORED_OUTLINES parameter lets

Note: You must ensure that schemas in which outlines are to be

created have the CREATE ANY OUTLINE privilege. Otherwise,

despite having turned on the CREATE_STORED_OUTLINE
parameter, you will not find outlines in the database after you run

the application.

Also, the default system tablespace can become exhausted if the

CREATE_STORED_OUTLINES parameter is enabled and the

running application has an abundance of literal SQL statements. If

this happens, use the DBMS_OUTLN.DROP_UNUSED procedure to

remove those literal SQL outlines.

See Also:

■ Oracle9i SQL Reference for more information on the CREATE
OUTLINE statement

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information on the DBMS_OUTLN and DBMS_OUTLN_EDIT
packages

■ "Using Outlines to Move to the Cost-Based Optimizer" on

page 7-13 for information on moving from the rule-based

optimizer to the cost-based optimizer

■ Database Tuning with the Oracle Tuning Pack for information on

using the Outline Management and Outline Editor tools, which

let you create, edit, delete, and manage stored outlines with an

easy-to-use graphical interface
Using Plan Stability 7-5

Using Plan Stability to Preserve Execution Plans
you specify a category name, where specifying true produces outlines in the

DEFAULT category.

If you specify a category name using the CREATE_STORED_OUTLINES parameter,

then Oracle assigns all subsequently created outlines to that category until you reset

the category name. Set the parameter to false to suspend outline generation.

If you set CREATE_STORED_OUTLINES to true , or if you use the CREATE
OUTLINE statement without a category name, then Oracle assigns outlines to the

category name of DEFAULT.

Using and Editing Stored Outlines
When you activate the use of stored outlines, Oracle always uses the cost-based

optimizer. This is because outlines rely on hints, and to be effective, most hints

require the cost-based optimizer.

To use stored outlines when Oracle compiles a SQL statement, set the system

parameter USE_STORED_OUTLINES to true or to a category name. If you set USE_
STORED_OUTLINES to true , then Oracle uses outlines in the default category. If

you specify a category with the USE_STORED_OUTLINES parameter, then Oracle

uses outlines in that category until you reset the parameter to another category

name or until you suspend outline use by setting USE_STORED_OUTLINES to
false . If you specify a category name and Oracle does not find an outline in that

category that matches the SQL statement, then Oracle searches for an outline in the

default category.

The designated outlines only control the compilation of SQL statements that have

outlines. If you set USE_STORED_OUTLINES to false , then Oracle does not use

outlines. When you set USE_STORED_OUTLINES to false and you set CREATE_
STORED_OUTLINES to true , Oracle creates outlines but does not use them.

The USE_PRIVATE_OUTLINES parameter lets you control the use of private

outlines. A private outline is an outline seen only in the current session and whose

data resides in the current parsing schema. Any changes made to such an outline

are not seen by any other session on the system, and applying a private outline to

the compilation of a statement can only be done in the current session with the

Note: The CREATE_STORED_OUTLINES, USE_STORED_
OUTLINES, and USE_PRIVATE_OUTLINES parameters are system

or session specific. They are not initialization parameters. For more

information on these parameters, see the Oracle9i SQL Reference.
7-6 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability to Preserve Execution Plans
USE_PRIVATE_OUTLINES parameter. Only when you explicitly choose to save

your edits back to the public area are they seen by the rest of the users.

While the optimizer usually chooses optimal plans for queries, there are times when

users know things about the execution environment that are inconsistent with the

heuristics that the optimizer follows. By editing outlines directly, you can tune the

SQL query without having to alter the application.

When a private outline is created, an error is returned if the prerequisite outline

tables to hold the outline data do not exist in the local schema. These tables can be

created using the DBMS_OUTLN_EDIT.CREATE_EDIT_TABLES procedure. You can

also use the UTLEDITOL.SQL script.

When the USE_PRIVATE_OUTLINES parameter is enabled and an outlined SQL

statement is issued, the optimizer retrieves the outline from the session private area

rather than the public area used when USE_STORED_OUTLINES is enabled. If no

outline exists in the session private area, then the optimizer will not use an outline

to compile the statement.

Any CREATE OUTLINE statement requires the CREATE ANY OUTLINE privilege.

Specification of the FROM clause also requires the SELECT privilege. This privilege

should be granted only to those users who would have the authority to view SQL

text and hint text associated with the outlined statements. This role is required for

the CREATE OUTLINE FROM command unless the issuer of the command is also the

owner of the outline.

When you begin an editing session, USE_PRIVATE_OUTLINES should be set to the

category to which the outline being edited belongs. When you are finished editing,

this parameter should be set to false to restore the session to normal outline

lookup according to the USE_STORED_OUTLINES parameter.

You can use the GUI Outline Editor of the Oracle Enterprise Manager Tuning Pack

to update outlines. Figure 7–1 is an illustration of the Outline Editor.
Using Plan Stability 7-7

Using Plan Stability to Preserve Execution Plans
Figure 7–1 Outline Editor

See Also: Database Tuning with the Oracle Tuning Pack for more

information on the GUI tool for editing outlines
7-8 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability to Preserve Execution Plans
Example of Editing Outlines
Assume that you want to edit the outline ol1 . The steps are as follows:

1. Connect to a schema from which the outlined statement can be executed, and

ensure that the CREATE ANY OUTLINE and SELECT privileges have been

granted.

2. Create outline editing tables locally with the DBMS_OUTLN_EDIT.CREATE_
EDIT_TABLES procedure.

3. Clone the outline being edited to the private area using the following:

CREATE PRIVATE OUTLINE p_ol1 FROM ol1;

4. Edit the outline, either with the Outline Editor in Enterprise Manager or

manually by querying the local OL$HINTS tables and performing DML against

the appropriate hint tuples. DBMS_OUTLN_EDIT.CHANGE_JOIN_POS is
available for changing join order.

5. If manually editing the outline, then resynchronize the stored outline definition

using the following so-called identity statement:

CREATE PRIVATE OUTLINE p_ol1 FROM PRIVATE p_ol1;

You can also use DBMS_OUTLN_EDIT.REFRESH_PRIVATE_OUTLINE or ALTER
SYSTEM FLUSH SHARED_POOL to accomplish this.

6. Test the edits. Set USE_PRIVATE_OUTLINES=TRUE, and issue the outline

statement or run EXPLAIN PLAN on the statement.

7. If you want to preserve these edits for public use, then publicize the edits with

the following statement.

CREATE OR REPLACE OUTLINE ol1 FROM PRIVATE p_ol1;

8. Disable private outline usage by setting the following:

USE_PRIVATE_OUTLINES=FALSE
Using Plan Stability 7-9

Using Plan Stability to Preserve Execution Plans
How to Tell If an Outline Is Being Used
You can test if an outline is being used with the V$SQL view. Query the OUTLINE_
CATEGORY column in conjunction with the SQL statement. If an outline was

applied, then this column contains the category to which the outline belongs.

Otherwise, it is NULL. The OUTLINE_SID column tells you if this particular cursor

is using a public outline (value is 0) or a private outline (session's SID of the

corresponding session using it).

For example:

SELECT OUTLINE_CATEGORY, OUTLINE_SID
FROM V$SQL
WHERE SQL_TEXT LIKE ’SELECT COUNT(*) FROM emp%’;

Viewing Outline Data
You can access information about outlines and related hint data that Oracle stores in

the data dictionary from the following views:

■ USER_OUTLINES

■ USER_OUTLINE_HINTS

■ ALL_OUTLINES

■ ALL_OUTLINE_HINTS

■ DBA_OUTLINES

■ DBA_OUTLINE_HINTS

Use the following syntax to obtain outline information from the USER_OUTLINES
view, where the outline category is mycat :

SELECT NAME, SQL_TEXT
FROM USER_OUTLINES
WHERE CATEGORY=’mycat’;

See Also:

■ Oracle9i SQL Reference for SQL syntax

■ Database Tuning with the Oracle Tuning Pack for more

information on the GUI tool for editing outlines

■ Oracle9i Supplied PL/SQL Packages and Types Reference for more

information on the DBMS_OUTLN and DBMS_OUTLN_EDIT
packages
7-10 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability to Preserve Execution Plans
Oracle responds by displaying the names and text of all outlines in category mycat .

To see all generated hints for the outline name1, use the following syntax:

SELECT HINT
FROM USER_OUTLINE_HINTS
WHERE NAME=’name1’;

Moving Outline Tables
Oracle creates the USER_OUTLINES and USER_OUTLINE_HINTS views based on

data in the OL$ and OL$HINTS tables, respectively. Oracle creates these tables, and

also the OL$NODES table, in the SYS tablespace using a schema called OUTLN. If
outlines use too much space in the SYS tablespace, then you can move them. To do

this, create a separate tablespace and move the outline tables into it using the

following process.

1. The default system tablespace could become exhausted if the CREATE_
STORED_OUTLINES parameter is on and if the running application has many

literal SQL statements. If this happens, then use the DBMS_OUTLN.DROP_
UNUSED procedure to remove those literal SQL outlines.

2. Export the OL$, OL$HINTS, and OL$NODES tables:

EXP OUTLN/OUTLN FILE = exp_file TABLES = 'OL$' 'OL$HINTS' 'OL$NODES'

3. Remove the previous OL$, OL$HINTS, and OL$NODES tables:

CONNECT OUTLN/outln_password ;
DROP TABLE OL$;
CONNECT OUTLN/outln_password ;
DROP TABLE OL$HINTS;
CONNECT OUTLN/outln_password ;
DROP TABLE OL$NODES;

Note: If necessary, you can use the procedure to move outline

tables from one tablespace to another as described in "Moving

Outline Tables" on page 7-11.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

detailed information on using the DBMS_OUTLN package
Using Plan Stability 7-11

Using Plan Stability with the Cost-Based Optimizer
4. Create a new tablespace for the tables:

CREATE TABLESPACE outln_ts
DATAFILE 'tspace.dat' SIZE 2MB
DEFAULT STORAGE (INITIAL 10KB NEXT 20KB
MINEXTENTS 1 MAXEXTENTS 999 PCTINCREASE 10) ONLINE;

5. Enter the following statement:

ALTER USER OUTLN DEFALUT TABLESPACE outln_ts;

6. Import the OL$, OL$HINTS, and OL$NODES tables:

IMP OUTLN/ outln_password
FILE=exp_file TABLES = 'OL$' 'OL$HINTS' 'OL$NODES'

The IMPORT statement re-creates the OL$, OL$HINTS, and OL$NODES tables in

the schema named OUTLN, but the schema now resides in a new tablespace

called OUTLN_TS.

Using Plan Stability with the Cost-Based Optimizer
This section describes procedures you can use to significantly improve performance

by taking advantage of cost-based optimizer functionality. Plan stability provides a

way to preserve a system’s targeted execution plans with satisfactory performance

while also taking advantage of new cost-based optimizer features for the rest of the

SQL statements.

Topics covered in this section are:

■ Using Outlines to Move to the Cost-Based Optimizer

■ Upgrading and the Cost-Based Optimizer

Note: If Oracle8i outlines are imported into an Oracle9i database,

then the DBMS_OUTLN.UPDATE_SIGNATURES procedure must be

run. This updates the signatures of all outlines on the system so

that they are compatible with Oracle9i semantics. If this step is not

done, then no outlines from the Oracle8i database are used.
7-12 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability with the Cost-Based Optimizer
Using Outlines to Move to the Cost-Based Optimizer
If an application was developed using the rule-based optimizer, then a considerable

amount of effort might have gone into manually tuning the SQL statements to

optimize performance. You can use plan stability to leverage the effort that has

already gone into performance tuning by preserving the behavior of the application

when upgrading from rule-based to cost-based optimization.

By creating outlines for an application before switching to cost-based optimization,

the plans generated by the rule-based optimizer can be used, while statements

generated by newly written applications developed after the switch use cost-based

plans. To create and use outlines for an application, use the following process.

1. Ensure that schemas in which outlines are to be created have the CREATE ANY
OUTLINE privilege. For example, from SYS:

GRANT CREATE ANY OUTLINE TO user-name

2. Execute syntax similar to the following to designate; for example, the RBOCAT
outline category.

ALTER SESSION SET CREATE_STORED_OUTLINES = rbocat;

3. Run the application long enough to capture stored outlines for all important

SQL statements.

4. Suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

5. Gather statistics with the DBMS_STATS package.

6. Alter the parameter OPTIMIZER_MODE to CHOOSE.

7. Enter the following syntax to make Oracle use the outlines in category RBOCAT:

ALTER SESSION SET USE_STORED_OUTLINES = rbocat;

8. Run the application.

Subject to the limitations of plan stability, access paths for this application's SQL

statements should be unchanged.

Note: Carefully read this procedure and consider its implications before
executing it!
Using Plan Stability 7-13

Using Plan Stability with the Cost-Based Optimizer
Upgrading and the Cost-Based Optimizer
When upgrading to a new Oracle release under cost-based optimization, there is

always a possibility that some SQL statements will have their execution plans

changed due to changes in the optimizer. While such changes benefit performance,

you might have applications that perform so well that you would consider any

changes in their behavior to be an unnecessary risk. For such applications, you can

create outlines before the upgrade using the following procedure.

1. Enter the following syntax to enable outline creation:

ALTER SESSION SET CREATE_STORED_OUTLINES = ALL_QUERIES;

2. Run the application long enough to capture stored outlines for all critical SQL

statements.

3. Enter this syntax to suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

4. Upgrade the production system to the new version of the RDBMS.

5. Run the application.

After the upgrade, you can enable the use of stored outlines, or alternatively, you

can use the outlines that were stored as a backup if you find that some statements

exhibit performance degradation after the upgrade.

Note: If a query was not executed in step 2, then you can capture

the old behavior of the query even after switching to cost-based

optimization. To do this, change the optimizer mode to RULE,

create an outline for the query, and then change the optimizer mode

back to CHOOSE.

Note: Carefully read this procedure and consider its implications before
running it!
7-14 Oracle9i Database Performance Tuning Guide and Reference

Using Plan Stability with the Cost-Based Optimizer
With the latter approach, you can selectively use the stored outlines for such

problematic statements as follows:

1. For each problematic SQL statement, change the CATEGORY of the associated

stored outline to a category name similar to this:

ALTER OUTLINE outline_name CHANGE CATEGORY TO problemcat;

2. Enter this syntax to make Oracle use outlines from the category problemcat .

ALTER SESSION SET USE_STORED_OUTLINES = problemcat;

Upgrading with a Test System
A test system, separate from the production system, can be useful for conducting

experiments with optimizer behavior in conjunction with an upgrade. You can

migrate statistics from the production system to the test system using

import/export. This can alleviate the need to fill the tables in the test system with

data.

You can move outlines between the systems by category. For example, after you

create outlines in the problemcat category, export them by category using the

query-based export option. This is a convenient and efficient way to export only

selected outlines from one database to another without exporting all outlines in the

source database. To do this, issue these statements:

EXP OUTLN/outln_password FILE= exp-file TABLES= ’OL$’ ’OL$HINTS’ ’OL$NODES’
QUERY=’WHERE CATEGORY="problemcat"'
Using Plan Stability 7-15

Using Plan Stability with the Cost-Based Optimizer
7-16 Oracle9i Database Performance Tuning Guide and Reference

Using the Rule-Based Opt
8

Using the Rule-Based Optimizer

This chapter discusses Oracle’s rule-based optimizer (RBO). In general, always use

the cost-based approach. The rule-based approach is available for backward

compatibility.

This chapter contains the following sections:

■ Overview of the Rule-Based Optimizer (RBO)

■ Understanding Access Paths for the RBO

■ Transforming and Optimizing Statements with the RBO

Note: Oracle Corporation strongly advises the use of cost-based

optimization. Rule-based optimization will be deprecated in a

future release.

See Also: Chapter 1, "Introduction to the Optimizer"
imizer 8-1

Overview of the Rule-Based Optimizer (RBO)
Overview of the Rule-Based Optimizer (RBO)
Although Oracle supports the rule-based optimizer, you should design new

applications to use the cost-based optimizer (CBO). You should also use the CBO

for data warehousing applications, because the CBO supports enhanced features for

DSS. Many new performance features, such as partitioned tables, improved star

query processing, and materialized views, are only available with the CBO.

If OPTIMIZER_MODE=CHOOSE, if statistics do not exist, and if you do not add hints

to SQL statements, then SQL statements use the RBO. You can use the RBO to access

both relational data and object types. If OPTIMIZER_MODE=FIRST_ROWS, FIRST_
ROWS_n, or ALL_ROWS and no statistics exist, then the CBO uses default statistics.

Migrate existing applications to use the cost-based approach.

You can enable the CBO on a trial basis simply by collecting statistics. You can then

return to the RBO by deleting the statistics or by setting either the value of the

OPTIMIZER_MODE initialization parameter or the OPTIMIZER_MODE clause of the

ALTER SESSION statement to RULE. You can also use this value if you want to

collect and examine statistics for data without using the cost-based approach.

Note: If you have developed OLTP applications using Oracle

version 6, and if you have tuned the SQL statements carefully

based on the rules of the optimizer, then you might want to

continue using the RBO when you upgrade these applications to a

new Oracle release.

If you are using applications provided by third-party vendors, then

check with the vendors to determine which type of optimizer is

best suited to that application.

See Also: Chapter 3, "Gathering Optimizer Statistics" for an

explanation of how to gather statistics
8-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
Understanding Access Paths for the RBO
Using the RBO, the optimizer chooses an execution plan based on the access paths

available and the ranks of these access paths. Oracle’s ranking of the access paths is

heuristic. If there is more than one way to execute a SQL statement, then the RBO

always uses the operation with the lower rank. Usually, operations of lower rank

execute faster than those associated with constructs of higher rank.

The list shows access paths and their ranking:

RBO Path 1: Single Row by Rowid

RBO Path 2: Single Row by Cluster Join

RBO Path 3: Single Row by Hash Cluster Key with Unique or Primary Key

RBO Path 4: Single Row by Unique or Primary Key

RBO Path 5: Clustered Join

RBO Path 6: Hash Cluster Key

RBO Path 7: Indexed Cluster Key

RBO Path 8: Composite Index

RBO Path 9: Single-Column Indexes

RBO Path 10: Bounded Range Search on Indexed Columns

RBO Path 11: Unbounded Range Search on Indexed Columns

RBO Path 12: Sort Merge Join

RBO Path 13: MAX or MIN of Indexed Column

RBO Path 14: ORDER BY on Indexed Column

RBO Path 15: Full Table Scan
Using the Rule-Based Optimizer 8-3

Understanding Access Paths for the RBO
Details of the RBO Access Paths
Each of the following sections describes an access path, discusses when it is

available, and shows the output generated for it by the EXPLAIN PLAN statement.

RBO Path 1: Single Row by Rowid
This access path is available only if the statement’s WHERE clause identifies the

selected rows by rowid or with the CURRENT OF CURSOR embedded SQL syntax

supported by the Oracle precompilers. To execute the statement, Oracle accesses the

table by rowid.

For example:

SELECT * FROM emp WHERE ROWID = ’AAAA7bAA5AAAA1UAAA’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP

RBO Path 2: Single Row by Cluster Join
This access path is available for statements that join tables stored in the same cluster

if both of the following conditions are true:

■ The statement’s WHERE clause contains conditions that equate each column of

the cluster key in one table with the corresponding column in the other table.

■ The statement’s WHERE clause also contains a condition that guarantees the join

returns only one row. Such a condition is likely to be an equality condition on

the column(s) of a unique or primary key.

These conditions must be combined with AND operators. To execute the statement,

Oracle performs a nested loops operation.

For example, in the following statement, the emp and dept tables are clustered on

the deptno column, and the empno column is the primary key of the emp table:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno
 AND emp.empno = 7900;

See Also: "Nested Loop Outer Joins" on page 1-51
8-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP
 TABLE ACCESS CLUSTER DEPT

pk_emp is the name of an index that enforces the primary key.

RBO Path 3: Single Row by Hash Cluster Key with Unique or Primary Key
This access path is available if both of the following conditions are true:

■ The statement’s WHERE clause uses all columns of a hash cluster key in equality

conditions. For composite cluster keys, the equality conditions must be

combined with AND operators.

■ The statement is guaranteed to return only one row, because the columns that

make up the hash cluster key also make up a unique or primary key.

To execute the statement, Oracle applies the cluster’s hash function to the hash

cluster key value specified in the statement to obtain a hash value. Oracle then uses

the hash value to perform a hash scan on the table.

For example:

In the following statement, the orders and line_items tables are stored in a

hash cluster, and the orderno column is both the cluster key and the primary key

of the orders table:

SELECT *
 FROM orders
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH ORDERS
Using the Rule-Based Optimizer 8-5

Understanding Access Paths for the RBO
RBO Path 4: Single Row by Unique or Primary Key
This access path is available if the statement’s WHERE clause uses all columns of a

unique or primary key in equality conditions. For composite keys, the equality

conditions must be combined with AND operators. To execute the statement, Oracle

performs a unique scan on the index on the unique or primary key to retrieve a

single rowid, and then accesses the table by that rowid.

For example:

In the following statement, the empno column is the primary key of the emp table:

SELECT *
 FROM emp
 WHERE empno = 7900;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX UNIQUE SCAN PK_EMP

pk_emp is the name of the index that enforces the primary key.

RBO Path 5: Clustered Join
This access path is available for statements that join tables stored in the same cluster

if the statement’s WHERE clause contains conditions that equate each column of the

cluster key in one table with the corresponding column in the other table. For a

composite cluster key, the equality conditions must be combined with AND
operators. To execute the statement, Oracle performs a nested loops operation.

For example:

In the following statement, the emp and dept tables are clustered on the deptno
column:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

See Also: "Nested Loop Outer Joins" on page 1-51
8-6 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS FULL DEPT
 TABLE ACCESS CLUSTER EMP

RBO Path 6: Hash Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns of

a hash cluster key in equality conditions. For a composite cluster key, the equality

conditions must be combined with AND operators. To execute the statement, Oracle

applies the cluster’s hash function to the hash cluster key value specified in the

statement to obtain a hash value. Oracle then uses this hash value to perform a hash

scan on the table.

For example: In the following statement, the orders and line_items tables are

stored in a hash cluster, and the orderno column is the cluster key:

SELECT *
 FROM line_items
 WHERE orderno = 65118968;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS HASH LINE_ITEMS

RBO Path 7: Indexed Cluster Key
This access path is available if the statement’s WHERE clause uses all the columns of

an indexed cluster key in equality conditions. For a composite cluster key, the

equality conditions must be combined with AND operators.

To execute the statement, Oracle performs a unique scan on the cluster index to

retrieve the rowid of one row with the specified cluster key value. Oracle then uses

that rowid to access the table with a cluster scan. Because all rows with the same

cluster key value are stored together, the cluster scan requires only a single rowid to

find them all.

For example:

In the following statement, the emp table is stored in an indexed cluster, and the

deptno column is the cluster key:
Using the Rule-Based Optimizer 8-7

Understanding Access Paths for the RBO
SELECT * FROM emp
 WHERE deptno = 10;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS CLUSTER EMP
 INDEX UNIQUE SCAN PERS_INDEX

pers_index is the name of the cluster index.

RBO Path 8: Composite Index
This access path is available if the statement’s WHERE clause uses all columns of a

composite index in equality conditions combined with AND operators. To execute

the statement, Oracle performs a range scan on the index to retrieve rowids of the

selected rows, and then accesses the table by those rowids.

For example:

In the following statement, there is a composite index on the job and deptno
columns:

SELECT *
 FROM emp
 WHERE job = ’CLERK’
 AND deptno = 30;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_DEPTNO_INDEX

job_deptno_index is the name of the composite index on the job and deptno
columns.

RBO Path 9: Single-Column Indexes
This access path is available if the statement’s WHEREclause uses the columns of one

or more single-column indexes in equality conditions. For multiple single-column

indexes, the conditions must be combined with AND operators.
8-8 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
If the WHERE clause uses the column of only one index, then Oracle executes the

statement by performing a range scan on the index to retrieve the rowids of the

selected rows, and then accesses the table by these rowids.

For example:

In the following statement, there is an index on the job column of the emp table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN JOB_INDEX

job_index is the index on emp.job .

If the WHERE clauses uses columns of many single-column indexes, then Oracle

executes the statement by performing a range scan on each index to retrieve the

rowids of the rows that satisfy each condition. Oracle then merges the sets of rowids

to obtain a set of rowids of rows that satisfy all conditions. Oracle then accesses the

table using these rowids.

Oracle can merge up to five indexes. If the WHEREclause uses columns of more than

five single-column indexes, then Oracle merges five of them, accesses the table by

rowid, and then tests the resulting rows to determine whether they satisfy the

remaining conditions before returning them.

In the following statement, there are indexes on both the job and deptno columns

of the emp table:

SELECT *
 FROM emp
 WHERE job = ’ANALYST’
 AND deptno = 20;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
Using the Rule-Based Optimizer 8-9

Understanding Access Paths for the RBO
 AND-EQUAL
 INDEX RANGE SCAN JOB_INDEX
 INDEX RANGE SCAN DEPTNO_INDEX

The AND-EQUAL operation merges the rowids obtained by the scans of the job_
index and the deptno_index , resulting in a set of rowids of rows that satisfy the

query.

RBO Path 10: Bounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains a condition

that uses either the column of a single-column index or one or more columns that

make up a leading portion of a composite index:

column = expr

column >[=] expr AND column <[=] expr

column BETWEEN expr AND expr

column LIKE ’c%’

Each of these conditions specifies a bounded range of indexed values that are

accessed by the statement. The range is said to be bounded because the conditions

specify both its least value and its greatest value. To execute such a statement,

Oracle performs a range scan on the index, and then accesses the table by rowid.

This access path is not available if the expression expr references the indexed

column.

For example:

In the following statement, there is an index on the sal column of the emp table:

SELECT *
 FROM emp
 WHERE sal BETWEEN 2000 AND 3000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX
8-10 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
sal_index is the name of the index on emp.sal .

In the following statement, there is an index on the ename column of the emp table:

SELECT *
 FROM emp
 WHERE ename LIKE ’S%’;

RBO Path 11: Unbounded Range Search on Indexed Columns
This access path is available if the statement’s WHERE clause contains one of the

following conditions that use either the column of a single-column index or one or

more columns of a leading portion of a composite index:

WHERE column >[=] expr

WHERE column <[=] expr

Each of these conditions specifies an unbounded range of index values accessed by

the statement. The range is said to be unbounded, because the condition specifies

either its least value or its greatest value, but not both. To execute such a statement,

Oracle performs a range scan on the index, and then accesses the table by rowid.

For example:

In the following statement, there is an index on the sal column of the emp table:

SELECT *
 FROM emp
 WHERE sal > 2000;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN SAL_INDEX

In the following statement, there is a composite index on the order and line
columns of the line_items table:

SELECT *
 FROM line_items
 WHERE order > 65118968;
Using the Rule-Based Optimizer 8-11

Understanding Access Paths for the RBO
The access path is available, because the WHERE clause uses the order column, a

leading portion of the index.

This access path is not available in the following statement, in which there is an

index on the order and line columns:

SELECT *
 FROM line_items
 WHERE line < 4;

The access path is not available because the WHERE clause only uses the line
column, which is not a leading portion of the index.

RBO Path 12: Sort Merge Join
This access path is available for statements that join tables that are not stored

together in a cluster if the statement’s WHEREclause uses columns from each table in

equality conditions. To execute such a statement, Oracle uses a sort-merge

operation. Oracle can also use a nested loops operation to execute a join statement.

For example:

In the following statement, the emp and dept tables are not stored in the same

cluster:

SELECT *
 FROM emp, dept
 WHERE emp.deptno = dept.deptno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 MERGE JOIN
 SORT JOIN
 TABLE ACCESS FULL EMP
 SORT JOIN
 TABLE ACCESS FULL DEPT

See Also: "Understanding Joins" on page 1-40 for information on

these operations
8-12 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
RBO Path 13: MAX or MIN of Indexed Column
This access path is available for a SELECT statement, and all of the following

conditions are true:

■ The query uses the MAX or MIN function to select the maximum or minimum

value of either the column of a single-column index or the leading column of a

composite index. The index cannot be a cluster index. The argument to the MAX
or MIN function can be any expression involving the column, a constant, or the

addition operator (+), the concatenation operation (||), or the CONCATfunction.

■ There are no other expressions in the select list.

■ The statement has no WHERE clause or GROUP BY clause.

To execute the query, Oracle performs a full scan of the index to find the maximum

or minimum indexed value. Because only this value is selected, Oracle need not

access the table after scanning the index.

For example, in the following statement, there is an index on the sal column of the

emp table:

SELECT MAX(sal) FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 SORT (AGGREGATE)
 2 1 INDEX (FULL SCAN (MIN/MAX)) OF 'SAL_INDEX' (NON-UNIQUE)

RBO Path 14: ORDER BY on Indexed Column
This access path is available for a SELECT statement, and all of the following

conditions are true:

■ The query contains an ORDER BY clause that uses either the column of a

single-column index or a leading portion of a composite index. The index

cannot be a cluster index.

■ There is a PRIMARY KEY or NOT NULL integrity constraint that guarantees that

at least one of the indexed columns listed in the ORDER BY clause contains no

nulls.

■ The NLS_SORT initialization parameter is set to BINARY.

To execute the query, Oracle performs a range scan of the index to retrieve the

rowids of the selected rows in sorted order. Oracle then accesses the table by these

rowids.
Using the Rule-Based Optimizer 8-13

Understanding Access Paths for the RBO
For example:

In the following statement, there is a primary key on the empno column of the emp
table:

SELECT *
 FROM emp
 ORDER BY empno;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS BY ROWID EMP
 INDEX RANGE SCAN PK_EMP

pk_emp is the name of the index that enforces the primary key. The primary key

ensures that the column does not contain nulls.

RBO Path 15: Full Table Scan
This access path is available for any SQL statement, regardless of its WHERE clause

conditions, except when its FROM clause contains SAMPLE or SAMPLE BLOCK.

Note that the full table scan is the lowest ranked access path on the list. This means

that the RBO always chooses an access path that uses an index if one is available,

even if a full table scan might execute faster.

The following conditions make index access paths unavailable:

■ column1 > column2

■ column1 < column2

■ column1 >= column2

■ column1 <= column2

where column1 and column2 are in the same table.

■ column IS NULL

■ column IS NOT NULL

■ column NOT IN

■ column != expr

■ column LIKE ’%pattern’
8-14 Oracle9i Database Performance Tuning Guide and Reference

Understanding Access Paths for the RBO
regardless of whether column is indexed.

■ expr = expr2

where expr is an expression that operates on a column with an operator or function,

regardless of whether the column is indexed.

■ NOT EXISTS subquery

■ ROWNUM pseudocolumn in a view

■ Any condition involving a column that is not indexed

Any SQL statement that contains only these constructs and no others that make

index access paths available must use full table scans.

For example: The following statement uses a full table scan to access the emp table:

SELECT *
 FROM emp;

The EXPLAIN PLAN output for this statement might look like this:

OPERATION OPTIONS OBJECT_NAME

SELECT STATEMENT
 TABLE ACCESS FULL EMP

Choosing Execution Plans for Joins with the RBO

Note: The following considerations apply to both the cost-based

and rule-based approaches:

■ The optimizer first determines whether joining two or more of

the tables definitely results in a row source containing at most

one row. The optimizer recognizes such situations based on

UNIQUE and PRIMARY KEY constraints on the tables. If such a

situation exists, then the optimizer places these tables first in

the join order. The optimizer then optimizes the join of the

remaining set of tables.

■ For join statements with outer join conditions, the table with

the outer join operator must come after the other table in the

condition in the join order. The optimizer does not consider join

orders that violate this rule.
Using the Rule-Based Optimizer 8-15

Understanding Access Paths for the RBO
With the rule-based approach, the optimizer performs the following steps to choose

an execution plan for a statement that joins R tables:

1. The optimizer generates a set of R join orders, each with a different table as the

first table. The optimizer generates each potential join order using this

algorithm:

■ To fill each position in the join order, the optimizer chooses the table with

the most highly ranked available access path according to the ranks for

access paths described in "Understanding Access Paths for the RBO" on

page 8-3. The optimizer repeats this step to fill each subsequent position in

the join order.

■ For each table in the join order, the optimizer also chooses the operation

with which to join the table to the previous table or row source in the order.

The optimizer does this by ranking the sort-merge operation as access path

12 and applying these rules:

* If the access path for the chosen table is ranked 11 or better, then the

optimizer chooses a nested loops operation using the previous table or

row source in the join order as the outer table.

* If the access path for the table is ranked lower than 12, and if there is an

equijoin condition between the chosen table and the previous table or

row source in join order, then the optimizer chooses a sort-merge

operation.

* If the access path for the chosen table is ranked lower than 12, and if

there is not an equijoin condition, then the optimizer chooses a nested

loops operation with the previous table or row source in the join order

as the outer table.

2. The optimizer then chooses among the resulting set of execution plans. The goal

of the optimizer’s choice is to maximize the number of nested loops join

operations in which the inner table is accessed using an index scan. Because a

nested loops join involves accessing the inner table many times, an index on the

inner table can greatly improve the performance of a nested loops join.

Usually, the optimizer does not consider the order in which tables appear in the

FROM clause when choosing an execution plan. The optimizer makes this choice

by applying the following rules in order:

■ The optimizer chooses the execution plan with the fewest nested-loops

operations in which the inner table is accessed with a full table scan.
8-16 Oracle9i Database Performance Tuning Guide and Reference

Transforming and Optimizing Statements with the RBO
■ If there is a tie, then the optimizer chooses the execution plan with the

fewest sort-merge operations.

■ If there is still a tie, then the optimizer chooses the execution plan for which

the first table in the join order has the most highly ranked access path:

* If there is a tie among multiple plans whose first tables are accessed by

the single-column indexes access path, then the optimizer chooses the

plan whose first table is accessed with the most merged indexes.

* If there is a tie among multiple plans whose first tables are accessed by

bounded range scans, then the optimizer chooses the plan whose first

table is accessed with the greatest number of leading columns of the

composite index.

■ If there is still a tie, then the optimizer chooses the execution plan for which

the first table appears later in the query’s FROM clause.

Transforming and Optimizing Statements with the RBO
SQL is a very flexible query language; often, there are many statements you could

use to achieve the same goal. Sometimes, the optimizer transforms one such

statement into another that achieves the same goal if the second statement can be

executed more efficiently.

This section discusses the following topics:

■ Transforming ORs into Compound Queries with the RBO

■ Using Alternative SQL Syntax

Transforming ORs into Compound Queries with the RBO
If a query contains a WHERE clause with multiple conditions combined with OR
operators, then the optimizer transforms it into an equivalent compound query that

uses the UNION ALL set operator if this makes it execute more efficiently:

■ If each condition individually makes an index access path available, then the

optimizer can make the transformation. The optimizer chooses an execution

plan for the resulting statement that accesses the table multiple times using the

different indexes, and then puts the results together.

■ If any condition requires a full table scan because it does not make an index

available, then the optimizer does not transform the statement. The optimizer
Using the Rule-Based Optimizer 8-17

Transforming and Optimizing Statements with the RBO
chooses a full table scan to execute the statement, and Oracle tests each row in

the table to determine whether it satisfies any of the conditions.

With the RBO, the optimizer makes this UNION ALL transformation, because each

component query of the resulting compound query can be executed using an index.

The RBO assumes that executing the compound query using two index scans is

faster than executing the original query using a full table scan.

Using Alternative SQL Syntax
Because SQL is a flexible language, more than one SQL statement can meet the

needs of an application. Although two SQL statements can produce the same result,

Oracle might process one faster than the other. You can use the results of the

EXPLAIN PLAN statement to compare the execution plans and costs of the two

statements and determine which is more efficient.

This example shows the execution plans for two SQL statements that perform the

same function. Both statements return all the departments in the dept table that

have no employees in the emp table. Each statement searches the emp table with a

subquery. Assume there is an index, deptno_index , on the deptno column of the

emp table.

The first statement and its execution plan:

SELECT dname, deptno
 FROM dept
 WHERE deptno NOT IN
 (SELECT deptno FROM emp);

The execution plan for the transformed statement might look like the illustration in

Figure 8–1. The shaded boxes indicate steps that physically retrieve data and the

clear boxes indicate steps that operate on data returned from the previous step.

See Also: "Understanding Access Paths for the RBO" on page 8-3

and "How the CBO Transforms ORs into Compound Queries" on

page 2-30 for information on access paths and how indexes make

them available
8-18 Oracle9i Database Performance Tuning Guide and Reference

Transforming and Optimizing Statements with the RBO
Figure 8–1 Execution Plan with Two Full Table Scans

Step 3 of the output indicates that Oracle executes this statement by performing a

full table scan of the emp table despite the index on the deptno column. This full

table scan can be a time-consuming operation. Oracle does not use the index,

because the subquery that searches the emp table does not have a WHERE clause that

makes the index available.

However, this SQL statement selects the same rows by accessing the index:

SELECT dname, deptno
FROM dept
WHERE NOT EXISTS
 (SELECT deptno
 FROM emp
 WHERE dept.deptno = emp.deptno);

The execution plan for the transformed statement might look like the illustration in

Figure 8–2. The shaded boxes indicate steps that physically retrieve data and the

clear boxes indicate steps that operate on data returned from the previous step.

TABLE ACCESS
(FULL)
dept

2 3

TABLE ACCESS
(FULL)

emp

1

FILTER
Using the Rule-Based Optimizer 8-19

Transforming and Optimizing Statements with the RBO
Figure 8–2 Execution Plan with a Full Table Scan and an Index Scan

The WHERE clause of the subquery refers to the deptno column of the emp table, so

the index deptno_index is used. The use of the index is reflected in step 3 of the

execution plan. The index range scan of deptno_index takes less time than the

full scan of the emp table in the first statement. Furthermore, the first query

performs one full scan of the emp table for every deptno in the dept table. For

these reasons, the second SQL statement is faster than the first.

If you have statements in an application that use the NOT IN operator, as the first

query in this example does, then consider rewriting them so that they use the NOT
EXISTS operator. This allows such statements to use an index if one exists.

Note: Alternative SQL syntax is effective only with the rule-based

optimizer.

TABLE ACCESS
(FULL)
dept

2 3

TABLE ACCESS
(RANGE SCAN)
deptno_index

1

FILTER
8-20 Oracle9i Database Performance Tuning Guide and Reference

Part II

 SQL-Related Performance Tools

Part II discusses Oracle’s SQL-related performance tools. These tools examine the

execution plan for a SQL statement, and determine whether the statement can be

better optimized. You can get the execution plan from the EXPLAIN PLAN SQL

statement, from querying V$SQL_PLAN, or from SQL trace.

In the development phase, use EXPLAIN PLANto determine a good access plan, and

then verify that it is the optimal plan through volume data testing. When evaluating

a plan, examine the statement's actual resource consumption using V$SQLAREA
with V$SQL_PLAN, Oracle Trace, or the SQL trace facility and TKPROF. The

information in the V$SQL_PLAN view is very similar to the output of an EXPLAIN
PLAN statement. However, EXPLAIN PLAN shows a theoretical plan that can be

used if the statement were to be executed, whereas V$SQL_PLANcontains the actual

plan used. Hence, querying V$SQLAREAin conjunction with V$SQL_PLANprovides

similar results to using SQL Trace with TKPROF.

The autotrace tool lets you automatically get a report on the execution path used by

the SQL optimizer and the statement execution statistics. It is useful for monitoring

and tuning the performance of these statements. Oracle Trace is a GUI, event-driven

data collection product, which the Oracle server uses to collect performance and

resource utilization data.

The chapters in this part are:

■ Chapter 9, "Using EXPLAIN PLAN"

■ Chapter 10, "Using SQL Trace and TKPROF"

■ Chapter 11, "Using Autotrace in SQL*Plus"

■ Chapter 12, "Using Oracle Trace"

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

Using EXPLAIN
9

Using EXPLAIN PLAN

This chapter introduces execution plans, describes the SQL command EXPLAIN
PLAN, and explains how to interpret its output. This chapter also provides

procedures for managing outlines to control application performance

characteristics.

This chapter contains the following sections:

■ Understanding EXPLAIN PLAN

■ Creating the PLAN_TABLE Output Table

■ Running EXPLAIN PLAN

■ Displaying PLAN_TABLE Output

■ Reading EXPLAIN PLAN Output

■ Viewing Bitmap Indexes with EXPLAIN PLAN

■ Viewing Partitioned Objects with EXPLAIN PLAN

■ Viewing Parallel Execution with EXPLAIN PLAN

■ CPU Costing Model

■ EXPLAIN PLAN Restrictions

■ PLAN_TABLE Columns

See Also: Oracle9i SQL Reference for the syntax of EXPLAIN PLAN
PLAN 9-1

Understanding EXPLAIN PLAN
Understanding EXPLAIN PLAN
The EXPLAIN PLAN statement displays execution plans chosen by the Oracle

optimizer for SELECT, UPDATE, INSERT, and DELETE statements. A statement’s

execution plan is the sequence of operations Oracle performs to run the statement.

The row source tree is the core of the execution plan. It shows the following

information:

■ An ordering of the tables referenced by the statement

■ An access method for each table mentioned in the statement

■ A join method for tables affected by join operations in the statement

■ Data operations like filter, sort, or aggregation

In addition to the row source tree, the plan table contains information about the

following:

■ Optimization, such as the cost and cardinality of each operation

■ Partitioning, such as the set of accessed partitions

■ Parallel execution, such as the distribution method of join inputs

The EXPLAIN PLAN results let you determine whether the optimizer selects a

particular execution plan, such as, nested loops join. It also helps you to understand

the optimizer decisions, such as why the optimizer chose a nested loops join instead

of a hash join, and lets you understand the performance of a query.

How Execution Plans Can Change
With the cost-based optimizer, execution plans can and do change as the underlying

costs change. EXPLAIN PLAN output shows how Oracle runs the SQL statement

when the statement was explained. This can differ from the plan during actual

execution for a SQL statement, because of differences in the execution environment

and explain plan environment.

Note: Oracle Performance Manager charts and Oracle SQL

Analyze can automatically create and display explain plans for you.

For more information on using explain plans, see Database Tuning
with the Oracle Tuning Pack.
9-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding EXPLAIN PLAN
Execution plans can differ due to the following:

■ Different Schemas

■ Different Costs

Different Schemas
■ The execution and explain plan happen on different databases.

■ The user explaining the statement is different from the user running the

statement. Two users might be pointing to different objects in the same

database, resulting in different execution plans.

■ Schema changes (usually changes in indexes) between the two operations.

Different Costs
Even if the schemas are the same, the optimizer can choose different execution

plans if the costs are different. Some factors that affect the costs include the

following:

■ Data volume and statistics

■ Bind variable types

■ Initialization parameters - set globally or at session level

Minimizing Throw-Away
Examining an explain plan lets you look for throw-away in cases such as the

following:

■ Full scans

■ Unselective range scans

■ Late predicate filters

■ Wrong join order

■ Late filter operations

For example, in the following explain plan, the last step is a very unselective range

scan that is executed 76563 times, accesses 11432983 rows, throws away 99% of

them, and retains 76563 rows. Why access 11432983 rows to realize that only 76563

rows are needed?
Using EXPLAIN PLAN 9-3

Creating the PLAN_TABLE Output Table
Example 9–1 Looking for Throw-Away in an Explain Plan

Rows Execution Plan
-------- --
 12 SORT AGGREGATE
 2 SORT GROUP BY
 76563 NESTED LOOPS
 76575 NESTED LOOPS
 19 TABLE ACCESS FULL CN_PAYRUNS_ALL
 76570 TABLE ACCESS BY INDEX ROWID CN_POSTING_DETAILS_ALL
 76570 INDEX RANGE SCAN (object id 178321)
 76563 TABLE ACCESS BY INDEX ROWID CN_PAYMENT_WORKSHEETS_ALL
11432983 INDEX RANGE SCAN (object id 186024)

Looking Beyond Execution Plans
The execution plan operation alone cannot differentiate between well-tuned

statements and those that perform poorly. For example, an EXPLAIN PLAN output

that shows that a statement uses an index does not necessarily mean that the

statement runs efficiently. Sometimes indexes can be extremely inefficient. In this

case, you should examine the following:

■ The columns of the index being used

■ Their selectivity (fraction of table being accessed)

It is best to use EXPLAIN PLAN to determine an access plan, and then later prove

that it is the optimal plan through testing. When evaluating a plan, examine the

statement’s actual resource consumption. Use Oracle Trace or the SQL trace facility

and TKPROF to examine individual SQL statement performance.

Creating the PLAN_TABLE Output Table
Before issuing an EXPLAIN PLAN statement, you must have a table to hold its

output. PLAN_TABLE is the default sample output table into which the EXPLAIN
PLAN statement inserts rows describing execution plans. Use the SQL script

UTLXPLAN.SQL to create the PLAN_TABLE in your schema. The exact name and

location of this script depends on your operating system. On Unix, it is located in

the $ORACLE_HOME/rdbms/admin directory.

For example, run the commands in Example 9–2 from a SQL*Plus session to create

the PLAN_TABLE in the HR schema.

See Also: Chapter 10, "Using SQL Trace and TKPROF" for

information on TKPROF interpretation
9-4 Oracle9i Database Performance Tuning Guide and Reference

Running EXPLAIN PLAN
Example 9–2 Creating a PLAN_TABLE

CONNECT HR/your_password
@$ORACLE_HOME/RDBMS/ADMIN/UTLXPLAN.SQL

Table created.

Oracle Corporation recommends that you drop and rebuild the PLAN_TABLE table

after upgrading the version of the database because the columns might change. This

can cause scripts to fail or cause TKPROF to fail, if you are specifying the table.

If you want an output table with a different name, then create PLAN_TABLE and

rename it with the RENAME SQL statement.

Running EXPLAIN PLAN
To explain a SQL statement, use the following:

EXPLAIN PLAN FOR
SQL_Statement

For example:

EXPLAIN PLAN FOR
SELECT last_name FROM employees;

This explains the plan into the PLAN_TABLEtable. You can then select the execution

plan from PLAN_TABLE. This is useful if you do not have any other plans in PLAN_
TABLE, or if you only want to look at the last statement.

Identifying Statements for EXPLAIN PLAN
With multiple statements, you can specify a statement identifier and use that to

identify your specific execution plan. Before using SET STATEMENT ID, remove

any existing rows for that statement ID.

In Example 9–3, bad1 is specified as the statement identifier:

Example 9–3 Using EXPLAIN PLAN with the STATEMENT ID Clause

EXPLAIN PLAN
 SET STATEMENT_ID = 'bad1' FOR
SELECT last_name FROM employees;
Using EXPLAIN PLAN 9-5

Displaying PLAN_TABLE Output
Specifying Different Tables for EXPLAIN PLAN
You can specify the INTO clause to specify a different table.

Example 9–4 Using EXPLAIN PLAN with the INTO Clause

EXPLAIN PLAN
 INTO my_plan_table
 FOR
SELECT last_name FROM employees;

You can specify a statement Id when using the INTO clause.

EXPLAIN PLAN
 INTO my_plan_table
 SET STATEMENT_ID = 'bad1' FOR
SELECT last_name FROM employees;

Displaying PLAN_TABLE Output
After you have explained the plan, use the two scripts provided by Oracle to

display the most recent plan table output:

■ UTLXPLS.SQL - Shows plan table output for serial processing

■ UTLXPLP.SQL - Shows plan table output with parallel execution columns

Example 1–4, "EXPLAIN PLAN Output" on page 1-20 is an example of the plan

table output when using the UTLXPLS.SQL script.

If you have specified a statement identifier, then you can write your own script to

query the PLAN_TABLE. For example:

■ Start with ID = 0 and given STATEMENT_ID.

■ Use the CONNECT BY clause to walk the tree from parent to child, the join keys

being STATEMENT_ID = PRIOR STATEMENT_ID and PARENT_ID = PRIOR ID.

■ Use the pseudo-column LEVEL (associated with CONNECT BY) to indent the

children.

SELECT cardinality "Rows",
 lpad(' ',level-1)||operation||' '||
 options||' '||object_name "Plan"
 FROM PLAN_TABLE

See Also: Oracle9i SQL Reference for a complete description of

EXPLAIN PLAN syntax.
9-6 Oracle9i Database Performance Tuning Guide and Reference

Reading EXPLAIN PLAN Output
CONNECT BY prior id = parent_id
 AND prior statement_id = statement_id
 START WITH id = 0
 AND statement_id = 'bad1'
 ORDER BY id;

 Rows Plan
------- --
 SELECT STATEMENT
 TABLE ACCESS FULL EMPLOYEES

The NULL in the Rows column indicates that the optimizer does not have any

statistics on the table. Analyzing the table shows the following:

 Rows Plan
------- --
 16957 SELECT STATEMENT
 16957 TABLE ACCESS FULL EMPLOYEES

You can also select the COST. This is useful for comparing execution plans or for

understanding why the optimizer chooses one execution plan over another.

Reading EXPLAIN PLAN Output
This section uses progressively complex examples to illustrate execution plans.

The statement in Example 9–5 is used to display the execution plan.

Example 9–5 Statement to display the EXPLAIN PLAN

SELECT lpad(' ',level-1)||operation||' '||options||' '||
 object_name "Plan"
 FROM plan_table
CONNECT BY prior id = parent_id
 AND prior statement_id = statement_id
 START WITH id = 0 AND statement_id = '&1'
 ORDER BY id;

Note: These simplified examples are not valid for recursive SQL.

See Also: Appendix A, "Schemas Used in Performance Examples"
Using EXPLAIN PLAN 9-7

Reading EXPLAIN PLAN Output
EXPLAIN PLAN Examples
The following are EXPLAIN PLAN examples.

Example 9–6 EXPLAIN PLAN example_plan1

EXPLAIN PLAN SET statement_id = 'example_plan1' FOR
SELECT full_name FROM per_all_people_f
 WHERE UPPER(full_name) LIKE 'Pe%' ;

Plan

SELECT STATEMENT
 TABLE ACCESS FULL PER_ALL_PEOPLE_F

This plan shows execution of a SELECT statement. The table per_all_people_f
is accessed using a full table scan.

■ Every row in the table per_all_people_f is accessed, and the WHERE clause

criteria is evaluated for every row.

■ The SELECT statement returns the rows meeting the WHERE clause criteria.

Example 9–7 EXPLAIN PLAN example_plan2

EXPLAIN PLAN SET statement_id = 'example_plan2' FOR
SELECT full_name FROM per_all_people_f
 WHERE full_name LIKE 'Pe%' ;

Plan

SELECT STATEMENT
 TABLE ACCESS BY INDEX ROWID PER_ALL_PEOPLE_F
 INDEX RANGE SCAN PER_PEOPLE_F_N54

This plan shows execution of a SELECT statement.

■ Index per_people_f_n54 is used in a range scan operation.

■ The table per_all_people_f is accessed through ROWID. ROWIDs are

obtained from the index in the previous step for keys that meet the WHERE
clause criteria. When the table is accessed, any additional WHERE clause

conditions that could not be evaluated during the range scan (because the

column is present in the table and not in the index) are also evaluated.

■ The SELECT statement returns rows satisfying the WHERE clause conditions

(evaluated in previous steps).
9-8 Oracle9i Database Performance Tuning Guide and Reference

Reading EXPLAIN PLAN Output
Example 9–8 EXPLAIN PLAN example_plan3

EXPLAIN PLAN SET statement_id = 'example_plan3' FOR
SELECT segment1, segment2, description, inventory_item_id
 FROM mtl_system_items msi
 WHERE segment1 = :b1
 AND segment2 LIKE '%-BOM'
AND NVL(end_date_active,sysdate+1) > SYSDATE ;

Plan
--
SELECT STATEMENT
 TABLE ACCESS BY INDEX ROWID MTL_SYSTEM_ITEMS
 INDEX RANGE SCAN MTL_SYSTEM_ITEMS_N8

This plan shows execution of a SELECT statement.

■ Index mtl_system_items_n8 is used in a range scan operation. This is an

index on (segment1 , segment2 , segment3). The range scan happens using

the following condition:

segment1 = :b1

The rows that come out of this step satisfy all the WHERE clause criteria that can

be evaluated with the index columns. Therefore, the following condition is also

evaluated at this stage:

segment2 LIKE '%-BOM'

■ The table per_all_people_f is accessed through ROWIDs obtained from

the index in the previous step. When the table is accessed, any additional

WHERE clause conditions that could not be evaluated during the range scan

(because the column is present in the table and not in the index) are also

evaluated. Therefore, the following condition is evaluated at this stage:

NVL(end_date_active,sysdate+1) > SYSDATE

■ The SELECT statement returns rows satisfying the WHERE clause conditions

(evaluated in previous steps).

Example 9–9 EXPLAIN PLAN example_plan4

EXPLAIN PLAN SET statement_id = 'example_plan4' FOR
SELECT h.order_number, l.revenue_amount, l.ordered_quantity
 FROM so_headers_all h, so_lines_all l
 WHERE h.customer_id = :b1
Using EXPLAIN PLAN 9-9

Reading EXPLAIN PLAN Output
 AND h.date_ordered > SYSDATE-30
 AND l.header_id = h.header_id ;

Plan
--
SELECT STATEMENT
 NESTED LOOPS
 TABLE ACCESS BY INDEX ROWID SO_HEADERS_ALL
 INDEX RANGE SCAN SO_HEADERS_N1
 TABLE ACCESS BY INDEX ROWID SO_LINES_ALL
 INDEX RANGE SCAN SO_LINES_N1

This plan shows execution of a SELECT statement.

■ Index so_headers_n1 is used in a range scan operation. This is an index on

customer_id . The range scan happens using the following condition:

customer_id = :b1

■ The table so_headers_all is accessed through ROWIDs obtained from the

index in the previous step. When the table is accessed, any additional WHERE
clause conditions that could not be evaluated during the range scan (because

the column is present in the table and not in the index) are also evaluated.

Therefore, the following condition is evaluated at this stage:

h.date_ordered > sysdate-30

■ For every row from so_headers_all satisfying the WHERE clause conditions,

a range scan is run on so_lines_n1 using the following condition:

l.header_id = h.header_id

■ The table so_lines_all is accessed through ROWIDs obtained from the

index in the previous step. When the table is accessed, any additional WHERE
clause conditions that could not be evaluated during the range scan (because

the column is present in the table and not in the index) are also evaluated. There

are no additional conditions to evaluate here.

■ The SELECT statement returns rows satisfying the WHERE clause conditions

(evaluated in previous steps).
9-10 Oracle9i Database Performance Tuning Guide and Reference

Viewing Bitmap Indexes with EXPLAIN PLAN
Viewing Bitmap Indexes with EXPLAIN PLAN
Index row sources using bitmap indexes appear in the EXPLAIN PLAN output with

the word BITMAP indicating the type of the index. Consider the sample query and

plan in Example 9–10.

Example 9–10 EXPLAIN PLAN with Bitmap Indexes

EXPLAIN PLAN FOR
SELECT * FROM t
WHERE c1 = 2
AND c2 <> 6
OR c3 BETWEEN 10 AND 20;

SELECT STATEMENT
 TABLE ACCESS T BY INDEX ROWID
 BITMAP CONVERSION TO ROWID
 BITMAP OR
 BITMAP MINUS
 BITMAP MINUS
 BITMAP INDEX C1_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP INDEX C2_IND SINGLE VALUE
 BITMAP MERGE
 BITMAP INDEX C3_IND RANGE SCAN

In this example, the predicate c1 =2 yields a bitmap from which a subtraction can

take place. From this bitmap, the bits in the bitmap for c2 = 6 are subtracted. Also,

the bits in the bitmap for c2 IS NULL are subtracted, explaining why there are two

MINUS row sources in the plan. The NULL subtraction is necessary for semantic

correctness unless the column has a NOT NULL constraint. The TO ROWIDS option is

used to generate the ROWIDs that are necessary for the table access.

Note: Queries using bitmap join index indicate the bitmap join

index access path. The operation for bitmap join index is the same

as bitmap index.
Using EXPLAIN PLAN 9-11

Viewing Partitioned Objects with EXPLAIN PLAN
Viewing Partitioned Objects with EXPLAIN PLAN
Use EXPLAIN PLAN to see how Oracle accesses partitioned objects for specific

queries.

Partitions accessed after pruning are shown in the PARTITION START and

PARTITION STOP columns. The row source name for the range partition is

PARTITION RANGE. For hash partitions, the row source name is PARTITION HASH.

A join is implemented using partial partition-wise join if the DISTRIBUTION
column of the plan table of one of the joined tables contains PARTITION(KEY).

Partial partition-wise join is possible if one of the joined tables is partitioned on its

join column and the table is parallelized.

A join is implemented using full partition-wise join if the partition row source

appears before the join row source in the EXPLAIN PLANoutput. Full partition-wise

joins are possible only if both joined tables are equi-partitioned on their respective

join columns. Examples of execution plans for several types of partitioning follow.

Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN
Consider the following table, emp_range , partitioned by range on hire_date to

illustrate how pruning is displayed. Assume that the tables emp and dept from a

standard Oracle schema exist.

CREATE TABLE emp_range
PARTITION BY RANGE(hire_date)
(

PARTITION emp_p1 VALUES LESS THAN (TO_DATE(’1-JAN-1991’,’DD-MON-YYYY’)),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE(’1-JAN-1993’,’DD-MON-YYYY’)),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE(’1-JAN-1995’,’DD-MON-YYYY’)),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE(’1-JAN-1997’,’DD-MON-YYYY’)),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE(’1-JAN-1999’,’DD-MON-YYYY’))

)
AS SELECT * FROM employees;

For the first example, consider the following statement:

EXPLAIN PLAN FOR SELECT * FROM emp_range;

Enter the following to display the EXPLAIN PLAN output:

@?/RDBMS/ADMIN/UTLXPLS

Oracle displays something similar to the following:
9-12 Oracle9i Database Performance Tuning Guide and Reference

Viewing Partitioned Objects with EXPLAIN PLAN
Plan Table

| Operation | Name | Rows | Bytes| Cost | Pstart | Pstop|

SELECT STATEMENT		105	8K	1		
PARTITION RANGE ALL					1	5
TABLE ACCESS FULL	EMP_RANGE	105	8K	1	1	5

6 rows selected.

A partition row source is created on top of the table access row source. It iterates

over the set of partitions to be accessed. In this example, the partition iterator covers

all partitions (option ALL), because a predicate was not used for pruning. The

PARTITION_START and PARTITION_STOP columns of the PLAN_TABLE show

access to all partitions from 1 to 5.

For the next example, consider the following statement:

EXPLAIN PLAN FOR SELECT * FROM emp_range
WHERE hire_date >= TO_DATE(’1-JAN-1995’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		3	54	1		
PARTITION RANGE ITERATOR					4	5
TABLE ACCESS FULL	EMP_RANGE	3	54	1	4	5
--
6 rows selected.

In the previous example, the partition row source iterates from partition 4 to 5,

because we prune the other partitions using a predicate on hire_date .

Finally, consider the following statement:

EXPLAIN PLAN FOR SELECT * FROM emp_range
WHERE hire_date < TO_DATE(’1-JAN-1991’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
| SELECT STATEMENT | | 2 | 36 | 1 | | |
| TABLE ACCESS FULL |EMP_RANGE | 2 | 36 | 1 | 1 | 1 |
--
Using EXPLAIN PLAN 9-13

Viewing Partitioned Objects with EXPLAIN PLAN
5 rows selected.

In the previous example, only partition 1 is accessed and known at compile time;

thus, there is no need for a partition row source.

Plans for Hash Partitioning
Oracle displays the same information for hash partitioned objects, except the

partition row source name is PARTITION HASH instead of PARTITION RANGE.
Also, with hash partitioning, pruning is only possible using equality or IN -list

predicates.

Examples of Pruning Information with Composite Partitioned Objects
To illustrate how Oracle displays pruning information for composite partitioned

objects, consider the table emp_comp that is range partitioned on hire_date and

subpartitioned by hash on department_id .

CREATE TABLE emp_comp PARTITION BY RANGE(hire_date) SUBPARTITION BY
HASH(department_id)
SUBPARTITIONS 3
(

PARTITION emp_p1 VALUES LESS THAN (TO_DATE(’1-JAN-1991’,’DD-MON-YYYY’)),
PARTITION emp_p2 VALUES LESS THAN (TO_DATE(’1-JAN-1993’,’DD-MON-YYYY’)),
PARTITION emp_p3 VALUES LESS THAN (TO_DATE(’1-JAN-1995’,’DD-MON-YYYY’)),
PARTITION emp_p4 VALUES LESS THAN (TO_DATE(’1-JAN-1997’,’DD-MON-YYYY’)),
PARTITION emp_p5 VALUES LESS THAN (TO_DATE(’1-JAN-1999’,’DD-MON-YYYY’))

)
AS SELECT * FROM employees;

For the first example, consider the following statement:

EXPLAIN PLAN FOR SELECT * FROM emp_comp;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart | Pstop |
--
SELECT STATEMENT		105	8K	1		
PARTITION RANGE ALL					1	5
PARTITION HASH ALL					1	3
TABLE ACCESS FULL	EMP_COMP	105	8K	1	1	15
--
7 rows selected.
9-14 Oracle9i Database Performance Tuning Guide and Reference

Viewing Partitioned Objects with EXPLAIN PLAN
This example shows the plan when Oracle accesses all subpartitions of all partitions

of a composite object. Two partition row sources are used for that purpose: a range

partition row source to iterate over the partitions and a hash partition row source to

iterate over the subpartitions of each accessed partition.

In the following example, the range partition row source iterates from partition 1 to

5, because no pruning is performed. Within each partition, the hash partition row

source iterates over subpartitions 1 to 3 of the current partition. As a result, the table

access row source accesses subpartitions 1 to 15. In other words, it accesses all

subpartitions of the composite object.

EXPLAIN PLAN FOR SELECT * FROM emp_comp
WHERE hire_date = TO_DATE(’15-FEB-1997’, ’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		1	96	1		
PARTITION HASH ALL					1	3
TABLE ACCESS FULL	EMP_COMP	1	96	1	13	15
--
6 rows selected.

In the previous example, only the last partition, partition 5, is accessed. This

partition is known at compile time, so we do not need to show it in the plan. The

hash partition row source shows accessing of all subpartitions within that partition;

that is, subpartitions 1 to 3, which translates into subpartitions 13 to 15 of the emp_
comp table.

Now consider the following statement:

EXPLAIN PLAN FOR SELECT * FROM emp_comp WHERE department_id = 20;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		2	200	1		
PARTITION RANGE ALL					1	5
TABLE ACCESS FULL	EMP_COMP	2	200	1		
--
6 rows selected.
Using EXPLAIN PLAN 9-15

Viewing Partitioned Objects with EXPLAIN PLAN
In the previous example, the predicate deptno = 20 enables pruning on the hash

dimension within each partition, so Oracle only needs to access a single

subpartition. The number of that subpartition is known at compile time, so the hash

partition row source is not needed.

Finally, consider the following statement:

VARIABLE dno NUMBER;
EXPLAIN PLAN FOR SELECT * FROM emp_comp WHERE department_id = :dno;

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | Pstart| Pstop |
--
SELECT STATEMENT		2	200	1		
PARTITION RANGE ALL					1	5
PARTITION HASH SINGLE					KEY	KEY
TABLE ACCESS FULL	EMP_COMP	2	200	1		
--
7 rows selected.

The last two examples are the same, except that deptno = 20 has been replaced by

department_id = :dno . In this last case, the subpartition number is unknown at

compile time, and a hash partition row source is allocated. The option is SINGLE for

that row source, because Oracle accesses only one subpartition within each

partition. The PARTITION_START and PARTITION_STOP is set to KEY. This means

that Oracle determines the number of the subpartition at run time.

Examples of Partial Partition-wise Joins
In the following example, emp_range is joined on the partitioning column and is

parallelized. This enables use of partial partition-wise join, because the dept table

is not partitioned. Oracle dynamically partitions the dept table before the join.

ALTER TABLE emp PARALLEL 2;
Table altered.

ALTER TABLE dept PARALLEL 2;
Table altered.

To show the plan for the query, enter:

EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ename, dname
FROM emp_range e, dept d
WHERE e.deptno = d.deptno

AND e.hire_date > TO_DATE(’29-JUN-1996’,’DD-MON-YYYY’);
9-16 Oracle9i Database Performance Tuning Guide and Reference

Viewing Partitioned Objects with EXPLAIN PLAN
Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	51	3					
HASH JOIN		1	51	3	2,02	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					2,02	PCWP		4	5
TABLE ACCESS FULL	EMP_RANGE	3	87	1	2,00	PCWP		4	5
TABLE ACCESS FULL	DEPT	21	462	1	2,01	P->P	PART (KEY)		
--
8 rows selected.

The plan shows that the optimizer selects partition-wise join, because the PQ
Distrib column contains the text PART (KEY), or partition key.

In the next example, emp_comp is joined on its hash partitioning column, deptno ,

and is parallelized. This enables use of partial partition-wise join, because the dept
table is not partitioned. Again, Oracle dynamically partitions the dept table.

ALTER TABLE emp_comp PARALLEL 2;
Table altered.

EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ename, dname
FROM emp_comp e, dept d
WHERE e.deptno = d.deptno
AND e.hiredate > TO_DATE(’13-MAR-1995’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		1	51	3					
HASH JOIN		1	51	3	0,01	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					0,01	PCWP		4	5
PARTITION HASH ALL					0,01	PCWP		1	3
TABLE ACCESS FULL	EMP_COMP	3	87	1	0,01	PCWP		10	15
TABLE ACCESS FULL	DEPT	21	462	1	0,00	P->P	PART (KEY)		
--
9 rows selected.

Examples of Full Partition-wise Joins
In the following example, emp_comp and dept_hash are joined on their hash

partitioning columns. This enables use of full partition-wise join. The PARTITION
HASH row source appears on top of the join row source in the plan table output.

To create the table dept_hash , enter:

CREATE TABLE dept_hash
PARTITION BY HASH(deptno)
PARTITIONS 3
Using EXPLAIN PLAN 9-17

Viewing Partitioned Objects with EXPLAIN PLAN
PARALLEL
AS SELECT * FROM dept;

To show the plan for the query, enter:

EXPLAIN PLAN FOR SELECT /*+ ORDERED USE_HASH(D) */ ename, dname
FROM emp_comp e, dept_hash d
WHERE e.deptno = d.deptno

AND e.hiredate > TO_DATE(’29-JUN-1996’,’DD-MON-YYYY’);

Plan Table
--
| Operation | Name | Rows | Bytes| Cost | TQ |IN-OUT| PQ Distrib | Pstart| Pstop |
--
SELECT STATEMENT		2	102	2					
PARTITION HASH ALL					4,00	PCWP		1	3
HASH JOIN		2	102	2	4,00	P->S	QC (RANDOM)		
PARTITION RANGE ITERATOR					4,00	PCWP		4	5
TABLE ACCESS FULL	EMP_COMP	3	87	1	4,00	PCWP		10	15
TABLE ACCESS FULL	DEPT_HASH	63	1K	1	4,00	PCWP		1	3
--
9 rows selected.

Examples of INLIST ITERATOR and EXPLAIN PLAN
An INLIST ITERATOR operation appears in the EXPLAIN PLAN output if an index

implements an IN -list predicate. For example:

SELECT * FROM emp WHERE empno IN (7876, 7900, 7902);

The EXPLAIN PLAN output appears as follows:

OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
TABLE ACCESS BY ROWID EMP
INDEX RANGE SCAN EMP_EMPNO

The INLIST ITERATOR operation iterates over the next operation in the plan for

each value in the IN -list predicate. For partitioned tables and indexes, the three

possible types of IN -list columns are described in the following sections.
9-18 Oracle9i Database Performance Tuning Guide and Reference

Viewing Partitioned Objects with EXPLAIN PLAN
When the IN-List Column is an Index Column
If the IN -list column empno is an index column but not a partition column, then the

plan is as follows (the IN -list operator appears before the table operation but after

the partition operation):

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
PARTITION RANGE ALL KEY(INLIST) KEY(INLIST)
INLIST ITERATOR
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

The KEY(INLIST) designation for the partition start and stop keys specifies that an

IN -list predicate appears on the index start/stop keys.

When the IN-List Column is an Index and a Partition Column
If empno is an indexed and a partition column, then the plan contains an INLIST
ITERATOR operation before the partition operation:

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
PARTITION RANGE ITERATOR KEY(INLIST) KEY(INLIST)
TABLE ACCESS BY LOCAL INDEX ROWID EMP KEY(INLIST) KEY(INLIST)
INDEX RANGE SCAN EMP_EMPNO KEY(INLIST) KEY(INLIST)

When the IN-List Column is a Partition Column
If empno is a partition column and there are no indexes, then no INLIST ITERATOR
operation is allocated:

OPERATION OPTIONS OBJECT_NAME PARTITION_START PARTITION_STOP
---------------- ------------ ----------- --------------- --------------
SELECT STATEMENT
PARTITION RANGE INLIST KEY(INLIST) KEY(INLIST)
TABLE ACCESS FULL EMP KEY(INLIST) KEY(INLIST)

If emp_empno is a bitmap index, then the plan is as follows:

OPERATION OPTIONS OBJECT_NAME
---------------- --------------- --------------
SELECT STATEMENT
INLIST ITERATOR
Using EXPLAIN PLAN 9-19

Viewing Parallel Execution with EXPLAIN PLAN
TABLE ACCESS BY INDEX ROWID EMP
BITMAP CONVERSION TO ROWIDS
BITMAP INDEX SINGLE VALUE EMP_EMPNO

Example of Domain Indexes and EXPLAIN PLAN
You can also use EXPLAIN PLAN to derive user-defined CPU and I/O costs for

domain indexes. EXPLAIN PLAN displays these statistics in the OTHER column of

PLAN_TABLE.

For example, assume table emphas user-defined operator CONTAINSwith a domain

index emp_resume on the resume column, and the index type of emp_resume
supports the operator CONTAINS. Then the query:

SELECT * FROM emp WHERE CONTAINS(resume, ’Oracle’) = 1

might display the following plan:

OPERATION OPTIONS OBJECT_NAME OTHER
----------------- ----------- ------------ ----------------
SELECT STATEMENT
TABLE ACCESS BY ROWID EMP
DOMAIN INDEX EMP_RESUME CPU: 300, I/O: 4

Viewing Parallel Execution with EXPLAIN PLAN
Tuning a parallel query begins much like a non-parallel query tuning exercise by

choosing the driving table. However, the rules governing the choice are different. In

the non-parallel case, the best driving table is typically the one that produces fewest

number of rows after limiting conditions are applied. The small number of rows are

joined to larger tables using non-unique indexes. For example, consider a table

hierarchy consisting of CUSTOMER, ACCOUNT, and TRANSACTION.

Figure 9–1 A Table Hierarchy

CUSTOMER
ACCOUNT

TRANSACTION
9-20 Oracle9i Database Performance Tuning Guide and Reference

Viewing Parallel Execution with EXPLAIN PLAN
CUSTOMER is the smallest table while TRANSACTION is the largest. A typical OLTP

query might be to retrieve transaction information about a particular customer's

account. The query would drive from the CUSTOMER table. The goal in this case is

to minimize logical I/O, which typically minimizes other critical resources

including physical I/O and CPU time.

For parallel queries, the choice of the driving table is usually the largest table since

parallel query can be utilized. Obviously, it would not be efficient to use parallel

query on the this query, because only a few rows from each table are ultimately

accessed. However, what if it were necessary to identify all customers that had

transactions of a certain type last month? It would be more efficient to drive from

the TRANSACTION table since there are no limiting conditions on the customer

table. The rows from the TRANSACTION table would be joined to the ACCOUNT
table, and finally to the CUSTOMER table. In this case, the indexes utilized on the

ACCOUNT and CUSTOMER table are likely to be highly selective primary key or

unique indexes, rather than non-unique indexes used in the first query. Since the

TRANSACTION table is large and the column is un-selective, it would be beneficial

to utilize parallel query driving from the TRANSACTION table.

Parallel operation

PARALLEL_TO_SERIAL
PARALLEL_TO_PARALLEL
PARALLEL_COMBINED_WITH_PARENT
PARALLEL_FROM_SERIAL
PARALLEL_COMBINED_WITH_PARENT
PARALLEL_TO_PARALLEL

PARALLEL_TO_PARALLEL operations generally produce the best performance as

long as the workloads in each step are relatively equivalent.

A PARALLEL_COMBINED_WITH_PARENT operation occurs when the step is

performed simultaneously with the parent step.

A PARALLEL_TO_SERIAL operation which is always the step that occurs when

rows from a parallel operation are consumed by the query coordinator. Another

type of operation that does not occur in this query is a SERIAL operation. If these

types of operations occur, consider making them parallel operations to improve

performance since they too are potential bottlenecks.

If a parallel step produces many rows, the query coordinator may not be able to

consume them as fast as they are being produced. There is little that can be done to

improve this.
Using EXPLAIN PLAN 9-21

CPU Costing Model
CPU Costing Model
Every database operation uses the CPU. In most cases, CPU utilization is as

important as I/O; often it is the only contribution to the cost (in cases of in-memory

sort, hash, predicate evaluation, and cached I/O). In Oracle9i the optimizer

introduces a new model, which includes the cost of CPU utilization. Including CPU

utilization in the cost model helps generate better plans.

According to the CPU costing model:

Cost = (#SRds * sreadtim +
 #MRds * mreadtim +
 #CPUCycles / cpuspeed) / sreadtim

where:

■ #SRDs is the number of single block reads

■ #MRDs is the number of multi block reads

■ #CPUCycles is the number of CPU Cycles *)

■ sreadtim is the single block read time

■ mreadtim is the multi block read time

■ cpuspeed is the CPU cycles per second

CPUCycles includes CPU cost of query processing (pure CPU cost) and CPU cost

of data retrieval (CPU cost of the buffer cache get).

This model is straightforward for serial execution. For parallel execution, necessary

adjustments are made while computing estimates for #SRD, #MRD, and

#CPUCycles .

EXPLAIN PLAN Restrictions
Oracle does not support EXPLAIN PLAN for statements performing implicit type

conversion of date bind variables. With bind variables in general, the EXPLAIN
PLAN output might not represent the real execution plan.

From the text of a SQL statement, TKPROF cannot determine the types of the bind

variables. It assumes that the type is CHARACTER, and gives an error message if this

is not the case. You can avoid this limitation by putting appropriate type

conversions in the SQL statement.

See Also: Chapter 10, "Using SQL Trace and TKPROF"
9-22 Oracle9i Database Performance Tuning Guide and Reference

PLAN_TABLE Columns
PLAN_TABLE Columns
The PLAN_TABLE used by the EXPLAIN PLAN statement contains the columns

listed in Table 9–1.

Table 9–1 PLAN_TABLE Columns

Column Type Description

STATEMENT_ID VARCHAR2(30) Value of the optional STATEMENT_ID parameter specified in the
EXPLAIN PLAN statement.

TIMESTAMP DATE Date and time when the EXPLAIN PLAN statement was issued.

REMARKS VARCHAR2(80) Any comment (of up to 80 bytes) you want to associate with
each step of the explained plan. If you need to add or change a
remark on any row of the PLAN_TABLE, then use the UPDATE
statement to modify the rows of the PLAN_TABLE.

OPERATION VARCHAR2(30) Name of the internal operation performed in this step. In the
first row generated for a statement, the column contains one of
the following values:

DELETE STATEMENT

INSERT STATEMENT

SELECT STATEMENT

UPDATE STATEMENT

See Table 9–4 for more information on values for this column.

OPTIONS VARCHAR2(225) A variation on the operation described in the OPERATION
column.

See Table 9–4 for more information on values for this column.

OBJECT_NODE VARCHAR2(128) Name of the database link used to reference the object (a table
name or view name). For local queries using parallel execution,
this column describes the order in which output from operations
is consumed.

OBJECT_OWNER VARCHAR2(30) Name of the user who owns the schema containing the table or
index.

OBJECT_NAME VARCHAR2(30) Name of the table or index.

OBJECT_INSTANCE NUMERIC Number corresponding to the ordinal position of the object as it
appears in the original statement. The numbering proceeds from
left to right, outer to inner with respect to the original statement
text. View expansion results in unpredictable numbers.

OBJECT_TYPE VARCHAR2(30) Modifier that provides descriptive information about the object;
for example, NON-UNIQUE for indexes.
Using EXPLAIN PLAN 9-23

PLAN_TABLE Columns
OPTIMIZER VARCHAR2(255) Current mode of the optimizer.

SEARCH_COLUMNS NUMBERIC Not currently used.

ID NUMERIC A number assigned to each step in the execution plan.

PARENT_ID NUMERIC The ID of the next execution step that operates on the output of
the ID step.

POSITION NUMERIC For the first row of output, this indicates the optimizer's
estimated cost of executing the statement. For the other rows, it
indicates the position relative to the other children of the same
parent.

COST NUMERIC Cost of the operation as estimated by the optimizer’s cost-based
approach. For statements that use the rule-based approach, this
column is null. Cost is not determined for table access
operations. The value of this column does not have any
particular unit of measurement; it is merely a weighted value
used to compare costs of execution plans. The value of this
column is a function of the CPU_COST and IO_COST columns.

CARDINALITY NUMERIC Estimate by the cost-based approach of the number of rows
accessed by the operation.

BYTES NUMERIC Estimate by the cost-based approach of the number of bytes
accessed by the operation.

OTHER_TAG VARCHAR2(255) Contents of the OTHER column. See Table 9–2 for more
information on the possible values for this column.

PARTITION_START VARCHAR2(255) Start partition of a range of accessed partitions. It can take one of
the following values:

n indicates that the start partition has been identified by the SQL
compiler, and its partition number is given by n.

KEY indicates that the start partition will be identified at run
time from partitioning key values.

ROW REMOVE_LOCATION indicates that the start partition (same
as the stop partition) will be computed at run time from the
location of each record being retrieved. The record location is
obtained by a user or from a global index.

INVALID indicates that the range of accessed partitions is
empty.

Table 9–1 (Cont.) PLAN_TABLE Columns

Column Type Description
9-24 Oracle9i Database Performance Tuning Guide and Reference

PLAN_TABLE Columns
Table 9–2 describes the values that can appear in the OTHER_TAG column.

PARTITION_STOP VARCHAR2(255) Stop partition of a range of accessed partitions. It can take one of
the following values:

n indicates that the stop partition has been identified by the SQL
compiler, and its partition number is given by n.

KEY indicates that the stop partition will be identified at run
time from partitioning key values.

ROW REMOVE_LOCATION indicates that the stop partition (same
as the start partition) will be computed at run time from the
location of each record being retrieved. The record location is
obtained by a user or from a global index.

INVALID indicates that the range of accessed partitions is
empty.

PARTITION_ID NUMERIC Step that has computed the pair of values of the PARTITION_
START and PARTITION_STOP columns.

OTHER LONG Other information that is specific to the execution step that a
user might find useful.

DISTRIBUTION VARCHAR2(30) Method used to distribute rows from producer query servers to
consumer query servers.

See Table 9–3 for more information on the possible values for
this column. For more information about consumer and
producer query servers, see Oracle9i Data Warehousing Guide.

CPU_COST NUMERIC CPU cost of the operation as estimated by the optimizer's
cost-based approach. For statements that use the rule-based
approach, this column is null. The value of this column is
proportional to the number of machine cycles required for the
operation.

IO_COST NUMERIC I/O cost of the operation as estimated by the optimizer's
cost-based approach. For statements that use the rule-based
approach, this column is null. The value of this column is
proportional to the number of data blocks read by the operation.

TEMP_SPACE NUMERIC Temporary space, in bytes, used by the operation as estimated
by the optimizer's cost-based approach. For statements that use
the rule-based approach, or for operations that don't use any
temporary space, this column is null.

Table 9–1 (Cont.) PLAN_TABLE Columns

Column Type Description
Using EXPLAIN PLAN 9-25

PLAN_TABLE Columns
Table 9–3 describes the values that can appear in the DISTRIBUTION column:

Table 9–2 Values of OTHER_TAG Column of the PLAN_TABLE

OTHER_TAG Text
(examples) Meaning Interpretation

blank Serial execution.

SERIAL_FROM_REMOTE
(S -> R)

Serial from remote Serial execution at a remote site.

SERIAL_TO_PARALLEL
(S -> P)

Serial to parallel Serial execution; output of step is partitioned or broadcast
to parallel execution servers.

PARALLEL_TO_PARALLEL
(P -> P)

Parallel to parallel Parallel execution; output of step is repartitioned to
second set of parallel execution servers.

PARALLEL_TO_SERIAL
(P -> S)

Parallel to serial Parallel execution; output of step is returned to serial
"query coordinator" process.

PARALLEL_COMBINED_
WITH_PARENT

(PWP)

Parallel combined
with parent

Parallel execution; output of step goes to next step in same
parallel process. No interprocess communication to
parent.

PARALLEL_COMBINED_
WITH_CHILD

(PWC)

Parallel combined
with child

Parallel execution; input of step comes from prior step in
same parallel process. No interprocess communication
from child.

Table 9–3 Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text Interpretation

PARTITION (ROWID) Maps rows to query servers based on the partitioning of a table or index using the
rowid of the row to UPDATE/DELETE.

PARTITION (KEY) Maps rows to query servers based on the partitioning of a table or index using a set of
columns. Used for partial partition-wise join, PARALLEL INSERT, CREATE TABLE AS
SELECT of a partitioned table, and CREATE PARTITIONED GLOBAL INDEX.

HASH Maps rows to query servers using a hash function on the join key. Used for
PARALLEL JOIN or PARALLEL GROUP BY.

RANGE Maps rows to query servers using ranges of the sort key. Used when the statement
contains an ORDER BY clause.

ROUND-ROBIN Randomly maps rows to query servers.
9-26 Oracle9i Database Performance Tuning Guide and Reference

PLAN_TABLE Columns
Table 9–4 lists each combination of OPERATION and OPTION produced by the

EXPLAIN PLAN statement and its meaning within an execution plan.

BROADCAST Broadcasts the rows of the entire table to each query server. Used for a parallel join
when one table is very small compared to the other.

QC (ORDER) The query coordinator consumes the input in order, from the first to the last query
server. Used when the statement contains an ORDER BY clause.

QC (RANDOM) The query coordinator consumes the input randomly. Used when the statement does
not have an ORDER BY clause.

Table 9–4 OPERATION and OPTION Values Produced by EXPLAIN PLAN

Operation Option Description

AND-EQUAL . Operation accepting multiple sets of rowids, returning the
intersection of the sets, eliminating duplicates. Used for the
single-column indexes access path.

BITMAP CONVERSION TO ROWIDS converts bitmap representations to actual rowids that
can be used to access the table.

FROM ROWIDS converts the rowids to a bitmap representation.

COUNT returns the number of rowids if the actual values are not
needed.

BITMAP INDEX SINGLE VALUE looks up the bitmap for a single key value in the
index.

RANGE SCAN retrieves bitmaps for a key value range.

FULL SCAN performs a full scan of a bitmap index if there is no
start or stop key.

BITMAP MERGE Merges several bitmaps resulting from a range scan into one
bitmap.

BITMAP MINUS Subtracts bits of one bitmap from another. Row source is used for
negated predicates. Can be used only if there are nonnegated
predicates yielding a bitmap from which the subtraction can take
place. An example appears in "Viewing Bitmap Indexes with
EXPLAIN PLAN" on page 9-11.

BITMAP OR Computes the bitwise OR of two bitmaps.

BITMAP AND Computes the bitwise AND of two bitmaps.

Table 9–3 (Cont.) Values of DISTRIBUTION Column of the PLAN_TABLE

DISTRIBUTION Text Interpretation
Using EXPLAIN PLAN 9-27

PLAN_TABLE Columns
BITMAP KEY ITERATION Takes each row from a table row source and finds the
corresponding bitmap from a bitmap index. This set of bitmaps are
then merged into one bitmap in a following BITMAP MERGE
operation.

CONNECT BY . Retrieves rows in hierarchical order for a query containing a
CONNECT BY clause.

CONCATENATION . Operation accepting multiple sets of rows returning the union-all of
the sets.

COUNT . Operation counting the number of rows selected from a table.

STOPKEY Count operation where the number of rows returned is limited by
the ROWNUM expression in the WHERE clause.

DOMAIN INDEX . Retrieval of one or more rowids from a domain index. The options
column contain information supplied by a user-defined domain
index cost function, if any.

FILTER . Operation accepting a set of rows, eliminates some of them, and
returns the rest.

FIRST ROW . Retrieval of only the first row selected by a query.

FOR UPDATE . Operation retrieving and locking the rows selected by a query
containing a FOR UPDATE clause.

HASH JOIN

(These are join
operations.)

. Operation joining two sets of rows and returning the result. This
join method is useful for joining large data sets of data (DSS, Batch).
The join condition is an efficient way of accessing the second table.

CBO uses the smaller of the two tables/data sources to build a hash
table on the join key in memory. Then it scans the larger table,
probing the hash table to find the joined rows.

HASH JOIN ANTI Hash anti-join.

HASH JOIN SEMI Hash semi-join.

INDEX

(These are access
methods.)

UNIQUE SCAN Retrieval of a single rowid from an index.

INDEX RANGE SCAN Retrieval of one or more rowids from an index. Indexed values are
scanned in ascending order.

INDEX RANGE SCAN
DESCENDING

Retrieval of one or more rowids from an index. Indexed values are
scanned in descending order.

Table 9–4 (Cont.) OPERATION and OPTION Values Produced by EXPLAIN PLAN

Operation Option Description
9-28 Oracle9i Database Performance Tuning Guide and Reference

PLAN_TABLE Columns
INDEX FULL SCAN Retrieval of all rowids from an index when there is no start or stop
key. Indexed values are scanned in ascending order.

INDEX FULL SCAN
DESCENDING

Retrieval of all rowids from an index when there is no start or stop
key. Indexed values are scanned in descending order.

INDEX FAST FULL SCAN Retrieval of all rowids (and column values) using multiblock reads.
No sorting order can be defined. Compares to a full table scan on
only the indexed columns. Only available with the cost based
optimizer.

INDEX SKIP SCAN Retrieval of rowids from a concatenated index without using the
leading column(s) in the index. Introduced in Oracle9i. Only
available with the cost based optimizer.

INLIST
ITERATOR

. Iterates over the next operation in the plan for each value in the
IN -list predicate.

INTERSECTION . Operation accepting two sets of rows and returning the intersection
of the sets, eliminating duplicates.

MERGE JOIN

(These are join
operations.)

. Operation accepting two sets of rows, each sorted by a specific
value, combining each row from one set with the matching rows
from the other, and returning the result.

MERGE JOIN OUTER Merge join operation to perform an outer join statement.

MERGE JOIN ANTI Merge anti-join.

MERGE JOIN SEMI Merge semi-join.

MERGE JOIN CARTESIAN Can result from 1 or more of the tables not having any join
conditions to any other tables in the statement. Can occur even with
a join and it may not be flagged as CARTESIAN in the plan.

CONNECT BY . Retrieval of rows in hierarchical order for a query containing a
CONNECT BY clause.

MINUS . Operation accepting two sets of rows and returning rows appearing
in the first set but not in the second, eliminating duplicates.

NESTED LOOPS

(These are join
operations.)

. Operation accepting two sets of rows, an outer set and an inner set.
Oracle compares each row of the outer set with each row of the
inner set, returning rows that satisfy a condition. This join method
is useful for joining small subsets of data (OLTP). The join condition
is an efficient way of accessing the second table.

NESTED LOOPS OUTER Nested loops operation to perform an outer join statement.

Table 9–4 (Cont.) OPERATION and OPTION Values Produced by EXPLAIN PLAN

Operation Option Description
Using EXPLAIN PLAN 9-29

PLAN_TABLE Columns
PARTITION SINGLE Access one partition.

PARTITION ITERATOR Access many partitions (a subset).

PARTITION ALL Access all partitions.

PARTITION INLIST Similar to iterator, but based on an IN -list predicate.

PARTITION INVALID Indicates that the partition set to be accessed is empty.

Iterates over the next operation in the plan for each partition in the
range given by the PARTITION_START and PARTITION_STOP
columns. PARTITION describes partition boundaries applicable to
a single partitioned object (table or index) or to a set of
equi-partitioned objects (a partitioned table and its local indexes).
The partition boundaries are provided by the values of
PARTITION_START and PARTITION_STOP of the PARTITION.
Refer to Table 9–1 for valid values of partition start/stop.

REMOTE . Retrieval of data from a remote database.

SEQUENCE . Operation involving accessing values of a sequence.

SORT AGGREGATE Retrieval of a single row that is the result of applying a group
function to a group of selected rows.

SORT UNIQUE Operation sorting a set of rows to eliminate duplicates.

SORT GROUP BY Operation sorting a set of rows into groups for a query with a
GROUP BY clause.

SORT JOIN Operation sorting a set of rows before a merge-join.

SORT ORDER BY Operation sorting a set of rows for a query with an ORDER BY
clause.

TABLE ACCESS

(These are access
methods.)

FULL Retrieval of all rows from a table.

TABLE ACCESS SAMPLE Retrieval of sampled rows from a table.

TABLE ACCESS CLUSTER Retrieval of rows from a table based on a value of an indexed
cluster key.

TABLE ACCESS HASH Retrieval of rows from table based on hash cluster key value.

TABLE ACCESS BY ROWID RANGE Retrieval of rows from a table based on a rowid range.

TABLE ACCESS SAMPLE BY ROWID
RANGE

Retrieval of sampled rows from a table based on a rowid range.

Table 9–4 (Cont.) OPERATION and OPTION Values Produced by EXPLAIN PLAN

Operation Option Description
9-30 Oracle9i Database Performance Tuning Guide and Reference

PLAN_TABLE Columns
TABLE ACCESS BY USER ROWID If the table rows are located using user-supplied rowids.

TABLE ACCESS BY INDEX ROWID If the table is nonpartitioned and rows are located using index(es).

TABLE ACCESS BY GLOBAL INDEX
ROWID

If the table is partitioned and rows are located using only global
indexes.

TABLE ACCESS BY LOCAL INDEX
ROWID

If the table is partitioned and rows are located using one or more
local indexes and possibly some global indexes.

Partition Boundaries:

The partition boundaries might have been computed by:

A previous PARTITION step, in which case the PARTITION_START
and PARTITION_STOP column values replicate the values present
in the PARTITION step, and the PARTITION_ID contains the ID of
the PARTITION step. Possible values for PARTITION_START and
PARTITION_STOP are NUMBER(n), KEY, INVALID .

The TABLE ACCESS or INDEX step itself, in which case the
PARTITION_ID contains the ID of the step. Possible values for
PARTITION_START and PARTITION_STOP are NUMBER(n), KEY,
ROW REMOVE_LOCATION (TABLE ACCESS only), and INVALID .

UNION . Operation accepting two sets of rows and returns the union of the
sets, eliminating duplicates.

VIEW . Operation performing a view’s query and then returning the
resulting rows to another operation.

See Also: Chapter 1, "Introduction to the Optimizer"

Table 9–4 (Cont.) OPERATION and OPTION Values Produced by EXPLAIN PLAN

Operation Option Description
Using EXPLAIN PLAN 9-31

PLAN_TABLE Columns
9-32 Oracle9i Database Performance Tuning Guide and Reference

Using SQL Trace and TK
10

Using SQL Trace and TKPROF

The SQL Trace facility and TKPROF are two basic performance diagnostic tools that

can help you monitor and tune applications running against the Oracle Server.

This chapter contains the following sections:

■ Understanding SQL Trace and TKPROF

■ Using the SQL Trace Facility and TKPROF

■ Avoiding Pitfalls in TKPROF Interpretation

■ Sample TKPROF Output
PROF 10-1

Understanding SQL Trace and TKPROF
Understanding SQL Trace and TKPROF
The SQL Trace facility and TKPROF let you accurately assess the efficiency of the

SQL statements an application runs. For best results, use these tools with EXPLAIN
PLAN rather than using EXPLAIN PLAN alone.

Understanding the SQL Trace Facility
The SQL Trace facility provides performance information on individual SQL

statements. It generates the following statistics for each statement:

■ Parse, execute, and fetch counts

■ CPU and elapsed times

■ Physical reads and logical reads

■ Number of rows processed

■ Misses on the library cache

■ Username under which each parse occurred

■ Each commit and rollback

You can enable the SQL Trace facility for a session or for an instance. When the SQL

Trace facility is enabled, performance statistics for all SQL statements executed in a

user session or in the instance are placed into trace files.

The additional overhead of running the SQL Trace facility against an application

with performance problems is normally insignificant compared with the inherent

overhead caused by the application’s inefficiency.

Note: Try to enable SQL Trace only for statistics collection and on

specific sessions. If you must enable the facility on an entire

production environment, then you can minimize performance

impact with the following:

■ Maintain at least 25% idle CPU capacity.

■ Maintain adequate disk space for the USER_DUMP_DEST
location.

■ Stripe disk space over sufficient disks.
10-2 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
Understanding TKPROF
You can run the TKPROF program to format the contents of the trace file and place

the output into a readable output file. Optionally, TKPROF can also:

■ Determine the execution plans of SQL statements

■ Create a SQL script that stores the statistics in the database

TKPROF reports each statement executed with the resources it has consumed, the

number of times it was called, and the number of rows which it processed. This

information lets you easily locate those statements that are using the greatest

resource. With experience or with baselines available, you can assess whether the

resources used are reasonable given the work done.

Using the SQL Trace Facility and TKPROF
Follow these steps to use the SQL Trace facility and TKPROF:

1. Set initialization parameters for trace file management.

See "Step 1: Setting Initialization Parameters for Trace File Management" on

page 10-4.

2. Enable the SQL Trace facility for the desired session, and run the application.

This step produces a trace file containing statistics for the SQL statements

issued by the application.

See "Step 2: Enabling the SQL Trace Facility" on page 10-5.

3. Run TKPROF to translate the trace file created in Step 2 into a readable output

file. This step can optionally create a SQL script that can be used to store the

statistics in a database.

See "Step 3: Formatting Trace Files with TKPROF" on page 10-6.

4. Interpret the output file created in Step 3.

See "Step 4: Interpreting TKPROF Output" on page 10-12.

5. Optionally, run the SQL script produced in Step 3 to store the statistics in the

database.

See "Step 5: Storing SQL Trace Facility Statistics" on page 10-17.

In the following sections, each of these steps is discussed in depth.
Using SQL Trace and TKPROF 10-3

Using the SQL Trace Facility and TKPROF
Step 1: Setting Initialization Parameters for Trace File Management
When the SQL Trace facility is enabled for a session, Oracle generates a trace file

containing statistics for traced SQL statements for that session. When the SQL Trace

facility is enabled for an instance, Oracle creates a separate trace file for each

process. Before enabling the SQL Trace facility:

1. Check the settings of the TIMED_STATISTICS , MAX_DUMP_FILE_SIZE, and

USER_DUMP_DEST initialization parameters. See Table 10–1.

Table 10–1 Initialization Parameters to Check Before Enabling SQL Trace

Parameter Description

TIMED_STATISTICS This enables and disables the collection of timed statistics, such
as CPU and elapsed times, by the SQL Trace facility, as well as
the collection of various statistics in the dynamic performance
tables. The default value of false disables timing. A value of true
enables timing. Enabling timing causes extra timing calls for
low-level operations. This is a dynamic parameter. It is also a
session parameter.

MAX_DUMP_FILE_SIZE When the SQL Trace facility is enabled at the instance level,
every call to the server produces a text line in a file in the
operating system’s file format. The maximum size of these files
(in operating system blocks) is limited by this initialization
parameter. The default is 500. If you find that the trace output is
truncated, then increase the value of this parameter before
generating another trace file. This is a dynamic parameter. It is
also a session parameter.

USER_DUMP_DEST This must fully specify the destination for the trace file
according to the conventions of the operating system. The
default value is the default destination for system dumps on the
operating system.This value can be modified with ALTER
SYSTEM SET USER_DUMP_DEST= newdir . This is a dynamic
parameter. It is also a session parameter.
10-4 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
2. Devise a way of recognizing the resulting trace file.

Be sure you know how to distinguish the trace files by name. Oracle writes

them to the user dump destination specified by USER_DUMP_DEST. However,

this directory can soon contain many hundreds of files, usually with generated

names. It might be difficult to match trace files back to the session or process

that created them. You can tag trace files by including in your programs a

statement like SELECTprogram_name FROM DUAL. You can then trace each file

back to the process that created it.

3. If the operating system retains multiple versions of files, then be sure that the

version limit is high enough to accommodate the number of trace files you

expect the SQL Trace facility to generate.

4. The generated trace files can be owned by an operating system user other than

yourself. This user must make the trace files available to you before you can use

TKPROF to format them.

Step 2: Enabling the SQL Trace Facility
Enable the SQL Trace facility for the session by using one of the following:

■ DBMS_SESSION.SET_SQL_TRACE procedure

■ ALTER SESSION SET SQL_TRACE = TRUE;

You can enable SQL Trace in another session by using the DBMS_SYSTEM.SET_
SQL_TRACE_IN_SESSION procedure.

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings
Using SQL Trace and TKPROF 10-5

Using the SQL Trace Facility and TKPROF
To disable the SQL Trace facility for the session, enter:

ALTER SESSION SET SQL_TRACE = FALSE;

The SQL Trace facility is automatically disabled for the session when the application

disconnects from Oracle.

You can enable the SQL Trace facility for an instance by setting the value of the

SQL_TRACE initialization parameter to TRUE in the initialization file.

SQL_TRACE = TRUE

After the instance has been restarted with the updated initialization parameter file,

SQL Trace is enabled for the instance and statistics are collected for all sessions. If

the SQL Trace facility has been enabled for the instance, you can disable it for the

instance by setting the value of the SQL_TRACE parameter to FALSE.

Step 3: Formatting Trace Files with TKPROF
TKPROF accepts as input a trace file produced by the SQL Trace facility, and it

produces a formatted output file. TKPROF can also be used to generate execution

plans.

After the SQL Trace facility has generated a number of trace files, you can:

■ Run TKPROF on each individual trace file, producing a number of formatted

output files, one for each session.

Caution: Because running the SQL Trace facility increases system

overhead, enable it only when tuning SQL statements, and disable

it when you are finished.

You might need to modify an application to contain the ALTER
SESSION statement. For example, to issue the ALTER SESSION
statement in Oracle Forms, invoke Oracle Forms using the -s
option, or invoke Oracle Forms (Design) using the statistics
option. For more information on Oracle Forms, see the Oracle Forms
Reference.

Note: Setting SQL_TRACEto TRUE can have a severe performance

impact. For more information, see Oracle9i Database Reference.
10-6 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
■ Concatenate the trace files, and then run TKPROF on the result to produce a

formatted output file for the entire instance.

TKPROF does not report COMMITs and ROLLBACKs that are recorded in the trace

file.

Sample TKPROF Output
Sample output from TKPROF is as follows:

SELECT * FROM emp, dept
WHERE emp.deptno = dept.deptno;

call count cpu elapsed disk query current rows
---- ------- ------- --------- -------- -------- ------- ------
Parse 1 0.16 0.29 3 13 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.03 0.26 2 2 4 14

Misses in library cache during parse: 1
Parsing user id: (8) SCOTT

Rows Execution Plan
------- ---

14 MERGE JOIN
 4 SORT JOIN
 4 TABLE ACCESS (FULL) OF ’DEPT’
14 SORT JOIN
14 TABLE ACCESS (FULL) OF ’EMP’

For this statement, TKPROF output includes the following information:

■ The text of the SQL statement

■ The SQL Trace statistics in tabular form

■ The number of library cache misses for the parsing and execution of the

statement.

■ The user initially parsing the statement.

■ The execution plan generated by EXPLAIN PLAN.

TKPROF also provides a summary of user level statements and recursive SQL calls

for the trace file.
Using SQL Trace and TKPROF 10-7

Using the SQL Trace Facility and TKPROF
Syntax of TKPROF
TKPROF::=

If you invoke TKPROF without arguments, then online help is displayed. Use the

arguments in Table 10–2 with TKPROF.

Table 10–2 TKPROF Arguments

Argument Description

filename1 Specifies the input file, a trace file containing statistics produced by the SQL Trace
facility. This file can be either a trace file produced for a single session, or a file
produced by concatenating individual trace files from multiple sessions.

filename2 Specifies the file to which TKPROF writes its formatted output.

WAITS Specifies whether to record summary for any wait events found in the trace file.
Values are YES or NO.

TKPROF filename1 filename2

SORT =

option

(option

,

)

PRINT = integer
AGGREGATE =

YES

NO INSERT = filename3

SYS =
YES

NO

TABLE = schema . table
EXPLAIN = user / password

RECORD = filename
10-8 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
SORTS Sorts traced SQL statements in descending order of specified sort option before
listing them into the output file. If more than one option is specified, then the output
is sorted in descending order by the sum of the values specified in the sort options.
If you omit this parameter, then TKPROF lists statements into the output file in
order of first use. Sort options are listed as follows:

PRSCNT Number of times parsed.

PRSCPU CPU time spent parsing.

PRSELA Elapsed time spent parsing.

PRSDSK Number of physical reads from disk during parse.

PRSQRY Number of consistent mode block reads during parse.

PRSCU Number of current mode block reads during parse.

PRSMIS Number of library cache misses during parse.

EXECNT Number of executes.

EXECPU CPU time spent executing.

EXEELA Elapsed time spent executing.

EXEDSK Number of physical reads from disk during execute.

EXEDSK Number of physical reads from disk during execute.

EXEQRY Number of consistent mode block reads during execute.

EXECU Number of current mode block reads during execute.

EXEROW Number of rows processed during execute.

EXEMIS Number of library cache misses during execute.

FCHCNT Number of fetches.

FCHCPU CPU time spent fetching.

FCHELA Elapsed time spent fetching.

FCHDSK Number of physical reads from disk during fetch.

FCHQRY Number of consistent mode block reads during fetch.

FCHCU Number of current mode block reads during fetch.

FCHROW Number of rows fetched.

Table 10–2 (Cont.) TKPROF Arguments

Argument Description
Using SQL Trace and TKPROF 10-9

Using the SQL Trace Facility and TKPROF
PRINT Lists only the first integer sorted SQL statements from the output file. If you omit
this parameter, then TKPROF lists all traced SQL statements. This parameter does
not affect the optional SQL script. The SQL script always generates insert data for all
traced SQL statements.

AGGREGATE If you specify AGGREGATE = NO, then TKPROF does not aggregate multiple users of
the same SQL text.

INSERT Creates a SQL script that stores the trace file statistics in the database. TKPROF
creates this script with the name filename3 . This script creates a table and inserts a
row of statistics for each traced SQL statement into the table.

SYS Enables and disables the listing of SQL statements issued by the user SYS, or
recursive SQL statements, into the output file. The default value of YES causes
TKPROF to list these statements. The value of NO causes TKPROF to omit them. This
parameter does not affect the optional SQL script. The SQL script always inserts
statistics for all traced SQL statements, including recursive SQL statements.

TABLE Specifies the schema and name of the table into which TKPROF temporarily places
execution plans before writing them to the output file. If the specified table already
exists, then TKPROF deletes all rows in the table, uses it for the EXPLAIN PLAN
statement (which writes more rows into the table), and then deletes those rows. If
this table does not exist, then TKPROF creates it, uses it, and then drops it.

The specified user must be able to issue INSERT, SELECT, and DELETE statements
against the table. If the table does not already exist, then the user must also be able
to issue CREATE TABLE and DROP TABLE statements. For the privileges to issue
these statements, see the Oracle9i SQL Reference.

This option allows multiple individuals to run TKPROF concurrently with the same
user in the EXPLAIN value. These individuals can specify different TABLE values
and avoid destructively interfering with each other’s processing on the temporary
plan table.

If you use the EXPLAIN parameter without the TABLEparameter, then TKPROFuses
the table PROF$PLAN_TABLE in the schema of the user specified by the EXPLAIN
parameter. If you use the TABLE parameter without the EXPLAIN parameter, then
TKPROF ignores the TABLE parameter.

If no plan table exists, TKPROF creates the table PROF$PLAN_TABLE and then drops
it at the end.

Table 10–2 (Cont.) TKPROF Arguments

Argument Description
10-10 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
Examples of TKPROF Statement
This section provides two brief examples of TKPROF usage. For an complete

example of TKPROF output, see "Sample TKPROF Output" on page 10-23.

TKPROF Example 1 If you are processing a large trace file using a combination of

SORTparameters and the PRINT parameter, then you can produce a TKPROFoutput

file containing only the highest resource-intensive statements. For example, the

following statement prints the 10 statements in the trace file that have generated the

most physical I/O:

TKPROF ora53269.trc ora53269.prf SORT = (PRSDSK, EXEDSK, FCHDSK) PRINT = 10

TKPROF Example 2 This example runs TKPROF, accepts a trace file named dlsun12_
jane_fg_sqlplus_007 .trc , and writes a formatted output file named

outputa .prf :

TKPROF dlsun12_jane_fg_sqlplus_007.trc OUTPUTA.PRF
EXPLAIN=scott/tiger TABLE=scott.temp_plan_table_a INSERT=STOREA.SQL SYS=NO
SORT=(EXECPU,FCHCPU)

This example is likely to be longer than a single line on the screen, and you might

need to use continuation characters, depending on the operating system.

Note the other parameters in this example:

■ The EXPLAIN value causes TKPROF to connect as the user scott and use the

EXPLAIN PLAN statement to generate the execution plan for each traced SQL

statement. You can use this to get access paths and row source counts.

EXPLAIN Determines the execution plan for each SQL statement in the trace file and writes
these execution plans to the output file. TKPROF determines execution plans by
issuing the EXPLAIN PLAN statement after connecting to Oracle with the user and
password specified in this parameter. The specified user must have CREATE SESSION
system privileges. TKPROF takes longer to process a large trace file if the EXPLAIN
option is used.

RECORD Creates a SQL script with the specified filename with all of the nonrecursive SQL in
the trace file. This can be used to replay the user events from the trace file.

WIDTH An integer that controls the output line width of some TKPROF output, such as the
explain plan. This parameter is useful for post-processing of TKPROF output.

Table 10–2 (Cont.) TKPROF Arguments

Argument Description
Using SQL Trace and TKPROF 10-11

Using the SQL Trace Facility and TKPROF
■ The TABLE value causes TKPROF to use the table temp_plan_table_a in the

schema scott as a temporary plan table.

■ The INSERT value causes TKPROFto generate a SQL script named STOREA.SQL
that stores statistics for all traced SQL statements in the database.

■ The SYS parameter with the value of NO causes TKPROF to omit recursive SQL

statements from the output file. In this way, you can ignore internal Oracle

statements such as temporary table operations.

■ The SORT value causes TKPROF to sort the SQL statements in order of the sum

of the CPU time spent executing and the CPU time spent fetching rows before

writing them to the output file. For greatest efficiency, always use SORT
parameters.

Step 4: Interpreting TKPROF Output
This section provides pointers for interpreting TKPROF output.

■ Tabular Statistics in TKPROF

■ Library Cache Misses in TKPROF

■ Statement Truncation in SQL Trace

■ Identification of User Issuing the SQL Statement in TKPROF

■ Execution Plan in TKPROF

■ Deciding Which Statements to Tune

While TKPROF provides a very useful analysis, the most accurate measure of

efficiency is the actual performance of the application in question. At the end of the

TKPROF output is a summary of the work done in the database engine by the

process during the period that the trace was running.

Tabular Statistics in TKPROF
TKPROF lists the statistics for a SQL statement returned by the SQL Trace facility in

rows and columns. Each row corresponds to one of three steps of SQL statement

processing. Statistics are identified by the value of the CALL column. See Table 10–3.
10-12 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
The other columns of the SQL Trace facility output are combined statistics for all

parses, all executes, and all fetches of a statement. The sum of query and current
is the total number of buffers accessed, also called Logical I/Os (LIOs). See

Table 10–4.

Statistics about the processed rows appear in the ROWS column. See Table 10–5.

Table 10–3 CALL Column Values

CALL Value Meaning

PARSE Translates the SQL statement into an execution plan, including
checks for proper security authorization and checks for the
existence of tables, columns, and other referenced objects.

EXECUTE Actual execution of the statement by Oracle. For INSERT, UPDATE,
and DELETE statements, this modifies the data. For SELECT
statements, this identifies the selected rows.

FETCH Retrieves rows returned by a query. Fetches are only performed for
SELECT statements.

Table 10–4 SQL Trace Statistics for Parses, Executes, and Fetches.

SQL Trace Statistic Meaning

COUNT Number of times a statement was parsed, executed, or fetched.

CPU Total CPU time in seconds for all parse, execute, or fetch calls for
the statement. This value is zero (0) if TIMED_STATISTICS is not
turned on.

ELAPSED Total elapsed time in seconds for all parse, execute, or fetch calls for
the statement. This value is zero (0) if TIMED_STATISTICS is not
turned on.

DISK Total number of data blocks physically read from the datafiles on
disk for all parse, execute, or fetch calls.

QUERY Total number of buffers retrieved in consistent mode for all parse,
execute, or fetch calls. Usually, buffers are retrieved in consistent
mode for queries.

CURRENT Total number of buffers retrieved in current mode. Buffers are
retrieved in current mode for statements such as INSERT, UPDATE,
and DELETE.
Using SQL Trace and TKPROF 10-13

Using the SQL Trace Facility and TKPROF
For SELECTstatements, the number of rows returned appears for the fetch step. For

UPDATE, DELETE, and INSERT statements, the number of rows processed appears

for the execute step.

Interpreting the Resolution of Statistics
Timing statistics have a resolution of one hundredth of a second; therefore, any

operation on a cursor that takes a hundredth of a second or less might not be timed

accurately. Keep this in mind when interpreting statistics. In particular, be careful

when interpreting the results from simple queries that execute very quickly.

Understanding Recursive Calls
Sometimes, in order to execute a SQL statement issued by a user, Oracle must issue

additional statements. Such statements are called recursive calls or recursive SQL

statements. For example, if you insert a row into a table that does not have enough

space to hold that row, then Oracle makes recursive calls to allocate the space

dynamically. Recursive calls are also generated when data dictionary information is

not available in the data dictionary cache and must be retrieved from disk.

If recursive calls occur while the SQL Trace facility is enabled, then TKPROF
produces statistics for the recursive SQL statements and marks them clearly as

recursive SQL statements in the output file. You can suppress the listing of Oracle

internal recursive calls (for example, space management) in the output file by

setting the SYS command-line parameter to NO. The statistics for a recursive SQL

statement are included in the listing for that statement, not in the listing for the SQL

statement that caused the recursive call. So, when you are calculating the total

Table 10–5 SQL Trace Statistics for the ROWS Column

SQL Trace Statistic Meaning

ROWS Total number of rows processed by the SQL statement. This total
does not include rows processed by subqueries of the SQL
statement.

Note: The row source counts are displayed when a cursor is

closed. In SQL*Plus, there is only one user cursor, so each statement

executed causes the previous cursor to be closed; therefore, the row

source counts are displayed. PL/SQL has its own cursor handling

and does not close child cursors when the parent cursor is closed.

Exiting (or reconnecting) causes the counts to be displayed.
10-14 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
resources required to process a SQL statement, consider the statistics for that

statement as well as those for recursive calls caused by that statement.

Library Cache Misses in TKPROF
TKPROF also lists the number of library cache misses resulting from parse and

execute steps for each SQL statement. These statistics appear on separate lines

following the tabular statistics. If the statement resulted in no library cache misses,

then TKPROF does not list the statistic. In "Sample TKPROF Output" on page 10-7,

the statement resulted in one library cache miss for the parse step and no misses for

the execute step.

Statement Truncation in SQL Trace
The following SQL statements are truncated to 25 characters in the SQL Trace file:

SET ROLE
GRANT
ALTER USER
ALTER ROLE
CREATE USER
CREATE ROLE

Identification of User Issuing the SQL Statement in TKPROF
TKPROF also lists the user ID of the user issuing each SQL statement. If the SQL

Trace input file contained statistics from multiple users and the statement was

issued by more than one user, then TKPROF lists the ID of the last user to parse the

statement. The user ID of all database users appears in the data dictionary in the

column ALL_USERS.USER_ID.

Execution Plan in TKPROF
If you specify the EXPLAIN parameter on the TKPROF statement line, then TKPROF
uses the EXPLAIN PLAN statement to generate the execution plan of each SQL

statement traced. TKPROF also displays the number of rows processed by each step

of the execution plan.

Note: Recursive SQL statistics are not included for SQL-level

operations. However, recursive SQL statistics are included for

operations done under the SQL level, such as triggers. For more

information, see "Avoiding the Trigger Trap" on page 10-23.
Using SQL Trace and TKPROF 10-15

Using the SQL Trace Facility and TKPROF
Deciding Which Statements to Tune
You need to find which SQL statements use the most CPU or disk resource. If the

TIMED_STATISTICS parameter is on, then you can find high CPU activity in the

CPUcolumn. If TIMED_STATISTICS is not on, then check the QUERYand CURRENT
columns.

With the exception of locking problems and inefficient PL/SQL loops, neither the

CPU time nor the elapsed time is necessary to find problem statements. The key is

the number of block visits, both query (that is, subject to read consistency) and

current (that is, not subject to read consistency). Segment headers and blocks that

are going to be updated are acquired in current mode, but all query and subquery

processing requests the data in query mode. These are precisely the same measures

as the instance statistics CONSISTENT GETSand DB BLOCK GETS. You can find high

disk activity in the disk column.

The following listing shows TKPROF output for one SQL statement as it appears in

the output file:

SELECT *
FROM emp, dept
WHERE emp.deptno = dept.deptno;

call count cpu elapsed disk query current rows
---- ------- ------- --------- -------- -------- ------- ------
Parse 11 0.08 0.18 0 0 0 0
Execute 11 0.23 0.66 0 3 6 0
Fetch 35 6.70 6.83 100 12326 2 824
--
total 57 7.01 7.67 100 12329 8 826

Note: Trace files generated immediately after instance startup

contain data that reflects the activity of the startup process. In

particular, they reflect a disproportionate amount of I/O activity as

caches in the system global area (SGA) are filled. For the purposes

of tuning, ignore such trace files.

See Also: Chapter 9, "Using EXPLAIN PLAN" for more

information on interpreting execution plans

See Also: "Examples of TKPROF Statement" on page 10-11 for

examples of finding resource intensive statements
10-16 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
Misses in library cache during parse: 0

If it is acceptable to have 7.01 CPU seconds and to retrieve 824 rows, then you need

not look any further at this trace output. In fact, a major use of TKPROF reports in a

tuning exercise is to eliminate processes from the detailed tuning phase.

You can also see that 10 unnecessary parse call were made (because there were 11

parse calls for this one statement) and that array fetch operations were performed.

You know this because more rows were fetched than there were fetches performed.

A large gap between CPU and elapsed timings indicates Physical I/Os (PIOs).

Step 5: Storing SQL Trace Facility Statistics
You might want to keep a history of the statistics generated by the SQL Trace

facility for an application, and compare them over time. TKPROF can generate a

SQL script that creates a table and inserts rows of statistics into it. This script

contains:

■ A CREATE TABLE statement that creates an output table named TKPROF_
TABLE.

■ INSERT statements that add rows of statistics, one for each traced SQL

statement, to the TKPROF_TABLE.

After running TKPROF, you can run this script to store the statistics in the database.

Generating the TKPROF Output SQL Script
When you run TKPROF, use the INSERT parameter to specify the name of the

generated SQL script. If you omit this parameter, then TKPROF does not generate a

script.

Editing the TKPROF Output SQL Script
After TKPROF has created the SQL script, you might want to edit the script before

running it. If you have already created an output table for previously collected

statistics and you want to add new statistics to this table, then remove the CREATE
TABLE statement from the script. The script then inserts the new rows into the

existing table.

If you have created multiple output tables, perhaps to store statistics from different

databases in different tables, then edit the CREATE TABLE and INSERT statements

to change the name of the output table.
Using SQL Trace and TKPROF 10-17

Using the SQL Trace Facility and TKPROF
Querying the Output Table
The following CREATE TABLE statement creates the TKPROF_TABLE:

CREATE TABLE TKPROF_TABLE (
DATE_OF_INSERT DATE,
CURSOR_NUM NUMBER,
DEPTH NUMBER,
USER_ID NUMBER,
PARSE_CNT NUMBER,
PARSE_CPU NUMBER,
PARSE_ELAP NUMBER,
PARSE_DISK NUMBER,
PARSE_QUERY NUMBER,
PARSE_CURRENT NUMBER,
PARSE_MISS NUMBER,
EXE_COUNT NUMBER,
EXE_CPU NUMBER,
EXE_ELAP NUMBER,
EXE_DISK NUMBER,
EXE_QUERY NUMBER,
EXE_CURRENT NUMBER,
EXE_MISS NUMBER,
EXE_ROWS NUMBER,
FETCH_COUNT NUMBER,
FETCH_CPU NUMBER,
FETCH_ELAP NUMBER,
FETCH_DISK NUMBER,
FETCH_QUERY NUMBER,
FETCH_CURRENT NUMBER,
FETCH_ROWS NUMBER,
CLOCK_TICKS NUMBER,
SQL_STATEMENT LONG);

Most output table columns correspond directly to the statistics that appear in the

formatted output file. For example, the PARSE_CNT column value corresponds to

the count statistic for the parse step in the output file.

The columns in Table 10–6 help you identify a row of statistics.

Table 10–6 TKPROF_TABLE Columns for Identifying a Row of Statistics

Column Description

SQL_STATEMENT This is the SQL statement for which the SQL Trace facility collected
the row of statistics. Because this column has datatype LONG, you
cannot use it in expressions or WHERE clause conditions.
10-18 Oracle9i Database Performance Tuning Guide and Reference

Using the SQL Trace Facility and TKPROF
The output table does not store the statement’s execution plan. The following query

returns the statistics from the output table. These statistics correspond to the

formatted output shown in the section "Sample TKPROF Output" on page 10-7.

SELECT * FROM TKPROF_TABLE;

Oracle responds with something similar to:

DATE_OF_INSERT CURSOR_NUM DEPTH USER_ID PARSE_CNT PARSE_CPU PARSE_ELAP
-------------- ---------- ----- ------- --------- --------- ----------
21-DEC-1998 1 0 8 1 16 22

PARSE_DISK PARSE_QUERY PARSE_CURRENT PARSE_MISS EXE_COUNT EXE_CPU
---------- ----------- ------------- ---------- --------- -------
 3 11 0 1 1 0

EXE_ELAP EXE_DISK EXE_QUERY EXE_CURRENT EXE_MISS EXE_ROWS FETCH_COUNT
-------- -------- --------- ----------- -------- -------- -----------
 0 0 0 0 0 0 1

FETCH_CPU FETCH_ELAP FETCH_DISK FETCH_QUERY FETCH_CURRENT FETCH_ROWS
--------- ---------- ---------- ----------- ------------- ----------
 2 20 2 2 4 10

SQL_STATEMENT

DATE_OF_INSERT This is the date and time when the row was inserted into the table. This
value is not exactly the same as the time the statistics were collected by
the SQL Trace facility.

DEPTH This indicates the level of recursion at which the SQL statement
was issued. For example, a value of 0 indicates that a user issued
the statement. A value of 1 indicates that Oracle generated the
statement as a recursive call to process a statement with a value of 0
(a statement issued by a user). A value of n indicates that Oracle
generated the statement as a recursive call to process a statement with a
value of n-1.

USER_ID This identifies the user issuing the statement. This value also
appears in the formatted output file.

CURSOR_NUM Oracle uses this column value to keep track of the cursor to which
each SQL statement was assigned.

Table 10–6 (Cont.) TKPROF_TABLE Columns for Identifying a Row of Statistics

Column Description
Using SQL Trace and TKPROF 10-19

Avoiding Pitfalls in TKPROF Interpretation
SELECT * FROM EMP, DEPT WHERE EMP.DEPTNO = DEPT.DEPTNO

Avoiding Pitfalls in TKPROF Interpretation
This section describes some fine points of TKPROF interpretation:

■ Avoiding the Argument Trap

■ Avoiding the Read Consistency Trap

■ Avoiding the Schema Trap

■ Avoiding the Time Trap

■ Avoiding the Trigger Trap

Avoiding the Argument Trap
If you are not aware of the values being bound at run time, then it is possible to fall

into the argument trap. EXPLAIN PLAN cannot determine the type of a bind

variable from the text of SQL statements, and it always assumes that the type is

varchar . If the bind variable is actually a number or a date, then TKPROFcan cause

implicit data conversions, which can cause inefficient plans to be executed. To avoid

this, experiment with different data types in the query.

To avoid this problem, perform the conversion yourself.

Avoiding the Read Consistency Trap
The next example illustrates the read consistency trap. Without knowing that an

uncommitted transaction had made a series of updates to the NAME column, it is

very difficult to see why so many block visits would be incurred.

Cases like this are not normally repeatable: if the process were run again, it is

unlikely that another transaction would interact with it in the same way.

SELECT name_id
FROM cq_names
WHERE name = ’FLOOR’;

call count cpu elapsed disk query current rows
---- ----- --- ------- ---- ----- ------- ----
Parse 1 0.10 0.18 0 0 0 0

See Also: "EXPLAIN PLAN Restrictions" on page 9-22 for

information about TKPROF and bind variables
10-20 Oracle9i Database Performance Tuning Guide and Reference

Avoiding Pitfalls in TKPROF Interpretation
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.11 0.21 2 101 0 1

Misses in library cache during parse: 1
Parsing user id: 01 (USER1)

Rows Execution Plan
---- --------- ----
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 2 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON_UNIQUE)

Avoiding the Schema Trap
This example shows an extreme (and thus easily detected) example of the schema

trap. At first, it is difficult to see why such an apparently straightforward indexed

query needs to look at so many database blocks, or why it should access any blocks

at all in current mode.

SELECT name_id
FROM cq_names
WHERE name = ’FLOOR’;

call count cpu elapsed disk query current rows
-------- ------- -------- --------- ------- ------ ------- ----
Parse 1 0.06 0.10 0 0 0 0
Execute 1 0.02 0.02 0 0 0 0
Fetch 1 0.23 0.30 31 31 3 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 2340 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 0 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON-UNIQUE)

Two statistics suggest that the query might have been executed with a full table

scan. These statistics are the current mode block visits, plus the number of rows

originating from the Table Access row source in the execution plan. The explanation

is that the required index was built after the trace file had been produced, but before

TKPROF had been run.

Generating a new trace file gives the following data:
Using SQL Trace and TKPROF 10-21

Avoiding Pitfalls in TKPROF Interpretation
SELECT name_id
FROM cq_names
WHERE name = ’FLOOR’;

call count cpu elapsed disk query current rows
----- ------ ------ -------- ----- ------ ------- -----
Parse 1 0.01 0.02 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 2 0 1

Misses in library cache during parse: 0
Parsing user id: 02 (USER2)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT
 1 TABLE ACCESS (BY ROWID) OF ’CQ_NAMES’
 2 INDEX (RANGE SCAN) OF ’CQ_NAMES_NAME’ (NON-UNIQUE)

One of the marked features of this correct version is that the parse call took 10

milliseconds of CPU time and 20 milliseconds of elapsed time, but the query

apparently took no time at all to execute and perform the fetch. These anomalies

arise because the clock tick of 10 milliseconds is too long relative to the time taken

to execute and fetch the data. In such cases, it is important to get lots of executions

of the statements, so that you have statistically valid numbers.

Avoiding the Time Trap
Sometimes, as in the following example, you might wonder why a particular query

has taken so long.

UPDATE cq_names SET ATTRIBUTES = lower(ATTRIBUTES)
WHERE ATTRIBUTES = :att

call count cpu elapsed disk query current rows
-------- ------- -------- --------- -------- -------- ------- ----------
Parse 1 0.06 0.24 0 0 0 0
Execute 1 0.62 19.62 22 526 12 7
Fetch 0 0.00 0.00 0 0 0 0

Misses in library cache during parse: 1
Parsing user id: 02 (USER2)

Rows Execution Plan
10-22 Oracle9i Database Performance Tuning Guide and Reference

Sample TKPROF Output
------- ---
 0 UPDATE STATEMENT
 2519 TABLE ACCESS (FULL) OF ’CQ_NAMES’

Again, the answer is interference from another transaction. In this case, another

transaction held a shared lock on the table cq_names for several seconds before

and after the update was issued. It takes a fair amount of experience to diagnose

that interference effects are occurring. On the one hand, comparative data is

essential when the interference is contributing only a short delay (or a small

increase in block visits in the previous example). On the other hand, if the

interference is contributing only a modest overhead, and the statement is essentially

efficient, then its statistics might not need to be analyzed.

Avoiding the Trigger Trap
The resources reported for a statement include those for all of the SQL issued while

the statement was being processed. Therefore, they include any resources used

within a trigger, along with the resources used by any other recursive SQL (such as

that used in space allocation). With the SQL Trace facility enabled, TKPROF reports

these resources twice. Avoid trying to tune the DML statement if the resource is

actually being consumed at a lower level of recursion.

If a DML statement appears to be consuming far more resources than you would

expect, then check the tables involved in the statement for triggers and constraints

that could be greatly increasing the resource usage.

Sample TKPROF Output
This section provides an extensive example of TKPROF output. Portions have been

edited out for the sake of brevity.

Sample TKPROF Header
Copyright (c) Oracle Corporation 1979, 1999. All rights reserved.
Trace file: v80_ora_2758.trc
Sort options: default
**
count = number of times OCI procedure was executed
cpu = cpu time in seconds executing
elapsed = elapsed time in seconds executing
disk = number of physical reads of buffers from disk
query = number of buffers gotten for consistent read
Using SQL Trace and TKPROF 10-23

Sample TKPROF Output
current = number of buffers gotten in current mode (usually for update)
rows = number of rows processed by the fetch or execute call
**
The following statement encountered a error during parse:
select deptno, avg(sal) from emp e group by deptno
 having exists (select deptno from dept
 where dept.deptno = e.deptno
 and dept.budget > avg(e.sal)) order by 1
Error encountered: ORA-00904
**

Sample TKPROF Body
ALTER SESSION SET SQL_TRACE = true
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 0 0.00 0.00 0 0 0 0
Execute 1 0.00 0.10 0 0 0 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 1 0.00 0.10 0 0 0 0
Misses in library cache during parse: 0
Misses in library cache during execute: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
**
SELECT emp.ename, dept.dname
FROM emp, dept
 WHERE emp.deptno = dept.deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.11 0.13 2 0 1 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 2 2 4 14
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.11 0.13 4 2 5 14

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 MERGE JOIN
10-24 Oracle9i Database Performance Tuning Guide and Reference

Sample TKPROF Output
 4 SORT (JOIN)
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT (JOIN)
 14 TABLE ACCESS (FULL) OF ’EMP’

**
SELECT a.ename name, b.ename manager
FROM emp a, emp b
 WHERE a.mgr = b.empno(+)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 1 50 2 14
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.02 0.02 1 50 2 14

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 13 NESTED LOOPS (OUTER)
 14 TABLE ACCESS (FULL) OF ’EMP’
 13 TABLE ACCESS (BY ROWID) OF ’EMP’
 26 INDEX (RANGE SCAN) OF ’EMP_IND’ (NON-UNIQUE)
**
SELECT ename, job, sal
FROM emp
WHERE sal =
 (SELECT max(sal)
 FROM emp)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 12 4 1
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 12 4 1

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Using SQL Trace and TKPROF 10-25

Sample TKPROF Output
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 FILTER
 14 TABLE ACCESS (FULL) OF ’EMP’
 14 SORT (AGGREGATE)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT deptno
FROM emp
WHERE job = ’clerk’
GROUP BY deptno
HAVING COUNT(*) >= 2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 1 1 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 1 1 0

Misses in library cache during parse: 13
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 FILTER
 0 SORT (GROUP BY)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT dept.deptno, dname, job, ename
FROM dept,emp
WHERE dept.deptno = emp.deptno(+)
ORDER BY dept.deptno

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 3 3 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.00 0.00 0 3 3 10
10-26 Oracle9i Database Performance Tuning Guide and Reference

Sample TKPROF Output
Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 01 (USER01)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 MERGE JOIN (OUTER)
 4 SORT (JOIN)
 4 TABLE ACCESS (FULL) OF ’DEPT’
 14 SORT (JOIN)
 14 TABLE ACCESS (FULL) OF ’EMP’
**
SELECT grade, job, ename, sal
FROM emp, salgrade
WHERE sal BETWEEN losal AND hisal
ORDER BY grade, job

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.04 0.06 2 16 1 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 1 10 12 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.05 0.07 3 26 13 10

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 14 SORT (ORDER BY)
 14 NESTED LOOPS
 5 TABLE ACCESS (FULL) OF ’SALGRADE’
 70 TABLE ACCESS (FULL) OF ’EMP’
**

SELECT LPAD(’ ’,level*2)||ename org_chart, level, empno, mgr, job, deptno
FROM emp
CONNECT BY prior empno = mgr
START WITH ename = ’clark’
 OR ename = ’blake’
ORDER BY deptno
Using SQL Trace and TKPROF 10-27

Sample TKPROF Output
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.01 0.01 0 1 2 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.02 0.02 0 1 2 0

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)

Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 0 SORT (ORDER BY)
 0 CONNECT BY
 14 TABLE ACCESS (FULL) OF ’EMP’
 0 TABLE ACCESS (BY ROWID) OF ’EMP’
 0 TABLE ACCESS (FULL) OF ’EMP’
**
CREATE TABLE TKOPTKP (a number, b number)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.01 0.01 1 0 1 0
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.01 0.01 1 0 1 0

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 CREATE TABLE STATEMENT GOAL: CHOOSE

**
INSERT INTO TKOPTKP
VALUES (1,1)

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.07 0.09 0 0 0 0
10-28 Oracle9i Database Performance Tuning Guide and Reference

Sample TKPROF Output
Execute 1 0.01 0.20 2 2 3 1
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.08 0.29 2 2 3 1

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 INSERT STATEMENT GOAL: CHOOSE

**
INSERT INTO TKOPTKP SELECT * FROM TKOPTKP
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.00 0.00 0 0 0 0
Execute 1 0.02 0.02 0 2 3 11
Fetch 0 0.00 0.00 0 0 0 0
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 2 0.02 0.02 0 2 3 11

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Rows Execution Plan
------- ---
 0 INSERT STATEMENT GOAL: CHOOSE
 12 TABLE ACCESS (FULL) OF ’TKOPTKP’
**
SELECT *
FROM TKOPTKP
WHERE a > 2

call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 1 0.01 0.01 0 0 0 0
Execute 1 0.00 0.00 0 0 0 0
Fetch 1 0.00 0.00 0 1 2 10
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 3 0.01 0.01 0 1 2 10

Misses in library cache during parse: 1
Optimizer goal: CHOOSE
Parsing user id: 02 (USER02)
Using SQL Trace and TKPROF 10-29

Sample TKPROF Output
Rows Execution Plan
------- ---
 0 SELECT STATEMENT GOAL: CHOOSE
 24 TABLE ACCESS (FULL) OF ’TKOPTKP’
**

Sample TKPROF Summary
OVERALL TOTALS FOR ALL NON-RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 18 0.40 0.53 30 182 3 0
Execute 19 0.05 0.41 3 7 10 16
Fetch 12 0.05 0.06 4 105 66 78
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 49 0.50 1.00 37 294 79 94

Misses in library cache during parse: 18
Misses in library cache during execute: 1

OVERALL TOTALS FOR ALL RECURSIVE STATEMENTS
call count cpu elapsed disk query current rows
------- ------ -------- ---------- ---------- ---------- ---------- ----------
Parse 69 0.49 0.60 9 12 8 0
Execute 103 0.13 0.54 0 0 0 0
Fetch 213 0.12 0.27 40 435 0 162
------- ------ -------- ---------- ---------- ---------- ---------- ----------
total 385 0.74 1.41 49 447 8 162

Misses in library cache during parse: 13
 19 user SQL statements in session.
 69 internal SQL statements in session.
 88 SQL statements in session.
 17 statements EXPLAINed in this session.
**
Trace file: v80_ora_2758.trc
Trace file compatibility: 7.03.02

Sort options: default
 1 session in tracefile.
 19 user SQL statements in trace file.
 69 internal SQL statements in trace file.
 88 SQL statements in trace file.
 41 unique SQL statements in trace file.
 17 SQL statements EXPLAINed using schema:
10-30 Oracle9i Database Performance Tuning Guide and Reference

Sample TKPROF Output
 SCOTT.prof$plan_table
 Default table was used.
 Table was created.
 Table was dropped.
 1017 lines in trace file.
Using SQL Trace and TKPROF 10-31

Sample TKPROF Output
10-32 Oracle9i Database Performance Tuning Guide and Reference

Using Autotrace in S
11

Using Autotrace in SQL*Plus

This chapter provides information on using the Autotrace feature in SQL*Plus and

the iSQL*Plus statistics report.

This chapter contains the following sections:

■ Overview of the Autotrace Report

■ Collecting Timing Statistics

■ Tracing Parallel and Distributed Queries

■ SYSTEM Variables Influencing SQL*Plus Performance

■ iSQL*Plus Server Statistics Report
QL*Plus 11-1

Overview of the Autotrace Report
Overview of the Autotrace Report
In SQL*Plus you can automatically get a report on the execution path used by the

SQL optimizer and the statement execution statistics. The report is generated after a

successful SQL DML statement, such as SELECT, DELETE, UPDATE or INSERT. It is

useful for monitoring and tuning the performance of these DML statements.

Configuring the Autotrace Report
You can control the report by setting the AUTOTRACE system variable. See

Table 11–1.

Setups Required for the Autotrace Report
To use this feature, the PLUSTRACE role must be granted to the user, such as HR.

DBA privileges are required to grant the PLUSTRACE role.

Additionally, a PLAN_TABLEtable must be created in the user’s schema, such as the

HR schema. For information on creating the PLAN_TABLE, see "Creating the PLAN_

TABLE Output Table" on page 9-4.

To create the PLUSTRACE role and grant it to the DBA, run the commands in

Example 11–1 from a SQL*Plus session.

Example 11–1 Creating the PLUSTRACE Role

CONNECT / AS SYSDBA
@$ORACLE_HOME/SQLPLUS/ADMIN/PLUSTRCE.SQL

Table 11–1 Autotrace Settings

Autotrace Setting Result

SET AUTOTRACE OFF No AUTOTRACE report is generated. This is the default.

SET AUTOTRACE ON
EXPLAIN

The AUTOTRACE report shows only the optimizer execution
path.

SET AUTOTRACE ON
STATISTICS

The AUTOTRACE report shows only the SQL statement
execution statistics.

SET AUTOTRACE ON The AUTOTRACEreport includes both the optimizer execution
path and the SQL statement execution statistics.

SET AUTOTRACE
TRACEONLY

Similar to SET AUTOTRACE ON, but suppresses the printing of
the user’s query output, if any. If STATISTICS is enabled,
query data is still fetched, but not printed.
11-2 Oracle9i Database Performance Tuning Guide and Reference

Overview of the Autotrace Report
drop role plustrace;
Role dropped.
create role plustrace;
Role created.
.
grant plustrace to dba with admin option;
Grant succeeded.

To grant the PLUSTRACE role to the HR user, run the commands in Example 11–2

from a SQL*Plus session.

Example 11–2 Granting the PLUSTRACE Role

CONNECT / AS SYSDBA
GRANT PLUSTRACE TO HR;
Grant succeeded.

Execution Plans for SQL Statements
An execution plan shows the SQL optimizer’s query execution path. Each line of

the execution plan has a sequential line number. SQL*Plus also displays the line

number of the parent operation. For a discussion and an example of an execution

plan, see "Understanding Execution Plans" on page 1-18.

The execution plan output is generated using the EXPLAIN PLAN command.The

format of the output can vary depending on your setups. The format of the columns

of the PLAN_TABLE may be altered with the COLUMN command. For example, to

stop the PARENT_ID column being displayed, enter the following:

COLUMN PARENT_ID NOPRINT

The default formats can be found in the site profile, such as, GLOGIN.SQL.

See Also:

■ Oracle9i SQL Reference for more information about granting

roles and creating the PLAN_TABLE table

■ SQL*Plus User’s Guide and Reference for more information about

the PLUSTRACE role and about the AUTOTRACE variable of the

SET command

■ Oracle9i Database Administrator’s Guide for information about

roles
Using Autotrace in SQL*Plus 11-3

Overview of the Autotrace Report
Database Statistics for SQL Statements
The statistics are recorded by the server when your statement executes and indicate

the system resources required to execute your statement. The results include the

statistics listed in Table 11–2.

The client referred to in the statistics is SQL*Plus. Oracle Net refers to the generic

process communication between SQL*Plus and the server, regardless of whether

Oracle Net is installed. You cannot change the default format of the statistics report.

See Also: Chapter 9, "Using EXPLAIN PLAN" for more

information about generating and interpreting the output of

EXPLAIN PLAN

Table 11–2 Database Statistics

Database Statistic Name Description

recursive calls Number of recursive calls generated at both the user and
system level. Oracle maintains tables used for internal
processing. When Oracle needs to make a change to these
tables, it internally generates an internal SQL statement, which
in turn generates a recursive call.

db block gets Number of times a CURRENT block was requested.

consistent gets Number of times a consistent read was requested for a block.

physical reads Total number of data blocks read from disk. This number
equals the value of "physical reads direct" plus all reads into
buffer cache.

redo size Total amount of redo generated in bytes.

bytes sent via SQL*Net to
client

Total number of bytes sent to the client from the foreground
processes.

bytes received via
SQL*Net from client

Total number of bytes received from the client over Oracle Net.

SQL*Net roundtrips
to/from client

Total number of Oracle Net messages sent to and received from
the client.

sorts (memory) Number of sort operations that were performed completely in
memory and did not require any disk writes.

sorts (disk) Number of sort operations that required at least one disk write.

rows processed Number of rows processed during the operation.
11-4 Oracle9i Database Performance Tuning Guide and Reference

Overview of the Autotrace Report
Tracing Statements Examples
This section shows examples of the use of the AUTOTRACE feature.

Tracing Statements for Performance Statistics and Query Execution Path
If the SQL buffer contains the following statement:

SELECT E.LAST_NAME, E.SALARY, J.JOB_TITLE
 FROM EMPLOYEES E, JOBS J
 WHERE E.JOB_ID=J.JOB_ID AND E.SALARY>12000;

The statement can be automatically traced when it is run with the following:

SET AUTOTRACE ON
/

The output is similar to the following:

LAST_NAME SALARY JOB_TITLE
------------------------- ---------- -----------------------------------
King 24000 President
Kochhar 17000 Administration Vice President
De Haan 17000 Administration Vice President
Russell 14000 Sales Manager
Partners 13500 Sales Manager
Hartstein 13000 Marketing Manager

6 rows selected.

Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE
 1 0 TABLE ACCESS (BY INDEX ROWID) OF 'EMPLOYEES'
 2 1 NESTED LOOPS
 3 2 TABLE ACCESS (FULL) OF 'JOBS'
 4 2 INDEX (RANGE SCAN) OF 'EMP_JOB_IX' (NON-UNIQUE)

See Also:

■ Oracle9i Database Reference for a more complete list of database

statistics

■ Chapter 3, "Gathering Optimizer Statistics" for more

information about the statistics and how to interpret them
Using Autotrace in SQL*Plus 11-5

Overview of the Autotrace Report
Statistics
--
 0 recursive calls
 2 db block gets
 34 consistent gets
 0 physical reads
 0 redo size
 848 bytes sent via SQL*Net to client
 503 bytes received via SQL*Net from client
 4 SQL*Net roundtrips to/from client
 0 sorts (memory)
 0 sorts (disk)
 6 rows processed

Tracing Statements Without Displaying Query Data
To trace the same statement without displaying the query data, enter the following:

SET AUTOTRACE TRACEONLY

This option is useful when you are tuning a large query, but do not want to see the

query output.

Tracing Statements Using a Database Link
To trace a statement using a database link, enter:

SET AUTOTRACE TRACEONLY EXPLAIN
SELECT * FROM EMPLOYEES@MY_LINK;

Execution Plan

0 SELECT STATEMENT (REMOTE) Optimizer=CHOOSE
1 0 TABLE ACCESS (FULL) OF ’EMPLOYEES’ MY_LINK.DB_DOMAIN

The execution plan shows that the table being accessed on line 1 of the execution

plan is through the database link MY_LINK.DB_DOMAIN.

Note: Your output may vary depending on the version of the

server to which you are connected and the configuration of the

server.
11-6 Oracle9i Database Performance Tuning Guide and Reference

Tracing Parallel and Distributed Queries
Collecting Timing Statistics
Use the SQL*Plus TIMING command to collect and display data on the amount of

computer resources used to run one or more commands or blocks. TIMING collects

data for an elapsed period of time, saving the data on commands run during the

period in a timer.

To delete all timers, enter CLEAR TIMING at the command prompt.

Tracing Parallel and Distributed Queries
When you trace a statement in a parallel or distributed query, the execution plan

shows the cost based optimizer estimates of the number of rows, called the

cardinality. In general, the cost, cardinality and bytes at each node represent

cumulative results. For example, the cost of a join node accounts for not only the

cost of completing the join operations, but also the entire costs of accessing the

relations in that join.

Example 11–3 is an example of tracing statements with the parallel query option.

The output varies depending on the configuration of a system. In the execution plan

output, items marked with an asterisk (*) denote a parallel or remote operation.

Each operation is explained in the second part of the report. The execution plan in

Example 11–3 consists of columns that contain information such as:

■ Line number of each execution step

■ Function of the SQL statement

■ Text of the query for the Oracle Real Application Clusters database or remote

database

For more information about the columns in the PLAN_TABLE, see "PLAN_TABLE

Columns" on page 9-23.

Example 11–3 Tracing Statements With Parallel Query Option

To trace a parallel query running the parallel query option:

SQL> CREATE TABLE D2_t1 (unique1 NUMBER) PARALLEL -(DEGREE 6);
Table created.

SQL> CREATE TABLE D2_t2 (unique1 NUMBER) PARALLEL -(DEGREE 6);
Table created.

See Also: SQL*Plus User’s Guide and Reference for information

about the TIMING command
Using Autotrace in SQL*Plus 11-7

Tracing Parallel and Distributed Queries
SQL> CREATE UNIQUE INDEX d2_i_unique1 ON d2_t1(unique1);
Index created.

SQL> SET LONG 500 LONGCHUNKSIZE 500
SQL> SET AUTOTRACE ON EXPLAIN
SQL> SELECT /*+ INDEX(B,D2_I_UNIQUE1) USE_NL(B) ORDERED -*/ COUNT (A.UNIQUE1)
 FROM D2_T2 A, D2_T1 B
 WHERE A.UNIQUE1 = B.UNIQUE1;

Execution Plan
--
 0 SELECT STATEMENT Optimizer=CHOOSE (Cost=1 Card=1 Bytes=26)
 1 0 SORT (AGGREGATE)
 2 1 SORT* (AGGREGATE) :Q2000
 3 2 NESTED LOOPS* (Cost=1 Card=41 Bytes=1066) :Q2000
 4 3 TABLE ACCESS* (FULL) OF 'D2_T2' (Cost=1 Card=41 Byte :Q2000 s=533)
 5 3 INDEX* (UNIQUE SCAN) OF 'D2_I_UNIQUE1' (UNIQUE) :Q2000

 2 PARALLEL_TO_SERIAL SELECT /*+ PIV_SSF */ SYS_OP_MSR(COUNT(A1.C0
)) FROM (SELECT /*+ ORDERED NO_EXPAND USE_NL
 (A3) INDEX(A3 "D2_I_UNIQUE1") */ A2.C0 C0,A3
 .ROWID C1,A3."UNIQUE1" C2 FROM (SELECT /*+ N
 O_EXPAND ROWID(A4) */ A4."UNIQUE1" C0 FROM "
 D2_T2" PX_GRANULE(0, BLOCK_RANGE, DYNAMIC)
 A4) A2,"D2_T1" A3 WHERE A2.C0=A3."UNIQUE1")
 A1

 3 PARALLEL_COMBINED_WITH_PARENT
 4 PARALLEL_COMBINED_WITH_PARENT
 5 PARALLEL_COMBINED_WITH_PARENT

Line 0 of the execution plan shows the cost based optimizer estimates the number of

rows at 1, taking 26 bytes. The total cost of the statement is 1. Lines 2, 3, 4 and 5 are

marked with asterisks, denoting parallel operations. For example, the NESTED

LOOPS step on line 3 is a PARALLEL_TO_SERIAL operation. PARALLEL_TO_

SERIAL operations execute a SQL statement to produce output serially. Line 2 also

shows that the parallel query server had the identifier Q2000.

Numbers identifying parallel report lines cross reference the line of the parent

report. For example, in the last line of the example:

4 PARALLEL_COMBINED_WITH_PARENT

The 4 refers to the 4 3 TABLE ACCESS*... line in the execution plan.
11-8 Oracle9i Database Performance Tuning Guide and Reference

SYSTEM Variables Influencing SQL*Plus Performance
Monitoring Disk Reads and Buffer Gets
To monitor disk reads and buffer gets, execute the following command:

SET AUTOTRACE ON TRACEONLY STATISTICS

Example 11–4 shows typical results.

Example 11–4 Monitoring Disk Reads and Buffer Gets

Statistics
--
 70 recursive calls
 0 db block gets
 591 consistent gets
 404 physical reads
 0 redo size
 315 bytes sent via SQL*Net to client
 850 bytes received via SQL*Net from client
 3 SQL*Net roundtrips to/from client
 3 sorts (memory)
 0 sorts (disk)
 0 rows processed

If consistent gets or physical reads is high relative to the amount of data

returned, it indicates that the query is expensive and needs to be reviewed for

optimization. For example, if you are expecting less than 1,000 rows back and

consistent gets is 1,000,000 and physical reads is 10,000, further

optimization is needed.

SYSTEM Variables Influencing SQL*Plus Performance
The following variables can influence SQL*Plus performance.

SET APPINFO OFF
Sets automatic registering of scripts through the DBMS_APPLICATION_INFO
package. Setting APPINFO OFF disables the registering and monitoring of

performance and resource usage of scripts. This reduction in overheads may

improve performance.

Note: You can also monitor disk reads and buffer gets using

V$SQL or TKPROF.
Using Autotrace in SQL*Plus 11-9

SYSTEM Variables Influencing SQL*Plus Performance
SET ARRAYSIZE
Sets the number of rows, called a batch, that SQL*Plus will fetch from the database

at one time. Valid values are 1 to 5000. A large value increases the efficiency of

queries and subqueries that fetch many rows, but requires more memory. Values

over approximately 100 provide little added performance. ARRAYSIZEhas no effect

on the results of SQL*Plus operations other than increasing efficiency.

SET DEFINE OFF
Controls whether SQL*Plus parses scripts for substitution variables. If DEFINE is

OFF, SQL*Plus does not parse scripts for substitution variables. If your script does

not use substitution variables, setting DEFINE OFF may result in some performance

gains.

SET FLUSH OFF
Controls when output is sent to the user’s display device. OFF allows the host

operating system to buffer output which may improve performance by reducing the

amount of program input and output.

Use OFF only when you run a script that does not require user interaction and

whose output you do not need to see until the script finishes running.

SET FLUSH is not supported in iSQL*Plus.

SET SERVEROUTPUT
Controls whether SQL*Plus checks for and displays DBMS output. If

SERVEROUTPUT is OFF, SQL*Plus does not check for DBMS output and does not

display output after applicable SQL or PL/SQL statements. Suppressing this output

checking and display may result in performance gains.

SET TRIMOUT ON
Determines whether SQL*Plus allows trailing blanks at the end of each displayed

line. ON removes blanks at the end of each line, which may improve performance

especially when you access SQL*Plus from a slow communications device.

TRIMOUT ON does not affect spooled output.

SET TRIMOUT is not supported in iSQL*Plus.
11-10 Oracle9i Database Performance Tuning Guide and Reference

iSQL*Plus Server Statistics Report
SET TRIMSPOOL ON
Determines whether SQL*Plus allows trailing blanks at the end of each spooled

line. ON removes blanks at the end of each line, which may improve performance

especially when you access SQL*Plus from a slow communications device.

TRIMSPOOL ON does not affect terminal output.

SET TRIMSPOOL is not supported in iSQL*Plus.

iSQL*Plus Server Statistics Report
The iSQL*Plus Server statistics report provides static environment information as

well as dynamic information about iSQL*Plus sessions. The active statistics in the

report are useful for monitoring and tuning iSQL*Plus. You can display the

iSQL*Plus Server statistics report with:

http:// machine_name.domain : port /isqlplusdba?statistics={active|full}
[&refresh= number]

where

■ machine_name.domain is the URL of the Oracle HTTP Server for which you

want to generate iSQL*Plus Server statistics.

■ port is the port number used by the iSQL*Plus Server. The default is 7777.

■ ?statistics={active|full} specifies the level of detail to report.

– full gives all possible statistics and is the default.

– active gives dynamically changing session statistics for the iSQL*Plus

Server. These statistics are also included at the end of the full report.

■ [&refresh= number] optionally specifies the time in seconds before the

statistics report is automatically refreshed. The minimum value is 10 seconds.

To run the report, you must have Oracle HTTP Server authentication to access the

iSQL*Plus DBA URL. However, an Oracle9i login is not required because there is no

connection to a database. To maximize resource availability, each user of iSQL*Plus

should have a database schema profile with appropriately defined limits.

See Also: For more information about the iSQL*Plus Server

statistics report, including the full set of statistics, see SQL*Plus
User’s Guide and Reference
Using Autotrace in SQL*Plus 11-11

iSQL*Plus Server Statistics Report
 Active Statistics
The active statistics report shows the current values for the statistics listed in

Table 11–3. These statistics provide useful feedback for tuning the iSQL*Plus Server.

Table 11–3 Active Statistics

Statistic Description

Sessions active The number of concurrent active sessions, or the number of
people currently logged in to iSQL*Plus.

Sessions since
startup

The cumulative count of sessions established since the
iSQL*Plus Server started.

Maximum concurrent
sessions

The maximum or peak number of concurrent sessions since
the iSQL*Plus Server started.

Sessions expired
since startup

The cumulative count of the number of sessions timed-out
due to inactivity since the iSQL*Plus Server started.

Requests active The number of concurrent active HTTP requests. Each
request corresponds to a user action such as clicking a button,
and the processing of that request by iSQL*Plus. Requests
active has a maximum value set by
iSQLPlusNumberOfThreads . If it reaches this limit and
user response time is poor, then response time may be
improved by increasing iSQLPlusNumberOfThreads .

Requests since
startup

The cumulative count of active HTTP requests since the

iSQL*Plus server was started.

Next expiry operation
(minutes)

The number of minutes (rounded down) until the next expiry
process.

Expiry operations
since startup

The number of times the expiry process has run since the
iSQL*Plus Server started.

Hash table collisions The number of active sessions that currently have a hash
table collision. Compare this with Sessions active to see if
there is a current problem with collisions.

Hash table collisions
since startup

The cumulative count of the sessions that have had a hash
table collision since the iSQL*Plus Server started. Compare
this with Sessions since startup to see if there is an ongoing
problem with collisions.
11-12 Oracle9i Database Performance Tuning Guide and Reference

iSQL*Plus Server Statistics Report
Interpreting Active Statistics
The following notes provide some interpretation of the active statistics.

Increasing Number of Threads
If users have more idle time compared to active time, then a higher value of

iSQLPlusNumberOfThreads may be needed.

■ Active time is when a user request is in progress, and a thread to process it is

consumed.

■ Idle time is when a user request has been processed, and the associated

processing thread is available for use by another iSQL*Plus session.

Each thread can handle one user request. A request begins when a user clicks a

button or follows a command link in iSQL*Plus, and finishes when all results have

been returned to the user.

When setting the value of iSQLPlusNumberOfThreads , note the following:

■ If iSQLPlusHashTableSize is not specified in the isqlplus.conf file, its

value increases when iSQLPlusNumberOfThreads is increased.

■ If the iSQLPlusNumberOfThreads value is set too small, iSQL*Plus may not

be able to handle the request load. Indications of this problem are:

– Frequent Connection refused errors in ORACLE_
HOME/Apache/Apache/logs/error_log

– An Oracle HTTP Server internal error:

The server encountered an internal error or misconfiguration and was
unable to complete your request.

Increasing Hash Table Size
If users typically have more idle time compared to active time, then a higher value

of iSQLPlusHashTableSize is needed for a given value of

iSQLPlusNumberOfThreads . Each user session consumes one entry in the hash

table even if the session is idle.

Reducing Timeout Interval
If large numbers of sessions are being timed out, it is an indication that users are not

logging out cleanly, and sessions may be remaining idle. In this case, and if the

iSQL*Plus Server load is high, you may want to consider reducing the

iSQLPlusTimeOutInterval to more aggressively time out sessions.
Using Autotrace in SQL*Plus 11-13

iSQL*Plus Server Statistics Report
Idle Timeout
The idle timeout is the time the Oracle HTTP Server waits for results from

iSQL*Plus. The parameter value for the FastCGI timeout parameter,

-idle-timeout , is set to 3600 seconds. This value is likely to prevent iSQL*Plus

timing out before the Web browser and is sufficient for many long queries to return

results before iSQL*Plus times out.

The idle timeout should not be confused with the iSQLPlusTimeOutInterval
which manages the lifetime of a user's session.
11-14 Oracle9i Database Performance Tuning Guide and Reference

Using Oracl
12

Using Oracle Trace

This chapter describes how to use Oracle Trace to collect Oracle server event data.

The topics in this chapter include:

■ Overview of Oracle Trace

■ Collecting Oracle Trace Data

■ Accessing Oracle Trace Collection Results

■ Oracle Server Events

■ Troubleshooting Oracle Trace

Note: Oracle Trace will be deprecated in a future release. Oracle

Corporation strongly advises the use of SQL Trace and TKPROF

instead.

See Also: Chapter 10, "Using SQL Trace and TKPROF"
e Trace 12-1

Overview of Oracle Trace
Overview of Oracle Trace
Oracle Trace is a general-purpose event-driven data collection product, which the

Oracle server uses to collect performance and resource utilization data, such as SQL

parse, execute, and fetch statistics, and wait statistics.

Event Data
An event is the occurrence of some activity within a product. Oracle Trace collects

data for predefined events occurring within a software product instrumented with

the Oracle Trace API. That is, the product has embedded calls to the Oracle Trace

API. An example of an event is a parse or fetch.

There are two types of events:

■ Point events

Point events represent an instantaneous occurrence of something in the

product. An example of a point event is an error occurrence.

■ Duration events

Duration events have a beginning and an ending. An example of a duration

event is a transaction. Duration events can have other events occur within them;

for example, an error can occur within a transaction.

The Oracle server has more than a dozen events. The following are three of these

events:

■ Database Connection: A point event that records data, such as the server login

user name.

■ SQL Parse: One of the series of SQL processing duration events. This event

records a large set of data, such as sorts, resource use, and cursor numbers.

■ RowSource: Data about the execution plan, such as SQL operation, position,

object identification, and number of rows processed by a single row source

within an execution plan.

Event Sets
Oracle Trace events can be organized into event sets that restrict the data collection

to specific events. You can establish event sets for performance monitoring,

auditing, diagnostics, or any logical event grouping.

Each event set is described by its own product definition file (.fdf). The product

definition file is a set of events and their associated data items. The complete set of
12-2 Oracle9i Database Performance Tuning Guide and Reference

Collecting Oracle Trace Data
events defined for an instrumented product is referred to as the ALL event set.

Other event sets are then derived from the ALL set. For example, the Oracle Server

includes an event set known as the EXPERT set. This set includes SQL event data

used by the Oracle Expert tuning application, but excludes other events, such as

wait events.

Accessing Collected Data
During a collection, Oracle Trace stores event data in memory and periodically

writes it to a collection binary file. This method ensures low resource overhead

associated with the collection process. You can access event data collected in the

binary file by formatting the data to database tables, which makes the data available

for fast, flexible access. These database tables are called Oracle Trace formatter

tables.

Collecting Oracle Trace Data
You can collect Oracle Trace data using one of the following mechanisms:

■ Oracle Trace Command-Line Interface (CLI)

■ Database ORACLE_TRACE_* initialization parameters

■ Oracle Trace stored procedures run from PL/SQL

Using the Oracle Trace Command-Line Interface
You can control Oracle Trace server collections with the Oracle Trace CLI

(command-line interface). The CLI is invoked by the OTRCCOL executable for the

following functions:

■ OTRCCOL STARTjob_id input_parameter_file

■ OTRCCOL STOPjob_id input_parameter_file

■ OTRCCOL CHECKcollection_name

■ OTRCCOL FORMATinput_parameter_file

■ OTRCCOL DCFcol_name cdf_file

■ OTRCCOL DFDcol_name username password service [col_id]

The job_id parameter should be set to a value of 1.
Using Oracle Trace 12-3

Collecting Oracle Trace Data
The input parameter file contains specific parameter values required for each

function, as shown in the following examples. col_name (collection name) and

cdf_file (collection definition file) are initially defined in the START function

input parameter file.

Starting Collections
The OTRCCOL START function invokes a collection based on parameter values

contained in the input parameter file. For example:

OTRCCOL START 1 my_start_input_file

where file my_start_input_file contains at least the following input

parameters:

col_name= collection name
cdf_file= collection name .cdf
dat_file= collection name .dat
fdf_file= facility definition file .fdf

The server event sets that can be used as values for the fdf_file parameter are

ORACLE, ORACLEC, ORACLED, ORACLEE, and ORACLESM, plus CONNECT, SQL_ONLY,
SQL_PLAN, SQL_TXN, SQLSTATS, SQLWAITS, and WAITS.

Collection .cdf and .dat files are created in the directory $ORACLE_
HOME/otrace/admin/cdf by default for collections started using the CLI (or

PL/SQL procedures), unless overridden by EPC_COLLECTION_PATH environment

variable.

The collections name parameter can be any valid unique filename.

Note: The server parameter ORACLE_TRACE_ENABLE must be set

to true to allow Oracle Trace to collect any server event data. This

is required for Oracle8 and newer servers.

See Also: Table 12–2 for a description of the server event sets

Note: This chapter refers to file path names on UNIX-based

systems. For the exact path on other operating systems, see your

Oracle platform-specific documentation. A complete discussion of

these parameters is provided in Oracle9i Database Reference.
12-4 Oracle9i Database Performance Tuning Guide and Reference

Collecting Oracle Trace Data
For Oracle database collections, one additional parameter is required:

regid= 1 192216243 0 0 5 database_SID

The regid parameter record identifies a database by SID where Oracle Trace

collection is to be performed. The six elements making up the regid parameter

record are as follows, in this order:

■ flag (this should be 1 for this usage)

■ vendor number (Oracle's vendor number is 192216243)

■ cf_num

■ cf_val

■ facility number (the Oracle server is facility number 5)

■ database SID

The cf_num and cf_val elements should set to zero in this basic Oracle database

collection regid .

Limiting Data Collected
There are several ways of limiting the amount of data collected. For example,

additional regid records can be specified to reduce the amount of collected data,

and nonzero cf_num and cf_val can be specified in those situations. In the Oracle

server, Oracle Trace cross facility item 6 (cf_num = 6) is reserved to record database

userID values.

Restrict By User

In the Oracle server, Oracle Trace cross facility item 6 (cf_num = 6) is reserved to

record database userID values. So, for example, if you provide an additional regid
record with cf_num = 6 and cf_val = some_DB_userID , then the collection of

database event data is limited to only those events performed by that database user.

If you are interested only in collecting database activity for users 23 and 45, then

you would provide the following 3 regid records:

regid= 1 192216243 0 0 5 ORCL

Note: Older CLI versions required this syntax exactly, with no

whitespace before '=' but at least some whitespace after '='. This is

no longer true: CLI is not whitespace sensitive.
Using Oracle Trace 12-5

Collecting Oracle Trace Data
regid= 1 192216243 6 23 5 ORCL
regid= 1 192216243 6 45 5 ORCL

Restrict By Process

The input parameter file used by the CLI when starting a collection can also contain

the following optional parameters, for both database and nondatabase Oracle Trace

collections:

prores= process restriction
max_cdf= maximum collection file size

If no process restriction records are specified, then there are no restrictions on which

processes can take part in the collection. If process restrictions are used, then one or

more process ID (PID) values can be specified, as well as the operating system

username for the owner of each process of interest.

Setting a Limit on File Size

The max_cdf parameter is often useful, in several different modes of use. This

parameter specifies the maximum amount of Oracle Trace data that should be

collected, in bytes (in other words, size of the collection .dat file).

A zero value indicates that no limit should be imposed; otherwise, a positive value

up to 2 GB can be specified to stop the data collection when that size limit is

reached. In addition, a negative value can be specified (but not less than -2 GB),

which instructs Oracle Trace to collect data in its "circular data file" mode: when

collection .dat reaches magnitude(max_cdf), then save that data (and delete

any previously saved dat file), and then start collecting to a new collection .dat
file. This limits the total amount of disk space used, but allows Oracle Trace data

collection to continue until you manually stop collection.

Checking the Status of a Collection
Verify that the collection was started.

otrccol check collection_name

The collection should show as active, not active, or not found.

Stopping Collections
The OTRCCOL STOP function halts a running collection as follows:

OTRCCOL STOP 1 my_stop_input_file
12-6 Oracle9i Database Performance Tuning Guide and Reference

Collecting Oracle Trace Data
where my_stop_input_file contains the collection name and cdf_file name.

Formatting Collections
The OTRCCOL FORMAT function formats the binary collection file to Oracle tables.

An example of the FORMAT statement is:

OTRCCOL FORMAT my_format_input_file

where my_format_input_file contains the following input parameters:

username= database username
password= database password
service= database service name
cdf_file= usually same as collection_name .cdf
full_format= 0/1

A full_format value of 1 produces a full format. A full_format value of 0

produces a partial format, which only formats new data; in other words, data

collected since any previous format.

Deleting Collections
The OTRCCOL DCF (delete collection files) function deletes collection .cdf and .dat
files for a specific collection. The OTRCCOL DFD (delete formatted data) function

deletes formatted data from the Oracle Trace formatter tables for a specific

collection. You can specify an optional col_id parameter for a selective DFD,

where more than one col_id has been created for a collection by multiple (full)

formats.

Using Initialization Parameters to Control Oracle Trace
Six Oracle database initialization parameters are set up by default to control Oracle

Trace. By logging into a privileged account in the database and executing the SHOW
PARAMETER ORACLE_TRACE statement, you see the following parameters:

See Also: "Formatting Oracle Trace Data to Oracle Tables" on

page 12-13 for more information on formatting an Oracle Trace

collection using the otrcfmt utility program.

Table 12–1 Oracle Trace Initialization Parameters

Name Type Default Value

ORACLE_TRACE_COLLECTION_NAME string [null]
Using Oracle Trace 12-7

Collecting Oracle Trace Data
You can modify these Oracle Trace server parameters to allow Oracle Trace

collection of server event data and use them by adding them to the initialization

file.

However, this method for controlling the Oracle Trace collection is rather inflexible:

the collection name cannot be changed without performing a database shutdown.

(For Oracle releases prior to 8.1.7, the collection can only be stopped by doing a

shutdown, then setting ORACLE_TRACE_ENABLE = FALSE before restarting.)

However, with ORACLE_TRACE_ENABLE = TRUE but ORACLE_TRACE_
COLLECTION_NAME = "" [that is, empty name string], Oracle Trace collections of

database event data can be performed using one of the other collection control

mechanisms; for example, the Oracle Trace CLI. These other mechanisms are more

flexible than the database initialization parameters. In general, they are preferred

over using parameters for collection control.

Enabling Oracle Trace Collections
The ORACLE_TRACE_ENABLE database initialization parameter is false by

default. This disables any collection of Oracle Trace data for that server, regardless

of the mechanism used to control the collection.

Setting ORACLE_TRACE_ENABLE to true in DBinit .ora enables Oracle Trace

collections for the server, but it does not necessarily start a collection when the

database instance is started. If the database parameters alone are to be used to start

an Oracle Trace collection of database event data, then all 6 ORACLE_TRACE_*
parameters must be specified, or have nonnull values by default. Typically, this

means that both ORACLE_TRACE_ENABLE must be set to true and a nonnull

ORACLE_TRACE_COLLECTION_NAME must be provided (up to 16 characters in

length).

ORACLE_TRACE_COLLECTION_PATH string $ORACLE_HOME/otrace/admin/cdf

ORACLE_TRACE_COLLECTION_SIZE integer 5242880

ORACLE_TRACE_ENABLE boolean false

ORACLE_TRACE_FACILITY_NAME string oracled

ORACLE_TRACE_FACILITY_PATH string $ORACLE_HOME/otrace/admin/cdf

Table 12–1 Oracle Trace Initialization Parameters

Name Type Default Value
12-8 Oracle9i Database Performance Tuning Guide and Reference

Collecting Oracle Trace Data
ORACLE_TRACE_ENABLEis now a dynamic parameter (as of Oracle8i, Release 3), so

it can be set to true or false while the database is running. This can be done for

the current database session or for all sessions (including future ones), using ALTER
SESSION or ALTER SYSTEM statements. When the database is subsequently shut

down and then restarted, the DBinit .ora setting for ORACLE_TRACE_ENABLE is

again used to initially enable or disable Oracle Trace collection of database event

data.

Determining the Event Set that Oracle Trace Collects
The ORACLE_TRACE_FACILITY_NAME database initialization parameter specifies

the event set that Oracle Trace collects, if the database parameters are used to

control data collection. The default for this parameter is ORACLED (in other words,

Oracle "default" event set).

With database parameters set to start an Oracle Trace Collection, if the database

does not begin collecting data, then check the following:

■ The event set file, identified by ORACLE_TRACE_FACILITY_NAME, with an

.fdf extension, should be in the directory specified by the ORACLE_TRACE_
FACILITY_PATH initialization parameter. The exact directory that this

parameter specifies is platform-specific.

■ The following files should exist in the Oracle Trace admin directory:

COLLECT.DAT, FACILITY .DAT (or PROCESS.DAT for Oracle 7.3), and

REGID.DAT. If they do not, then run the OTRCCREF executable to create or

re-create them.

Note: The collection name is also used to form the collection
name.cdf and .dat binary file names, so 8.3 file naming

conventions may apply on some platforms. 8.3 file naming means

systems where filenames are restricted to 8 or fewer characters,

plus a file extension of 3 or fewer characters.

Note: The ORACLE_TRACE_FACILITY_NAME parameter does not

use a file extension. So, the .fdf extension should not be specified

as part of this parameter.
Using Oracle Trace 12-9

Collecting Oracle Trace Data
■ The Oracle Trace parameters should be set to the values that you changed in the

initialization file. Use Instance Manager to identify Oracle Trace parameter

settings.

■ Look for an EPC_ERROR.LOG file to see more information about why a

collection failed. Oracle Trace creates the EPC_ERROR.LOG file in the current

default directory if the Oracle Trace Collection Services OTRCCOL image must

log an error.

■ Look for *.trc files in the directory specified by the server USER_DUMP_DEST
initialization parameter. Searching for "epc" in the *.trc files might give errors.

These errors and their descriptions may be found in $ORACLE_
HOME/otrace/mesg/epcus.msg (assuming US installation), depending on

availability for a given platform.

Controlling Oracle Trace Collections from PL/SQL
Oracle provides an additional Oracle Trace library that allows control of both

database and nondatabase Oracle Trace collections from PL/SQL.

Both the name and the location of this new library are platform-dependent. On

Unix platforms, the library is $ORACLE_HOME/lib/libtracepls9.so.

On Win32 platforms (for example, Windows NT), the library is %ORACLE_
HOME%\bin\oratracepls9.dll.

Note: Older versions of the Oracle server, back to release 7.3.3,

provided other stored procedures to start and stop Oracle Trace

database collections, but with significant limitations. For example,

only database sessions already active when the collection was

started participated in the collection: no database event data was

collected for sessions that began after the Oracle Trace collection

started.

As of Oracle8, these limitations were eliminated for database

collections started through the Oracle Trace CLI. However, these

limitations still applied to database collections controlled through

the older Oracle7 stored procedures. The new procedures provided

with Oracle Trace 8.1.7 remove these limitations, permitting the

same level of collection control as the Oracle Trace CLI, and for

both database and nondatabase collections.
12-10 Oracle9i Database Performance Tuning Guide and Reference

Collecting Oracle Trace Data
The otrace/admin directory contains two new SQL scripts that can be used to

define a database LIBRARY object for this library, and to define the procedures that

can be used to call out to the library from PL/SQL:

■ OTRCPLSLIB.SQL

■ OTRCPLSCMD.SQL

In addition, the otrace/demo directory contains several SQL scripts showing

PL/SQL examples that start, stop, and then format an Oracle Trace collection. These

are respectively:

■ OTRCPLSSC.SQL

■ OTRCPLSCC.SQL

■ OTRCPLSFC.SQL

In the "start collection" example script OTRCPLSSC.SQL, the regid_list contains

only a single element: "1 192216243 0 0 5 ORCL". The inner double quotes are

required to form a single regid string from its six components. These components

are the following, in the order shown:

■ flag (this should be 1 for this usage)

■ vendor number (Oracle's vendor number is 192216243)

■ cf_num

■ cf_val

■ facility number (Oracle server is facility number 5)

■ database SID

For an Oracle Trace database collection, a regid string like this example is

required, basically to identify the database SID and to specify that you are collecting

for an Oracle server. The cf_num and cf_val should be zero in this basic regid
record.

Additional regid records can be specified in order to reduce the amount of

collected data. This is when the cf_num and cf_val items are used. In the Oracle

server, Oracle Trace cross facility item 6 (cf_num = 6) is reserved to record database

Note: By default, OTRCPLSLIB.SQL grants access to the LIBRARY
to all database users. You can edit this SQL script to restrict access

as appropriate.
Using Oracle Trace 12-11

Accessing Oracle Trace Collection Results
userID values. So, if you provide an additional regid record with cf_num = 6 and

a cf_val = some_DB_userID , then the collection of database event data is limited

to only those events performed by that database user. For example, if you are only

interested in collecting database activity for users 23 and 45, then the regid_list
consists of three records:

regid_list VARCHAR2(256) := '"1 192216243 0 0 5 ORCL",
 "1 192216243 6 23 5 ORCL",
 "1 192216243 6 45 5 ORCL"';

Similarly, the fdf_list argument could specify the name of a single .fdf file

(facility definition file). Typically, this is the case. However, more than one .fdf
could be specified in fdf_list if multiple facilities are involved in the collection.

Of course, only one .fdf can be specified for any given facility; for example, the

database.

On the other hand, the process restriction list prores_list can be empty. This

indicates that there are to be no restrictions on which processes can take part in the

collection. If process restrictions are used, then one or more process ID (PID) values

can be specified, as well as the operating system username for the owner of each

process.

Other arguments in the "start collection" example in OTRCPLSSC.SQL are single

numeric or string values, as shown. For example, the collection name and

maximum collection data file size specified by the col_name and maxsize
variables, respectively.

Accessing Oracle Trace Collection Results
Running an Oracle Trace collection produces the following collection files:

■ collection name .cdf is the binary Oracle Trace collection definition file for

the collection. It describes what is to be collected.

■ collection name .dat is the output file containing the collected Oracle Trace

event data in binary form. When newly created, the empty .dat file contains

only 35 bytes of file header information.

You can access the Oracle Trace data in the collection files in the following ways:

Note: For better readability, the layout of this regid string has

been simplified.
12-12 Oracle9i Database Performance Tuning Guide and Reference

Accessing Oracle Trace Collection Results
■ The data can be formatted to Oracle tables for SQL access and reporting.

■ You can create Oracle Trace reports from the binary file.

Formatting Oracle Trace Data to Oracle Tables
You can format Oracle Trace binary collection data to Oracle database tables, and

you can then access this formatted data using SQL or other tools. The Oracle Trace

format produces a separate table for each event type collected; for example, a parse

event table is created to store data for all database parse events that were recorded

during a server collection.

Use the following syntax to format an Oracle Trace collection with the OTRCFMT
formatter utility:

OTRCFMT [options] collection_name .cdf [user/password@database]

If collection .cdf and .dat are not located in the current default directory, then

specify the full file path for the .cdf file.

If you omit user/password@database (or any part of it, such as password or

database), then OTRCFMT prompts you for this information.

Oracle Trace allows data to be formatted while a collection is occurring. By default,

Oracle Trace formats only the portion of the collection that has not been formatted

previously. If you want to reformat the entire collection file, then use the optional

parameter -f (which generate a new collection ID in the
formatter tables) .

Oracle Trace provides several sample SQL scripts that you can use to access the

formatted server event data tables. These are located in OTRCRPT*.SQL in the otrace

directory tree.

Note: For Oracle server releases 7.3.4 and later, the Oracle Trace

formatter automatically creates the formatter tables as needed.

Note: Because there are incompatibilities between at least some

versions of the formatter tables, use a separate database schema for

each version of the Oracle Trace formatter.
Using Oracle Trace 12-13

Accessing Oracle Trace Collection Results
Running the Oracle Trace Reporting Utility
The Oracle Trace reporting utility displays data for items associated with each

occurrence of a server event. These reports can be quite large. You can control the

report output by using optional statement qualifiers. Use the following report utility

statement syntax:

OTRCREP [options] collection name .cdf

If collection .cdf and .dat are not located in the current default directory, then

specify the full file path for the .cdf file.

First, you might want to run a report called PROCESS.txt . You can produce this

report to provide a listing of specific process identifiers for which you want to run

another report.

You can manipulate the output of the Oracle Trace reporting utility by using the

following optional report qualifiers:

Default OTRCREP report output, with no optional qualifiers specified, consists of

one text file for each event type collected. Data from all participating processes are

combined in each of these text files.

Qualifier Description

output_
path

Specifies a full output path for the report files. If this path is not specified,
then the files are placed in the current directory.

-p[pid] Organizes event data by process. If you specify a process ID (PID), then you
have one file with all the events generated by that process in chronological
order. If you omit the PID, then you have one file for each process that
participated in the collection. The output files are named collection_
name_Ppid.txt .

-P Produces a report file name PROCESS.txt that lists all processes that
participated in the collection. It does not include event data. You can
produce this report first to determine the specific processes for which you
want to produce more detailed reports.

-w# Sets report width, such as -w132. The default is 80 characters.

-l# Sets the number of report lines for each page. The default is 63 lines for each
page.

-h Suppresses all event and item report headers, producing a shorter report.

-a Creates a report containing all the events for all products, in the order they
occur in the data collection (.dat) file.
12-14 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
Oracle Server Events
The following sections describe events that have been instrumented in Oracle

Server. Most of the events are useful for performance analysis and tuning and

workload analysis by Oracle Expert.

There are two types of events: point events and duration events. Point events

represent an instantaneous occurrence of something in the instrumented product.

An example of a point event is an error occurrence. Duration events have a

beginning and ending. An example of a duration event is a transaction. Duration

events can have other events occur within them; for example, the occurrence of an

error within a transaction.

Table 12–2 lists the Oracle Server events instrumented for Oracle Trace. For more

detailed descriptions, refer to the section for the event in which you are interested.

Table 12–2 Oracle Server Events

Event Description Type of Event

1 Connection Connection to a database. Point

2 Disconnect Disconnection from a database. Point

3 ErrorStack Code stack for core dump. Point

4 Migration Session migration between shared server processes. Point

5 ApplReg Application context information. Point

6 RowSource Row information. For Oracle Server release 8.0.2 and
higher, this also includes data about the execution
plan.

Point

7 SQLSegment Text of SQL statement. Point

8 Parse SQL parsing information. Duration

9 Execute Information for execution of SQL. Duration

10 Fetch Actual row retrieval information. Duration

11 LogicalTX The first time a database command is performed that
may change the database status.

Duration

12 PhysicalTX Event marking a definite change in database status. Duration

13 Wait Generic WAIT event. Context is provided in the event
strings.

Point
Using Oracle Trace 12-15

Oracle Server Events
Data Items Collected for Events
Specific kinds of information, known as items, are associated with each event. There

are three types of items:

■ Resource Utilization Items

■ Cross-Product Items

■ Items Specific to Oracle Server Events

Resource Utilization Items
Oracle Trace has a standard set of items, called resource utilization items, that it can

collect for any instrumented application, including the Oracle Server. In addition,

all duration events in the Oracle Server include items for database statistics specific

to the Oracle Server.

The standard resource utilization items are described in Table 12–3.

An Oracle Trace collection can be formatted into Oracle tables for access, analysis,

and reporting. The last column contains the data type for data items formatted to

the Oracle database.

The implementation of the item is platform specific; if the item is not implemented,

the value is 0. For example, currently only CPU times are recorded on Windows NT.

Table 12–3 Standard Resource Utilization Items

Item Name Description Item ID
Datatype of
Formatted Data

UCPU Amount of CPU time in user mode 129 number

SCPU Amount of CPU time in system mode 130 number

INPUT_IO Number of times file system performed input 131 number

OUTPUT_IO Number of times file system performed
output

132 number

PAGEFAULTS Number of hard and soft page faults 133 number

PAGEFAULT_IO Number of hard page faults 134 number

MAXRS_SIZE Maximum resident set size used 135 number
12-16 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
Cross-Product Items
Oracle Trace provides a set of 14 items called cross-product items (also known as

cross-facility items for historical reasons). These data items allow programmers to

relate events for different products. For example, a business transaction may

generate events in two products: an application and the database. The cross-product

data items allow these disparate events to be joined for analysis of the entire

business transaction.

Cross-product items are reserved for specific products or product types as described

in Table 12–4. If you do not use the products for which items are reserved, then you

can use those items for your own purposes.

Table 12–4 Cross-Product Items

Item Name Layer Description Item ID

Datatype of
Formatted
Data

CROSS_FAC_1 Application Application ID. For use by
high-level applications such as
Oracle Financials, third-party
or customer applications

136 number

CROSS_FAC_2 Oracle Forms Oracle Forms ID 137 number

CROSS_FAC_3 Oracle Net Remote node connection ID 138 number

CROSS_FAC_4 Oracle Server Transaction ID 139 number

CROSS_FAC_5 Oracle Server Hash_ID of SQL statement 140 number

CROSS_FAC_6 Oracle Server
release 8.x

User ID 141 number

CROSS_FAC_7 Oracle Server
release 8.x

Wait type 142 number

CROSS_FAC_8 n/a Not reserved 143 number

CROSS_FAC_9 n/a Not reserved 144 number

CROSS_FAC_10 n/a Not reserved 145 number

CROSS_FAC_11 n/a Not reserved 146 number

CROSS_FAC_12 n/a Not reserved 147 number

CROSS_FAC_13 n/a Not reserved 148 number

CROSS_FAC_14 n/a Not reserved 149 number
Using Oracle Trace 12-17

Oracle Server Events
Cross-product item 1 (referred to as CROSS_FAC_1) contains data only if data is

supplied by an instrumented application.

Cross-product item 2 (CROSS_FAC_2) is reserved for use by a future release of

Oracle Forms. Instrumented applications and Oracle Forms pass identification data

to the Oracle Server collection through these cross-product items.

Cross-product item 3 (CROSS_FAC_3) is reserved for use by Oracle Net. Oracle Net

supplies the connection ID to Oracle Trace through CROSS_FAC_3. CROSS_FAC_3
is the key element in coordinating client/server or multitier Oracle Trace

collections. Oracle Trace uses the Oracle Net global connection ID as the common

element to match in the merger, for example the client and server collection files.

The global connection ID is the same for the client and the server connection.

Most Oracle Server events record cross-product items 1 through 6. (Cache I/O does

not.)

Items Specific to Oracle Server Events
The Oracle Server product (or facility) definition files (that is, *.fdf) defines items

specific to the Oracle Server. Use the item’s number to locate it within the list. The

formatted datatype describes how the Oracle Trace formatter defines the item when

it formats data into an Oracle database.

The Oracle Server items are listed in Table 12–5.

Note: In this version of Oracle Trace, the term “facility” has been

changed to “product”. Therefore, the items named CROSS_FAC_x
are cross-product items.

Table 12–5 Oracle Server Items

Item Name Description
Item
Number

Formatted
Datatype

App_Action Action name set by using the DBMS_
APPLICATION_INFO.SET_MODULE
procedure

23 varchar2

(1020)

App_Module Module name set using the DBMS_
APPLICATION_INFO.SET_MODULE
procedure

22 varchar2

(1020)

Commit_Abort Indicates if a transaction committed or
aborted

24 number
12-18 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
Consistent_
Gets

Number of blocks retrieved in consistent
mode (did not change the data and
therefore did not create any locks or
conflicts with other users)

104 number

CPU_Session CPU session 112 number

Current_UID Current user ID 36 number

Cursor_Number Number of cursor associated with SQL
statement

25 number

DB_Block_
Change

Number of blocks changed 102 number

DB_Block_Gets Number of blocks retrieved in current
mode. For large queries, this item tells
how many sections of the database
(logical pages) were fetched to retrieve all
needed records.

103 number

Deferred_
Logging

Value used by Oracle Trace internally 14 number

Depth Recursive level at which SQL statement is
processed

32 number

Description Depends upon event in which it occurs
(for example, wait event description)

43 varchar2

(1020)

Elapsed_
Session

Elapsed time for the session 113 number

End_of_Fetch Flag set if data retrieved is last data from
query

38 number

Lib_Cache_
Addr

Address of SQL statement in library cache 27 varchar2(64)

Login_UID Internal ID within the Oracle database
that identifies the user ID for the session

15 number

Login_UName Internal ID within the Oracle database
that identifies the system account name
for the session

16 varchar2

(1020)

Missed Flag set if SQL statement was missing in
library cache

33 number

Table 12–5 Oracle Server Items (Cont.)

Item Name Description
Item
Number

Formatted
Datatype
Using Oracle Trace 12-19

Oracle Server Events
Object_ID 1 Object ID of the row source 46 number

Operation 1 Text of the operation 47 varchar2

(1020)

Operation_ID 1 Position of the operation within the
execution plan for a statement

28 number

Optimizer_
Mode

Oracle optimizer mode 35 varchar2(128)

Oracle_Cmd_
Type

Oracle command number 34 number

Oracle PID Oracle process ID 11 number

OS_Image Operating system image (program name) 42 long

OS_Mach Operating system host machine 20 varchar2

(1020)

OS_Term Operating system terminal 19 varchar2

(1020)

OS_UName Operating system username 18 varchar2

(1020)

P1 The definition of P1 depends upon the
event in which it occurs.

1 number

P2 The definition of P2 depends upon the
event in which it occurs.

2 number

P3 The definition of P3 depends upon the
event in which it occurs.

3 number

P4 The definition of P4 depends upon the
event in which it occurs.

4 number

P5 The definition of P5 depends upon the
event in which it occurs.

5 number

P6 The definition of P6 depends upon the
event in which it occurs.

6 number

P7 The definition of P7 depends upon the
event in which it occurs.

7 number

Table 12–5 Oracle Server Items (Cont.)

Item Name Description
Item
Number

Formatted
Datatype
12-20 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
P8 The definition of P8 depends upon the
event in which it occurs.

8 number

P9 The definition of P9 depends upon the
event in which it occurs.

9 number

P10 The definition of P10 depends upon the
event in which it occurs.

10 number

Parent_Op_ID 1 Parent operation 44 number

PGA_Memory Process Global Area memory 101 number

Physical
Reads

Number of blocks read from disk 105 number

Position 1 Position within events having same
parent operation

45 number

Position_ID 2 Position of the operation within the
execution plan for a statement

28 number

Redo_Entries Number of redo entries made by process 106 number

Redo_Size Size of redo entries 107 number

Row_Count Number of rows processed 29 number

Schema_UID Schema user ID 37 number

Session_Index Oracle session ID 12 number

Session_
Serial

Session serial number 13 number

SID Text version of session ID 17 varchar2

(1020)

Sort_Disk Number of disk sorts performed 110 number

Sort_Memory Number of memory sorts performed 109 number

Sort_Rows Total number of rows sorted 111 number

SQL_Text Text of SQL statement 31 long

SQL_Text_Hash Pointer to SQL statement 26 number

SQL_Text_
Segment

Address of SQL text 30 number

Table 12–5 Oracle Server Items (Cont.)

Item Name Description
Item
Number

Formatted
Datatype
Using Oracle Trace 12-21

Oracle Server Events
Items Associated with Each Event
The following sections describe each event in more detail and provide tables that

list the items associated with each event. For item descriptions, refer to Table 12–5.

When you format data, Oracle Trace creates a table for each event type collected.

The name of the event data table is V_vendor#_F_product#_E_event#_version,

where version is the number of the Oracle Server release. Any periods in the

product version are replaced with underscores. You can use the otrcsyn .sql script

to create synonyms for these tables.

T_Scan_Rows_
Got

Rows processed during full table scans 108 number

TX_ID Unique identifier for a transaction that
consists of rollback segment number, slot
number, and wrap number

41 varchar2(72)

TX_SO_Addr The address of the transaction state object 40 varchar2(64)

TX_Type Type of the transaction. Value is a bitmap
(for example, 2 active transaction, 0X10
space transaction, 0X20 recursive
transaction).

39 number

UGA_Memory User Global Area session memory 100 number

Wait_Time Elapsed time, in hundredths of seconds,
for the wait event

21 number

1 Item specific to Oracle Server release 8.0.2 and higher
2 Replaced byOperation_ID for Oracle Server release 8.0.2 and higher

Note: Prior to Oracle Server release 8.0.5, cross-product items 1-5

were set by the server code. Starting with Oracle Server release

8.0.5, cross-product item 6 was added (and cross-product item 7 for

wait events.)

Note: The following tables use Oracle7 Server names for example

purposes.

Table 12–5 Oracle Server Items (Cont.)

Item Name Description
Item
Number

Formatted
Datatype
12-22 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
The Oracle Trace formatter creates a column for each event item. For point events,

the column name is the same as the item name. For duration events, the items for

the start event have _START appended to the item name and the items for the end

event have _END appended to the item name.

The formatter automatically includes additional columns for collection number,

process identifier, and timestamp information as described in Table 12–6.

Event Statistics Block
Items relating to database performance appear in several events. For convenience,

these items are referenced as the Event Statistics Block. The items in the Event

Statistics block are shown in the following list:

UGA_Memory
PGA_Memory
DB_Block_Change
DB_Block_Gets
Consistent_Gets
Physical_Reads
Redo_Entries
Redo_Size
T_Scan_Rows_Got
Sort_Memory
Sort_Disk
Sort_Rows
CPU_Session
Elapsed_Session

Table 12–6 Additional Columns Included by Oracle Trace Formatter

Column Name Description Datatype

collection_number collection ID, automatically assigned by the
formatter

number(4)

epid process ID number(8)

timestamp logged time for point events date

timestamp_nano fraction of seconds of logged time for point events number

timestamp_start duration event start time date

timestamp_nano_start fraction of seconds of duration event start time number

timestamp_end duration event end time date

timestamp_nano_end fraction of seconds of duration event end time number
Using Oracle Trace 12-23

Oracle Server Events
Connection Event
The Connection event (event=1) records every time a connection is made to a

database. Items associated with the Connection event are shown in the following

list:

Session_Index
Session_Serial
Oracle_PID
Login_UID
Login_UName
SID
OS_UName
OS_Term
OS_Mach
OS_Image
Cross-Product Items 1-6

The Oracle Server uses the combination of Session_Index and Session_
Serial to uniquely identify a connection. Oracle Net uses the connection ID,

stored in CROSS_FAC_3, to uniquely identify a connection.

Disconnect Event
The Disconnect event records every time a database disconnection is made. Items

associated with the Disconnect event are shown in the following list.

Session_Index
Session_Serial
Event Statistics Block
Oracle_PID
Cross-Product Items 1-6

A Disconnect event corresponds to at most one Connection event. Therefore, the

same fields uniquely identify a disconnect: either the combination of Session_
Index and Session_Serial , or CROSS_FAC_3.

ErrorStack Event
The ErrorStack event identifies the process that has the error. Items associated with

the ErrorStack event are shown in the following list.

Session_Index
Session_Serial
Oracle_PID
P1
12-24 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
P2
P3
P4
P5
P6
P7
P8
Cross-Product Items 1-6

The ErrorStack event does not have an explicit identifier. The combination of

Session_Index , Session_Serial , Timestamp , and Timestamp_Nano should

uniquely identify a specific ErrorStack event.

Migration Event
The Migration event is logged each time a session migrates to a shared server

process. This event is currently disabled in the Oracle server code.

Items associated with the Migration event are shown in the following list:

Session_Index
Session_Serial
Oracle_PID
Cross-Product Items 1-6

The Migration event does not have an explicit identifier. The combination of

Session_Index , Session_Serial , Timestamp , and Timestamp_Nano should

uniquely identify a specific Migration event.

ApplReg Event
The ApplReg event (event=5) registers with Oracle Trace where the application is at

a certain point in time. Items associated with the ApplReg event are shown in the

following list:

Session_Index
Session_Serial
App_Module
App_Action
Cross-Product Items 1-6

The ApplReg event does not have an explicit identifier. The combination of

Session_Index , Session_Serial , Timestamp , and Timestamp_Nano should

uniquely identify a specific ApplReg event.
Using Oracle Trace 12-25

Oracle Server Events
RowSource Event
The RowSource event logs the number of rows processed by a single row source

within an execution plan. Items associated with the RowSource event are shown in

the following list:

Session_Index
Session_Serial
Cursor_Number
Position_ID
Row_Count
Cross-Product Items 1-5

The combination of Session_Index , Session_Serial , Cursor_Number , and

Position_ID uniquely identifies a RowSource event.

RowSource Event
The RowSource event logs the number of rows processed by a single row source

within an execution plan. Items associated with the RowSource event for Oracle

Server release 8.0.2 or higher are shown in the following list:

Session_Index
Session_Serial
Cursor_Number
Operation_ID
Row_Count
Parent_Op_ID
Position
Object_ID
Operation
Cross-Product Items 1-6

The combination of Session_Index , Session_Serial , Cursor_Number , and

Operation_ID uniquely identifies a RowSource event.

SQLSegment Event
The SQLSegment event is a description of a SQL statement. Items associated with

the SQLSegment event are shown in the following list:

Note: The text in the Operation item is equivalent to information

about the execution plan, which is similar to data that can be

obtained by running explain plan.
12-26 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
Session_Index
Session_Serial
Cursor_Number
SQL_Text_Hash
Lib_Cache_Addr
SQL_Text_Segment
SQL_Text
Cross-Product Items 1-6

A SQL segment does not have an explicit identifier. The SQL_Text_Hash field is

always the same for each occurrence of a SQL statement but multiple statements

can have the same hash value. If a statement is forced out of the library cache and

then swapped back in, the same statement can have multiple values for Lib_
Cache_Addr . The combination of Session_Index , Session_Serial , SQL_
Text_Hash , and Lib_Cache_Addr usually should identify a particular SQL

statement for a session. If you add Cursor_Number , you identify a particular

occurrence of a SQL statement within the session.

Wait Event
The wait event shows the total waiting time in hundredths of seconds for all

responses. Items associated with the wait event are shown in the following list:

Session_Index
Session_Serial
P1
P2
P3
Description
Cross-Product Items 1-7

The wait event does not have an explicit identifier. The combination of Session_
Index , Session_Serial , Description , Timestamp , and Timestamp_Nano
should uniquely identify a specific wait event.

Parse Event
The Parse event records the start and end of the parsing phase during the

processing of a SQL statement. The parsing phase occurs when the SQL text is read

in and broken down (parsed) into its various components. Tables and fields are

identified, as well as which fields are sort criteria and which information needs to

be returned. Items associated with the parse event are shown in the following lists:
Using Oracle Trace 12-27

Oracle Server Events
The combination of Session_Index , Session_Serial , Cursor_Number , and

SQL_Text_Hash uniquely identifies a specific parse event.

Execute Event
The Execute event is where the query plan is executed. That is, the parsed input is

analyzed to determine exact access methods for retrieving the data, and the data is

prepared for fetch if necessary. Items associated with the Execute event are shown

in the following lists:

Items for Start of Parse Event Items for End of Parse Event

Session_Index Session_Index

Session_Serial Session_Serial

Event Statistics Block Event Statistics Block

Cursor_Number Cursor_Number

Resource Items Depth

Cross-Product Items 1-6 Missed

Oracle_Cmd_Type

Optimizer_Mode

Current_UID

Schema_UID

SQL_Text_Hash

Lib_Cache_Addr

Resource Items

Items for Start of Execute Event Items for End of Execute Event

Session_Index Session_Index

Session_Serial Session_Serial

Event Statistics Block Event Statistics Block

Cursor_Number Cursor_Number

Resource Items Depth

Missed
12-28 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
The combination of Session_Index , Session_Serial , Cursor_Number , and

SQL_Text_Hash uniquely identifies a specific Execute event.

Fetch Event
The Fetch event is the actual return of the data. Multiple fetches can be performed

for the same statement to retrieve all the data. Items associated with the Fetch event

are shown in the following lists:

The combination of Session_Index , Session_Serial , Cursor_Number , SQL_
Text_Hash , Timestamp , and Timestamp_Nano uniquely identifies a specific

Fetch event.

Row_Count

SQL_Text_Hash

Lib_Cache_Addr

Resource Items

Items for Start of Fetch Event Items for End of Fetch Event

Session_Index Session_Index

Session_Serial Session_Serial

Event Statistics Block Event Statistics Block

Cursor_Number Cursor_Number

Resource Items Depth

Cross-Product Items 1-6 Row_Count

End_of_Fetch

SQL_Text_Hash

Lib_Cache_Addr

Resource Items

Items for Start of Execute Event Items for End of Execute Event
Using Oracle Trace 12-29

Oracle Server Events
LogicalTX Event
The LogicalTX event logs the start and end of a logical transaction (that is,

statements issued that may cause a change to the database status). Items associated

with the LogicalTX event are shown in the following lists:

The transaction identifier stored in CROSS_FAC_4 should uniquely identify a

specific transaction. Or, use Session_Index , Session_Serial , and TX_SO_
Addr .

PhysicalTX Event
The PhysicalTX event logs the start and end of a physical transaction (that is,

statements issued that caused a change in database status). Items associated with

the PhysicalTX event are shown in the following lists:

Items for Start of LogicalTX Event Items for End of LogicalTX Event

Session_Index Session_Index

Session_Serial Session_Serial

Event Statistics Block Event Statistics Block

TX_Type TX_Type

TX_SO_Addr TX_SO_Addr

Resource Items Resource Items

Cross-Product Items 1-6

Items for Start of PhysicalTX Event Items for End of PhysicalTX Event

Session_Index Session_Index

Session_Serial Session_Serial

Event Statistics Block Event Statistics Block

TX_Type TX_Type

TX_ID TX_ID

Resource Items Commit_Abort

Cross-Product Items 1-6 Resource Items
12-30 Oracle9i Database Performance Tuning Guide and Reference

Oracle Server Events
The transaction identifier stored in CROSS_FAC_4 should uniquely identify a

specific transaction.

Event Set File Names
Oracle Trace events can be organized into event sets that restrict the data collection

to specific events. You can establish event sets for performance monitoring,

auditing, diagnostics, or any logical event grouping.

Table 12–7 Server Event Set File Names

Event Set File
Name (.fdf) Description

CONNECT CONNECT_DISCONNECT event set.

Collects statistics about connects to the database and disconnects from the
database.

ORACLE ALL event set.

Collects all statistics for the Oracle Server including wait events.

ORACLEC CACHEIO event set.

Collects caching statistics for buffer cache I/O.

ORACLED Oracle Server DEFAULT event set.

Collects statistics for the Oracle Server.

ORACLEE EXPERT event set.

Collects statistics for the Oracle Expert application.

ORACLESM SUMMARY event set.

Collects workload statistics for the Summary Advisor application.

SQL_ONLY SQL_TEXT_ONLY event set.

Collects statistics about connects to the database, disconnects from the
database, and SQL text.

SQL_PLAN SQL_STATS_AND_PLAN event set.

Collect statistics about connects to the database, disconnects from the
database, SQL statistics, SQL text, and row source (EXPLAIN PLAN).

SQLSTATS SQL_AND_STATS event set.

Collects SQL text and statistics only.
Using Oracle Trace 12-31

Troubleshooting Oracle Trace
Troubleshooting Oracle Trace
Use the following sections to troubleshoot problems while using Oracle Trace.

Oracle Trace Configuration
If you suspect an Oracle Trace configuration problem:

■ Examine the EPC_ERROR.LOG file for details of any logged Oracle Trace errors.

■ Look for the administration files on $ORACLE_HOME/otrace/admin (*.dat
files) and run otrccref to re-create the Oracle Trace *.dat files if the files do

not exist.

■ Verify that the .fdf files are in the $ORACLE_HOME/otrace/admin/fdf
directory.

■ Verify the correct version of Oracle Trace Collection Services match the

appropriate Oracle Server version

% $ORACLE_HOME/bin/otrccol version

SQL_TXN SQL_TXNS_AND_STATS event set.

Collects statistics about connects to the database, disconnects from the
database, transactions, SQL text and statistics, and row source (EXPLAIN
PLAN).

SQLWAITS SQL_AND_WAIT_STATS event set.

Collects statistics about connects to the database, disconnects from the
database, row source (EXPLAIN PLAN), SQL text and statistics, and wait
events.

WAITS WAIT_EVENTS event set.

Collects statistics about connects to the database, disconnects from the
database, and wait events.

See Also: "Event Sets" on page 12-2

Table 12–7 Server Event Set File Names (Cont.)

Event Set File
Name (.fdf) Description
12-32 Oracle9i Database Performance Tuning Guide and Reference

Troubleshooting Oracle Trace
■ To verify that a collection is currently running, use the command-line interface

to check the status:

% $ORACLE_HOME/bin/otrccol check collection_name

To test the CLI:

1. CLI needs to run from a privileged account, for example, the Oracle operating

system user account.

2. The Oracle home and SID environmental variables must be set properly.

To check settings on UNIX:

printenv ORACLE_HOME
printenv ORACLE_SID

To set settings on UNIX:

setenv ORACLE_HOME path
setenv ORACLE_SID sid

There should be one CLI for each ORACLE_HOME. For example, if you have two

Oracle Server release 7.3.3 instances sharing the same ORACLE_HOME, there

should be only one CLI.

If the Returned Value Is: Then the Command-Line Interface Release Is:

1 733

2 803

3 734

4 804

5 805

6 813

7 814

8 815

9 806

10 816

11 817

12 901
Using Oracle Trace 12-33

Troubleshooting Oracle Trace
3. Verify that the collection name has not already been used before you start the

collection.

Look for collection name .cdf and .dat files in:

■ $ORACLE_HOME/otrace/admin/cdf directory

■ The directory specified in database parameter ORACLE_TRACE_
COLLECTION_PATH

■ The directory specified by EPC_COLLECTION_PATH environment variable

4. If you want to generate database activity for this collection, connect to the

database.

■ For Oracle Server release 7.3.x, connect to the service before you create your

collection.

■ For Oracle Server release 8.0, you can connect to the database anytime and

the processes are registered.

Server Environment
If you suspect a server environment problem, verify the following:

■ The server node has sufficient disk space for the collection output files. If there

is not sufficient disk space, the collection stops. To limit the size of collections,

use the Trace option for limiting collection size. For a description on how to

limit collection size, see the Using the Oracle Trace CLI section in this chapter.

To solve the immediate problem, stop the collection, and free up space so Oracle

Trace can end the collection.

Initially limiting the collection to specific users or wait events also helps to limit

the amount of data collected. Limiting users and wait events is available for

Oracle Server releases 8.0.4 and higher.

■ Your session does not participate in more than five collections. Sessions log data

for the five most recent collections. Thus, if you have more than five collections,

data is missing for the oldest collection.

Missing Data

Wait Times Were Not Collected Wait times are collected only if the INIT sid .ORA
parameter, TIMED_STATISTICS , is set to true .
12-34 Oracle9i Database Performance Tuning Guide and Reference

Troubleshooting Oracle Trace
Missing SQL Statement from Collection If an expected SQL statement does not appear

to be in your collection, it may be because a small amount of data in the Oracle

Trace data collection buffers may not have been flushed out to the collection data

file, even though the collection has been stopped. Additional database activity

should flush these buffers to disk, and shutting down the database also forces a

flush of these buffers.

Collection Is Too Large There may be times when a collection is too large. Starting

with Oracle Server release 8.0.4, you can collect data for specific users and specific

wait event types to minimize the size of the collection. Because, almost always, the

server is waiting for a latch, lock, or resource, wait event data for a brief collection

can be quite extensive.

Collection Is Empty In Oracle8 databases (prior to Oracle 8.1.7), the ORACLE_TRACE_
ENABLE parameter in the INIT sid .ORA file on the server must be set to true
before the database is started. Starting with Oracle 8.1.7 it is dynamic and may be

modified through ALTER_SESSION or ALTER_SYSTEM. (For Oracle7 the ORACLE_
TRACE_ENABLE parameter should be left as false , unless you are using the

init.ora parameter method to start or stop collections.) You can also see this problem

if there are too many collections running concurrently.

Oracle Trace Could Not Access Memory
On Windows NT systems, if you are running Oracle Trace collections and an error

occurs indicating Oracle Trace could not access memory, the collect .dat file has

become full. You must create a new .dat file by running the otrccref .exe image

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings
Using Oracle Trace 12-35

Troubleshooting Oracle Trace
located in the $ORACLE_HOME/bin directory. However, database services must be

shutdown to release the collect .dat file for the otrccref script to be able to

create the new collect .dat file. You can also increase the number of

collect .dat records to more than the default of 36 records (for example,

otrccref -c50 to create a new otrace/admin/collect.dat file containing 50

records).

Oracle7 Stored Procedures
If the attempt to collect Oracle Trace data for an Oracle7 database results in the

message "Error starting/stopping Oracle7 database collection," this may be due to

missing database stored procedures that Oracle Trace uses to start and stop Oracle7

collections.

■ Check for stored procedures (for Oracle Server releases 7.3.x)

To check for stored procedures using the Oracle Enterprise Manager console,

use the Navigator and the following path:

Networks > Databases > your_database > Schema Objects > Packages > SYS

■ Look for stored procedures starting with DBMS_ORACLE_TRACE_xxx.

To check for stored procedures using Oracle Server Manager or Oracle

SQL*Plus Worksheet:

select object_name from dba_objects where object_name like '%TRACE%'
and object_type = 'PACKAGE';
OBJECT_NAME
DBMS_ORACLE_TRACE_AGENT
DBMS_ORACLE_TRACE_USER
2 rows selected.

For Oracle7, Oracle Trace required that these stored procedures be installed on the

database. These SQL scripts may be automatically run during database installation

depending on the platform-specific installation procedures. If they are not executed

during database installation, you must run these scripts manually. You can add

these stored procedures to the database by running the otrcsvr.sql script from

$ORACLE_HOME/otrace/admin) from a privileged database account (SYS or

INTERNAL). To run the script, set the default to the path were the script is located.

This script runs other scripts that do not have the path specified. These other scripts

fail if you are not in the directory where these scripts will run.
12-36 Oracle9i Database Performance Tuning Guide and Reference

Troubleshooting Oracle Trace
EPC_ERROR.LOG File
The EPC_ERROR.LOG file provides information about the collection processing,

specifically the Oracle Trace Collection Services errors.

The EPC_ERROR.LOG file is created in the current default directory.

Formatter Tables
Oracle Server releases 7.3.4 and 8.0.4 and later automatically create the formatter

tables. Prior to Oracle Server releases 7.3.4 and 8.0.4, you must run the

otrcfmtc .sql script from Oracle Server Manager or Oracle SQL*Plus Worksheet

as the user who will be formatting the data. If you must manually execute

otrcfmtc .sql to create the formatter tables, use the SQL script from the same

Oracle home as your collections to be formatted.

The otrcfmtc .sql script is located in the $ORACLE_HOME/otrace/admin
directory.

Formatting error might be due to one of the following causes:

1. The user did not run the script to create the formatter tables (valid for releases

of Oracle Server prior to 7.3.4 and 8.0.4).

2. The formatter tables were not created by the same user ID that was used when

the collection was created (valid for releases of Oracle Server prior to 7.3.4 and

8.0.4).

Look for EPC_COLLECTION.

To check for formatter tables using SQL Worksheet:

CONNECTusername / password @service name
DESCRIBE epc_collection

See Also: Oracle Enterprise Manager Messages Manual for general

information about causes and actions for most Oracle Trace

messages
Using Oracle Trace 12-37

Troubleshooting Oracle Trace
12-38 Oracle9i Database Performance Tuning Guide and Reference

Part III

 Creating a Database for Good

Performance

Part III describes how to configure a database for good performance.

The chapters in this part are:

■ Chapter 13, "Building a Database for Performance"

■ Chapter 14, "Memory Configuration and Use"

■ Chapter 15, "I/O Configuration and Design"

■ Chapter 16, "Understanding Operating System Resources"

■ Chapter 17, "Configuring Instance Recovery Performance"

■ Chapter 18, "Configuring Undo and Temporary Segments"

■ Chapter 19, "Configuring Shared Servers"

Building a Database for Perfor
13

Building a Database for Performance

Although performance modifications can be made to both the database and to the

Oracle instance at a later time, much can be gained by carefully designing the

database for the intended needs.

This chapter contains the following sections:

■ Initial Database Creation

■ Creating Tables for Good Performance

■ Loading and Indexing Data

■ Initial Instance Configuration

■ Setting up Operating System, Database, and Network Monitoring

Note: This chapter is an overview of Oracle’s new methodology

for designing a database for performance. Before reading this

chapter, it is important to read the information in the Oracle9i
Database Performance Planning manual. For detailed information on

memory and I/O configuration, see the other chapters in Part III.
mance 13-1

Initial Database Creation
Initial Database Creation
One of the first stages in managing a database is the initial database creation. This

section describes important steps in the creation of an Oracle database.

Database Creation Using the Installer
The Oracle Installer lets you create a database during software installation or at a

later time using the Database Creation Assistant. This is an efficient way of creating

databases for small to medium size environments, and it provides a straightforward

graphical user interface. However, this procedure sets some limits on the

possibilities for various options, and it is therefore not recommended for database

creation in larger environments.

Manual Database Creation
A manual approach provides full freedom for different configuration options. This

is especially important for larger environments. A manual approach typically

involves designing multiple parameter files for use during the various stages,

running SQL scripts for the initial CREATE DATABASE and subsequent CREATE
TABLESPACE statements, running necessary data dictionary scripts, and so on.

Parameters Necessary for Initial Database Creation
The initialization parameter file is read whenever an Oracle instance is started,

including the very first start before the database is created. There are very few

parameters that cannot be modified at a later time. The most important parameters

to set correctly at database creation time are listed in Table 13–1.

Table 13–1 Important Initialization Parameters for Database Creation

Parameter Description

DB_BLOCK_SIZE Sets the size of the Oracle database blocks stored in the
database files and cached in the SGA. The range of values
depends on the operating system, but it is typically powers
of two in the range 2048 to 16384. Common values are 4096
or 8192 for transaction processing systems and higher values
for database warehouse systems.
13-2 Oracle9i Database Performance Tuning Guide and Reference

Initial Database Creation
The CREATE DATABASE Statement
The first SQL statement that is executed after startup of the initial instance is the

CREATE DATABASE statement. This creates the initial system tablespace, creates the

initial redo logfiles, and sets certain database options. The options listed in

Table 13–2 cannot be changed or can only be changed with difficulty at a later time.

DB_NAME

and

DB_DOMAIN

Set the name of the database and the domain name of the
database, respectively. Although they can be changed at a
later time, it is highly advisable to set these correctly before
the initial creation. The names chosen must be reflected in
the SQL*Net configuration as well.

COMPATIBLE Specifies the release with which the Oracle server must
maintain compatibility. It lets you take advantage of the
maintenance improvements of a new release immediately in
your production systems without testing the new
functionality in your environment. If your application was
designed for a specific release of Oracle, and you are actually
installing a later release, then you might want to set this
parameter to the version of the previous release.

Note: Compatibility must be set to Release 2 (9.2) or higher to

have a locally managed SYSTEM tablespace. If EXTENT
MANAGEMENT LOCAL is specified at CREATE DATABASE time,

the database cannot be migrated back to a pre-9.2 release and the

SYSTEM tablespace cannot be migrated to dictionary-managed.

All tablespaces subsequently created must be locally managed.

Table 13–2 Database Options for Initial Creation

Database Options Description

Character set The character set specified by this option identifies the
character set used for SQL text, for the internal data dictionary,
and most importantly for text stored as datatypes CHAR,
VARCHAR, or VARCHAR2. After data including any type of
national characters has been loaded, the character set cannot be
changed.

Table 13–1 (Cont.) Important Initialization Parameters for Database Creation

Parameter Description
Building a Database for Performance 13-3

Initial Database Creation
Example 13–1 Sample CREATE DATABASE Script

CONNECT SYS/ORACLE AS SYSDBA
STARTUP NOMOUNT pfile=/u01/admin/init_create.ora
CREATE DATABASE "dbname"
DATAFILE '/u01/oradata/system01.dbf' size 200M
LOGFILE '/u02/oradata/redo01.dbf' size 100M,
 '/u02/oradata/redo02.dbf' size 100M
CHARACTER SET "WE8ISO8859P1"
NATIONAL CHARACTER SET "UTF8"
EXTENT MANAGEMENT LOCAL
DEFAULT TEMPORARY TABLESPACE mytemp TEMPFILE ’temp.f’ SIZE 1000M

National character set This character set is used for the datatypes NCHAR, NVARCHAR,
and NVARCHAR2. In general, as with the regular character set, it
cannot be changed.

SQL.BSQ file This creates the internal data dictionary. For information on
modifying this file, see Chapter 15, "I/O Configuration and
Design".

Location of initial datafile The initial datafile(s) that will make up the system tablespace
should be set with care. They can be modified later, but the
procedure involves a complete shutdown of the instance.

EXTENT MANAGEMENT
LOCAL

Use the EXTENT MANAGEMENT LOCAL clause to create a locally
managed SYSTEM tablespace. AUTOALLOCATE is the default;
extent sizes are chosen by the system. EXTENT SIZE UNIFORM
is not available for the SYSTEM tablespace.

Default temporary
tablespace

If you specify EXTENT MANAGEMENT LOCAL, then you must
also specify the default temporary tablespace.

MAXDATAFILES The maximum number of data files.

MAXLOGFILES The maximum number of log files.

Note: Compatibility must be set to Release 2 (9.2) or higher to

have a locally managed SYSTEM tablespace. If EXTENT
MANAGEMENT LOCAL is specified at CREATE DATABASE time,

the database cannot be migrated back to a pre-9.2 release and the

SYSTEM tablespace cannot be migrated to dictionary-managed.

All tablespaces subsequently created must be locally managed.

Table 13–2 (Cont.) Database Options for Initial Creation

Database Options Description
13-4 Oracle9i Database Performance Tuning Guide and Reference

Initial Database Creation
MAXDATAFILES = 50
MAXLOGFILES = 5;

Running Data Dictionary Scripts
After running the CREATE DATABASE statement, certain catalog scripts must be

executed. They are found in the rdbms/admin directory on UNIX or the

rdbms \admin directory on Windows, under the ORACLE_HOME directory. The

following scripts must be executed:

■ CATALOG.SQL - Needed for all normal data dictionary views

■ CATPROC.SQL - Needed to load the initial PL/SQL environment

Example 13–2 Executing Required Data Dictionary Scripts

CONNECT SYS/ORACLE AS SYSDBA
@@CATALOG
@@CATPROC

The use of the double at-sign forces execution of these scripts from the proper

directory.

Sizing Redo Log Files
The size of the redo log files can influence performance, because the behavior of the

database writer and archiver processes depend on the redo log sizes. Generally,

larger redo log files provide better performance. Small log files can increase

checkpoint activity and reduce performance. Because the recommendation on I/O

distribution for high performance is to use separate disks for the redo log files, there

is no reason not to make them large. A potential problem with large redo log files is

that these are a single point of failure if redo log mirroring is not in effect.

It is not possible to provide a specific size recommendation for redo log files, but

redo log files in the range of a hundred megabytes to a few gigabytes are considered

reasonable. Size your online redo log files according to the amount of redo your

See Also: Oracle9i SQL Reference for detailed information about

the CREATE DATABASE statement

Note: When specific options or features are in use (for example,

Java or replication), more scripts are necessary. These are

documented with each individual option.
Building a Database for Performance 13-5

Initial Database Creation
system generates. A rough guide is to switch logs at most once every twenty

minutes.

The complete set of required redo log files can be created during database creation.

After they are created, the size of a redo log size cannot be changed. However, new,

larger files can be added later, and the original (smaller) ones can subsequently be

dropped.

Not much can be done to speed up the creation of the initial database and the

loading of necessary data dictionary views from catalog SQL files. These steps must

be run serially after each other.

Creating Subsequent Tablespaces
After creating the initial database, several extra tablespaces must be created. All

databases should have at least three tablespaces in addition to the system

tablespace: a temporary tablespace, which is used for things like sorting; a rollback

tablespace, which is used to store rollback segments or is designated as the

automatic undo management segment; and at least one tablespace for actual

application use. In most cases, applications require several tablespaces. For

extremely large tablespaces with many datafiles, multiple ALTER TABLESPACEx
ADD DATAFILEY statements can also be run in parallel.

During tablespace creation, the datafiles that make up the tablespace are initialized

with special "empty" block images. TEMPFILES are not initialized.

Oracle does this to ensure that all datafiles can be written in their entirety, but this

can obviously be a lengthy process if done serially. Therefore, run multiple CREATE
TABLESPACE statements concurrently to speed up the tablespace creation process.

See the SQL statement in Example 13–3 on page 13-7. The most efficient way to do

this is to run one SQL script for each set of available disks.

For permanent tables, the choice between local and global extent management on

tablespace creation can have a large effect on performance. For any permanent

tablespace that has moderate to large insert, modify, or delete operations compared

to reads, local extent management should be chosen.

Note: Although the size of the redo log files does not affect LGWR

performance, it can affect DBWR and checkpoint behavior.
13-6 Oracle9i Database Performance Tuning Guide and Reference

Creating Tables for Good Performance
Creating Permanent Tablespaces - Automatic Segment-Space Management
For permanent tablespaces, Oracle Corporation recommends using automatic

segment-space management. Such tablespaces (often referred to as bitmapped

tablespaces) are locally managed tablespaces with bitmap segment space

management. They are available with Oracle9i Release 1 (9.0.1) and later.

Creating Temporary Tablespaces
Temporary tablespaces can be dictionary-managed or locally managed. With

Oracle9i Release 1 (9.0.1) and later, Oracle Corporation recommends use of locally

managed temporary tablespaces. Example 13–3 shows how you can create a

temporary tablespace with local extent management:

Example 13–3 Creating a Temporary Tablespace

CONNECT SYSTEM/MANAGER
CREATE TABLESPACE appdata DATAFILE
 '/u02/oradata/appdata01.dbf' size 1000M;
CREATE TEMPORARY TABLESPACE mytemp TEMPFILE ’temp.f’ SIZE 1000M;

In another session:

CONNECT SYSTEM/MANAGER
CREATE TABLESPACE appindex DATAFILE
 '/u03/oradata/appindex01.dbf' size 1000M;

Creating Tables for Good Performance
When installing applications, an initial step is to create all necessary tables and

indexes. When you create a segment, such as a table, Oracle allocates space in the

database for the data. If subsequent database operations cause the data volume to

increase and exceed the space allocated, then Oracle extends the segment.

When creating tables and indexes, note the following:

■ Specify automatic segment-space management for tablespaces

This allows Oracle to automatically manage segment space for best

performance.

■ Set storage options carefully

See Also: Oracle9i Database Administrator’s Guide for more

information on creating and using automatic segment-space

management for tablespaces
Building a Database for Performance 13-7

Creating Tables for Good Performance
Applications should carefully set storage options for the intended use of the

table or index. This includes setting the value for PCTFREE. Note that using

automatic segment-space management eliminates the need to specify PCTUSED.

■ Set the INITRANS value higher if necessary

Each datablock has a number of transaction entries that are used for row

locking purposes. Initially, this number is specified by the INITRANS
parameter, and the default value (1 for tables, 2 for indexes) is generally

sufficient. However, if a table or index is known to have many rows for each

block with a high possibility of many concurrent updates, then it is beneficial to

set a higher value. This must be done at the CREATE TABLE/CREATE INDEX
time to ensure that it is set for all blocks of the object.

Note: Use of free lists is no longer encouraged. To use automatic

segment-space management, create locally managed tablespaces,

with the segment space management clause set to AUTO.

See Also:

■ Oracle9i Real Application Clusters Concepts for more information

about Real Application Clusters storage considerations

■ Oracle9i Real Application Clusters Administration for more

information about associating instances and users with free

lists and free list groups

■ Oracle9i Real Application Clusters Deployment and Performance for

more information about configuring multiblock lock

assignments

■ Oracle9i Real Application Clusters Deployment and Performance for

more information about using free lists and free list groups in

Real Application Clusters

Note: Note that the operation of creating tables is relatively fast,

and not much is gained by doing it in parallel.
13-8 Oracle9i Database Performance Tuning Guide and Reference

Creating Tables for Good Performance
Data Segment Compression
Data segment compression reduces disk use and memory use (specifically, the

buffer cache), often leading to a better scaleup for read-only operations. Data

segment compression can also speed up query execution.

Tuning to Achieve a Better Compression Ratio
Oracle9i Release 2 (9.2) achieves a good compression ratio in many cases with no

special tuning. However, if you need a better compression ratio, tuning can improve

it slightly in some cases and very substantially in other cases.

Heap-organized block-level compression works by eliminating column value

repetitions within individual blocks. This is done by moving such repeated column

values into a shared block-level symbol table and replacing occurrences with

references into the symbol table. Therefore, the compression ratio is higher in blocks

that have more repeated values. As a database administrator or application

developer, you can take advantage of this fact by reorganizing rows in the segments

that you want to compress, to increase the likelihood of such repetitions.

For a single-column table, you can order table rows by the column value, using a

CREATE TABLE AS SELECT with an ORDER BY clause.

You can also apply this method to a table in which one column has low cardinality

and other columns have high cardinalities: Order the table rows by the low

cardinality column.

The following views contain information about column cardinalities within

segments:

■ ALL_TAB_COL_STATISTICS

■ ALL_PART_COL_STATISTICS

■ ALL_SUBPART_COL_STATISTICS

Example 13–4 Estimating Data Segment Compression/Decompression Ratio

You can estimate the compression or decompression ratio for a table table_t by

using the following procedure, which allows automatic cleanup:

1. Make sampling repeatable:

ALTER SESSION SET EVENTS '10193 trace name context forever, level 1’;

2. Spawn a DBMS_JOB to execute once after 1 minute with the following body

(cleanup procedure):
Building a Database for Performance 13-9

Loading and Indexing Data
LOCK TABLE table_t$a1 IN EXCLISIVE MODE;
DROP TABLE table_t$a1;
DROP TABLE table_t$a2;

3. Create an empty compressed table:

CREATE TABLE table_t$a1 COMPRESS AS SELECT * FROM table_t WHERE ROWNUM < 1;
LOCK TABLE table_t$a1 IN SHARE MODE;

4. Create an empty uncompressed table:

CREATE TABLE table_t$a2 NOCOMPRESS AS SELECT * FROM table_t
 WHERE ROWNUM < 1;
INSERT /*+ APPEND */ INTO table_t$a1 SELECT * FROM table_t
 SAMPLE BLOCK(x,y);
INSERT /*+ APPEND */ INTO table_t$a2 SELECT * FROM table_t
 SAMPLE BLOCK(x,y);

The data segment compression ratio is the number of blocks in table table_t$a1
divided by number of blocks in table table_t$a2 .

Loading and Indexing Data
Many applications need to load data as part of the initial application installation

process. This can be fixed data, such as postal code or other type of lookup data, or

it can be actual data originating in older systems. Oracle’s SQL*Loader tool is the

most efficient way to load a substantial amount of data.

Note: The first time you add a compressed partition to a

partitioned table that currently contains only uncompressed

partitions, you must either drop all existing bitmap indexes and

bitmap index partitions or mark them UNUSABLE prior to adding

the compressed partition, even if the new partition contains no

data. Operations for which this condition is relevant are adding,

splitting, merging, and moving partitions.

See Also: Oracle9i SQL Reference for block group sampling syntax

SAMPLE BLOCK(x,y)
13-10 Oracle9i Database Performance Tuning Guide and Reference

Loading and Indexing Data
Using SQL*Loader for Good Performance
When running SQL*Loader, you specify to use either the conventional path or the

direct path. The conventional path uses ordinary SQL INSERT statements to load

data into the tables, which means that the loading can be done concurrently with

other database operations. However, the loading then is also limited by the normal

INSERT performance. For quick loading of large amounts of data, choose the direct

path. With the direct path, the loading process bypasses SQL and loads directly into

the database blocks. During this type of load, normal operation on the table (or

partition for partitioned tables) cannot be performed.

The following tips could help speed up the data loading process using SQL*Loader:

■ Use fixed length fields rather than delimited or quoted fields. This reduces the

time needed for SQL*Loader to read and interpret the input file.

■ Run SQL*Loader locally rather than through a network connection.

■ Load numbers read from the input file as text rather than in binary format. This

might be faster, especially if the numbers are loaded without any computation.

This is true for integers and for floating point numbers.

■ For very large load operations, use SQL*Loader to do parallel data load.

Efficient Index Creation
The most efficient way to create indexes is to create them after data has been loaded.

By doing this, space management becomes much simpler, and no index

maintenance takes place for each row inserted. SQL*Loader automatically does this,

but if you are using other methods to do initial data load, you might need to do this

manually. Additionally, index creation can be done in parallel using the PARALLEL
clause of the CREATE INDEXstatement. However, SQL*Loader is not able to do this,

so you must manually create indexes in parallel after loading data.

Specifying Memory for Sorting Data
During index creation on tables that contain data, the data must be sorted. This

sorting is done in the fastest possible way, if all available memory is used for

sorting. Oracle recommends that you enable automatic sizing of SQL working areas

by setting the PGA_AGGREGATE_TARGET initialization parameter.

See Also: Oracle9i Database Utilities for detailed information on

SQL*Loader
Building a Database for Performance 13-11

Loading and Indexing Data
Specifying Memory for SQL Work Area with SORT_AREA_SIZE
The memory for the SQL work area can also be controlled with the SORT_AREA_
SIZE initialization parameter.

The value of the SORT_AREA_SIZE parameter should be set using the following

rules:

1. Find the amount of available memory by subtracting the size of the SGA and

the size of the operating system from the total system memory.

2. Divide this amount by the number of parallel slaves that you will use; this is

typically the same as the number of CPUs.

3. Subtract a process overhead, typically a five to ten megabytes, to get the value

for SORT_AREA_SIZE.

Example 13–5 is an example of setting the SORT_AREA_SIZE parameter.

Example 13–5 Example of Creating Indexes Efficiently

A system with 512 Mb memory runs an Oracle instance with a 100 Mb SGA, and the

operating system uses 50 Mb. The memory available for sorting is 362 Mb, which

equals 512 minus 50 minus 100. If the system has four CPUs running with four

parallel slaves, then each of these will have 90 Mb available. 10 Mb is set aside for

See Also:

■ "Configuring the PGA Working Memory" on page 14-48 for

information on PGA memory management

■ Oracle9i Database Reference for information on the PGA_
AGGREGATE_TARGET initialization parameter

Note: Oracle does not recommend using the SORT_AREA_SIZE
parameter unless the instance is configured with the shared server

option. Oracle recommends that you enable automatic sizing of

SQL working areas by setting PGA_AGGREGATE_TARGET instead.

SORT_AREA_SIZE is retained for backward compatibility.

Note: You can also save time on index creating operations, or fast

rebuilds, with on the fly statistics generation.
13-12 Oracle9i Database Performance Tuning Guide and Reference

Initial Instance Configuration
process overhead, so SORT_AREA_SIZE should be set to 80 Mb. This can be done

either in the initialization file or for each session with the following statement:

ALTER SESSION SET SORT_AREA_SIZE = 80000000;

Initial Instance Configuration
A running Oracle instance is configured using startup parameters, which are set in

the initialization parameter file. These parameters influence the behavior of the

running instance, including influencing performance. In general, a very simple

initialization file with few relevant settings covers most situations, and the

initialization file should not be the first place you expect to do performance tuning,

except for the few parameters shown in Table 13–4.

Table 13–3 describes the parameters necessary in a minimal initialization file.

Although these parameters are necessary they have no performance impact:

Table 13–4 includes the most important parameters to set with performance

implications:

See Also: Chapter 14, "Memory Configuration and Use"

Table 13–3 Necessary Initialization Parameters Without Performance Impact

Parameter Description

DB_NAME Name of the database. This should match the ORACLE_SID
environment variable.

DB_DOMAIN Location of the database in Internet dot notation.

OPEN_CURSORS Limit on the maximum number of cursors (active SQL
statements) for each session. The setting is
application-dependent, and the default, in many cases, is
sufficient.

CONTROL_FILES Set to contain at least two files on different disk drives to
prevent failures from control file loss.

DB_FILES Set to the maximum number of files that can assigned to the
database.
Building a Database for Performance 13-13

Initial Instance Configuration
Example of a Minimal Initialization File
In many cases, only the parameters mentioned in the following example need to be

set to appropriate values for the Oracle instance to be reasonable well-tuned. Here

is an example of such an initialization file:

DB_NAME = finance
DB_DOMAIN = hq.company.com
CONTROL_FILES = ('/u01/database/control1.dbf', '/u02/database/control2.dbf')
DB_BLOCK_SIZE = 8192
DB_BLOCK_BUFFERS = 12000 # this is approximately 100 Mb
DB_FILES = 200 # Maximum 200 files in the database

Table 13–4 Important Initialization Parameters With Performance Impact

Parameter Description

DB_BLOCK_SIZE Sets the database block size.

DB_CACHE_SIZE Size of the buffer cache in the SGA. There are no good and
simple rules to set a value, which is very application
dependent, but typical values are in the range of twenty to fifty
for each user session. More often, this value is set too high than
too low. DB_BLOCK_BUFFERS has been deprecated.

SHARED_POOL_SIZE Sets the size of the shared pool in the SGA. The setting is
application-dependent, but it is typically is in the range of a
few to a few tens of megabytes for each user session.

PROCESSES Sets the maximum number of processes that can be started by
that instance. This is the most important primary parameter to
set, because many other parameter values are deduced from
this.

SESSIONS This is set by default from the value of processes. However, if
you are using the shared server, then the deduced value is
likely to be insufficient.

JAVA_POOL_SIZE If you are using Java stored procedures, then this parameter
should be set depending on the actual requirements of
memory for the Java environment.

LOG_ARCHIVE_XXX Enables redo log archiving. See Oracle9i User-Managed Backup
and Recovery Guide.

ROLLBACK_SEGMENTS Allocates one or more rollback segments by name to this
instance. If you set this parameter, the instance acquires all of
the rollback segments named in this parameter, even if the
number of rollback segments exceeds the minimum number
required by the instance (calculated as TRANSACTIONS
/TRANSACTIONS_PER_ROLLBACK_SEGMENT).
13-14 Oracle9i Database Performance Tuning Guide and Reference

Setting up Operating System, Database, and Network Monitoring
SHARED_POOL_SIZE = 100000000 # 100 Mb
PROCESSES = 80 # Would be good for approximately 70
directly connected users
log_archive_XXX
Set various archiving parameters

Configuring Undo Space
Oracle needs undo space to keep information for read consistency, for recovery, and

for actual rollback statements. This is kept either in rollback segments or in one or

more automatic undo management tablespaces.

The V$UNDOSTAT view contains statistics for monitoring and tuning undo space.

Using this view, you can better estimate the amount of undo space required for the

current workload. Oracle also uses this information to help tune undo usage in the

system. The V$ROLLSTAT view contains information about the behavior of the

undo segments in the undo tablespace.

Setting up Operating System, Database, and Network Monitoring
To effectively diagnose performance problems, it is vital to have an established

performance baseline for later comparison when the system is running poorly.

Without a baseline data point, it can be very difficult to identify new problems. For

example, perhaps the volume of transactions on the system has increased, or the

transaction profile or application has changed, or the number of users has

increased.

After the database is created, tables are created, data is loaded and indexed, and the

instance is configured, it is time to set up monitoring procedures.

See Also:

■ Oracle9i Database Administrator’s Guide for detailed information

on managing undo space using rollback segments or using

automatic undo management

■ Chapter 24, "Dynamic Performance Views for Tuning" for more

information on the V$UNDOSTAT and V$ROLLSTAT views

See Also: Chapter 20, "Oracle Tools to Gather Database Statistics"
Building a Database for Performance 13-15

Setting up Operating System, Database, and Network Monitoring
13-16 Oracle9i Database Performance Tuning Guide and Reference

Memory Configuration a
14

Memory Configuration and Use

Proper sizing and effective use of the Oracle memory caches greatly improves

database performance. This chapter explains how to allocate memory to Oracle

memory caches, and how to use those caches.

This chapter contains the following sections:

■ Understanding Memory Allocation Issues

■ Configuring and Using the Buffer Cache

■ Configuring and Using the Shared Pool and Large Pool

■ Configuring and Using the Java Pool

■ Configuring and Using the Redo Log Buffer

■ Configuring the PGA Working Memory
nd Use 14-1

Understanding Memory Allocation Issues
Understanding Memory Allocation Issues
Oracle stores information in memory caches and on disk. Memory access is much

faster than disk access. Disk scans (physical I/O) take a significant amount of time,

compared with memory access, typically in the order of 10 milliseconds. Physical

I/O also increases the CPU resources required, because of the path length in device

drivers and operating system event schedulers. For this reason, it is more efficient

for data requests for frequently accessed objects to be satisfied solely by memory,

rather than also requiring disk access.

A performance goal is to reduce the physical I/O overhead as much as possible,

either by making it more likely that the required data is in memory or by making

the process of retrieving the required data more efficient.

Oracle Memory Caches
The main Oracle memory caches that affect performance are:

■ Shared pool

■ Large pool

■ Java pool

■ Buffer cache

■ Log buffer

■ Process-private memory (for example, used for sorting, hashing, and so on)

The size of these memory caches is configurable using initialization configuration

parameters. The values for these parameters are also dynamically configurable

using the ALTER SYSTEM statement (except for the log buffer and java pool, which

are static after startup).

Dynamically Changing Cache Sizes
You can dynamically reconfigure the sizes of the shared pool, the large pool, the

buffer cache, and the process-private memory.

Memory for the shared pool, large pool, java pool, and buffer cache is allocated in

units of granules. Generally speaking, on most platforms, the size of a granule is 4

MB if the total SGA size is less than 128 MB, and it is 16 MB for larger SGAs. There

may be some platform dependency; for example, on 32-bit Windows NT, the

granule size is 8 MB for SGAs larger than 128 MB. Please consult your operating

system’s documentation for more details.
14-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding Memory Allocation Issues
The granule size that is currently being used for SGA can be viewed in the view

V$SGA_DYNAMIC_COMPONENTS. The same granule size is used for all dynamic

components in the SGA.

You can, if necessary, decrease the size of one cache and reallocate that memory to

another cache. You can expand the total SGA size to a value equal to the SGA_MAX_
SIZE parameter.

The maximum amount of memory usable by the instance is determined at instance

startup by the initialization parameter SGA_MAX_SIZE. You can specify SGA_MAX_
SIZE to be larger than the sum of all of the memory components (such as buffer

cache and shared pool); otherwise, SGA_MAX_SIZE defaults to the actual size used

by those components. Setting SGA_MAX_SIZE larger than the sum of memory used

by all of the components lets you dynamically increase a cache size without needing

to decrease the size of another cache.

Viewing Information About Dynamic Resize Operations
With Oracle9i Release 2 (9.2) and higher, you have the following views that provide

information about dynamic SGA resize operations:

■ V$SGA_CURRENT_RESIZE_OPS: Information about SGA resize operations that

are currently in progress. An operation can be a grow or a shrink of a dynamic

SGA component.

■ V$SGA_RESIZE_OPS: Information about the last 100 completed SGA resize

operations. This does not include any operations currently in progress.

■ V$SGA_DYNAMIC_COMPONENTS: Information about the dynamic components

in SGA. This view summarizes information based on all completed SGA resize

operations since startup.

■ V$SGA_DYNAMIC_FREE_MEMORY: Information about the amount of SGA

memory available for future dynamic SGA resize operations.

Note: SGA_MAX_SIZE cannot be dynamically resized.

See Also:

■ Oracle9i Database Concepts for more information about dynamic

SGA

■ Oracle9i Database Reference for detailed column information for

these views
Memory Configuration and Use 14-3

Understanding Memory Allocation Issues
Application Considerations
With memory configuration, it is important to size the cache appropriately for the

application’s needs. Conversely, tuning the application’s use of the caches can

greatly reduce resource requirements. Efficient use of the Oracle memory caches

also reduces the load on related resources, such as the latches that protect the

caches, the CPU, and the I/O system.

For best performance, you should consider the following:

■ The application should be designed and coded to interact with Oracle

efficiently.

■ Memory allocations to Oracle memory structures should best reflect the needs

of the application.

Making changes or additions to an existing application might require resizing

Oracle memory structures to meet the needs of your modified application.

Operating System Memory Use
For most operating systems, it is important to consider the following:

Reduce paging
Paging occurs when an operating system transfers memory-resident pages to disk

solely to allow new pages to be loaded into memory. Many operating systems page

to accommodate large amounts of information that do not fit into real memory. On

most operating systems, paging reduces performance.

Use the operating system utilities to examine the operating system, to identify

whether there is a lot of paging on your system. If there is, then the total memory on

the system might not be large enough to hold everything for which you have

allocated memory. Either increase the total memory on your system, or decrease the

amount of memory allocated.

Fit the SGA into main memory
Because the purpose of the SGA is to store data in memory for fast access, the SGA

should be within main memory. If pages of the SGA are swapped to disk, then the

data is no longer quickly accessible. On most operating systems, the disadvantage

of paging significantly outweighs the advantage of a large SGA.
14-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding Memory Allocation Issues
To see how much memory is allocated to the SGA and each of its internal structures,

enter the following SQL*Plus statement:

SHOW SGA

The output of this statement will look similar to the following:

Total System Global Area 840205000 bytes
Fixed Size 279240 bytes
Variable Size 520093696 bytes
Database Buffers 318767104 bytes
Redo Buffers 1064960 bytes

Allow adequate memory to individual users
When sizing the SGA, ensure that you allow enough memory for the individual

server processes and any other programs running on the system.

Iteration During Configuration
Configuring memory allocation involves distributing available memory to Oracle

memory structures, depending on the needs of the application. The distribution of

memory to Oracle structures can affect the amount of physical I/O necessary for

Oracle to operate. Having a good first initial memory configuration also provides

an indication of whether the I/O system is effectively configured.

It might be necessary to repeat the steps of memory allocation after the initial pass

through the process. Subsequent passes let you make adjustments in earlier steps,

based on changes in later steps. For example, decreasing the size of the buffer cache

lets you increase the size of another memory structure, such as the shared pool.

Note: The LOCK_SGA parameter can be used to lock the SGA into

physical memory and prevent it from being paged out.

See Also: Your operating system hardware and software

documentation, as well as the Oracle documentation specific to

your operating system, for more information on tuning operating

system memory usage
Memory Configuration and Use 14-5

Configuring and Using the Buffer Cache
Configuring and Using the Buffer Cache
For many types of operations, Oracle uses the buffer cache to store blocks read from

disk. Oracle bypasses the buffer cache for particular operations, such as sorting and

parallel reads. For operations that use the buffer cache, this section explains the

following:

■ Using the Buffer Cache Effectively

■ Sizing the Buffer Cache

■ Interpreting and Using the Buffer Cache Advisory Statistics

■ Considering Multiple Buffer Pools

Using the Buffer Cache Effectively
To use the buffer cache effectively, SQL statements for the application should be

tuned to avoid unnecessary resource consumption. To ensure this, verify that

frequently executed SQL statements and SQL statements that perform many buffer

gets have been tuned.

Sizing the Buffer Cache
When configuring a new instance, it is impossible to know the correct size for the

buffer cache. Typically, a database administrator makes a first estimate for the cache

size, then runs a representative workload on the instance and examines the relevant

statistics to see whether the cache is under or over configured.

Buffer Cache Advisory Statistics
A number of statistics can be used to examine buffer cache activity. These include

the following:

■ V$DB_CACHE_ADVICE

■ Buffer cache hit ratio

Using V$DB_CACHE_ADVICE This view is populated when the DB_CACHE_ADVICE
parameter is set to ON. This view shows the simulated miss rates for a range of

potential buffer cache sizes.

See Also: Chapter 6, "Optimizing SQL Statements" for

information on how to do this
14-6 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Buffer Cache
Each cache size simulated has its own row in this view, with the predicted physical

I/O activity that would take place for that size. The DB_CACHE_ADVICE parameter

is dynamic, so the advisory can be enabled and disabled dynamically to allow you

to collect advisory data for a specific workload.

Two minor overheads are associated with this advisory:

■ CPU: When the advisory is enabled, there is a small increase in CPU usage,

because additional bookkeeping is required.

■ Memory: The advisory requires memory to be allocated from the shared pool

(about 100 bytes for each buffer).

Oracle9i Release 2 (9.2) uses DBA-based sampling to gather cache advisory

statistics. Sampling substantially reduces both CPU and memory overhead

associated with bookkeeping. Sampling is not used for a buffer pool if the number

of buffers in that buffer pool is small to begin with.

To use V$DB_CACHE_ADVICE, the parameter DB_CACHE_ADVICE should be set to

ON, and a representative workload should be running on the instance. Allow the

workload to stabilize before querying the V$DB_CACHE_ADVICE view.

The following SQL statement returns the predicted I/O requirement for the default

buffer pool for various cache sizes:

COLUMN size_for_estimate FORMAT 999,999,999,999 heading ’Cache Size (MB)’
COLUMN buffers_for_estimate FORMAT 999,999,999 heading ’Buffers’
COLUMN estd_physical_read_factor FORMAT 999.90 heading ’Estd Phys|Read Factor’
COLUMN estd_physical_reads FORMAT 999,999,999 heading ’Estd Phys| Reads’

SELECT size_for_estimate, buffers_for_estimate, estd_physical_read_factor, estd_physical_reads
 FROM V$DB_CACHE_ADVICE
 WHERE name = ’DEFAULT’
 AND block_size = (SELECT value FROM V$PARAMETER WHERE name = ’db_block_size’)
 AND advice_status = ’ON’;

The following output shows that if the cache was 212 MB, rather than the current

size of 304 MB, the estimated additional number of physical reads would be over 17

million (17,850,847). Increasing the cache size beyond its current size would not

provide a significant benefit.

 Estd Phys Estd Phys
 Cache Size (MB) Buffers Read Factor Reads
---------------- ------------ ----------- ------------
 30 3,802 18.70 192,317,943 10% of Current Size
 60 7,604 12.83 131,949,536
Memory Configuration and Use 14-7

Configuring and Using the Buffer Cache
 91 11,406 7.38 75,865,861
 121 15,208 4.97 51,111,658
 152 19,010 3.64 37,460,786
 182 22,812 2.50 25,668,196
 212 26,614 1.74 17,850,847
 243 30,416 1.33 13,720,149
 273 34,218 1.13 11,583,180
 304 38,020 1.00 10,282,475 Current Size
 334 41,822 .93 9,515,878
 364 45,624 .87 8,909,026
 395 49,426 .83 8,495,039
 424 53,228 .79 8,116,496
 456 57,030 .76 7,824,764
 486 60,832 .74 7,563,180
 517 64,634 .71 7,311,729
 547 68,436 .69 7,104,280
 577 72,238 .67 6,895,122
 608 76,040 .66 6,739,731 200% of Current Size

This view assists in cache sizing by providing information that predicts the number

of physical reads for each potential cache size. The data also includes a physical

read factor, which is a factor by which the current number of physical reads is

estimated to change if the buffer cache is resized to a given value.

The relationship between successfully finding a block in the cache and the size of

the cache is not always a smooth distribution. When sizing the buffer pool, avoid

the use of additional buffers that contribute little or nothing to the cache hit ratio. In

the example illustrated in Figure 14–1 on page 14-9, only narrow bands of

increments to the cache size may be worthy of consideration.

Note: With Oracle, physical reads do not necessarily indicate disk

reads; physical reads may well be satisfied from the file system

cache.
14-8 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Buffer Cache
Figure 14–1 Physical I/O and Buffer Cache Size

Examining Figure 14–1 leads to the following observations:

■ The benefit from increasing buffers from point A to point B is considerably

higher than from point B to point C.

■ The decrease in the physical I/O between points A and B and points B and C is

not smooth, as indicated by the dotted line in the graph.

Calculating the Buffer Cache Hit Ratio The buffer cache hit ratio calculates how often a

requested block has been found in the buffer cache without requiring disk access.

This ratio is computed using data selected from the dynamic performance view

V$SYSSTAT. The buffer cache hit ratio can be used to verify the physical I/O as

predicted by V$DB_CACHE_ADVICE.

The statistics in Table 14–1 are used to calculate the hit ratio.

Table 14–1 Statistics for Calculating the Hit Ratio

Statistic Description

session logical
reads

The total number of requests to access a block, whether in memory
or on disk.

Buffers

P
hy

s
I/O

 R
at

io

~0.5

~0.1

Actual

Intuitive

A

B

C

Memory Configuration and Use 14-9

Configuring and Using the Buffer Cache
Example 14–1 has been simplified by using values selected directly from the

V$SYSSTAT table, rather than over an interval. It is best to calculate the delta of

these statistics over an interval while your application is running, then use them to

determine the hit ratio.

Example 14–1 Calculating the Buffer Cache Hit Ratio

SELECT NAME, VALUE
 FROM V$SYSSTAT
WHERE NAME IN (’session logical reads’,’physical reads’,
 ’physical reads direct’,’physical reads direct (lob)’);

The output of this query will look similar to the following:

NAME VALUE
-- ----------
session logical reads 464905358
physical reads 10380487
physical reads direct 86850
physical reads direct (lob) 0

Calculate the hit ratio for the buffer cache with the following formula:

Hit Ratio = 1 - ((physical reads - physical reads direct - physical reads direct (lob)) /
(db block gets + consistent gets - physical reads direct - physical reads direct (lob))

Based on the sample statistics in the example, the buffer cache hit ratio is equal to

.978 or 97.8%.

physical reads The total number of requests to access a data block that resulted in
access to datafiles on disk. The block could have been read into the
cache or read into local memory by a direct read.

physical reads
direct

The number of blocks read, bypassing the buffer cache, excluding
direct reads for large objects (LOBs).

physical reads
direct (lob)

The number of blocks read while reading LOBs, bypassing the
buffer cache.

See Also: Chapter 20, "Oracle Tools to Gather Database Statistics"

for more information on collecting statistics over an interval

Table 14–1 (Cont.) Statistics for Calculating the Hit Ratio

Statistic Description
14-10 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Buffer Cache
Interpreting and Using the Buffer Cache Advisory Statistics
There are many factors to examine before considering whether to increase or

decrease the buffer cache size. For example, you should examine V$DB_CACHE_
ADVICE data and the buffer cache hit ratio.

A low cache hit ratio does not imply that increasing the size of the cache would be

beneficial for performance. A good cache hit ratio could wrongly indicate that the

cache is adequately sized for the workload.

To interpret the buffer cache hit ratio, you should consider the following:

■ Repeated scanning of the same large table or index can artificially inflate a poor

cache hit ratio. Examine frequently executed SQL statements with a large

number of buffer gets, to ensure that the execution plan for such SQL

statements is optimal. If possible, avoid repeated scanning of frequently

accessed data by performing all of the processing in a single pass or by

optimizing the SQL statement.

■ If possible, avoid requerying the same data, by caching frequently accessed data

in the client program or middle tier.

■ Blocks encountered during a long full table scan are not put at the head of the

list of last recently used (LRU) blocks. Therefore, the blocks are aged out faster

than blocks read when performing indexed lookups or small table scans. Thus,

poor hit ratios when valid large full table scans are occurring should also be

considered when interpreting the buffer cache data.

■ In any large database running OLTP applications in any given unit of time,

most rows are accessed either one or zero times. On this basis, there might be

little purpose in keeping the block in memory for very long following its use.

■ A common mistake is to continue increasing the buffer cache size. Such

increases have no effect if you are doing full table scans or operations that do

not use the buffer cache.

Increasing Memory Allocated to the Buffer Cache
As a general rule, investigate increasing the size of the cache if the cache hit ratio is

low and your application has been tuned to avoid performing full table scans.

Note: Short table scans are scans performed on tables under a

certain size threshold. The definition of a small table is the

maximum of 2% of the buffer cache and 20, whichever is bigger.
Memory Configuration and Use 14-11

Configuring and Using the Buffer Cache
To increase cache size, first set the DB_CACHE_ADVICE parameter to ON, and let the

cache statistics stabilize. Examine the advisory data in the V$DB_CACHE_ADVICE
view to determine the next increment required to significantly decrease the amount

of physical I/O performed. If it is possible to allocate the required extra memory to

the buffer cache without causing the host operating system to page, then allocate

this memory. To increase the amount of memory allocated to the buffer cache,

increase the value of the parameter DB_CACHE_SIZE.

If required, resize the buffer pools dynamically, rather than shutting down the

instance to perform this change.

The DB_CACHE_SIZE parameter specifies the size of the default cache for the

database's standard block size. To create and use tablespaces with block sizes

different than the database's standard block sizes (such as to support transportable

tablespaces), you must configure a separate cache for each block size used. The DB_
nK_CACHE_SIZE parameter can be used to configure the nonstandard block size

needed (where n is 2, 4, 8, 16 or 32 and n is not the standard block size).

Reducing Memory Allocated to the Buffer Cache
If the cache hit ratio is high, then the cache is probably large enough to hold the

most frequently accessed data. Check V$DB_CACHE_ADVICE data to see whether

decreasing the cache size significantly causes the number of physical I/Os to

increase. If not, and if you require memory for another memory structure, then you

might be able to reduce the cache size and still maintain good performance. To

make the buffer cache smaller, reduce the size of the cache by changing the value

for the parameter DB_CACHE_SIZE.

Note: When the cache is resized, DB_CACHE_ADVICE is set to

OFF. Also, V$DB_CACHE_ADVICE shows the advisory for the old

value of the cache. This value remains until DB_CACHE_ADVICE is
explicitly set back to READY or ON.

Note: The process of choosing a cache size is the same, regardless

of whether the cache is the default standard block size cache, the

KEEP or RECYCLE cache, or a nonstandard block size cache.

See Also: Oracle9i Database Reference and Oracle9i Database
Administrator’s Guide for more information on using the DB_nK_
CACHE_SIZE parameters
14-12 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Buffer Cache
Considering Multiple Buffer Pools
A single default buffer pool is generally adequate for most systems. However, users

with detailed knowledge of an application’s buffer pool might benefit from

configuring multiple buffer pools.

With segments that have atypical access patterns, store blocks from those segments

in two different buffer pools: the KEEP pool and the RECYCLE pool. A segment’s

access pattern may be atypical if it is constantly accessed (that is, hot) or

infrequently accessed (for example, a large segment accessed by a batch job only

once a day).

Multiple buffer pools let you address these differences. You can use a KEEP buffer

pool to maintain frequently accessed segments in the buffer cache, and a RECYCLE
buffer pool to prevent objects from consuming unnecessary space in the cache.

When an object is associated with a cache, all blocks from that object are placed in

that cache. Oracle maintains a DEFAULT buffer pool for objects that have not been

assigned to a specific buffer pool. The default buffer pool is of size DB_CACHE_
SIZE . Each buffer pool uses the same LRU replacement policy (for example, if the

KEEP pool is not large enough to store all of the segments allocated to it, then the

oldest blocks age out of the cache).

By allocating objects to appropriate buffer pools, you can:

■ Reduce or eliminate I/Os

■ Isolate or limit an object to a separate cache

Random Access to Large Segments
A problem can occur with an LRU aging method when a very large segment is

accessed with a large or unbounded index range scan. Here, very large means large

compared to the size of the cache. Any single segment that accounts for a

substantial portion (more than 10%) of nonsequential physical reads can be

considered very large. Random reads to a large segment can cause buffers that

contain data for other segments to be aged out of the cache. The large segment ends

up consuming a large percentage of the cache, but it does not benefit from the

cache.

Very frequently accessed segments are not affected by large segment reads because

their buffers are warmed frequently enough that they do not age out of the cache.

However, the problem affects warm segments that are not accessed frequently

enough to survive the buffer aging caused by the large segment reads. There are

three options for solving this problem:
Memory Configuration and Use 14-13

Configuring and Using the Buffer Cache
1. If the object accessed is an index, find out whether the index is selective. If not,

tune the SQL statement to use a more selective index.

2. If the SQL statement is tuned, you can move the large segment into a separate

RECYCLE cache so that it does not affect the other segments. The RECYCLE
cache should be smaller than the DEFAULT buffer pool, and it should reuse

buffers more quickly than the DEFAULT buffer pool.

3. Alternatively, you can move the small warm segments into a separate KEEP
cache that is not used at all for large segments. The KEEP cache can be sized to

minimize misses in the cache. You can make the response times for specific

queries more predictable by putting the segments accessed by the queries in the

KEEP cache to ensure that they do not age out.

Oracle Real Application Cluster Instances
You can create multiple buffer pools for each database instance. The same set of

buffer pools need not be defined for each instance of the database. Among

instances, the buffer pools can be different sizes or not defined at all. Tune each

instance according to the application requirements for that instance.

Using Multiple Buffer Pools
To define a default buffer pool for an object, use the BUFFER_POOL keyword of the

STORAGE clause. This clause is valid for CREATE and ALTER TABLE, CLUSTER, and

INDEX SQL statements. After a buffer pool has been specified, all subsequent blocks

read for the object are placed in that pool.

If a buffer pool is defined for a partitioned table or index, then each partition of the

object inherits the buffer pool from the table or index definition, unless you override

it with a specific buffer pool.

When the buffer pool of an object is changed using the ALTER statement, all buffers

currently containing blocks of the altered segment remain in the buffer pool they

were in before the ALTER statement. Newly loaded blocks and any blocks that have

aged out and are reloaded go into the new buffer pool.

See Also: Oracle9i SQL Reference for information on specifying

BUFFER_POOL in the STORAGE clause
14-14 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Buffer Cache
Buffer Pool Data in V$DB_CACHE_ADVICE
V$DB_CACHE_ADVICE can be used to size all pools configured on an instance.

Make the initial cache size estimate, run the representative workload, then simply

query the V$DB_CACHE_ADVICE view for the pool you want to use.

For example, to query data from the KEEP pool:

SELECT SIZE_FOR_ESTIMATE, BUFFERS_FOR_ESTIMATE, ESTD_PHYSICAL_READ_FACTOR, ESTD_PHYSICAL_READS
 FROM V$DB_CACHE_ADVICE
 WHERE NAME = ’KEEP’
 AND BLOCK_SIZE = (SELECT VALUE FROM V$PARAMETER WHERE NAME = ’db_block_size’)
 AND ADVICE_STATUS = ’ON’;

Buffer Pool Hit Ratios
The data in V$SYSSTAT reflects the logical and physical reads for all buffer pools

within one set of statistics. To determine the hit ratio for the buffer pools

individually, you must query the V$BUFFER_POOL_STATISTICS view. This view

maintains statistics for each pool on the number of logical reads and writes.

The buffer pool hit ratio can be determined using the following formula:

hit ratio = 1 - [physical reads/(block gets + consistent gets)]

The values physical reads , block gets , and consistent gets can be

obtained from the following query:

SELECT NAME, PHYSICAL_READS, DB_BLOCK_GETS, CONSISTENT_GETS,
 1 - (PHYSICAL_READS / (DB_BLOCK_GETS + CONSISTENT_GETS)) "Hit Ratio"
 FROM V$BUFFER_POOL_STATISTICS;

Determining Which Segments Have Many Buffers in the Pool
The V$BH view shows the data object ID of all blocks that currently reside in the

SGA. To determine which segments have many buffers in the pool, you can use one

of the two methods described in this section. You can either look at the buffer cache

usage pattern for all segments (Method 1) or examine the usage pattern of a specific

segment, (Method 2).

Method 1 The following query counts the number of blocks for all segments that

reside in the buffer cache at that point in time. Depending on buffer cache size, this

might require a lot of sort space.

COLUMN object_name FORMAT a40
COLUMN number_of_blocks FORMAT 999,999,999,999
Memory Configuration and Use 14-15

Configuring and Using the Buffer Cache
SELECT o.object_name, COUNT(1) number_of_blocks
 FROM DBA_OBJECTS o, V$BH bh
 WHERE o.object_id = bh.objd
 AND o.owner != ’SYS’
 GROUP BY o.object_name
 ORDER BY count(1);

OBJECT_NAME NUMBER_OF_BLOCKS
-- ----------------
OA_PREF_UNIQ_KEY 1
SYS_C002651 1
..
DS_PERSON 78
OM_EXT_HEADER 701
OM_SHELL 1,765
OM_HEADER 5,826
OM_INSTANCE 12,644

Method 2 Use the following steps to determine the percentage of the cache used by

an individual object at a given point in time:

1. Find the Oracle internal object number of the segment by entering the following

query:

SELECT DATA_OBJECT_ID, OBJECT_TYPE
 FROM DBA_OBJECTS
 WHERE OBJECT_NAME = UPPER('SEGMENT_NAME');

Because two objects can have the same name (if they are different types of

objects), use the OBJECT_TYPE column to identify the object of interest.

2. Find the number of buffers in the buffer cache for SEGMENT_NAME:

SELECT COUNT(*) BUFFERS
 FROM V$BH
 WHERE objd = data_object_id_value ;

where data_object_id_value is from step 1.

3. Find the number of buffers in the instance:

SELECT NAME, BLOCK_SIZE, SUM(BUFFERS)
 FROM V$BUFFER_POOL
 GROUP BY NAME, BLOCK_SIZE
 HAVING SUM(BUFFERS) > 0;
14-16 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Buffer Cache
4. Calculate the ratio of buffers to total buffers to obtain the percentage of the

cache currently used by SEGMENT_NAME:

% cache used by segment_name = [buffers(Step2)/total buffers(Step3)]

KEEP Pool
If there are certain segments in your application that are referenced frequently, then

store the blocks from those segments in a separate cache called the KEEP buffer

pool. Memory is allocated to the KEEP buffer pool by setting the parameter DB_
KEEP_CACHE_SIZE to the required size. The memory for the KEEP pool is not a

subset of the default pool. Typical segments that can be kept are small reference

tables that are used frequently. Application developers and DBAs can determine

which tables are candidates.

You can check the number of blocks from candidate tables by querying V$BH, as

described in "Determining Which Segments Have Many Buffers in the Pool" on

page 14-15.

The goal of the KEEP buffer pool is to retain objects in memory, thus avoiding I/O

operations. The size of the KEEP buffer pool, therefore, depends on the objects that

you want to keep in the buffer cache. You can compute an approximate size for the

KEEP buffer pool by adding together the blocks used by all objects assigned to this

pool. If you gather statistics on the segments, you can query DBA_TABLES.BLOCKS
and DBA_TABLES.EMPTY_BLOCKS to determine the number of blocks used.

Calculate the hit ratio by taking two snapshots of system performance at different

times, using the previous query. Subtract the more recent values for physical
reads , block gets , and consistent gets from the older values, and use the

results to compute the hit ratio.

A buffer pool hit ratio of 100% might not be optimal. Often, you can decrease the

size of your KEEPbuffer pool and still maintain a sufficiently high hit ratio. Allocate

blocks removed from the KEEP buffer pool to other buffer pools.

Note: This technique works only for a single segment. You must

run the query for each partition for a partitioned object.

Note: The NOCACHE clause has no effect on a table in the KEEP
cache.
Memory Configuration and Use 14-17

Configuring and Using the Shared Pool and Large Pool
Each object kept in memory results in a trade-off. It is beneficial to keep

frequently-accessed blocks in the cache, but retaining infrequently-used blocks

results in less space for other, more active blocks.

RECYCLE Pool
It is possible to configure a RECYCLE buffer pool for blocks belonging to those

segments that you do not want to remain in memory. The RECYCLEpool is good for

segments that are scanned rarely or are not referenced frequently. If an application

accesses the blocks of a very large object in a random fashion, then there is little

chance of reusing a block stored in the buffer pool before it is aged out. This is true

regardless of the size of the buffer pool (given the constraint of the amount of

available physical memory). Consequently, the object’s blocks need not be cached;

those cache buffers can be allocated to other objects.

Memory is allocated to the RECYCLE buffer pool by setting the parameter DB_
RECYCLE_CACHE_SIZE to the required size. This memory for the RECYCLE buffer

pool is not a subset of the default pool.

Do not discard blocks from memory too quickly. If the buffer pool is too small, then

blocks can age out of the cache before the transaction or SQL statement has

completed execution. For example, an application might select a value from a table,

use the value to process some data, and then update the record. If the block is

removed from the cache after the SELECT statement, then it must be read from disk

again to perform the update. The block should be retained for the duration of the

user transaction.

Configuring and Using the Shared Pool and Large Pool
Oracle uses the shared pool to cache many different types of data. Cached data

includes the textual and executable forms of PL/SQL blocks and SQL statements,

dictionary cache data, and other data.

Proper use and sizing of the shared pool can reduce resource consumption in at

least four ways:

1. Parse overhead is avoided if the SQL statement is already in the shared pool.

This saves CPU resources on the host and elapsed time for the end user.

Note: If an object grows in size, then it might no longer fit in the

KEEP buffer pool. You will begin to lose blocks out of the cache.
14-18 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
2. Latching resource usage is significantly reduced, which results in greater

scalability.

3. Shared pool memory requirements are reduced, because all applications use the

same pool of SQL statements and dictionary resources.

4. I/O resources are saved, because dictionary elements that are in the shared pool

do not require disk access.

This section covers the following:

■ Shared Pool Concepts

■ Using the Shared Pool Effectively

■ Sizing the Shared Pool

■ Interpreting Shared Pool Statistics

■ Using the Large Pool

■ Using CURSOR_SPACE_FOR_TIME

■ Caching Session Cursors

■ Configuring the Reserved Pool

■ Keeping Large Objects to Prevent Aging

■ CURSOR_SHARING for Existing Applications

Shared Pool Concepts
The main components of the shared pool are the library cache and the dictionary

cache. The library cache stores the executable (parsed or compiled) form of recently

referenced SQL and PL/SQL code. The dictionary cache stores data referenced from

the data dictionary. Many of the caches in the shared pool automatically increase or

decrease in size, as needed, including the library cache and the dictionary cache.

Old entries are aged out of these caches to accommodate new entries when the

shared pool does not have free space.

A cache miss on the data dictionary cache or library cache is more expensive than a

miss on the buffer cache. For this reason, the shared pool should be sized to ensure

that frequently used data is cached.

A number of features make large memory allocations in the shared pool: for

example, the shared server, parallel query, or Recovery Manager. Oracle

recommends segregating the SGA memory used by these features by configuring a

distinct memory area, called the large pool.
Memory Configuration and Use 14-19

Configuring and Using the Shared Pool and Large Pool
Allocation of memory from the shared pool is performed in chunks. This allows

large objects (over 5k) to be loaded into the cache without requiring a single

contiguous area, hence reducing the possibility of running out of enough

contiguous memory due to fragmentation.

Infrequently, Java, PL/SQL, or SQL cursors may make allocations out of the shared

pool that are larger than 5k. To allow these allocations to occur most efficiently,

Oracle segregates a small amount of the shared pool. This memory is used if the

shared pool does not have enough space. The segregated area of the shared pool is

called the reserved pool.

Dictionary Cache Concepts
Information stored in the data dictionary cache includes usernames, segment

information, profile data, tablespace information, and sequence numbers. The

dictionary cache also stores descriptive information, or metadata, about schema

objects. Oracle uses this metadata when parsing SQL cursors or during the

compilation of PL/SQL programs.

Library Cache Concepts
The library cache holds executable forms of SQL cursors, PL/SQL programs, and

Java classes. This section focuses on tuning as it relates to cursors, PL/SQL

programs, and Java classes. These are collectively referred to as application code.

When application code is run, Oracle attempts to reuse existing code if it has been

executed previously and can be shared. If the parsed representation of the statement

does exist in the library cache and it can be shared, then Oracle reuses the existing

code. This is known as a soft parse, or a library cache hit.

If Oracle is unable to use existing code, then a new executable version of the

application code must be built. This is known as a hard parse, or a library cache

miss.

See Also: "Using the Large Pool" on page 14-35 for more

information on configuring the large pool

See Also: "Configuring the Reserved Pool" on page 14-40 for

more information on the reserved area of the shared pool

See Also: "SQL Sharing Criteria" on page 14-21 for details on

when a SQL and PL/SQL statements can be shared
14-20 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Library cache misses can occur on either the parse step or the execute step when

processing a SQL statement.

When an application makes a parse call for a SQL statement, if the parsed

representation of the statement does not already exist in the library cache, then

Oracle parses the statement and stores the parsed form in the shared pool. This is a

hard parse. You might be able to reduce library cache misses on parse calls by

ensuring that all shareable SQL statements are in the shared pool whenever

possible.

If an application makes an execute call for a SQL statement, and if the executable

portion of the previously built SQL statement has been aged out (that is,

deallocated) from the library cache to make room for another statement, then Oracle

implicitly reparses the statement, creating a new shared SQL area for it, and

executes it. This also results in a hard parse. Usually, you can reduce library cache

misses on execution calls by allocating more memory to the library cache.

In order to perform a hard parse, Oracle uses more resources than during a soft

parse. Resources used for a soft parse include CPU and library cache latch gets.

Resources required for a hard parse include additional CPU, library cache latch

gets, and shared pool latch gets.

SQL Sharing Criteria
Oracle automatically determines whether a SQL statement or PL/SQL block being

issued is identical to another statement currently in the shared pool.

Oracle performs the following steps for the comparison:

1. The text of the statement issued is compared to existing statements in the

shared pool.

2. The text of the statement is hashed. If there is no matching hash value, then the

SQL statement does not currently exist in the shared pool, and a hard parse is

performed.

3. If there is a matching hash value for an existing SQL statement in the shared

pool, then Oracle compares the text of the matched statement to the text of the

statement hashed to see if they are identical. The text of the SQL statements or

PL/SQL blocks must be identical, character for character, including spaces,

case, and comments. For example, the following statements cannot use the

same shared SQL area:

SELECT * FROM employees;
SELECT * FROM Employees;
SELECT * FROM employees;
Memory Configuration and Use 14-21

Configuring and Using the Shared Pool and Large Pool
Usually, SQL statements that differ only in literals cannot use the same shared

SQL area. For example, the following SQL statements do not resolve to the

same SQL area:

SELECT count(1) FROM employees WHERE manager_id = 121;
SELECT count(1) FROM employees WHERE manager_id = 247;

The only exception to this rule is when the parameter CURSOR_SHARING has

been set to SIMILAR or FORCE. Similar statements can share SQL areas when

the CURSOR_SHARING parameter is set to SIMILAR or FORCE. The costs and

benefits involved in using CURSOR_SHARING are explained later in this section.

4. The objects referenced in the issued statement are compared to the referenced

objects of all existing statements in the shared pool to ensure that they are

identical.

References to schema objects in the SQL statements or PL/SQL blocks must

resolve to the same object in the same schema.

For example, if two users each issue the following SQL statement:

SELECT * FROM employees;

and they each have their own employees table, then this statement is not

considered identical, because the statement references different tables for each

user.

5. Bind variables in the SQL statements must match in name, datatype, and

length.

For example, the following statements cannot use the same shared SQL area,

because the bind variable names differ:

SELECT * FROM employees WHERE department_id = :department_id;
SELECT * FROM employees WHERE department_id = :dept_id;

Many Oracle products (such as Oracle Forms and the precompilers) convert the

SQL before passing statements to the database. Characters are uniformly

changed to uppercase, white space is compressed, and bind variables are

renamed so that a consistent set of SQL statements is produced.

See Also: Oracle9i Database Reference for more information on the

CURSOR_SHARING parameter
14-22 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
6. The session’s environment must be identical. Items compared include the

following:

■ Optimization approach and goal. SQL statements must be optimized using

the same optimization approach and, in the case of the cost-based

approach, the same optimization goal.

■ Session-configurable parameters such as SORT_AREA_SIZE.

Using the Shared Pool Effectively
An important purpose of the shared pool is to cache the executable versions of SQL

and PL/SQL statements. This allows multiple executions of the same SQL or

PL/SQL code to be performed without the resources required for a hard parse,

which results in significant reductions in CPU, memory, and latch usage.

The shared pool is also able to support unshared SQL in data warehousing

applications, which execute low-concurrency, high-resource SQL statements. In this

situation, using unshared SQL with literal values is recommended. Using literal

values rather than bind variables allows the optimizer to make good column

selectivity estimates, thus providing an optimal data access plan.

In an OLTP system, there are a number of ways to ensure efficient use of the shared

pool and related resources. Discuss the following items with application developers

and agree on strategies to ensure that the shared pool is used effectively:

■ Shared Cursors

■ Maintaining Connections

■ Single-User Logon and Qualified Table Reference

■ Use of PL/SQL

■ Avoid Performing DDL

■ Cache Sequence Numbers

■ Cursor Access and Management

Efficient use of the shared pool in high-concurrency OLTP systems significantly

reduces the probability of parse-related application scalability issues.

See Also: Oracle9i Data Warehousing Guide
Memory Configuration and Use 14-23

Configuring and Using the Shared Pool and Large Pool
Shared Cursors
Reuse of shared SQL for multiple users running the same application, avoids hard

parsing. Soft parses provide a significant reduction in the use of resources such as

the shared pool and library cache latches. To share cursors, do the following:

■ Use bind variables rather than literals in SQL statements whenever possible.

For example, the following two statements cannot use the same shared area

because they do not match character for character:

SELECT employee_id FROM employees WHERE department_id = 10;
SELECT employee_id FROM employees WHERE department_id = 20;

By replacing the literals with a bind variable, only one SQL statement would

result, which could be executed twice:

SELECT employee_id FROM employees WHERE department_id = :dept_id;

■ Avoid application designs that result in large numbers of users issuing

dynamic, unshared SQL statements. Typically, the majority of data required by

most users can be satisfied using preset queries. Use dynamic SQL where such

functionality is required.

■ Be sure that users of the application do not change the optimization approach

and goal for their individual sessions.

■ Establish the following policies for application developers:

– Standardize naming conventions for bind variables and spacing

conventions for SQL statements and PL/SQL blocks.

– Consider using stored procedures whenever possible. Multiple users

issuing the same stored procedure use the same shared PL/SQL area

automatically. Because stored procedures are stored in a parsed form, their

use reduces runtime parsing.

Note: For existing applications where rewriting the code to use

bind variables is impractical, it is possible to use the CURSOR_
SHARING initialization parameter to avoid some of the hard parse

overhead. For more information see section "CURSOR_SHARING

for Existing Applications" on page 14-43.
14-24 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Maintaining Connections
Large OLTP applications with middle tiers should maintain connections, rather

than connecting and disconnecting for each database request. Maintaining

connections saves CPU resources and database resources, such as latches.

Single-User Logon and Qualified Table Reference
Large OLTP systems where users log in to the database as their own user ID can

benefit from explicitly qualifying the segment owner, rather than using public

synonyms. This significantly reduces the number of entries in the dictionary cache.

For example:

SELECT employee_id FROM hr.employees WHERE department_id = :dept_id;

An alternative to qualifying table names is to connect to the database through a

single user ID, rather than individual user IDs. User-level validation can take place

locally on the middle tier. Reducing the number of distinct userIDs also reduces the

load on the dictionary cache.

Use of PL/SQL
Using stored PL/SQL packages can overcome many of the scalability issues for

systems with thousands of users, each with individual user sign-on and public

synonyms. This is because a package is executed as the owner, rather than the caller,

which reduces the dictionary cache load considerably.

Avoid Performing DDL
Avoid performing DDL operations on high-usage segments during peak hours.

Performing DDL on such segments often results in the dependent SQL being

invalidated and hence reparsed on a later execution.

Cache Sequence Numbers
Allocating sufficient cache space for frequently updated sequence numbers

significantly reduces the frequency of dictionary cache locks, which improves

Note: Oracle Corporation encourages the use of definer-rights

packages to overcome scalability issues. The benefits of reduced

dictionary cache load are not as obvious with invoker-rights

packages.
Memory Configuration and Use 14-25

Configuring and Using the Shared Pool and Large Pool
scalability. The CACHE keyword on the CREATE SEQUENCE or ALTER SEQUENCE
statement lets you configure the number of cached entries for each sequence.

Cursor Access and Management
Depending on the Oracle application tool you are using, it is possible to control

how frequently your application performs parse calls.

The frequency with which your application either closes cursors or reuses existing

cursors for new SQL statements affects the amount of memory used by a session

and often the amount of parsing performed by that session.

An application that closes cursors or reuses cursors (for a different SQL statement),

does not need as much session memory as an application that keeps cursors open.

Conversely, that same application may need to perform more parse calls, using

extra CPU and Oracle resources.

Cursors associated with SQL statements that are not executed frequently can be

closed or reused for other statements, because the likelihood of reexecuting (and

reparsing) that statement is low.

Extra parse calls are required when a cursor containing a SQL statement that will be

reexecuted is closed or reused for another statement. Had the cursor remained

open, it could have been reused without the overhead of issuing a parse call.

The ways in which you control cursor management depends on your application

development tool. The following sections introduce the methods used for some

Oracle tools.

Reducing Parse Calls with OCI When using Oracle Call Interface (OCI), do not close

and reopen cursors that you will be reexecuting. Instead, leave the cursors open,

and change the literal values in the bind variables before execution.

Avoid reusing statement handles for new SQL statements when the existing SQL

statement will be reexecuted in the future.

See Also: Oracle9i SQL Reference for details on the CREATE
SEQUENCE and ALTER SEQUENCE statements

See Also:

■ The tool-specific documentation for more information about

each tool

■ Oracle9i Database Concepts for more information on cursor

sharing and management
14-26 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Reducing Parse Calls with the Oracle Precompilers When using the Oracle precompilers,

you can control when cursors are closed by setting precompiler clauses. In Oracle

mode, the clauses are as follows:

■ HOLD_CURSOR = YES

■ RELEASE_CURSOR = NO

■ MAXOPENCURSORS =desired_value

Oracle Corporation recommends that you not use ANSI mode, in which the values

of HOLD_CURSOR and RELEASE_CURSOR are switched.

The precompiler clauses can be specified on the precompiler command line or

within the precompiler program. With these clauses, you can employ different

strategies for managing cursors during execution of the program.

Reducing Parse Calls with SQLJ Prepare the statement, then reexecute the statement

with the new values for the bind variables. The cursor stays open for the duration of

the session.

Reducing Parse Calls with JDBC Avoid closing cursors if they will be reexecuted,

because the new literal values can be bound to the cursor for reexecution.

Alternatively, JDBC provides a SQL statement cache within the JDBC client using

the setStmtCacheSize() method. Using this method, JDBC creates a SQL

statement cache that is local to the JDBC program.

Reducing Parse Calls with Oracle Forms With Oracle Forms, it is possible to control

some aspects of cursor management. You can exercise this control either at the

trigger level, at the form level, or at run time.

Sizing the Shared Pool
When configuring a brand new instance, it is impossible to know the correct size to

make the shared pool cache. Typically, a DBA makes a first estimate for the cache

size, then runs a representative workload on the instance, and examines the relevant

statistics to see whether the cache is under-configured or over-configured.

See Also: Your language’s precompiler manual for more

information on these clauses

See Also: Oracle9i JDBC Developer’s Guide and Reference for more

information on using the JDBC SQL statement cache
Memory Configuration and Use 14-27

Configuring and Using the Shared Pool and Large Pool
For most OLTP applications, shared pool size is an important factor in application

performance. Shared pool size is less important for applications that issue a very

limited number of discrete SQL statements, such as data support systems (DSS).

If the shared pool is too small, then extra resources are used to manage the limited

amount of available space. This consumes CPU and latching resources, and causes

contention.

Optimally, the shared pool should be just large enough to cache frequently accessed

objects. Having a significant amount of free memory in the shared pool is a waste of

memory.

Shared Pool: Library Cache Statistics
When sizing the shared pool, the goal is to ensure that SQL statements that will be

executed multiple times are cached in the library cache, without allocating too

much memory.

The statistic that shows the amount of reloading (that is, reparsing) of a previously

cached SQL statement that was aged out of the cache is the RELOADS column in the

V$LIBRARYCACHE view. In an application that reuses SQL effectively, on a system

with an optimal shared pool size, the RELOADS statistic will have a value near zero.

The INVALIDATIONS column in V$LIBRARYCACHE view shows the number of

times library cache data was invalidated and had to be reparsed. INVALIDATIONS
should be near zero. This means SQL statements that could have been shared were

invalidated by some operation (for example, a DDL). This statistic should be near

zero on OLTP systems during peak loads.

Another key statistic is the amount of free memory in the shared pool at peak times.

The amount of free memory can be queried from V$SGASTAT, looking at the free

memory for the shared pool. Optimally, free memory should be as low as possible,

without causing any reloads on the system.

Lastly, a broad indicator of library cache health is the library cache hit ratio. This

value should be considered along with the other statistics discussed in this section

and other data, such as the rate of hard parsing and whether there is any shared

pool or library cache latch contention.

These statistics are discussed in more detail in the following section.

V$LIBRARYCACHE
You can monitor statistics reflecting library cache activity by examining the

dynamic performance view V$LIBRARYCACHE. These statistics reflect all library

cache activity since the most recent instance startup.
14-28 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Each row in this view contains statistics for one type of item kept in the library

cache. The item described by each row is identified by the value of the NAMESPACE
column. Rows with the following NAMESPACE values reflect library cache activity

for SQL statements and PL/SQL blocks:

■ SQL AREA

■ TABLE/PROCEDURE

■ BODY

■ TRIGGER

Rows with other NAMESPACE values reflect library cache activity for object

definitions that Oracle uses for dependency maintenance.

To examine each namespace individually, use the following query:

SELECT namespace
 , pins
 , pinhits
 , reloads
 , invalidations
 FROM V$LIBRARYCACHE
 ORDER BY namespace;

The output of this query could look like the following:

NAMESPACE PINS PINHITS RELOADS INVALIDATIONS
--------------- ---------- ---------- ---------- -------------
BODY 8870 8819 0 0
CLUSTER 393 380 0 0
INDEX 29 0 0 0
OBJECT 0 0 0 0
PIPE 55265 55263 0 0
SQL AREA 21536413 21520516 11204 2
TABLE/PROCEDURE 10775684 10774401 0 0
TRIGGER 1852 1844 0 0

To calculate the library cache hit ratio, use the following formula:

Library Cache Hit Ratio = sum(pinhits) / sum(pins)

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

for information on columns in the V$LIBRARYCACHEview
Memory Configuration and Use 14-29

Configuring and Using the Shared Pool and Large Pool
Using the library cache hit ratio formula, the cache hit ratio is the following:

SUM(PINHITS)/SUM(PINS)

 .999466248

Examining the returned data leads to the following observations:

■ For the SQL AREA namespace, there were 21,536,413 executions.

■ 11,204 of the executions resulted in a library cache miss, requiring Oracle to

implicitly reparse a statement or block or reload an object definition because it

aged out of the library cache (that is, a RELOAD).

■ SQL statements were invalidated two times, again causing library cache misses.

■ The hit percentage is about 99.94%. This means that only .06% of executions

resulted in reparsing.

The amount of free memory in the shared pool is reported in V$SGASTAT. Report

the current value from this view using the following query:

SELECT * FROM V$SGASTAT
 WHERE NAME = ’free memory’
 AND POOL = ’shared pool’;

The output will be similar to the following:

POOL NAME BYTES
----------- -------------------------- ----------
shared pool free memory 4928280

If free memory is always available in the shared pool, then increasing the size of the

pool offers little or no benefit. However, just because the shared pool is full does not

necessarily mean there is a problem. It may be indicative of a well-configured

system.

Note: These queries return data from instance startup, rather than

statistics gathered during an interval; interval statistics can better

pinpoint the problem.

See Also: Chapter 20, "Oracle Tools to Gather Database Statistics"

for information on how gather information over an interval
14-30 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Shared Pool Advisory Statistics
The amount of memory available for the library cache can drastically affect the

parse rate of an Oracle instance. With Oracle9i, Release 2 (9.2) or higher, the shared

pool advisory statistics provide a database administrator with information about

library cache memory and predict how changes in the size of the shared pool can

affect the parse rate.

The shared pool advisory statistics track the library cache’s use of shared pool

memory and predict how the library cache will behave in shared pools of different

sizes. Two fixed views provide the information to determine how much memory

the library cache is using, how much is currently pinned, how much is on the

shared pool's LRU list, as well as how much time might be lost or gained by

changing the size of the shared pool.

The following views of the shared pool advisory statistics are available. These views

display any data when shared pool advisory is on. These statistics reset when the

advisory is turned off.

V$SHARED_POOL_ADVICE This view displays information about estimated parse

time savings in different sizes of shared pool. The sizes range from 50% to 200% of

current shared pool size, in equal intervals. The value of the interval depends on

current shared pool size.

Parse time saved refers to the amount of time saved by keeping library cache

memory objects in the shared pool, as opposed to having to reload these object.

V$LIBRARY_CACHE_MEMORY This view displays information about memory

allocated to library cache memory objects in different namespaces. A memory object

is an internal grouping of memory for efficient management. A library cache object

may consist of one or more memory objects.

Shared Pool: Dictionary Cache Statistics
Typically, if the shared pool is adequately sized for the library cache, it will also be

adequate for the dictionary cache data.

Misses on the data dictionary cache are to be expected in some cases. On instance

startup, the data dictionary cache contains no data. Therefore, any SQL statement

See Also:

■ "V$SHARED_POOL_ADVICE" on page 24-45

■ "V$LIBRARY_CACHE_MEMORY" on page 24-16
Memory Configuration and Use 14-31

Configuring and Using the Shared Pool and Large Pool
issued is likely to result in cache misses. As more data is read into the cache, the

likelihood of cache misses decreases. Eventually, the database reaches a steady state,

in which the most frequently used dictionary data is in the cache. At this point, very

few cache misses occur.

Each row in the V$ROWCACHE view contains statistics for a single type of data

dictionary item. These statistics reflect all data dictionary activity since the most

recent instance startup. The columns in the V$ROWCACHE view that reflect the use

and effectiveness of the data dictionary cache are listed in Table 14–2.

Use the following query to monitor the statistics in the V$ROWCACHE view over a

period of time while your application is running. The derived column PCT_SUCC_
GETS can be considered the item-specific hit ratio:

column parameter format a21
column pct_succ_gets format 999.9
column updates format 999,999,999

SELECT parameter
 , sum(gets)
 , sum(getmisses)
 , 100*sum(gets - getmisses) / sum(gets) pct_succ_gets
 , sum(modifications) updates
 FROM V$ROWCACHE
 WHERE gets > 0
 GROUP BY parameter;

Table 14–2 V$ROWCACHE Columns

Column Description

PARAMETER Identifies a particular data dictionary item. For each row, the
value in this column is the item prefixed by dc_ . For example, in
the row that contains statistics for file descriptions, this column
has the value dc_files .

GETS Shows the total number of requests for information on the
corresponding item. For example, in the row that contains
statistics for file descriptions, this column has the total number
of requests for file description data.

GETMISSES Shows the number of data requests which were not satisfied by
the cache, requiring an I/O.

MODIFICATIONS Shows the number of times data in the dictionary cache was
updated.
14-32 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
The output of this query will be similar to the following:

PARAMETER SUM(GETS) SUM(GETMISSES) PCT_SUCC_GETS UPDATES
--------------------- ---------- -------------- ------------- ------------
dc_database_links 81 1 98.8 0
dc_free_extents 44876 20301 54.8 40,453
dc_global_oids 42 9 78.6 0
dc_histogram_defs 9419 651 93.1 0
dc_object_ids 29854 239 99.2 52
dc_objects 33600 590 98.2 53
dc_profiles 19001 1 100.0 0
dc_rollback_segments 47244 16 100.0 19
dc_segments 100467 19042 81.0 40,272
dc_sequence_grants 119 16 86.6 0
dc_sequences 26973 16 99.9 26,811
dc_synonyms 6617 168 97.5 0
dc_tablespace_quotas 120 7 94.2 51
dc_tablespaces 581248 10 100.0 0
dc_used_extents 51418 20249 60.6 42,811
dc_user_grants 76082 18 100.0 0
dc_usernames 216860 12 100.0 0
dc_users 376895 22 100.0 0

Examining the data returned by the sample query leads to these observations:

■ There are large numbers of misses and updates for used extents, free extents,

and segments. This implies that the instance had a significant amount of

dynamic space extension.

■ Based on the percentage of successful gets, and comparing that statistic with the

actual number of gets, the shared pool is large enough to store dictionary cache

data adequately.

It is also possible to calculate an overall dictionary cache hit ratio using the

following formula; however, summing up the data over all the caches will lose the

finer granularity of data:

SELECT (SUM(GETS - GETMISSES - FIXED)) / SUM(GETS) "ROW CACHE" FROM V$ROWCACHE;

Interpreting Shared Pool Statistics
Shared pool statistics indicate adjustments that can be made. The following sections

describe some of your choices.
Memory Configuration and Use 14-33

Configuring and Using the Shared Pool and Large Pool
Increasing Memory Allocation
Increasing the amount of memory for the shared pool increases the amount of

memory available to both the library cache and the dictionary cache.

Allocating Additional Memory for the Library Cache To ensure that shared SQL areas

remain in the cache after their SQL statements are parsed, increase the amount of

memory available to the library cache until the V$LIBRARYCACHE.RELOADS value

is near zero. To increase the amount of memory available to the library cache,

increase the value of the initialization parameter SHARED_POOL_SIZE. The

maximum value for this parameter depends on your operating system. This

measure reduces implicit reparsing of SQL statements and PL/SQL blocks on

execution.

To take advantage of additional memory available for shared SQL areas, you might

also need to increase the number of cursors permitted for a session. You can do this

by increasing the value of the initialization parameter OPEN_CURSORS.

Allocating Additional Memory to the Data Dictionary Cache Examine cache activity by

monitoring the GETS and GETMISSES columns. For frequently accessed dictionary

caches, the ratio of total GETMISSES to total GETS should be less than 10% or 15%,

depending on the application.

Consider increasing the amount of memory available to the cache if all of the

following are true:

■ Your application is using the shared pool effectively. See "Using the Shared Pool

Effectively" on page 14-23.

■ Your system has reached a steady state, any of the item-specific hit ratios are

low, and there are a large numbers of gets for the caches with low hit ratios.

Increase the amount of memory available to the data dictionary cache by increasing

the value of the initialization parameter SHARED_POOL_SIZE.

Reducing Memory Allocation
If your RELOADS are near zero, and if you have a small amount of free memory in

the shared pool, then the shared pool is probably large enough to hold the most

frequently accessed data.

If you always have significant amounts of memory free in the shared pool, and if

you would like to allocate this memory elsewhere, then you might be able to reduce

the shared pool size and still maintain good performance.
14-34 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
To make the shared pool smaller, reduce the size of the cache by changing the value

for the parameter SHARED_POOL_SIZE.

Using the Large Pool
Unlike the shared pool, the large pool does not have an LRU list. Oracle does not

attempt to age objects out of the large pool.

You should consider configuring a large pool if your instance uses any of the

following:

■ Parallel query

Parallel query uses shared pool memory to cache parallel execution message

buffers.

■ Recovery Manager

Recovery Manager uses the shared pool to cache I/O buffers during backup

and restore operations. For I/O server processes and backup and restore

operations, Oracle allocates buffers that are a few hundred kilobytes in size.

■ Shared server

In a shared server architecture, the session memory for each client process is

included in the shared pool.

Tuning the Large Pool and Shared Pool for the Shared Server Architecture
As Oracle allocates shared pool memory for shared server session memory, the

amount of shared pool memory available for the library cache and dictionary cache

decreases. If you allocate this session memory from a different pool, then Oracle can

use the shared pool primarily for caching shared SQL and not incur the

performance overhead from shrinking the shared SQL cache.

Oracle recommends using the large pool to allocate the shared server-related User

Global Area (UGA), rather that using the shared pool. This is because Oracle uses

the shared pool to allocate Shared Global Area (SGA) memory for other purposes,

See Also: Oracle9i Data Warehousing Guide for more information

on sizing the large pool with parallel query

See Also: Oracle9i Recovery Manager User’s Guide for more

information on sizing the large pool when using Recovery Manager
Memory Configuration and Use 14-35

Configuring and Using the Shared Pool and Large Pool
such as shared SQL and PL/SQL procedures. Using the large pool instead of the

shared pool decreases fragmentation of the shared pool.

To store shared server-related UGA in the large pool, specify a value for the

initialization parameter LARGE_POOL_SIZE. To see which pool (shared pool or

large pool) the memory for an object resides in, check the column POOL in
V$SGASTAT. The large pool is not configured by default; its minimum value is

300K. If you do not configure the large pool, then Oracle uses the shared pool for

shared server user session memory.

Configure the size of the large pool based on the number of simultaneously active

sessions. Each application requires a different amount of memory for session

information, and your configuration of the large pool or SGA should reflect the

memory requirement. For example, assuming that the shared server requires 200K

to 300K to store session information for each active session. If you anticipate 100

active sessions simultaneously, then configure the large pool to be 30M, or increase

the shared pool accordingly if the large pool is not configured.

Determining an Effective Setting for Shared Server UGA Storage The exact amount of UGA

Oracle uses depends on each application. To determine an effective setting for the

large or shared pools, observe UGA use for a typical user and multiply this amount

by the estimated number of user sessions.

Even though use of shared memory increases with shared servers, the total amount

of memory use decreases. This is because there are fewer processes; therefore,

Oracle uses less PGA memory with shared servers when compared to dedicated

server environments.

Note: If a shared server architecture is used, then Oracle allocates

some fixed amount of memory (about 10K) for each configured

session from the shared pool, even if you have configured the large

pool. The CIRCUITS initialization parameter specifies the

maximum number of concurrent shared server connections that the

database allows.

See Also:

■ Oracle9i Database Concepts for more information about the large

pool

■ Oracle9i Database Reference for complete information about

initialization parameters
14-36 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Checking System Statistics in the V$SESSTAT View Oracle collects statistics on total

memory used by a session and stores them in the dynamic performance view

V$SESSTAT. Table 14–3 lists these statistics.

To find the value, query V$STATNAME. If you are using a shared server, you can use

the following query to decide how much larger to make the shared pool. Issue the

following queries while your application is running:

SELECT SUM(VALUE) || ’ BYTES’ "TOTAL MEMORY FOR ALL SESSIONS"
FROM V$SESSTAT, V$STATNAME
WHERE NAME = ’session uga memory’
AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

SELECT SUM(VALUE) || ’ BYTES’ "TOTAL MAX MEM FOR ALL SESSIONS"
FROM V$SESSTAT, V$STATNAME
WHERE NAME = ’session uga memory max’
AND V$SESSTAT.STATISTIC# = V$STATNAME.STATISTIC#;

These queries also select from the dynamic performance view V$STATNAME to
obtain internal identifiers for session memory and max session memory.
The results of these queries could look like the following:

TOTAL MEMORY FOR ALL SESSIONS

157125 BYTES

TOTAL MAX MEM FOR ALL SESSIONS

417381 BYTES

Note: For best performance with sorts using shared servers, set

SORT_AREA_SIZE and SORT_AREA_RETAINED_SIZE to the same

value. This keeps the sort result in the large pool instead of having

it written to disk.

Table 14–3 V$SESSTAT Statistics Reflecting Memory

Statistic Description

session UGA memory The value of this statistic is the amount of memory in
bytes allocated to the session.

Session UGA memory max The value of this statistic is the maximum amount of
memory in bytes ever allocated to the session.
Memory Configuration and Use 14-37

Configuring and Using the Shared Pool and Large Pool
The result of the first query indicates that the memory currently allocated to all

sessions is 157,125 bytes. This value is the total memory with a location that

depends on how the sessions are connected to Oracle. If the sessions are connected

to dedicated server processes, then this memory is part of the memories of the user

processes. If the sessions are connected to shared server processes, then this

memory is part of the shared pool.

The result of the second query indicates that the sum of the maximum sizes of the

memories for all sessions is 417,381 bytes. The second result is greater than the first

because some sessions have deallocated memory since allocating their maximum

amounts.

If you use a shared server architecture, you can use the result of either of these

queries to determine how much larger to make the shared pool. The first value is

likely to be a better estimate than the second unless nearly all sessions are likely to

reach their maximum allocations at the same time.

Limiting Memory Use for Each User Session by Setting PRIVATE_SGA You can set the

PRIVATE_SGA resource limit to restrict the memory used by each client session

from the SGA. PRIVATE_SGA defines the number of bytes of memory used from

the SGA by a session. However, this parameter is used rarely, because most DBAs

do not limit SGA consumption on a user-by-user basis.

Reducing Memory Use with Three-Tier Connections If you have a high number of

connected users, then you can reduce memory usage by implementing three-tier

connections. This by-product of using a transaction process (TP) monitor is feasible

only with pure transactional models, because locks and uncommitted DMLs cannot

be held between calls. A shared server environment offers the following

advantages:

■ It is much less restrictive of the application design than a TP monitor.

■ It dramatically reduces operating system process count and context switches by

enabling users to share a pool of servers.

■ It substantially reduces overall memory usage, even though more SGA is used

in shared server mode.

See Also: Oracle9i SQL Reference, ALTER RESOURCE COST
statement, for more information about setting the PRIVATE_SGA
resource limit
14-38 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
Using CURSOR_SPACE_FOR_TIME
If you have no library cache misses, then you might be able to accelerate execution

calls by setting the value of the initialization parameter CURSOR_SPACE_FOR_TIME
to true . This parameter specifies whether a cursor can be deallocated from the

library cache to make room for a new SQL statement. CURSOR_SPACE_FOR_TIME
has the following values meanings:

■ If CURSOR_SPACE_FOR_TIMEis set to false (the default), then a cursor can be

deallocated from the library cache regardless of whether application cursors

associated with its SQL statement are open. In this case, Oracle must verify that

the cursor containing the SQL statement is in the library cache.

■ If CURSOR_SPACE_FOR_TIME is set to true , then a cursor can be deallocated

only when all application cursors associated with its statement are closed. In

this case, Oracle need not verify that a cursor is in the cache, because it cannot

be deallocated while an application cursor associated with it is open.

Setting the value of the parameter to true saves Oracle a small amount of time and

can slightly improve the performance of execution calls. This value also prevents

the deallocation of cursors until associated application cursors are closed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if you have found

library cache misses on execution calls. Such library cache misses indicate that the

shared pool is not large enough to hold the shared SQL areas of all concurrently

open cursors. If the value is true , and if the shared pool has no space for a new

SQL statement, then the statement cannot be parsed, and Oracle returns an error

saying that there is no more shared memory. If the value is false , and if there is no

space for a new statement, then Oracle deallocates an existing cursor. Although

deallocating a cursor could result in a library cache miss later (only if the cursor is

reexecuted), it is preferable to an error halting your application because a SQL

statement cannot be parsed.

Do not set the value of CURSOR_SPACE_FOR_TIME to true if the amount of

memory available to each user for private SQL areas is scarce. This value also

prevents the deallocation of private SQL areas associated with open cursors. If the

private SQL areas for all concurrently open cursors fills your available memory so

that there is no space for a new SQL statement, then the statement cannot be parsed.

Oracle returns an error indicating that there is not enough memory.

Caching Session Cursors
If an application repeatedly issues parse calls on the same set of SQL statements,

then the reopening of the session cursors can affect system performance. Session
Memory Configuration and Use 14-39

Configuring and Using the Shared Pool and Large Pool
cursors can be stored in a session cursor cache. This feature can be particularly

useful for applications that use Oracle Forms, because switching from one form to

another closes all session cursors associated with the first form.

Oracle checks the library cache to determine whether more than three parse

requests have been issued on a given statement. If so, then Oracle assumes that the

session cursor associated with the statement should be cached and moves the cursor

into the session cursor cache. Subsequent requests to parse that SQL statement by

the same session then find the cursor in the session cursor cache.

To enable caching of session cursors, you must set the initialization parameter

SESSION_CACHED_CURSORS. The value of this parameter is a positive integer

specifying the maximum number of session cursors kept in the cache. An LRU

algorithm removes entries in the session cursor cache to make room for new entries

when needed.

You can also enable the session cursor cache dynamically with the statement:

ALTER SESSION SET SESSION_CACHED_CURSORS =value ;

To determine whether the session cursor cache is sufficiently large for your instance,

you can examine the session statistic session cursor cache hits in the V$SYSSTAT
view. This statistic counts the number of times a parse call found a cursor in the

session cursor cache. If this statistic is a relatively low percentage of the total parse

call count for the session, then consider setting SESSION_CACHED_CURSORS to a

larger value.

Configuring the Reserved Pool
Although Oracle breaks down very large requests for memory into smaller chunks,

on some systems there might still be a requirement to find a contiguous chunk (for

example, over 5 KB) of memory. (The default minimum reserved pool allocation is

4,400 bytes.)

If there is not enough free space in the shared pool, then Oracle must search for and

free enough memory to satisfy this request. This operation could conceivably hold

the latch resource for detectable periods of time, causing minor disruption to other

concurrent attempts at memory allocation.

Hence, Oracle internally reserves a small memory area in the shared pool that can

be used if the shared pool does not have enough space. This reserved pool makes

allocation of large chunks more efficient.

By default, Oracle configures a small reserved pool. This memory can be used for

operations such as PL/SQL and trigger compilation or for temporary space while
14-40 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
loading Java objects. After the memory allocated from the reserved pool is freed, it

returns to the reserved pool.

You probably will not need to change the default amount of space Oracle reserves.

However, if necessary, the reserved pool size can be changed by setting the

SHARED_POOL_RESERVED_SIZE initialization parameter. This parameter sets

aside space in the shared pool for unusually large allocations.

For large allocations, Oracle attempts to allocate space in the shared pool in the

following order:

1. From the unreserved part of the shared pool.

2. From the reserved pool. If there is not enough space in the unreserved part of

the shared pool, then Oracle checks whether the reserved pool has enough

space.

3. From memory. If there is not enough space in the unreserved and reserved parts

of the shared pool, then Oracle attempts to free enough memory for the

allocation. It then retries the unreserved and reserved parts of the shared pool.

Using SHARED_POOL_RESERVED_SIZE The default value for SHARED_POOL_
RESERVED_SIZE is 5% of the SHARED_POOL_SIZE. This means that, by default,

the reserved list is configured.

If you set SHARED_POOL_RESERVED_SIZE to more than half of SHARED_POOL_
SIZE , then Oracle signals an error. Oracle does not let you reserve too much

memory for the reserved pool. The amount of operating system memory, however,

might constrain the size of the shared pool. In general, set SHARED_POOL_
RESERVED_SIZE to 10% of SHARED_POOL_SIZE. For most systems, this value is

sufficient if you have already tuned the shared pool. If you increase this value, then

the database takes memory from the shared pool. (This reduces the amount of

unreserved shared pool memory available for smaller allocations.)

Statistics from the V$SHARED_POOL_RESERVED view help you tune these

parameters. On a system with ample free memory to increase the size of the SGA,

the goal is to have the value of REQUEST_MISSES equal zero. If the system is

constrained for operating system memory, then the goal is to not have REQUEST_
FAILURES or at least prevent this value from increasing.

If you cannot achieve these target values, then increase the value for SHARED_
POOL_RESERVED_SIZE. Also, increase the value for SHARED_POOL_SIZE by the

same amount, because the reserved list is taken from the shared pool.
Memory Configuration and Use 14-41

Configuring and Using the Shared Pool and Large Pool
When SHARED_POOL_RESERVED_SIZE Is Too Small The reserved pool is too small

when the value for REQUEST_FAILURES is more than zero and increasing. To

resolve this, increase the value for the SHARED_POOL_RESERVED_SIZE and

SHARED_POOL_SIZE accordingly. The settings you select for these parameters

depend on your system’s SGA size constraints.

Increasing the value of SHARED_POOL_RESERVED_SIZE increases the amount of

memory available on the reserved list without having an effect on users who do not

allocate memory from the reserved list.

When SHARED_POOL_RESERVED_SIZE Is Too Large Too much memory might have

been allocated to the reserved list if:

■ REQUEST_MISSES is zero or not increasing

■ FREE_MEMORY is greater than or equal to 50% of SHARED_POOL_RESERVED_
SIZE minimum

If either of these conditions is true, then decrease the value for SHARED_POOL_
RESERVED_SIZE.

When SHARED_POOL_SIZE is Too Small The V$SHARED_POOL_RESERVED fixed view

can also indicate when the value for SHARED_POOL_SIZE is too small. This can be

the case if REQUEST_FAILURES is greater than zero and increasing.

If you have enabled the reserved list, then decrease the value for SHARED_POOL_
RESERVED_SIZE. If you have not enabled the reserved list, then you could increase

SHARED_POOL_SIZE.

Keeping Large Objects to Prevent Aging
After an entry has been loaded into the shared pool, it cannot be moved.

Sometimes, as entries are loaded and aged, the free memory can become

fragmented.

Use the PL/SQL package DBMS_SHARED_POOL to manage the shared pool. Shared

SQL and PL/SQL areas age out of the shared pool according to a least recently used

(LRU) algorithm, similar to database buffers. To improve performance and prevent

reparsing, you might want to prevent large SQL or PL/SQL areas from aging out of

the shared pool.

See Also: Oracle9i Database Reference for details on setting the

LARGE_POOL_SIZE parameter
14-42 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
The DBMS_SHARED_POOL package lets you keep objects in shared memory, so that

they do not age out with the normal LRU mechanism. By using the DBMS_SHARED_
POOL package and by loading the SQL and PL/SQL areas before memory

fragmentation occurs, the objects can be kept in memory. This ensures that memory

is available, and it prevents the sudden, inexplicable slowdowns in user response

time that occur when SQL and PL/SQL areas are accessed after aging out.

The DBMS_SHARED_POOL package is useful for the following:

■ When loading large PL/SQL objects, such as the STANDARD and DIUTIL
packages. When large PL/SQL objects are loaded, user response time may be

affected if smaller objects that need to age out of the shared pool to make room.

In some cases, there might be insufficient memory to load the large objects.

■ Frequently executed triggers. You might want to keep compiled triggers on

frequently used tables in the shared pool.

■ DBMS_SHARED_POOL supports sequences. Sequence numbers are lost when a

sequence ages out of the shared pool. DBMS_SHARED_POOL keeps sequences in

the shared pool, thus preventing the loss of sequence numbers.

To use the DBMS_SHARED_POOL package to pin a SQL or PL/SQL area, complete

the following steps:

1. Decide which packages or cursors to pin in memory.

2. Start up the database.

3. Make the call to DBMS_SHARED_POOL.KEEP to pin your objects.

This procedure ensures that your system does not run out of shared memory

before the kept objects are loaded. By pinning the objects early in the life of the

instance, you prevent memory fragmentation that could result from pinning a

large portion of memory in the middle of the shared pool.

CURSOR_SHARING for Existing Applications
One of the first stages of parsing is to compare the text of the statement with

existing statements in the shared pool to see if the statement can be shared. If the

statement differs textually in any way, then Oracle does not share the statement.

Exceptions to this are possible when the parameter CURSOR_SHARING has been set

to SIMILAR or FORCE. When this parameter is used, Oracle first checks the shared

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

specific information on using DBMS_SHARED_POOL procedures
Memory Configuration and Use 14-43

Configuring and Using the Shared Pool and Large Pool
pool to see if there is an identical statement in the shared pool. If an identical

statement is not found, then Oracle searches for a similar statement in the shared

pool. If the similar statement is there, then the parse checks continue to verify the

executable form of the cursor can be used. If the statement is not there, then a hard

parse is necessary to generate the executable form of the statement.

Similar SQL Statements
Statements that are identical, except for the values of some literals, are called similar

statements. Similar statements pass the textual check in the parse phase when the

CURSOR_SHARING parameter is set to SIMILAR or FORCE. Textual similarity does

not guarantee sharing. The new form of the SQL statement still needs to go through

the remaining steps of the parse phase to ensure that the execution plan of the

preexisting statement is equally applicable to the new statement.

CURSOR_SHARING
Setting CURSOR_SHARING to EXACT allows SQL statements to share the SQL area

only when their texts match exactly. This is the default behavior. Using this setting,

similar statements cannot shared; only textually exact statements can be shared.

Setting CURSOR_SHARINGto either SIMILAR or FORCEallows similar statements to

share SQL. The difference between SIMILAR and FORCE is that SIMILAR forces

similar statements to share the SQL area without deteriorating execution plans.

Setting CURSOR_SHARING to FORCE forces similar statements to share the

executable SQL area, potentially deteriorating execution plans. Hence, FORCE
should be used as a last resort, when the risk of suboptimal plans is outweighed by

the improvements in cursor sharing.

When to use CURSOR_SHARING
The CURSOR_SHARING initialization parameter can solve some performance

problems. It has the following values: FORCE, SIMILAR , and EXACT (default).

Using this parameter provides benefit to existing applications that have many

similar SQL statements.

See Also: "SQL Sharing Criteria" on page 14-21 for more details

on the various checks performed
14-44 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Shared Pool and Large Pool
The optimal solution is to write sharable SQL, rather than rely on the CURSOR_
SHARING parameter. This is because although CURSOR_SHARING does significantly

reduce the amount of resources used by eliminating hard parses, it requires some

extra work as a part of the soft parse to find a similar statement in the shared pool.

Consider setting CURSOR_SHARING to SIMILAR or FORCE if you can answer ’yes’

to both of the following questions:

1. Are there statements in the shared pool that differ only in the values of literals?

2. Is the response time low due to a very high number of library cache misses?

Using CURSOR_SHARING = SIMILAR (or FORCE) can significantly improve cursor

sharing on some applications that have many similar statements, resulting in

reduced memory usage, faster parses, and reduced latch contention.

Note: Oracle does not recommend setting CURSOR_SHARING to
FORCE in a DSS environment or if you are using complex queries.

Also, star transformation is not supported with CURSOR_SHARING
set to either SIMILAR or FORCE. For more information, see the

"OPTIMIZER_FEATURES_ENABLE Parameter" on page 1-56.

Note: Setting CURSOR_SHARING to SIMILAR or FORCE causes an

increase in the maximum lengths (as returned by DESCRIBE) of

any selected expressions that contain literals (in a SELECT
statement). However, the actual length of the data returned does

not change.

Caution: Setting CURSOR_SHARING to FORCE or SIMILAR
prevents any outlines generated with literals from being used if

they were generated with CURSOR_SHARING set to EXACT.

To use stored outlines with CURSOR_SHARING=FORCE or

SIMILAR , the outlines must be generated with CURSOR_SHARING
set to FORCE or SIMILAR and with the CREATE_STORED_
OUTLINES parameter.
Memory Configuration and Use 14-45

Configuring and Using the Java Pool
Configuring and Using the Java Pool
If your application uses Java, you should investigate whether you need to modify

the default configuration for the Java pool.

Configuring and Using the Redo Log Buffer
Server processes making changes to data blocks in the buffer cache generate redo

data into the log buffer. LGWR begins writing to copy entries from the redo log

buffer to the online redo log if any of the following are true:

■ The log buffer becomes one third full.

■ LGWR is posted by a server process performing a COMMIT or ROLLBACK.

■ DBWR posts LGWR to do so.

When LGWR writes redo entries from the redo log buffer to a redo log file or disk,

user processes can then copy new entries over the entries in memory that have been

written to disk. LGWR usually writes fast enough to ensure that space is available

in the buffer for new entries, even when access to the redo log is heavy.

A larger buffer makes it more likely that there is space for new entries, and also

gives LGWR the opportunity to efficiently write out redo records (too small a log

buffer on a system with large updates means that LGWR is continuously flushing

redo to disk so that the log buffer remains 2/3 empty).

On machines with fast processors and relatively slow disks, the processors might be

filling the rest of the buffer in the time it takes the redo log writer to move a portion

of the buffer to disk. A larger log buffer can temporarily mask the effect of slower

disks in this situation. Alternatively, you can do one of the following:

■ Improve the checkpointing or archiving process

■ Improve the performance of log writer (perhaps by moving all online logs to

fast raw devices)

Good usage of the redo log buffer is a simple matter of:

■ Batching commit operations for batch jobs, so that log writer is able to write

redo log entries efficiently

■ Using NOLOGGING operations when you are loading large quantities of data

See Also: Oracle9i Java Developer’s Guide
14-46 Oracle9i Database Performance Tuning Guide and Reference

Configuring and Using the Redo Log Buffer
The size of the redo log buffer is determined by the initialization parameter LOG_
BUFFER. The log buffer size cannot be modified after instance startup.

Figure 14–2 Redo Log Buffer

Sizing the Log Buffer
Applications that insert, modify, or delete large volumes of data usually need to

change the default log buffer size. The log buffer is small compared with the total

SGA size, and a modestly sized log buffer can significantly enhance throughput on

systems that perform many updates.

A reasonable first estimate for such systems is to make the log buffer 1 MB. On most

systems, sizing the log buffer larger than 1m does not provide any performance

benefit. Increasing the log buffer size does not have any negative implications on

performance or recoverability. It merely uses extra memory.

Log Buffer Statistics
The statistic REDO BUFFER ALLOCATION RETRIES reflects the number of times a

user process waits for space in the redo log buffer. This statistic can be queried

through the dynamic performance view V$SYSSTAT.

Use the following query to monitor these statistics over a period of time while your

application is running:

SELECT NAME, VALUE
 FROM V$SYSSTAT
 WHERE NAME = ’redo buffer allocation retries’;

Being written to
disk by LGWR

Being filled by
DML users
Memory Configuration and Use 14-47

Configuring the PGA Working Memory
The value of redo buffer allocation retries should be near zero over an

interval. If this value increments consistently, then processes have had to wait for

space in the redo log buffer. The wait can be caused by the log buffer being too

small or by checkpointing. Increase the size of the redo log buffer, if necessary, by

changing the value of the initialization parameter LOG_BUFFER. The value of this

parameter is expressed in bytes. Alternatively, improve the checkpointing or

archiving process.

Another data source is to check whether the log buffer space wait event is not a

significant factor in the wait time for the instance; if not, the log buffer size is most

likely adequate.

Configuring the PGA Working Memory
The Program Global Area (PGA) is a private memory region containing data and

control information for a server process. Access to it is exclusive to that server

process and is read and written only by the Oracle code acting on behalf of it. An

example of such information is the runtime area of a cursor. Each time a cursor is

executed, a new runtime area is created for that cursor in the PGA memory region

of the server process executing that cursor.

For complex queries (for example, decision support queries), a big portion of the

runtime area is dedicated to work areas allocated by memory intensive operators,

such as the following:

■ Sort-based operators (for example, ORDER BY, GROUP BY, ROLLUP, window

functions)

■ Hash-join

■ Bitmap merge

■ Bitmap create

■ Write buffers used by bulk load operations

A sort operator uses a work area (the sort area) to perform the in-memory sort of a

set of rows. Similarly, a hash-join operator uses a work area (the hash area) to build

a hash table from its left input.

Note: Part of the runtime area can be located in the SGA when

using shared servers.
14-48 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
The size of a work area can be controlled and tuned. Generally, bigger work areas

can significantly improve the performance of a particular operator at the cost of

higher memory consumption. Ideally, the size of a work area is big enough that it

can accommodate the input data and auxiliary memory structures allocated by its

associated SQL operator. This is known as the optimal size of a work area. When the

size of the work area is smaller than optimal, the response time increases, because

an extra pass is performed over part of the input data. This is known as the

one-pass size of the work area. Under the one-pass threshold, when the size of a

work area is far too small compared to the input data size, multiple passes over the

input data are needed. This could dramatically increase the response time of the

operator. This is known as the multi-pass size of the work area. For example, a serial

sort operation that needs to sort 10GB of data needs a little more than 10GB to run

optimal and at least 40MB to run one-pass. If this sort gets less that 40MB, then it

must perform several passes over the input data.

The goal is to have most work areas running with an optimal size (for example,

more than 90% or even 100% for pure OLTP systems), while a smaller fraction of

them are running with a one-pass size (for example, less than 10%). Multi-pass

execution should be avoided. Even for DSS systems running large sorts and

hash-joins, the memory requirement for the one-pass executions is relatively small.

A system configured with a reasonable amount of PGA memory should not need to

perform multiple passes over the input data.

Prior to Oracle9i, the maximum size of these working areas was controlled using

the SORT_AREA_SIZE, HASH_AREA_SIZE, BITMAP_MERGE_AREA_SIZE and

CREATE_BITMAP_AREA_SIZE parameters. Setting these parameters is difficult,

because the maximum work area size is ideally selected based on the data input size

and the total number of work areas active in the system. These two factors vary a lot

from one work area to another and from one point in time to another. Thus, the

various *_AREA_SIZE parameters are hard to tune under the best of circumstances.

With Oracle9i, you can simplify and improve the way PGA memory is allocated, by

enabling automatic PGA memory management. In this mode, Oracle dynamically

adjusts the size of the portion of the PGA memory dedicated to work areas, based

on an overall PGA memory target explicitly set by the DBA. To enable automatic

PGA memory management, you have to set the initialization parameter PGA_
AGGREGATE_TARGET, as described in the following section.

Note: This mechanism cannot be used for shared server

connections.
Memory Configuration and Use 14-49

Configuring the PGA Working Memory
Automatic PGA Memory Management
When running under the automatic PGA memory management mode, sizing of

work areas for all dedicated sessions becomes automatic. Thus, the *_AREA_SIZE
parameters are ignored by all sessions running in that mode. At any given time, the

total amount of PGA memory available to active work areas in the instance is

automatically derived from the PGA_AGGREGATE_TARGET initialization parameter.

This amount is set to the value of PGA_AGGREGATE_TARGET minus the amount of

PGA memory allocated by other components of the system (for example, PGA

memory allocated by sessions). The resulting PGA memory is then assigned to

individual active work areas, based on their specific memory requirements.

Under automatic PGA memory management mode, the main goal of Oracle is to

honor the PGA_AGGREGATE_TARGET limit set by the DBA, by controlling

dynamically the amount of PGA memory allotted to SQL work areas. At the same

time, Oracle tries to maximize the performance of all the memory-intensive SQL

operators, by maximizing the number of work areas that are using an optimal

amount of PGA memory (cache memory). The rest of the work areas are executed in

one-pass mode, unless the PGA memory limit set by the DBA with the parameter

PGA_AGGREGATE_TARGET is so low that multi-pass execution is required to reduce

even more the consumption of PGA memory and honor the PGA target limit.

When configuring a brand new instance, it is hard to know precisely the

appropriate setting for PGA_AGGREGATE_TARGET. You can determine this setting in

three stages:

1. Make a first estimate for PGA_AGGREGATE_TARGET, based on a rule of thumb.

2. Run a representative workload on the instance and monitor performance, using

PGA statistics collected by Oracle, to see whether the maximum PGA size is

under-configured or over-configured.

3. Tune PGA_AGGREGATE_TARGET, using Oracle’s PGA advice statistics.

The following sections explain this in detail:

■ Setting PGA_AGGREGATE_TARGET Initially

■ Monitoring the Performance of the Automatic PGA Memory Management

■ Tuning PGA_AGGREGATE_TARGET

Setting PGA_AGGREGATE_TARGET Initially
The value of the PGA_AGGREGATE_TARGET initialization parameter (for example

100000 KB, 2500 MB, or 50 GB) should be set based on the total amount of memory
14-50 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
available for the Oracle instance. This value can then be tuned and dynamically

modified at the instance level. Example 14–2 illustrates a typical situation.

Example 14–2 Initial Setting of PGA_AGGREGATE_TARGET

Assume that an Oracle instance is configured to run on a system with 4 GB of

physical memory. Part of that memory should be left for the operating system and

other non-Oracle applications running on the same hardware system. You might

decide to dedicate only 80% of the available memory to the Oracle instance, or 3.2

GB.

You must then divide the resulting memory between the SGA and the PGA.

■ For OLTP systems, the PGA memory typically accounts for a small fraction of

the total memory available (for example, 20%), leaving 80% for the SGA.

■ For DSS systems running large, memory-intensive queries, PGA memory can

typically use up to 70% of that total (up to 2.2 GB in this example).

Good initial values for the parameter PGA_AGGREGATE_TARGET might be:

■ For OLTP: PGA_AGGREGATE_TARGET = (total_mem * 80%) * 20%

■ For DSS: PGA_AGGREGATE_TARGET = (total_mem * 80%) * 50%

where total_mem is the total amount of physical memory available on the

system.

In this example, with a value of total_mem equal to 4 GB, you can initially set PGA_
AGGREGATE_TARGET to 1600 MB for the DSS system and to 655 MB for the OLTP

system.

Monitoring the Performance of the Automatic PGA Memory Management
Before starting the tuning process, you need to know how to monitor and interpret

the key statistics collected by Oracle to help in assessing the performance of the

automatic PGA memory management component. Several dynamic performance

views are available for this purpose:

■ V$PGASTAT

■ V$PROCESS

■ V$SQL_WORKAREA_HISTOGRAM

■ V$SQL_WORKAREA_ACTIVE

■ V$SQL_WORKAREA
Memory Configuration and Use 14-51

Configuring the PGA Working Memory
V$PGASTAT This view gives instance-level statistics on the PGA memory usage and

the automatic PGA memory manager. For example:

SELECT * FROM V$PGASTAT;

The output of this query might look like the following:

NAME VALUE UNIT
-- -------
aggregate PGA target parameter 524288000 bytes
aggregate PGA auto target 463435776 bytes
global memory bound 25600 bytes
total PGA inuse 9353216 bytes
total PGA allocated 73516032 bytes
maximum PGA allocated 698371072 bytes
total PGA used for auto workareas 0 bytes
maximum PGA used for auto workareas 560744448 bytes
total PGA used for manual workareas 0 bytes
maximum PGA used for manual workareas 0 bytes
over allocation count 0
total bytes processed 4.0072E+10 bytes
total extra bytes read/written 3.1517E+10 bytes
cache hit percentage 55.97 percent

The main statistics displayed in V$PGASTAT are as follows:

■ aggregate PGA target parameter : This is the current value of the

initialization parameter PGA_AGGREGATE_TARGET, here set to 500 MB. If you

do not set this parameter, its value is 0 and automatic management of the PGA

memory is disabled.

■ aggregate PGA auto target : This gives the amount of PGA memory

Oracle can use for work areas running in automatic mode. This amount is

dynamically derived from the value of the parameter PGA_AGGREGATE_
TARGETand the current work area workload. Hence, it is continuously adjusted

by Oracle. If this value is small compared to the value of PGA_AGGREGATE_
TARGET, then a lot of PGA memory is used by other components of the system

(for example, PL/SQL or Java memory) and little is left for sort work areas. You

must ensure that enough PGA memory is left for work areas running in

automatic mode.

■ global memory bound : This gives the maximum size of a work area

executed in AUTOmode. This value is continuously adjusted by Oracle to reflect

the current state of the work area workload. The global memory bound

generally decreases when the number of active work areas is increasing in the
14-52 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
system. As a rule of thumb, the value of the global bound should not decrease

to less than one megabyte. If it does, then the value of PGA_AGGREGATE_
TARGET should probably be increased.

■ total PGA allocated : This gives the current amount of PGA memory

allocated by the instance. Oracle tries to keep this number less than the value of

PGA_AGGREGATE_TARGET. However, it is possible for the PGA allocated to

exceed that value by a small percentage and for a short period of time, when the

work area workload is increasing very rapidly or when the initialization

parameter PGA_AGGREGATE_TARGET is set to a too small value.

■ total PGA used for auto workareas : This indicates how much PGA

memory is currently consumed by work areas running under automatic

memory management mode. This number can be used to determine how much

memory is consumed by other consumers of the PGA memory (for example,

PL/SQL or Java):

PGA other = total PGA allocated - total PGA used for auto workareas

■ over allocation count : This statistic is cumulative from instance start-up.

Over-allocating PGA memory can happen if the value of PGA_AGGREGATE_
TARGET is too small to accommodate the PGA other component in the

previous equation plus the minimum memory required to execute the work

area workload. When this happens, Oracle cannot honor the initialization

parameter PGA_AGGREGATE_TARGET, and extra PGA memory needs to be

allocated. If over-allocation occurs, you should increase the value of PGA_
AGGREGATE_TARGET using the information provided by the advice view

V$PGA_TARGET_ADVICE.

■ total bytes processed : This is the number of bytes processed by

memory-intensive SQL operators since instance start-up. For example, the

number of byte processed is the input size for a sort operation. This number is

used to compute the cache hit percentage metric.

■ extra bytes read/written : When a work area cannot run optimally, one

or more extra passes is performed over the input data. extra bytes
read/written represents the number of bytes processed during these extra

passes since instance start-up. This number is also used to compute the cache
hit percentage .

■ cache hit percentage : This metric is computed by Oracle to reflect the

performance of the PGA memory component. It is cumulative from instance

start-up. A value of 100% means that all work areas executed by the system

since instance start-up have used an optimal amount of PGA memory. This is,
Memory Configuration and Use 14-53

Configuring the PGA Working Memory
of course, ideal but rarely happens except maybe for pure OLTP systems. In

reality, some work areas run one-pass or even multi-pass, depending on the

overall size of the PGA memory. When a work area cannot run optimally, one

or more extra passes is performed over the input data. This reduces the cache
hit percentage in proportion to the size of the input data and the number of

extra passes performed. Example 14–3 shows how cache hit percentage is

affected by extra passes.

Example 14–3 Calculating Cache Hit Percentage

Consider a simple example: Four sort operations have been executed, three were

small (1 MB of input data) and one was bigger (100 MB of input data). The total

number of bytes processed (BP) by the four operations is 103 MB. If one of the small

sorts runs one-pass, an extra pass over 1 MB of input data is performed. This 1 MB

value is the number of extra bytes read/written , or EBP. The cache hit
percentage is calculated by the following formula:

BP x 100 / (BP + EBP)

The cache hit percentage in this case is 99.03%, almost 100%. This value reflects

the fact that only one of the small sorts had to perform an extra pass while all other

sorts were able to run optimally. Hence, the cache hit percentage is almost

100%, because this extra pass over 1 MB represents a tiny overhead. On the other

hand, if the big sort is the one to run one-pass, then EBP is 100 MB instead of 1 MB,

and the cache hit percentage falls to 50.73%, because the extra pass has a much

bigger impact.

V$PROCESS This view has one row for each Oracle process connected to the

instance. The columns PGA_USED_MEM, PGA_ALLOC_MEM and PGA_MAX_MEM can

be used to monitor the PGA memory usage of these processes. For example:

SELECT PROGRAM, PGA_USED_MEM, PGA_ALLOC_MEM, PGA_MAX_MEM
 FROM V$PROCESS;

The output of this query might look like the following:

PROGRAM PGA_USED_MEM PGA_ALLOC_MEM PGA_MAX_MEM
------------------------------ ------------ ------------- -----------
PSEUDO 0 0 0
oracle@miflo (PMON) 120463 234291 234291
oracle@miflo (DBW0) 1307179 1817295 1817295
oracle@miflo (LGWR) 4343655 4849203 4849203
oracle@miflo (CKPT) 194999 332583 332583
oracle@miflo (SMON) 179923 775311 775323
14-54 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
oracle@miflo (RECO) 129719 242803 242803
oracle@miflo (TNS V1-V3) 1400543 1540627 1540915
oracle@miflo (P000) 299599 373791 635959
oracle@miflo (P001) 299599 373791 636007
oracle@miflo (P002) 299599 373791 570471
oracle@miflo (P003) 303899 373791 636007
oracle@miflo (P004) 299599 373791 635959

V$SQL_WORKAREA_HISTOGRAM This view shows the number of work areas

executed with optimal memory size, one-pass memory size, and multi-pass

memory size since instance start-up. Statistics in this view are subdivided into

buckets that are defined by the optimal memory requirement of the work area. Each

bucket is identified by a range of optimal memory requirements specified by the

values of the columns LOW_OPTIMAL_SIZE and HIGH_OPTIMAL_SIZE.

Examples 14–4 and 14–5 show two ways of using V$SQL_WORKAREA_HISTOGRAM.

Example 14–4 Querying V$SQL_WORKAREA_HISTOGRAM: Nonempty Buckets

Consider a sort operation that requires 3 MB of memory to run optimally (cached).

Statistics about the work area used by this sort are placed in the bucket defined by

LOW_OPTIMAL_SIZE = 2097152 (2 MB) and HIGH_OPTIMAL_SIZE =
4194303 (4 MB minus 1 byte), because 3 MB falls within that range of optimal

sizes. Statistics are segmented by work area size, because the performance impact of

running a work area in optimal, one-pass or multi-pass mode depends mainly on

the size of that work area.

The following query shows statistics for all nonempty buckets. Empty buckets are

removed with the predicate where total_execution != 0 .

SELECT LOW_OPTIMAL_SIZE/1024 low_kb,
 (HIGH_OPTIMAL_SIZE+1)/1024 high_kb,
 OPTIMAL_EXECUTIONS, ONEPASS_EXECUTIONS, MULTIPASSES_EXECUTIONS
 FROM V$SQL_WORKAREA_HISTOGRAM
 WHERE TOTAL_EXECUTIONS != 0;

The result of the query might look like the following:

LOW_KB HIGH_KB OPTIMAL_EXECUTIONS ONEPASS_EXECUTIONS MULTIPASSES_EXECUTIONS
------ ------- ------------------ ------------------ ----------------------
 8 16 156255 0 0
 16 32 150 0 0
 32 64 89 0 0
 64 128 13 0 0
Memory Configuration and Use 14-55

Configuring the PGA Working Memory
 128 256 60 0 0
 256 512 8 0 0
 512 1024 657 0 0
 1024 2048 551 16 0
 2048 4096 538 26 0
 4096 8192 243 28 0
 8192 16384 137 35 0
 16384 32768 45 107 0
 32768 65536 0 153 0
 65536 131072 0 73 0
131072 262144 0 44 0
262144 524288 0 22 0

The query result shows that, in the 1024 KB to 2048 KB bucket, 551 work areas used

an optimal amount of memory, while 16 ran in one-pass mode and none ran in

multi-pass mode. It also shows that all work areas under 1 MB were able to run in

optimal mode.

Example 14–5 Querying V$SQL_WORKAREA_HISTOGRAM: Percent Optimal

You can also use V$SQL_WORKAREA_HISTOGRAM to find the percentage of times

work areas were executed in optimal, one-pass, or multi-pass mode since start-up.

This query only considers work areas of a certain size, with an optimal memory

requirement of at least 64 KB.

SELECT optimal_count, round(optimal_count*100/total, 2) optimal_perc,
 onepass_count, round(onepass_count*100/total, 2) onepass_perc,
 multipass_count, round(multipass_count*100/total, 2) multipass_perc
FROM
 (SELECT decode(sum(total_executions), 0, 1, sum(total_executions)) total,
 sum(OPTIMAL_EXECUTIONS) optimal_count,
 sum(ONEPASS_EXECUTIONS) onepass_count,
 sum(MULTIPASSES_EXECUTIONS) multipass_count
 FROM v$sql_workarea_histogram
 WHERE low_optimal_size > 64*1024);

The output of this query might look like the following:

OPTIMAL_COUNT OPTIMAL_PERC ONEPASS_COUNT ONEPASS_PERC MULTIPASS_COUNT MULTIPASS_PERC
------------- ------------ ------------- ------------ --------------- --------------
 2239 81.63 504 18.37 0 0

This result shows that 81.63% of these work areas have been able to run using an

optimal amount of memory. The rest (18.37%) ran one-pass. None of them ran

multi-pass. Such behavior is preferable, for the following reasons:
14-56 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
■ Multi-pass mode can severely degrade performance. A high number of

multi-pass work areas has an exponentially adverse effect on the response time

of its associated SQL operator.

■ Running one-pass does not require a large amount of memory; only 22 MB is

required to sort 1 GB of data in one-pass mode.

V$SQL_WORKAREA_ACTIVE This view can be used to display the work areas that are

active (or executing) in the instance. Small active sorts (under 64 KB) are excluded

from the view. Use this view to precisely monitor the size of all active work areas

and to determine if these active work areas spill to a temporary segment.

Example 14–6 shows a typical query of this view:

Example 14–6 Querying V$SQL_WORKAREA_ACTIVE

SELECT to_number(decode(SID, 65535, NULL, SID)) sid,
 operation_type OPERATION,
 trunc(EXPECTED_SIZE/1024) ESIZE,
 trunc(ACTUAL_MEM_USED/1024) MEM,
 trunc(MAX_MEM_USED/1024) "MAX MEM",
 NUMBER_PASSES PASS,
 trunc(TEMPSEG_SIZE/1024) TSIZE
 FROM V$SQL_WORKAREA_ACTIVE
 ORDER BY 1,2;

The output of this query might look like the following:
SID OPERATION ESIZE MEM MAX MEM PASS TSIZE
--- ----------------- --------- --------- --------- ----- -------
 8 GROUP BY (SORT) 315 280 904 0
 8 HASH-JOIN 2995 2377 2430 1 20000
 9 GROUP BY (SORT) 34300 22688 22688 0
 11 HASH-JOIN 18044 54482 54482 0
 12 HASH-JOIN 18044 11406 21406 1 120000

This output shows that session 12 (column SID) is running a hash-join having its

work area running in one-pass mode (PASS column). This work area is currently

using 11406 KB of memory (MEM column) and has used, in the past, up to 21406 KB

of PGA memory (MAX MEM column). It has also spilled to a temporary segment of

size 120000 KB. Finally, the column ESIZE indicates the maximum amount of

memory that the PGA memory manager expects this hash-join to use. This

maximum is dynamically computed by the PGA memory manager according to

workload.
Memory Configuration and Use 14-57

Configuring the PGA Working Memory
When a work area is deallocated—that is, when the execution of its associated SQL

operator is complete—the work area is automatically removed from the V$SQL_
WORKAREA_ACTIVE view.

V$SQL_WORKAREA Oracle maintains cumulative work area statistics for each loaded

cursor whose execution plan uses one or more work areas. Every time a work area

is deallocated, the V$SQL_WORKAREA table is updated with execution statistics for

that work area.

V$SQL_WORKAREAcan be joined with V$SQLto relate a work area to a cursor. It can

even be joined to V$SQL_PLAN to precisely determine which operator in the plan

uses a work area.

Example 14–7 shows three typical queries on the V$SQL_WORKAREA dynamic view:

Example 14–7 Querying V$SQL_WORKAREA

The following query finds the top 10 work areas requiring most cache memory:

SELECT *
 FROM
 (SELECT workarea_address, operation_type, policy, estimated_optimal_size
 FROM V$SQL_WORKAREA
 ORDER BY estimated_optimal_size)
 WHERE ROWNUM <= 10;
The following query finds the cursors with one or more work areas that have been

executed in one or even multiple passes:

col sql_text format A80 wrap
SELECT sql_text, sum(ONEPASS_EXECUTIONS) onepass_cnt,
 sum(MULTIPASSES_EXECUTIONS) mpass_cnt
FROM V$SQL s, V$SQL_WORKAREA wa
WHERE s.address = wa.address
GROUP BY sql_text
HAVING sum(ONEPASS_EXECUTIONS+MULTIPASSES_EXECUTIONS)>0;

Using the hash value and address of a particular cursor, the following query

displays the cursor execution plan, including information about the associated work

areas.

col "O/1/M" format a10
col name format a20
SELECT operation, options, object_name name,
 trunc(bytes/1024/1024) "input(MB)",
 trunc(last_memory_used/1024) last_mem,
 trunc(estimated_optimal_size/1024) optimal_mem,
14-58 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
 trunc(estimated_onepass_size/1024) onepass_mem,
 decode(optimal_executions, null, null,
 optimal_executions||’/’||onepass_executions||’/’||
 multipasses_executions) "O/1/M"
 FROM V$SQL_PLAN p, V$SQL_WORKAREA w
 WHERE p.address=w.address(+)
 AND p.hash_value=w.hash_value(+)
 AND p.id=w.operation_id(+)
 AND p.address=’88BB460C’
 AND p.hash_value=3738161960;

OPERATION OPTIONS NAME input(MB) LAST_MEM OPTIMAL_ME ONEPASS_ME O/1/M
------------ -------- -------- --------- -------- ---------- ---------- ------
SELECT STATE
SORT GROUP BY 4582 8 16 16 16/0/0
HASH JOIN SEMI 4582 5976 5194 2187 16/0/0
TABLE ACCESS FULL ORDERS 51
TABLE ACCESS FUL LINEITEM 1000

You can get the address and hash value from the V$SQL view by specifying a

pattern in the query. For example:

SELECT address, hash_value
FROM V$SQL
WHERE sql_text LIKE ’ %my_pattern %’;

Tuning PGA_AGGREGATE_TARGET
To help you tune the initialization parameter PGA_AGGREGATE_TARGET, Oracle

provides two PGA advice performance views:

■ V$PGA_TARGET_ADVICE

■ V$PGA_TARGET_ADVICE_HISTOGRAM

By examining these two views, you no longer need to use an empirical approach to

tune the value of PGA_AGGREGATE_TARGET. Instead, you can use the content of

these views to determine how key PGA statistics will be impacted if you change the

value of PGA_AGGREGATE_TARGET.

In both views, values of PGA_AGGREGATE_TARGET used for the prediction are

derived from fractions and multiples of the current value of that parameter, to

assess possible higher and lower values. Values used for the prediction range from

10 MB to a maximum of 256 GB.
Memory Configuration and Use 14-59

Configuring the PGA Working Memory
Oracle generates PGA advice performance views by recording the workload history

and then simulating this history for different values of PGA_AGGREGATE_TARGET.

The simulation process happens in the background and continuously updates the

workload history to produce the simulation result. You can view the result at any

time by querying V$PGA_TARGET_ADVICE or V$PGA_TARGET_ADVICE_
HISTOGRAM.

To enable automatic generation of PGA advice performance views, make sure the

following parameters are set:

■ PGA_AGGREGATE_TARGET, to enable automatic PGA memory management. Set

the initial value as described in "Setting PGA_AGGREGATE_TARGET Initially"

on page 14-50.

■ STATISTICS_LEVEL . Set this to TYPICAL (the default) or ALL; setting this

parameter to BASIC turns off generation of PGA performance advice views.

The content of these PGA advice performance views is reset at instance start-up or

when PGA_AGGREGATE_TARGET is altered.

V$PGA_TARGET_ADVICE This view predicts how the statistics cache hit
percentage and over allocation count in V$PGASTAT will be impacted if

you change the value of the initialization parameter PGA_AGGREGATE_TARGET.

Example 14–8 shows a typical query of this view:

Example 14–8 Querying V$PGA_TARGET_ADVICE

SELECT round(PGA_TARGET_FOR_ESTIMATE/1024/1024) target_mb,
 ESTD_PGA_CACHE_HIT_PERCENTAGE cache_hit_perc,
 ESTD_OVERALLOC_COUNT
 FROM V$PGA_TARGET_ADVICE;

The output of this query might look like the following:

 TARGET_MB CACHE_HIT_PERC ESTD_OVERALLOC_COUNT
---------- -------------- --------------------
 63 23 367
 125 24 30

Note: Simulation cannot include all factors of real execution, so

derived statistics might not exactly match up with real performance

statistics. You should always monitor the system after changing

PGA_AGGREGATE_TARGET, to verify that the new performance is

what you expect.
14-60 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
 250 30 3
 375 39 0
 500 58 0
 600 59 0
 700 59 0
 800 60 0
 900 60 0
 1000 61 0
 1500 67 0
 2000 76 0
 3000 83 0
 4000 85 0

The result of the this query can be plotted as shown in Example 14–3:
Memory Configuration and Use 14-61

Configuring the PGA Working Memory
Figure 14–3 Graphical Representation of V$PGA_TARGET_ADVICE

Cache
Hit

Percentage

85.00

80.00

75.00

70.00

65.00

60.00

55.00

50.00

45.00

40.00

35.00

30.00

25.00

20.00

15.00

10.00

5.00

0.00

0 500MB 1GB 1.5GB 2GB

PGA_AGGREGATE_TARGET

2.5GB 3GB 3.5GB 4GB

Optimal Value

Current setting
14-62 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
The curve shows how the PGA cache hit percentage improves as the value of

PGA_AGGREGATE_TARGET increases. The shaded zone in the graph is the over
allocation zone, where the value of the column ESTD_OVERALLOCATION_
COUNT is nonzero. It indicates that PGA_AGGREGATE_TARGET is too small to even

meet the minimum PGA memory needs. If PGA_AGGREGATE_TARGET is set within

the over allocation zone, the memory manager will over-allocate memory and

actual PGA memory consumed will be more than the limit you set. It is therefore

meaningless to set a value of PGA_AGGREGATE_TARGET in that zone. In this

particular example PGA_AGGREGATE_TARGET should be set to at least 375 MB.

Beyond the over allocation zone, the value of the PGA cache hit
percentage increases rapidly. This is due to an increase in the number of work

areas which run optimally or one-pass and a decrease in the number of multi-pass

executions. At some point, somewhere around 500 MB in this example, there is an

inflection in the curve that corresponds to the point where most (probably all) work

areas can run optimally or at least one-pass. After this inflection, the cache hit
percentage keeps increasing, though at a lower pace, up to the point where it

starts to taper off and shows only slight improvement with increase in PGA_
AGGREGATE_TARGET. In Figure 14–3, this happens when PGA_AGGREGATE_
TARGET reaches 3 GB. At that point, the cache hit percentage is 83% and only

improves marginally (by 2%) with one extra gigabyte of PGA memory. In this

particular example, 3 GB is probably the optimal value for PGA_AGGREGATE_
TARGET.

Ideally, PGA_AGGREGATE_TARGET should be set at the optimal value, or at least to

the maximum value possible in the region beyond the over allocation zone. As

a rule of thumb, the PGA cache hit percentage should be higher than 60%,

since at 60% the system is almost processing double the number of bytes it actually

needs to process in an ideal situation. Using this particular example, it makes sense

to set PGA_AGGREGATE_TARGETto at least 500 MB and as close as possible to 3 GB.

But the right setting for the parameter PGA_AGGREGATE_TARGETreally depends on

Note: Even though the theoretical maximum for the PGA cache
hit percentage is 100%, there is a practical limit on the

maximum size of a work area, which may prevent this theoretical

maximum from being reached, even if you further increase PGA_
AGGREGATE_TARGET. This should happen only in large DSS

systems where the optimal memory requirement is large and might

cause the value of the cache hit percentage to taper off at a

lower percentage, like 90%.
Memory Configuration and Use 14-63

Configuring the PGA Working Memory
how much memory can be dedicated to the PGA component. Generally, adding

PGA memory requires reducing memory for some of the SGA components, like the

shared pool or the buffer cache. This is because the overall memory dedicated to the

Oracle instance is often bound by the amount of physical memory available on the

system. As a result, any decisions to increase PGA memory must be taken in the

larger context of the available memory in the system and the performance of the

various SGA components (which you monitor with shared pool advisory and buffer

cache advisory statistics). If memory cannot be taken away from the SGA, you

might consider adding more physical memory to the system.

How to Tune PGA_AGGREGATE_TARGET You can use the following steps as a tuning

guideline in tuning PGA_AGGREGATE_TARGET:

1. Set PGA_AGGREGATE_TARGET so there is no memory over-allocation; avoid

setting it in the over-allocation zone. In Example 14–8, PGA_AGGREGATE_
TARGET should be set to at least 375 MB.

2. After eliminating over-allocations, aim at maximizing the PGA cache hit
percentage , based on your response-time requirement and memory

constraints. In Example 14–8, assume you have a limit X on memory you can

allocate to PGA.

■ If this limit X is beyond the optimal value, then you would set PGA_
AGGREGATE_TARGETto the optimal value. After this point, the incremental

benefit with higher memory allocation to PGA_AGGREGATE_TARGETis very

small. In Example 14–8, if you have 10 GB to dedicate to PGA, set PGA_
AGGREGATE_TARGET to 3 GB, the optimal value. The remaining 7 GB is

dedicated to the SGA.

■ If the limit X is less than the optimal value, then you would set PGA_
AGGREGATE_TARGET to X. In Example 14–8, if you have only 2 GB to

dedicate to PGA, set PGA_AGGREGATE_TARGET to 2 GB and accept a

cache hit percentage of 75%.

Finally, like most statistics collected by Oracle that are cumulative since instance

start-up, you can take a snapshot of the view at the beginning and at the end of a

time interval. You can then derive the predicted statistics for that time interval as

follows:

See Also:

■ "Shared Pool Advisory Statistics" on page 14-31

■ "Buffer Cache Advisory Statistics" on page 14-6
14-64 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
 estd_overalloc_count = (difference in estd_overalloc_count between the two snapshots)

 (difference in bytes_processed between the two snapshots)
estd_pga_cache_hit_percentage = ---
 (difference in bytes_processed + extra_bytes_rw between the two snapshots)

V$PGA_TARGET_ADVICE_HISTOGRAM This view predicts how the statistics displayed

by the performance view V$SQL_WORKAREA_HISTOGRAM will be impacted if you

change the value of the initialization parameter PGA_AGGREGATE_TARGET. You can

use the dynamic view V$PGA_TARGET_ADVICE_HISTOGRAM to view detailed

information on the predicted number of optimal, one-pass and multi-pass work

area executions for the set of PGA_AGGREGATE_TARGET values you use for the

prediction.

The V$PGA_TARGET_ADVICE_HISTOGRAM view is identical to the V$SQL_
WORKAREA_HISTOGRAM view, with two additional columns to represent the PGA_
AGGREGATE_TARGETvalues used for the prediction. Therefore, any query executed

against the V$SQL_WORKAREA_HISTOGRAM view can be used on this view, with an

additional predicate to select the desired value of PGA_AGGREGATE_TARGET.

Example 14–9 Querying V$PGA_TARGET_ADVICE_HISTOGRAM

The following query displays the predicted content of V$SQL_WORKAREA_
HISTOGRAM for a value of the initialization parameter PGA_AGGREGATE_TARGET
set to twice its current value.

SELECT LOW_OPTIMAL_SIZE/1024 low_kb, (HIGH_OPTIMAL_SIZE+1)/1024 high_kb,
 estd_optimal_executions estd_opt_cnt,
 estd_onepass_executions estd_onepass_cnt,
 estd_multipasses_executions estd_mpass_cnt
 FROM v$pga_target_advice_histogram
 WHERE pga_target_factor = 2
 AND estd_total_executions != 0
 ORDER BY 1;

The output of this query might look like the following.

LOW_KB HIGH_KB ESTD_OPTIMAL_CNT ESTD_ONEPASS_CNT ESTD_MPASS_CNT
------ ------- ---------------- ---------------- --------------
 8 16 156107 0 0
 16 32 148 0 0
 32 64 89 0 0
 64 128 13 0 0
 128 256 58 0 0
Memory Configuration and Use 14-65

Configuring the PGA Working Memory
 256 512 10 0 0
 512 1024 653 0 0
 1024 2048 530 0 0
 2048 4096 509 0 0
 4096 8192 227 0 0
 8192 16384 176 0 0
 16384 32768 133 16 0
 32768 65536 66 103 0
 65536 131072 15 47 0
131072 262144 0 48 0
262144 524288 0 23 0

The output shows that increasing PGA_AGGREGATE_TARGET by a factor of 2 will

allow all work areas under 16 MB to execute in optimal mode.

V$SYSSTAT and V$SESSTAT
Statistics in the V$SYSSTAT and V$SESSTAT views show the total number of work

areas executed with optimal memory size, one-pass memory size, and multi-pass

memory size. These statistics are cumulative since the instance or the session was

started.

The following query gives the total number and the percentage of times work areas

were executed in these three modes since the instance was started:

SELECT name profile, cnt, decode(total, 0, 0, round(cnt*100/total)) percentage
 FROM (SELECT name, value cnt, (sum(value) over ()) total
 FROM V$SYSSTAT
 WHERE name like ’workarea exec%’);

The output of this query might look like the following:

PROFILE CNT PERCENTAGE
----------------------------------- ---------- ----------
workarea executions - optimal 5395 95
workarea executions - onepass 284 5
workarea executions - multipass 0 0

Configuring SORT_AREA_SIZE
Tuning sort operations using SORT_AREA_SIZE is only relevant for configurations

running the Oracle shared server option or for configurations not running under the

See Also: Oracle9i Database Reference
14-66 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
automatic memory management mode. In the later case, Oracle Corporation

strongly recommends switching to the automatic memory management mode,

because it is easier to manage and often outperforms a manually-tuned system.

This section describes the following:

■ Fundamentals of Sorts

■ Recognizing Memory and Disk Sorts

■ Application Characteristics

■ Considerations with SORT_AREA_SIZE

■ Considerations with SORT_AREA_RETAINED_SIZE

■ Using NOSORT to Create Indexes Without Sorting

■ Using GROUP BY NOSORT

Fundamentals of Sorts
A sort is an operation that orders data according to certain criteria before the data is

returned to the requestor.

Operations that perform sorts include the following:

■ CREATE INDEX

■ SELECT ORDER BY

■ SELECT DISTINCT

■ SELECT GROUP BY

■ SELECT ... CONNECT BY

■ SELECT ... CONNECT BY ROLLUP

■ Sort merge joins

When the WORKAREA_SIZE_POLICY parameter is set to MANUAL, the maximum

amount of memory allocated for a sort is defined by the parameter SORT_AREA_
SIZE . If the sort operation is not able to completely fit into SORT_AREA_SIZE
memory, then the sort is separated into phases. The temporary output of each phase

is stored in temporary segments on disk. The tablespace in which these sort

segments are created is the user’s temporary tablespace.

See Also: Oracle9i Database Concepts for a list of SQL statements

that perform sorts
Memory Configuration and Use 14-67

Configuring the PGA Working Memory
When Oracle writes sort operations to disk, it writes out partially sorted data in

sorted runs. After all the data has been received by the sort, Oracle merges the runs

to produce the final sorted output. If the sort area is not large enough to merge all

the runs at once, then subsets of the runs are merged in several merge passes. If the

sort area is larger, then there are fewer, longer runs produced. A larger sort area also

means that the sort can merge more runs in one merge pass.

Recognizing Memory and Disk Sorts
Oracle collects statistics that reflect sort activity and stores them in dynamic

performance views, such as V$SQLAREA and V$SYSSTAT.

Table 14–4 lists the statistics from V$SYSSTAT that reflect sort behavior.

For example, the following query monitors these statistics:

SELECT NAME, VALUE
 FROM V$SYSSTAT
 WHERE NAME IN (’sorts (memory)’, ’sorts (disk)’);

The output of this query might look like the following:

NAME VALUE
-- ----------
sorts (memory) 430418566
sorts (disk) 33255

In addition, to find individual SQL statements that are performing sorts, query the

V$SQLAREA view. Order the rows by SORTS to identify the SQL statements

performing the most sorts. For example:

SELECT HASH_VALUE, SQL_TEXT, SORTS, EXECUTIONS

Note: Reads and writes performed as a part of disk sort

operations bypass the buffer cache.

Table 14–4 V$SYSSTAT Statistics Reflecting Sort Behavior

Statistic Description

sorts (memory) The number of sorts small enough to be performed entirely in
memory without I/O to temporary sort segments on disk.

sorts (disk) The number of sorts too large to be performed entirely in memory,
requiring I/O to temporary sort segments on disk.
14-68 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
 FROM V$SQLAREA
 ORDER BY SORTS;

In an OLTP environment, the best solution is to investigate whether the SQL

statements can be tuned to avoid the sort activity.

Application Characteristics
For best performance in OLTP systems, most sorts should occur solely within

memory. Sorts written to disk can adversely affect performance. If your OLTP

application frequently performs sorts that do not fit into sort area size, and if the

application has been tuned to avoid unnecessary sorting, then consider increasing

the SORT_AREA_SIZE parameter for the whole instance.

If there are only a few programs that perform larger than average sorts that sort to

disk, then it is possible to modify SORT_AREA_SIZE at the session level only for

that workload or application (for example, building an index).

DSS applications typically access large volumes of data. These types of applications

are expected to perform sorts to disk, purely because of the nature of the application

and the data volumes involved. In DSS applications, it is important to identify the

optimal SORT_AREA_SIZE to allow the disk sorts to perform most efficiently.

Allocating more memory to sorts does not necessarily mean that the sort will be

faster.

Considerations with SORT_AREA_SIZE
The main consideration when choosing SORT_AREA_SIZE is balancing memory

usage with sort performance.

Since Oracle8 release 8.0, sorts do not allocate the whole of SORT_AREA_SIZE in
one memory allocation at the beginning of the sort. The memory is allocated in DB_
BLOCK_SIZE chunks when required, up to SORT_AREA_SIZE.

This means that increasing SORT_AREA_SIZE memory is a concern when the

majority of processes on the system perform sorts and use the maximum allocation.

In this situation, increasing SORT_AREA_SIZE for the instance as a whole results in

more memory being allocated from the operating system (for dedicated

connections; that is, if a shared server environment is not used). This is not

necessarily a problem if the system has free memory available. However, if there is

not enough free memory, then this causes paging or swapping.

If a shared server environment is used, then the additional memory is allocated out

of the shared pool or the large pool when it is configured (that is, when the LARGE_
POOL_SIZE initialization parameter is specified). The actual amount of memory
Memory Configuration and Use 14-69

Configuring the PGA Working Memory
used in the shared pool is the lesser of SORT_AREA_SIZE, SORT_AREA_
RETAINED_SIZE, and the actual allocation used by the sort.

If the SORT_AREA_SIZE is too small, then the sort is not performed as efficiently as

possible. This means that sorts that could have been memory-only sorts will be disk

sorts, or, alternatively, that the number of sort runs required to process the sort

could be larger than necessary. Both of these situations can severely degrade

performance.

Remember that there is a point after which increasing the SORT_AREA_SIZE no

longer provides a performance benefit.

Increasing SORT_AREA_SIZE SORT_AREA_SIZE is a dynamically modifiable

initialization parameter that specifies the maximum amount of memory to use for

each sort. If a significant number of sorts require disk I/O to temporary segments,

then your application’s performance might benefit from increasing the value of

SORT_AREA_SIZE. Alternatively in a DSS environment, increasing SORT_AREA_
SIZE is not likely to make the sort a memory-only sort; however, depending on the

current value and the new value chosen, it could make the sort faster.

The maximum value of this parameter depends on your operating system. You

need to determine what size SORT_AREA_SIZE makes sense for your system.

Considerations with SORT_AREA_RETAINED_SIZE
The SORT_AREA_RETAINED_SIZE parameter determines the lower memory limit

to which Oracle reduces the size of the sort area after the sort has started sending

the sorted data to the user or to the next part of the query.

With dedicated connections, the freed memory is not released to the operating

system, rather the freed memory is made available to the session for reuse.

However, if the connection is through shared server, then there could be a memory

benefit to setting SORT_AREA_RETAINED_SIZE. If this parameter is set after the

sort has completed, then the sorted data is stored in the SGA. The amount of

memory used in the SGA is the lesser of the actual usage or SORT_AREA_
RETAINED_SIZE if it is set; otherwise, it is SORT_AREA_SIZE. This is why setting

SORT_AREA_RETAINED_SIZE could be of use with a shared server environment.

Note: Connections made to the database through shared servers

usually should not perform large sorts.
14-70 Oracle9i Database Performance Tuning Guide and Reference

Configuring the PGA Working Memory
Although there might be a memory saving with shared server, setting SORT_AREA_
RETAINED_SIZE causes additional I/O to write and read data to and from

temporary segments on disk (if the sort requires more than SORT_AREA_
RETAINED_SIZE bytes).

Using NOSORT to Create Indexes Without Sorting
One cause of sorting is the creation of indexes. Creating an index for a table

involves sorting all rows in the table based on the values of the indexed columns.

However, Oracle lets you create indexes without sorting. If the rows in the table are

loaded in ascending order, then you can create the index faster without sorting.

The NOSORT Clause To create an index without sorting, load the rows into the table

in ascending order of the indexed column values. Your operating system might

provide a sorting utility to sort the rows before you load them. When you create the

index, use the NOSORT clause on the CREATE INDEX statement. For example, the

following CREATE INDEX statement creates the index my_emp_name_ix on the

last_name column of the employees table without sorting the rows in the

employees table:

CREATE INDEX my_emp_name_ix
 ON employees(last_name)
 NOSORT;

In this SQL example, it is assumed that the rows in the table are loaded in ascending

order of the indexed column values.

When to Use the NOSORT Clause Presorting your data and loading it in order might

not be the fastest way to load a table.

■ If you have a multiple-CPU computer, then you might be able to load data

faster using multiple processors in parallel, each processor loading a different

portion of the data. To take advantage of parallel processing, load the data

without sorting it first. Then, create the index without the NOSORT clause.

■ If you have a single-CPU computer, then sort your data before loading, if

possible. Then, create the index with the NOSORT clause.

Note: Specifying NOSORT in a CREATE INDEX statement negates

the use of PARALLEL INDEX CREATE, even if PARALLEL (DEGREE
n) is specified.
Memory Configuration and Use 14-71

Configuring the PGA Working Memory
Using GROUP BY NOSORT
Sorting can be avoided when performing a GROUP BY operation when you know

that the input data is already ordered, so that all rows in each group are clumped

together. This can be the case if the rows are being retrieved from an index that

matches the grouped columns, or if a sort merge join produces the rows in the right

order. ORDER BY sorts can be avoided in the same circumstances. When no sort

takes place, the EXPLAIN PLAN output indicates GROUP BY NOSORT.
14-72 Oracle9i Database Performance Tuning Guide and Reference

I/O Configuration an
15

I/O Configuration and Design

The I/O subsystem is a vital component of an Oracle database. This chapter

introduces fundamental I/O concepts, discusses the I/O requirements of different

parts of the database, and provides sample configurations for I/O subsystem

design.

This chapter includes the following topics:

■ Understanding I/O

■ Basic I/O Configuration
d Design 15-1

Understanding I/O
Understanding I/O
The performance of many software applications is inherently limited by disk I/O.

Applications that spend the majority of CPU time waiting for I/O activity to

complete are said to be I/O-bound.

Oracle is designed so that if an application is well written, its performance should

not be limited by I/O. Tuning I/O can enhance the performance of the application if

the I/O system is operating at or near capacity and is not able to service the I/O

requests within an acceptable time. However, tuning I/O cannot help performance

if the application is not I/O-bound (for example, when CPU is the limiting factor).

Designing I/O Layouts
Consider the following database requirements when designing an I/O system:

1. Storage, such as minimum bytes of disk

2. Availability, such as continuous (24 x 7) or business hours only

3. Performance, such as I/O throughput and application response times

Many I/O designs plan for storage and availability requirements with the

assumption that performance will not be an issue. This is not always the case.

Optimally, the number of disks and controllers to be configured should be

determined by I/O throughput and redundancy requirements. Then, the size of

disks can be determined by the storage requirements.

Disk Performance and Reliability
For any database, the I/O subsystem is critical for system availability, performance,

and data integrity. A weakness in any of these areas can render the database system

unstable, unscalable, or untrustworthy.

All I/O subsystems use magnetic disk drives. Conventional magnetic disk drives

contain moving parts. Because these moving parts have a design life, they are

subject to tolerances in manufacturing that make their reliability and performance

inconsistent. Not all drives that are theoretically identical perform the same, and

they can break down over time. When assembling a large disk configuration, you

need only to look at the mean time between failures (MTBF) of disk drives and the

number of disks to see that disk failures are a common occurrence. This is

unfortunate, because the core assets of any system (the data) reside on the disks.
15-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding I/O
Disk Technology
The main component of any I/O subsystem, the disk drive, has barely changed over

the last few years. The only changes are the increase in drive capacity from under 1

gigabyte to over 50 gigabytes, and small improvements in disk access time (rpm)

and, hence, throughput. Improvements made in CPUs, on the other hand, have

doubled their performance every 18 months.

There is a disk drive paradox that says that if you size the number of disks required

by disk capacity, then you need fewer and fewer disks over time, because the disks

increase in size. However, if you size the number of disks by performance, then you

must double the number of disks for each CPU every 18 months. Dealing with this

paradox has proved to be a problem in many system configurations, especially

those designed to be cheaper by using fewer disks.

In addition to the size of the actual disks manufactured, the way disk subsystems

are connected has changed. On smaller systems, in general, disk drives are

connected individually to the host machine by small computer system interfaces

(SCSI) through one of a number of disk controllers. For high-end systems, disk

mirroring and striping are essential for performance and availability. These

requirements lead to hundreds of disks connected through complex wiring

configurations.

However, although disk technology itself has not greatly changed, I/O subsystems

have evolved into disk arrays that overcome many of the described problems. The

systems perform disk mirroring, provide hot swapping of disks, and in many cases,

provide simpler connections to the host by fiber interfaces. The more sophisticated

disk arrays are, in fact, small computers themselves with their own CPU,

battery-backed memory cache for high-performance resilient writes, dial-home

diagnostics, and proxy backup to allow backup without going through the host

operating system.

What Is Disk Contention?
Disk contention occurs when multiple processes try to access the same disk

simultaneously. Most disks have limits on both the number of accesses (I/O

operations each second) and the amount of data they can transfer each second (I/O

data rate, or throughput). When these limits are reached, processes must wait to

access the disk.
I/O Configuration and Design 15-3

Understanding I/O
Load Balancing and Striping
A performance engineer’s goal is to distribute the I/O load evenly across the

available devices. This is known as load balancing or distributing I/O. Historically,

load balancing had to be performed manually. Database administrators would

determine the I/O requirements and characteristics of each datafile and design the

I/O layout based on which files could be placed together on a single disk to

distribute the activity evenly over all disks.

If a particular table or index was I/O-intensive, then to further distribute the I/O

load, DBAs also had the option of manually distributing, or striping, the data. This

was achieved by splitting the object’s extents over separate datafiles, then

distributing the datafiles over devices.

Fundamentally, striping divides data into small portions and stores these portions

in separate files on separate disks. This allows multiple processes to access different

portions of the data concurrently without disk contention. Operating systems,

hardware vendors, and third-party software vendors provide the tools for striping a

heavily used file across many physical devices simply, thus making the job of

balancing I/O significantly easier for DBAs.

Striping is helpful both in OLTP environments, to optimize random access to tables

with many rows, and also in DSS environments, to allow parallel operations to scan

large volumes of data quickly. Striping techniques are productive when the load

redistribution eliminates or reduces some form of queue. Striping files can also

improve RMAN backup and restore performance.

If the concurrent load is too heavy for the available hardware, then striping does not

alleviate the problem.

Striping and RAID
You must also consider the recoverability requirements of each particular system.

Configurations with redundant arrays of inexpensive disks (RAID) provide

improved data reliability, while offering the option of striping. The RAID level

chosen should depend on performance and cost. Different RAID levels are suited to

different types of applications, depending on their I/O characteristics.

The following list provides a brief overview of the most popular RAID

configurations used for database files, along with the applications that best suit

them. These descriptions are very general. Consult with your hardware and

software vendors for details about implementing a specific configuration:
15-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding I/O
RAID 0: Striping
Files are striped across many physical disks. This configuration provides read and

write performance, but not reliability.

RAID 1: Mirroring
Physical disks are used to store a specified number n of concurrently maintained

copies of a file. The number of disks required is n times m, where m is the number of

disks required to store the original files. RAID 1 provides good reliability and good

read rates. Sometimes, writes can be costly, because n writes are required to

maintain n copies.

RAID 0+1: Striping and Mirroring
This level combines the technologies of RAID 0 and RAID 1. It is widely used

because it provides good reliability and better read and write performance than

RAID 1.

RAID 5: Striping and Redundancy
RAID 5 striping is similar to striping in RAID 0. Recoverability of lost data due to

disk failure is achieved by storing parity data regarding all disks in a stripe, with

storage uniform throughout disks in the group. Compared to RAID 1, the benefit is

the saving in disk cost. RAID 5 provides good reliability. Sequential reads benefit

the most, while write performance can suffer. This configuration might not be ideal

for write-intensive applications.

Note: Although RAID 0 provides the best read and write

performance, it is not a true RAID system because it does not allow

for redundancy. Oracle recommends that you do not place

production database files on RAID 0 systems.

Note: Mirroring can cause I/O bottlenecks. Generally, the process

of writing to each mirror is done in parallel and does not cause a

bottleneck. However, if each mirror is striped differently, then the

I/O does not complete until the slowest member of the mirror is

complete. To avoid I/O problems, stripe the copies using the same

number of disks as used for the primary database.
I/O Configuration and Design 15-5

Basic I/O Configuration
Recent RAID 5 implementations avoid many of the traditional RAID 5 limits by

installing large amounts of battery-backed memory (NVRAM). The cache offsets the

performance penalty in two ways:

■ It helps defer the physical I/O operations, because the small write penalty does

not bottleneck the individual I/O call that initiated it.

■ It helps a disk array to group small writes into larger batches that don’t incur

the small-write penalty.

The drawbacks are:

■ The cache is expensive, which can defeat the RAID 5 cost advantage (for each

byte of storage) over RAID 1.

■ I/O throughput requirement might exceed the cache capacity. If I/O calls keep

coming fast enough, the cache can fill up, triggering all I/O to the array to cease

until the array resynchronizes with the physical disk.

Balancing Budget, Performance, and Availability
The choice of I/O subsystem and how to design the layout is an exercise in

balancing budget, performance, and availability. It is essential to be able to expand

the I/O subsystem as throughput requirements grow and more I/O is performed.

To achieve a scalable I/O system, the chosen system must be able to evolve over

time, with a minimum of downtime. In many cases, this involves configuring the

system to achieve 95% optimal performance, forsaking 5% performance for ease of

configuration and eventual upgrades.

Basic I/O Configuration
This section describes the basic information to be gathered and decisions to be

made when defining a system’s I/O configuration. You want to keep the

configuration as simple as possible, while maintaining the required availability,

recoverability, and performance. The more complex a configuration becomes, the

more difficult it is to administer, maintain, and tune.

Determining Application I/O Characteristics
This section describes the basic I/O characteristics and requirements that must be

determined. These I/O characteristics influence decisions on the type of technology

required and how to configure that technology. I/O requirements include the

performance, space, and recoverability needs specific to the site.
15-6 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
To design an efficient I/O subsystem, you need the following information:

■ I/O Rate: Read Rate and Write Rate

■ I/O Concurrency

■ I/O Size

■ Availability

■ Storage Size

When defining a system’s I/O configuration, you need to take into account the

maximum load that will be generated by parallel operations such as parallel index

creation and parallel scans. You only get one chance to configure your disks, and if

enough load distribution is not built in, then parallel operations will not scale. This

is especially important for log and archive disks.

I/O Rate: Read Rate and Write Rate
The read rate is the number of reads each second. The write rate is the number of

writes each second. The sum of the read rate and the write rate is the I/O rate (the

number of I/O operations each second). For a system that performs well, your

application’s I/O rate should be a significant factor when determining the absolute

minimum number of disks and controllers required.

A system that has a high write rate might also benefit from the following

configuration options:

■ Using raw devices or third-party software that enables writes directly to disk,

avoiding reading from and writing to the UNIX buffer cache

■ Using an I/O disk array that has a memory cache large enough to sustain

destaging dirty blocks without filling up the cache

■ Avoiding RAID 5 configuration for write-intensive applications

I/O Concurrency
I/O concurrency measures the number of distinct processes that simultaneously

have I/O requests to the I/O subsystem. From an Oracle perspective, I/O

concurrency is considered the number of processes concurrently issuing I/O

requests. A high degree of I/O concurrency implies that there are many distinct

See Also: Your vendor-specific documentation to see whether

high write rates can be sustained without a performance hit
I/O Configuration and Design 15-7

Basic I/O Configuration
processes simultaneously issuing I/O requests. A low degree of concurrency

implies that few processes are simultaneously issuing I/O requests.

I/O Size
I/O size is the size of the I/O request from Oracle’s perspective. The minimum I/O

size is the operating system block size, while the maximum is typically a factor of

the Oracle block size multiplied by the multiblock read count.

Although the I/O size can vary depending on the type of operation, there are some

reasonable, general estimates that can be made, depending on the nature of the

application.

■ With a DSS system, the majority of the I/Os are typically going to be large,

approximately n * DB_BLOCK_SIZE.

■ With an OLTP system, the I/Os are predominantly going to be the size of DB_
BLOCK_SIZE.

Factors Affecting I/O Size and Concurrency In an Oracle system, the various files have

different requirements of the disk subsystem. The requirements are distinguished

by the rate of reading and writing of data and by the concurrency of these

operations. High rates are relatively easily sustained by the disk subsystem when

the concurrency is low. It is important that design of the disk subsystem take the

following factors into consideration:

■ Operational parameters. These are the configurable and nonmodifiable

operational parameters for Oracle, the operating system, the hardware, and any

third party software such as a logical volume master (LVM).

■ Typical I/O size and degree of concurrency for each file. These vary

considerably from one site to another, even for the same type of file. For

example, a site that performs many concurrent disk sorts has different

characteristics for its TEMP tablespace than a site that performs predominantly

small, in-memory sorts.

Note: High I/O rate systems are typified by high concurrency and

small block requests. High data rate systems are typified by low

concurrency and large block requests.

See Also: Table 15–2 on page 15-13
15-8 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
Table 15–1 shows the read and write rate and concurrency for a theoretical

installation. The example describes a high-query, high-update OLTP application

that performs predominantly in-memory sorts, with indexes that remain cached

in the buffer cache.

Availability
Site-specific availability requirements impose additional specifications on the disk

storage technology and layout. Typical considerations include the appropriate

RAID technology to meet recoverability requirements and any Oracle-specific safety

measures, such as mirroring of redo logs, archive logs, and control files.

Dedicating separate disks to mirroring redo log files is an important safety

precaution. This ensures that the datafiles and the redo log files cannot both be lost

in a single disk failure.

Storage Size
With the large disks available today, if the performance and availability

requirements are satisfied, then in most cases the storage needs have already been

met. If, however, the system stores voluminous data online, and the data does not

have high concurrency or throughput requirements, then you can fall short of

storage requirements. In such cases, you need to consider the following methods of

maximizing storage space:

Table 15–1 Read and Write Concurrency Rates

Component Read Rate Write Rate Concurrency

Archive logs High High Low

Redo logs High High Low

Undo segment tablespaces Low High High

TEMP tablespaces Low Low High

Index tablespaces Low Medium High

Data tablespaces High Medium High

Application log and output files Low Medium High

Binaries (shared) Low Low High

See Also: Oracle9i User-Managed Backup and Recovery Guide for

more information on recoverability
I/O Configuration and Design 15-9

Basic I/O Configuration
■ Use different RAID configurations.

■ Use more disks.

■ Use larger disks.

I/O Configuration Decisions
Depending on the hardware and software available, you should determine the

following system characteristics during the I/O layout phase:

■ Number of disks available for database files

■ RAID level

■ Stripe depth and stripe width

■ Whether to use raw devices or file system

■ Whether the system can perform asynchronous I/O

To maximize performance, the goal of system configuration should be to distribute

the I/O load for the database as evenly as possible over the available disks.

In addition to distributing I/O, other configuration concerns should include the

expected growth on the system and the required recoverabilty.

Know Your I/O System
You should be aware of the capabilities of the I/O system. This information is

available by reviewing hardware and software documentation (if applicable), and

also by performing tests at your site. Tests can include varying any of the following

factors:

■ I/O sizes

■ Raw devices compared to file systems

■ Read and write performance

■ Sequential and random access

■ Asynchronous I/O compared to synchronous I/O

■ Configuration of features your system has for enhancing I/O

Performing this type of research can provide insight into potential configurations

that can be used for the final design.
15-10 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
Match I/O Requirements with the I/O System
If you have a benchmark that simulates the load placed on the I/O system by the

application, or if there is an existing production system, then look at the Oracle

statistics to determine the I/O rates for each file and for the database as a whole.

To determine the Oracle file I/O statistics, look at the following:

■ Number of physical reads (V$FILESTAT.PHYRDS)

■ Number of physical writes (V$FILESTAT.PHYWRTS)

■ Average read time

■ Number of physical I/Os. This number is the sum of the physical reads and

physical writes.

Assuming that the Oracle buffer cache is adequately sized, the physical reads and

physical writes statistics are useful.

Another important statistic is the average number of I/Os each second. To

determine this number, sample the V$FILESTAT data over an interval, add the

physical reads and writes, and then divide this total by the elapsed time in seconds.

The general formula is as follows:

Average I/O per second = (physical reads + physical writes) / elapsed seconds

To estimate the I/O requirements, scale the I/O statistics with the expected

workload on the new system. Comparing the scaled data with the disk capabilities

can potentially identify whether there will be a mismatch between the I/O

requirements of the new application and the capabilities of the I/O system.

Also identify any I/O-intensive operations that are not part of the typical load and

have I/O rates that greatly peak over the average. Ensure that your system is able to

sustain these rates. Operations such as index builds, data loads, and batch

processing fall into this category.

See Also: Oracle9i Database Performance Planning for more

information on operating system I/O statistics

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

for details on how to calculate the delta information in

V$FILESTAT
I/O Configuration and Design 15-11

Basic I/O Configuration
FILESYSTEMIO_OPTIONS
With Oracle9i Release 2 (9.2), you can use the FILESYSTEMIO_OPTIONS
initialization parameter to enable or disable asynchronous I/O or direct I/O on file

system files. This parameter is platform-specific and has a default value that is best

for a particular platform. It can be dynamically changed to update the default

setting.

Lay Out the Files Using Operating System or Hardware Striping
If your operating system has LVM software or hardware-based striping, then it is

possible to distribute I/O using these tools. Decisions to be made when using an

LVM or hardware striping include stripe depth and stripe width.

■ Stripe depth is the size of the stripe, sometimes called stripe unit.

■ Stripe width is the product of the stripe depth and the number of drives in the

striped set.

Choose these values wisely so that the system is capable of sustaining the required

throughput. For an Oracle database, reasonable stripe depths range from 256 KB to

4 MB. Different types of applications benefit from different stripe depths. The

optimal stripe depth and stripe width depend on the following:

■ Requested I/O Size

■ Concurrency of I/O Requests

■ Alignment of Physical Stripe Boundaries with Block Size Boundaries

■ Variable Transfer Rate

■ Manageability of the Proposed System

Requested I/O Size
Table 15–2 lists the Oracle and operating system parameters that you can use to set

I/O size:

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

for details on how to calculate the delta information in

V$FILESTAT

See Also: "FILESYSTEMIO_OPTIONS Initialization Parameter"

on page 16-4
15-12 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
In addition to I/O size, the degree of concurrency also helps in determining the

ideal stripe depth. Consider the following when choosing stripe width and stripe

depth:

■ On low-concurrency (sequential) systems, ensure that no single I/O visits the

same disk twice. For example, assume that the stripe width is four disks, and

the stripe depth is 32k. If a single 1MB I/O request (for example, for a full table

scan) is issued by an Oracle server process, then each disk in the stripe must

perform four I/Os to return the requested data. To avoid this situation, the size

of the average I/O should be smaller than the stripe width multiplied by the

stripe depth. If this is not the case, then a single I/O request made by Oracle to

the operating system results in multiple physical I/O requests to the same disk.

■ On high-concurrency (random) systems, ensure that no single I/O request is

broken up into more than one physical I/O call. Failing to do this multiplies the

number of physical I/O requests performed in your system, which in turn can

severely degrade the I/O response times.

Concurrency of I/O Requests
In a system with a high degree of concurrent small I/O requests, such as in a

traditional OLTP environment, it is beneficial to keep the stripe depth large. Using

stripe depths larger than the I/O size is called coarse grain striping. In

high-concurrency systems, the stripe depth can be

n * DB_BLOCK_SIZE
where n is greater than 1.

Table 15–2 Oracle and Operating System Operational Parameters

Parameter Description

DB_BLOCK_SIZE The size of single-block I/O requests. This parameter is also
used in combination with multiblock parameters to determine
multiblock I/O request size.

OS block size Determines I/O size for redo log and archive log operations.

Maximum OS I/O size Places an upper bound on the size of a single I/O request.

DB_FILE_MULTIBLOCK_
READ_COUNT

The maximum I/O size for full table scans is computed by
multiplying this parameter with DB_BLOCK_SIZE. (the upper
value is subject to operating system limits).

SORT_AREA_SIZE Determines I/O sizes and concurrency for sort operations.

HASH_AREA_SIZE Determines the I/O size for hash operations.
I/O Configuration and Design 15-13

Basic I/O Configuration
Coarse grain striping allows a disk in the array to service several I/O requests. In

this way, a large number of concurrent I/O requests can be serviced by a set of

striped disks with minimal I/O setup costs. Coarse grain striping strives to

maximize overall I/O throughput. Multiblock reads, as in full table scans, will

benefit when stripe depths are large and can be serviced from one drive. Parallel

query in a DSS environment is also a candidate for coarse grain striping. This is

because there are many individual processes, each issuing separate I/Os. If coarse

grain striping is used in systems that do not have high concurrent requests, then hot

spots could result.

In a system with a few large I/O requests, such as in a traditional DSS environment

or a low-concurrency OLTP system, then it is beneficial to keep the stripe depth

small. This is called fine grain striping. In such systems, the stripe depth is

n * DB_BLOCK_SIZE
where n is smaller than the multiblock read parameters (such as DB_FILE_
MULTIBLOCK_READ_COUNT).

Fine grain striping allows a single I/O request to be serviced by multiple disks. Fine

grain striping strives to maximize performance for individual I/O requests or

response time.

Alignment of Physical Stripe Boundaries with Block Size Boundaries
On some Oracle ports, an Oracle block boundary may not align with the stripe. If

your stripe depth is the same size as the Oracle block, then a single I/O issued by

Oracle might result in two physical I/O operations.

This is not optimal in an OLTP environment. To ensure a higher probability of one

logical I/O resulting in no more than one physical I/O, the minimum stripe depth

should be at least twice the Oracle block size. Table 15–3 shows recommended

minimum stripe depth for random access and for sequential reads.

Table 15–3 Minimum Stripe Depth

Disk Access Minimum Stripe Depth

Random reads and writes The minimum stripe depth is twice the Oracle block size.

Sequential reads The minimum stripe depth is twice the value of DB_FILE_
MULTIBLOCK_READ_COUNT, multiplied by the Oracle
block size.

See Also: The specific documentation for your platform
15-14 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
Variable Transfer Rate
The transfer rate for a disk drive is not the same for all portions of a disk. The outer

sectors of a disk drive move the disk head faster than the inner sectors, leading to a

faster transfer rate for the outer sectors.

The outside portions of a disk drive hold more data than the inside portions.

The transfer rate of a disk drive can vary by a factor of two from the inner edge of

the drive to the outer edge. It is therefore beneficial to place frequently accessed

data toward the outer edge of a disk drive.

Manageability of the Proposed System
With an LVM, the simplest configuration to manage is one with a single striped

volume over all available disks. In this case, the stripe width encompasses all

available disks. All database files reside within that volume, effectively distributing

the load evenly. This single-volume layout provides adequate performance in most

situations.

A single-volume configuration is viable only when used in conjunction with RAID

technology that allows easy recoverability, such as RAID 1. Otherwise, losing a

single disk means losing all files concurrently and, hence, performing a full

database restore and recovery.

In addition to performance, there is a manageability concern: the design of the

system must allow disks to be added simply, to allow for database growth. The

challenge is to do so while keeping the load balanced evenly.

For example, an initial configuration can involve the creation of a single striped

volume over 64 disks, each disk being 16 GB. This is total disk space of 1 terabyte

(TB) for the primary data. Sometime after the system is operational, an additional 80

GB (that is, five disks) must be added to account for future database growth.

The options for making this space available to the database include creating a

second volume that includes the five new disks. However, an I/O bottleneck might

develop, if these new disks are unable to sustain the I/O throughput required for

the files placed on them.

Another option is to increase the size of the original volume. LVMs are becoming

sophisticated enough to allow dynamic reconfiguration of the stripe width, which

allows disks to be added while the system is online. This begins to make the

placement of all files on a single striped volume feasible in a production

environment.
I/O Configuration and Design 15-15

Basic I/O Configuration
If your LVM is unable to support dynamically adding disks to the stripe, then it is

likely that you need to choose a smaller, more manageable stripe width. Then, when

new disks are added, the system can grow by a stripe width.

In the preceding example, eight disks might be a more manageable stripe width.

This is only feasible if eight disks are capable of sustaining the required number of

I/Os each second. Thus, when extra disk space is required, another eight-disk stripe

can be added, keeping the I/O balanced across the volumes.

Manually Distributing I/O
If your system does not have an LVM or hardware striping, then I/O must be

manually balanced across the available disks by distributing the files according to

each file’s I/O requirements. In order to make decisions on file placement, you

should be familiar with the I/O requirements of the database files and the

capabilities of the I/O system. If you are not familiar with this data and do not have

a representative workload to analyze, you can make a first guess and then tune the

layout as the usage becomes known.

To stripe disks manually, you need to relate a file’s storage requirements to its I/O

requirements.

1. Evaluate database disk-storage requirements by checking the size of the files

and the disks.

2. Identify the expected I/O throughput for each file. Determine which files have

the highest I/O rate and which do not have many I/Os. Lay out the files on all

the available disks so as to even out the I/O rate.

One popular approach to manual I/O distribution suggests separating a frequently

used table from its index. This is not correct. During the course of a transaction, the

index is read first, and then the table is read. Because these I/Os occur sequentially,

the table and index can be stored on the same disk without contention. It is not

sufficient to separate a datafile simply because the datafile contains indexes or table

data. The decision to segregate a file should be made only when the I/O rate for

that file affects database performance.

Note: The smaller the stripe width becomes, the more likely it is

that you will need to spend time distributing the files on the

volumes, and the closer the procedure becomes to manually

distributing I/O.
15-16 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
When to Separate Files
Regardless of whether you use operating system striping or manual I/O

distribution, if the I/O system or I/O layout is not able to support the I/O rate

required, then you need to separate files with high I/O rates from the remaining

files. You can identify such files either at the planning stage or after the system is

live.

The decision to segregate files should only be driven by I/O rates, recoverability

concerns, or manageability issues. (For example, if your LVM does not support

dynamic reconfiguration of stripe width, then you might need to create smaller

stripe widths to be able to add n disks at a time to create a new stripe of identical

configuration.)

Before segregating files, verify that the bottleneck is truly an I/O issue. The data

produced from investigating the bottleneck identifies which files have the highest

I/O rates.

Tables, Indexes, and TEMP Tablespaces
If the files with high I/O are datafiles belonging to tablespaces that contain tables

and indexes, then identify whether the I/O for those files can be reduced by tuning

SQL or application code.

If the files with high-I/O are datafiles that belong to the TEMP tablespace, then

investigate whether to tune the SQL statements performing disk sorts to avoid this

activity, or to tune the sorting.

After the application has been tuned to avoid unnecessary I/O, if the I/O layout is

still not able to sustain the required throughput, then consider segregating the

high-I/O files.

Redo Log Files
If the high-I/O files are redo log files, then consider splitting the redo log files from

the other files. Possible configurations can include the following:

See Also: "Identifying and Gathering Data on Resource-Intensive

SQL" on page 6-3

See Also: "Identifying and Gathering Data on Resource-Intensive

SQL" on page 6-3
I/O Configuration and Design 15-17

Basic I/O Configuration
■ Placing all redo logs on one disk without any other files. Also consider

availability; members of the same group should be on different physical disks

and controllers for recoverability purposes.

■ Placing each redo log group on a separate disk that does not store any other

files.

■ Striping the redo log files across several disks, using an operating system

striping tool. (Manual striping is not possible in this situation.)

■ Avoiding the use of RAID 5 for redo logs.

Redo log files are written sequentially by the Log Writer (LGWR) process. This

operation can be made faster if there is no concurrent activity on the same disk.

Dedicating a separate disk to redo log files usually ensures that LGWR runs

smoothly with no further tuning necessary. If your system supports asynchronous

I/O but this feature is not currently configured, then test to see if using this feature

is beneficial. Performance bottlenecks related to LGWR are rare.

Archived Redo Logs
If the archiver is slow, then it might be prudent to prevent I/O contention between

the archiver process and LGWR by ensuring that archiver reads and LGWR writes

are separated. This is achieved by placing logs on alternating drives.

For example, suppose a system has four redo log groups, each group with two

members. To create separate-disk access, the eight log files should be labeled 1a, 1b,

2a, 2b, 3a, 3b, 4a, and 4b. This requires at least four disks, plus one disk for archived

files.

Figure 15–1 illustrates how redo members should be distributed across disks to

minimize contention.
15-18 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
Figure 15–1 Distributing Redo Members Across Disks

In this example, LGWR switches out of log group 1 (member 1a and 1b) and

writes to log group 2 (2a and 2b). Concurrently, the archiver process reads from

group 1 and writes to its archive destination. Note how the redo log files are

isolated from contention.

Because redo logs are written serially, drives dedicated to redo log activity

generally require limited head movement. This significantly accelerates

log writing.

Three Sample Configurations
This section contains three high-level examples of configuring I/O systems. These

examples include sample calculations that define the disk topology, stripe depths,

and so on.

Stripe Everything Across Every Disk
The simplest approach to I/O configuration is to build one giant volume, striped

across all available disks. To account for recoverability, the volume is mirrored

Note: Mirroring redo log files, or maintaining multiple copies of

each redo log file on separate disks, does not slow LGWR

considerably. LGWR writes to each disk in parallel and waits until

each part of the parallel write is complete. Hence, a parallel write

does not take longer than the longest possible single-disk write.

2a
4a

1a
3a

2b
4b

1b
3b

arch
dest

arch

lgwr
I/O Configuration and Design 15-19

Basic I/O Configuration
(RAID 1). The striping unit for each disk should be larger than the maximum I/O

size for the frequent I/O operations. This provides adequate performance for most

cases.

Move Archive Logs to Different Disks
If archive logs are striped on the same set of disks as other files, then any I/O

requests on those disks could suffer when redo logs are being archived. Moving

archive logs to separate disks provides the following benefits:

■ The archive can be performed at very high rate (using sequential I/O).

■ Nothing else is affected by the degraded response time on the archive

destination disks.

The number of disks for archive logs is determined by the rate of archive log

generation and the amount of archive storage required.

Move Redo Logs to Separate Disks
In high-update OLTP systems, the redo logs are write-intensive. Moving the redo

log files to disks that are separate from other disks and from archived redo log files

has the following benefits:

■ Writing redo logs is performed at the highest possible rate. Hence, transaction

processing performance is at its best.

■ Writing of the redo logs is not impaired with any other I/O.

The number of disks for redo logs is mostly determined by the redo log size, which

is generally small compared to current technology disk sizes. Typically, a

configuration with two disks (possibly mirrored to four disks for fault tolerance) is

adequate. In particular, by having the redo log files alternating on two disks,

writing redo log information to one file does not interfere with reading a completed

redo log for archiving.

Oracle-Managed Files
For systems where a file system can be used to contain all Oracle data, database

administration is simplified by using Oracle-managed files. Oracle internally uses

standard file system interfaces to create and delete files as needed for tablespaces,

temp files, online logs, and control files. Administrators only specify the file system

directory to be used for a particular type of file. You can specify one default location

for datafiles and up to five multiplexed locations for the control and online redo log

files.
15-20 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
Oracle ensures that a unique file is created and then deleted when it is no longer

needed. This reduces corruption caused by administrators specifying the wrong file,

reduces wasted disk space consumed by obsolete files, and simplifies creation of

test and development databases. It also makes development of portable third-party

tools easier, because it eliminates the need to put operating-system specific file

names in SQL scripts.

New files can be created as managed files, while old ones are administered in the

old way. Thus, a database can have a mixture of Oracle-managed and manually

managed files.

Tuning Oracle-Managed Files
Several points should be considered when tuning Oracle-managed files.

■ Because Oracle-managed files require the use of a file system, DBAs give up

control over how the data is laid out. Therefore, it is important to correctly

configure the file system.

■ The Oracle-managed file system should be built on top of an LVM that supports

striping. For load balancing and improved throughput, the disks in the

Oracle-managed file system should be striped.

■ Oracle-managed files work best if used on an LVM that supports dynamically

extensible logical volumes. Otherwise, the logical volumes should be

configured as large as possible.

■ Oracle-managed files work best if the file system provides large extensible files.

Choosing Data Block Size
This section lists considerations when choosing database block size for optimal

performance.

Reads Regardless of the size of the data, the goal is to minimize the number of reads

required to retrieve the desired data.

■ If the rows are small and access is predominantly random, then choose a

smaller block size.

Note: Oracle-managed files cannot be used with raw devices.

See Also: Oracle9i Database Administrator’s Guide for detailed

information on using Oracle-managed files
I/O Configuration and Design 15-21

Basic I/O Configuration
■ If the rows are small and access is predominantly sequential, then choose a

larger block size.

■ If the rows are small and access is both random and sequential, then it might be

effective to choose a larger block size.

■ If the rows are large—for example, if they contain large object (LOB) data—then

choose a larger block size.

Writes For high-concurrency OLTP systems, consider appropriate values for

INITRANS , MAXTRANS, and FREELISTS when using a larger block size. These

parameters affect the degree of update concurrency allowed within a block.

However, you do not need to specify the value for FREELISTS when using

automatic segment-space management.

If you are uncertain about which block size to choose, then try a database block size

of 8 KB for most systems that process a large number of transactions. This

represents a good compromise and is usually effective. Only systems processing

LOB data need more than 8 KB.

Figure 15–2 illustrates the suitability of various block sizes to OLTP or DSS

applications.

Figure 15–2 Block Size (in KB) and Application Type

Block Size Advantages and Disadvantages
Table 15–4 lists the advantages and disadvantages of different block sizes.

See Also: The Oracle documentation specific to your operating

system for information on the minimum and maximum block size

on your platform

0 2 4 8 16 32 64

OLTP DSS
15-22 Oracle9i Database Performance Tuning Guide and Reference

Basic I/O Configuration
Table 15–4 Block Size Advantages and Disadvantages

Block Size Advantages Disadvantages

Smaller Good for small rows with lots of random
access.

Reduces block contention.

Has relatively large space overhead due to metadata
(that is, block header).

Not recommended for large rows. There might only
be a few rows stored for each block, or worse, row
chaining if a single row does not fit into a block,

Larger Has lower overhead, so there is more
room to store data.

Permits reading a number of rows into
the buffer cache with a single I/O
(depending on row size and block size).

Good for sequential access or very large
rows (such as LOB data).

Wastes space in the buffer cache, if you are doing
random access to small rows and have a large block
size. For example, with an 8 KB block size and 50
byte row size, you waste 7,950 bytes in the buffer
cache when doing random access.

Not good for index blocks used in an OLTP
environment, because they increase block contention
on the index leaf blocks.
I/O Configuration and Design 15-23

Basic I/O Configuration
15-24 Oracle9i Database Performance Tuning Guide and Reference

Understanding Operating System Re
16

Understanding Operating System

Resources

This chapter explains how to tune the operating system for optimal performance of

the Oracle database server.

This chapter contains the following sections:

■ Understanding Operating System Performance Issues

■ Solving Operating System Problems

■ Understanding CPU

■ Finding System CPU Utilization

See Also:

■ Your Oracle platform-specific documentation and your

operating system vendor’ s documentation

■ Oracle9i Database Performance Planning for a discussion of the

importance of operating system statistics
sources 16-1

Understanding Operating System Performance Issues
Understanding Operating System Performance Issues
Operating system performance issues commonly involve process management,

memory management, and scheduling. If you have tuned the Oracle instance and

you still need better performance, then verify your work or try to reduce system

time. Make sure that there is enough I/O bandwidth, CPU power, and swap space.

Do not expect, however, that further tuning of the operating system will have a

significant effect on application performance. Changes in the Oracle configuration

or in the application are likely to make a more significant difference in operating

system efficiency than simply tuning the operating system.

For example, if an application experiences excessive buffer busy waits, then the

number of system calls increases. If you reduce the buffer busy waits by tuning the

application, then the number of system calls decreases.

Using Operating System Caches
Operating systems and device controllers provide data caches that do not directly

conflict with Oracle’s own cache management. Nonetheless, these structures can

consume resources while offering little or no benefit to performance. This is most

noticeable on a UNIX system that has the database files in the UNIX file store; by

default all database I/O goes through the file system cache. On some UNIX

systems, direct I/O is available to the filestore. This arrangement allows the

database files to be accessed within the UNIX file system, bypassing the file system

cache. It saves CPU resources and allows the file system cache to be dedicated to

non-database activity, such as program texts and spool files.

This problem does not occur on NT. All file requests by the database bypass the

caches in the file system.

Although the operating system cache is often redundant because the Oracle buffer

cache buffers blocks, there are a number of cases where Oracle does not use the

Oracle buffer cache. In these cases, using direct I/O which bypasses the Unix or

operating system cache or using raw devices which do not use the operating system

cache may yield worse performance than using operating system buffering. Some

examples of this include the following:

■ Reads or writes to the TEMPORARY tablespace

■ Data stored in NOCACHE LOBs

■ Parallel Query slaves reading data

See Also: Your Oracle platform-specific documentation and your

operating system vendor’s documentation
16-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding Operating System Performance Issues
You may want a mix with some files cached at the operating system level and others

not.

Hardware Cache
Some underlying I/O subsystems implement hardware-level caching of disk reads

and writes to speed up their response times to I/O requests. It is important to

ensure that such subsystems are configured to acknowledge write requests only

after the written data is guaranteed to be safe.

For example, consider a subsystem that implements a RAM cache that

acknowledges writes as soon as the written data is in the RAM cache. The Oracle

database server considers this data to be safe. Then a power failure occurs and the

data is lost. This can lead to corruption, because the Oracle server has no way of

knowing that the write was lost. In order to overcome this problem, most I/O

subsystems have a mechanism for ensuring data in the RAM cache is not lost across

power failures. If the subsystem cannot guarantee this, then it is generally best to

configure the system in such a way that a write is acknowledged only after the data

has been written to disk, rather than only to the RAM cache.

Asynchronous I/O
With synchronous I/O, when an I/O request is submitted to the operating system,

the writing process blocks until the write is confirmed as complete. It can then

continue processing.

Asynchronous I/O allows a process to submit an I/O request but to then continue

processing. It may then check on the result of the I/O at a later time. It is also

possible to submit several I/O requests and then collect the status of those requests

at a later time, thus allowing the operating system to parallelize any of those I/O

operations, where possible. Parallel processing can reduce the overall time to

complete an operation.

Consider an extreme example: Imagine you want to write out four data blocks to

four different files. With synchronous I/O you must submit block 1, wait, submit

block 2, wait, submit block 3, wait, submit block 4, and wait. With asynchronous

I/O, you can submit blocks 1, 2, 3, and 4 and then wait for all four blocks to

complete. Because you gave the operating system all four I/O requests at once, it

can act on all the requests in parallel. The total response time is only the duration of

the longest I/O of the four, rather than the sum of all four I/O durations.

Some platforms support asynchronous I/O by default, others need special

configuration, and some only support asynchronous I/O for certain underlying file

system types.
Understanding Operating System Resources 16-3

Understanding Operating System Performance Issues
FILESYSTEMIO_OPTIONS Initialization Parameter
With Oracle9i Release 2 (9.2), you can use the FILESYSTEMIO_OPTIONS
initialization parameter to enable or disable asynchronous I/O or direct I/O on file

system files. This parameter is platform-specific and has a default value that is best

for a particular platform. It can be dynamically changed to update the default

setting.

FILESYTEMIO_OPTIONS can be set to one of the following values:

■ ASYNCH: enable asynchronous I/O on file system files

■ DIRECTIO: enable direct I/O on file system files

■ SETALL: enable both asynchronous and direct I/O on file system files

■ NONE: disable both asynchronous and direct I/O on file system files

Memory Usage
Memory usage is affected by both buffer cache limits and initialization parameters.

Buffer Cache Limits
The UNIX buffer cache consumes operating system memory resources. Although in

some versions of UNIX the UNIX buffer cache may be allocated a set amount of

memory, it is common today for more sophisticated memory management

mechanisms to be used. Typically these will allow free memory pages to be used to

cache I/O. In such systems it is common for operating system reporting tools to

show that there is no free memory which is not generally a problem. If processes

require more memory, the memory caching I/O data is usually released to allow the

process memory to be allocated.

Parameters Affecting Memory Usage
The memory required by any one Oracle session depends on many factors.

Typically the major contributing factors are:

■ Number of open cursors

■ Memory used by PLSQL, such as PLSQL tables

■ SORT_AREA_SIZE initialization parameter

In Oracle9i, the PGA_AGGREGATE_TARGET initialization parameter gives greater

control over a session’s memory usage.

See Also: Your platform-specific documentation for more details
16-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding Operating System Performance Issues
Using Process Schedulers
Many processes, or threads on NT systems, are involved in the operation of Oracle.

They all access the shared memory resources in the SGA.

Be sure that all Oracle processes, both background and user processes, have the

same process priority. When you install Oracle, all background processes are given

the default priority for the operating system. Do not change the priorities of

background processes. Verify that all user processes have the default operating

system priority.

Assigning different priorities to Oracle processes might exacerbate the effects of

contention. The operating system might not grant processing time to a low-priority

process if a high-priority process also requests processing time. If a high-priority

process needs access to a memory resource held by a low-priority process, then the

high-priority process can wait indefinitely for the low-priority process to obtain the

CPU, process the request, and release the resource.

Additionally, do not bind Oracle background processes to CPUs. This can cause the

bound processes to be CPU-starved. This is especially the case when binding

processes that fork off operating system threads. In this case, the parent process and

all its threads bind to the CPU.

Using Operating System Resource Managers
Some platforms provide operating system resource managers. These are designed

to reduce the impact of peak load use patterns by prioritizing access to system

resources. They usually implement administrative policies that govern which

resources users can access and how much of those resources each user is permitted

to consume.

Operating system resource managers are different from domains or other similar

facilities. Domains provide one or more completely separated environments within

one system. Disk, CPU, memory, and all other resources are dedicated to each

domain and cannot be accessed from any other domain. Other similar facilities

completely separate just a portion of system resources into different areas, usually

separate CPU or memory areas. Like domains, the separate resource areas are

dedicated only to the processing assigned to that area; processes cannot migrate

across boundaries. Unlike domains, all other resources (usually disk) are accessed

by all partitions on a system.

Oracle runs within domains, as well as within these other less complete partitioning

constructs, as long as the allocation of partitioned memory (RAM) resources is

fixed, not dynamic.
Understanding Operating System Resources 16-5

Understanding Operating System Performance Issues
Operating system resource managers prioritize resource allocation within a global

pool of resources, usually a domain or an entire system. Processes are assigned to

groups, which are in turn assigned resources anywhere within the resource pool.

Note: Oracle is not supported in any resource partitioned

environment in which memory resources are assigned dynamically.

Note: Oracle is not supported for use with any operating system

resource manager's memory management and allocation facility.

Oracle Database Resource Manager, which provides resource

allocation capabilities within an Oracle instance, cannot be used

with any operating system resource manager.

Caution: When running under operating system resource

managers, Oracle is supported only when each instance is assigned

to a dedicated operating system resource manager group or

managed entity. Also, the dedicated entity running all the instance's

processes must run at one priority (or resource consumption) level.

Management of individual Oracle processes at different priority

levels is not supported. Severe consequences, including instance

crashes, can result.

See Also:

■ For a complete list of operating system resource management

and resource allocation and deallocation features that work

with Oracle and Oracle Database Resource Manager, see your

systems vendor and your Oracle representative. Oracle does

not certify these system features for compatibility with specific

release levels.

■ Oracle9i Database Concepts and Oracle9i Database Administrator’s
Guide for more information about Oracle Database Resource

Manager
16-6 Oracle9i Database Performance Tuning Guide and Reference

Solving Operating System Problems
Solving Operating System Problems
This section provides hints for tuning various systems by explaining the following

topics:

■ Performance Hints on UNIX-Based Systems

■ Performance Hints on NT Systems

■ Performance Hints on Midrange and Mainframe Computers

Familiarize yourself with platform-specific issues so that you know what

performance options the operating system provides.

Performance Hints on UNIX-Based Systems
On UNIX systems, try to establish a good ratio between the amount of time the

operating system spends fulfilling system calls and doing process scheduling and

the amount of time the application runs. The goal should be to run 60% to 75% of

the time in application mode (often called user mode) and 25% to 40% of the time in

operating system mode. If you find that the system is spending 50% of its time in

each mode, then determine what is wrong.

The ratio of time spent in each mode is only a symptom of the underlying problem,

which might involve the following:

■ Paging or swapping

■ Executing too many operating system calls

■ Running too many processes

If such conditions exist, then there is less time available for the application to run.

The more time you can release from the operating system side, the more

transactions an application can perform.

Performance Hints on NT Systems
On NT systems, as with UNIX-based systems, establish an appropriate ratio

between time in application mode and time in system mode. On NT you can easily

monitor many factors with Performance Monitor: CPU, network, I/O, and memory

are all displayed on the same graph to assist you in avoiding bottlenecks in any of

these areas.

See Also: Your Oracle platform-specific documentation and your

operating system vendor’s documentation
Understanding Operating System Resources 16-7

Understanding CPU
Performance Hints on Midrange and Mainframe Computers
Consider the paging parameters on a mainframe, and remember that Oracle can

exploit a very large working set.

Free memory in VAX or VMS environments is actually memory that is not mapped

to any operating system process. On a busy system, free memory likely contains a

page belonging to one or more currently active process. When that access occurs, a

soft page fault takes place, and the page is included in the working set for the

process. If the process cannot expand its working set, then one of the pages

currently mapped by the process must be moved to the free set.

Any number of processes might have pages of shared memory within their working

sets. The sum of the sizes of the working sets can thus markedly exceed the

available memory. When the Oracle server is running, the SGA, the Oracle kernel

code, and the Oracle Forms runtime executable are normally all sharable and

account for perhaps 80% or 90% of the pages accessed.

Understanding CPU
To address CPU problems, first establish appropriate expectations for the amount of

CPU resources your system should be using. Then, determine whether sufficient

CPU resources are available and recognize when your system is consuming too

many resources. Begin by determining the amount of CPU resources the Oracle

instance utilizes with your system in the following three cases:

■ System is idle, when little Oracle and non-Oracle activity exists

■ System at average workloads

■ System at peak workloads

You can capture various workload snapshots using Statspack or the

UTLBSTAT/UTLESTAT utility. Operating system tools, such as vmstat , sar , and

iostat on UNIX and Performance Monitor on NT, should be run during the same

time interval as UTLBSTAT/UTLESTAT to provide a complimentary view of the

overall statistics.

Workload is an important factor when evaluating your system's level of CPU

utilization. During peak workload hours, 90% CPU utilization with 10% idle and

Note: Chapter 21, "Using Statspack" for more information on

Statspack and UTLBSTAT/UTLESTAT
16-8 Oracle9i Database Performance Tuning Guide and Reference

Understanding CPU
waiting time can be acceptable. Even 30% utilization at a time of low workload can

be understandable. However, if your system shows high utilization at normal

workload, then there is no room for a peak workload. For example, Figure 16–1

illustrates workload over time for an application having peak periods at 10:00 AM

and 2:00 PM.

Figure 16–1 Average Workload and Peak Workload

This example application has 100 users working 8 hours a day. Each user entering

one transaction every 5 minutes translates into 9,600 transactions daily. Over an

8-hour period, the system must support 1,200 transactions an hour, which is an

average of 20 transactions a minute. If the demand rate were constant, then you

could build a system to meet this average workload.

However, usage patterns are not constant and in this context, 20 transactions a

minute can be understood as merely a minimum requirement. If the peak rate you

need to achieve is 120 transactions a minute, then you must configure a system that

can support this peak workload.

For this example, assume that at peak workload, Oracle uses 90% of the CPU

resource. For a period of average workload, then, Oracle uses no more than about

15% of the available CPU resource, as illustrated in the following equation:

20 tpm / 120 tpm * 90% = 15% of available CPU resource

Time

F
un

ct
io

na
l D

em
an

d

8:00 10:00 12:00 14:00 16:00

Peak Workload

Average Workload
Understanding Operating System Resources 16-9

Understanding CPU
where tpm is transactions a minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem

exists: the system cannot achieve 120 transactions a minute using 90% of the CPU.

However, if you tuned this system so that it achieves 20 tpm using only 15% of the

CPU, then, assuming linear scalability, the system might achieve 120 transactions a

minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously

been peak levels. No further CPU capacity is then available for the new peak rate,

which is actually higher than the previous.

CPU capacity issues can be addressed with the following:

■ Tuning, or the process of detecting and solving CPU problems from excessive

consumption

■ Increasing hardware capacity, including changing the system architecture

■ Reducing the impact of peak load use patterns by prioritizing CPU resource

allocation. Oracle’s Database Resource Manager does this by allocating and

managing CPU resources among database users and applications.

Context Switching
Oracle has the several features for context switching, described in this section.

Post-wait Driver
An Oracle process needs to be able to post another Oracle process (give it a

message) and also needs to be able to wait to be posted.

For example, a foreground process may need to post LGWR to tell it to write out all

blocks up to a given point so that it can acknowledge a commit.

See Also: "Finding System CPU Utilization"

See Also: Oracle9i Database Performance Planning for information

about improving your system architecture

See Also: Oracle9i Database Concepts and Oracle9i Database
Administrator’s Guide for more information about Oracle’s Database

Resource Manager
16-10 Oracle9i Database Performance Tuning Guide and Reference

Finding System CPU Utilization
Often this post-wait mechanism is implemented through UNIX Semaphores, but

these can be resource intensive. Therefore, some platforms supply a post-wait

driver, typically a kernel device driver that is a lightweight method of

implementing a post-wait interface.

Memory-mapped System Timer
Oracle often needs to query the system time for timing information. This can

involve an operating system call that incurs a relatively costly context switch. Some

platforms implement a memory-mapped timer that uses an address within the

processes virtual address space to contain the current time information. Reading the

time from this memory-mapped timer is less expensive than the overhead of a

context switch for a system call.

List I/O Interfaces to Submit Multiple Asynchronous I/Os in One Call
List I/O is an application programming interface that allows several asynchronous

I/O requests to be submitted in a single system call, rather than submitting several

I/O requests through separate system calls. The main benefit of this feature is to

reduce the number of context switches required.

Finding System CPU Utilization
Oracle statistics report CPU use by Oracle sessions only, whereas every process

running on your system affects the available CPU resources. Therefore, tuning

non-Oracle factors can also improve Oracle performance.

Use operating system monitoring tools to determine what processes are running on

the system as a whole. If the system is too heavily loaded, check the memory, I/O,

and process management areas described later in this section.

Tools such as sar -u on many UNIX-based systems let you examine the level of

CPU utilization on your entire system. CPU utilization in UNIX is described in

statistics that show user time, system time, idle time, and time waiting for I/O. A

CPU problem exists if idle time and time waiting for I/O are both close to zero (less

than 5%) at a normal or low workload.

On NT, use Performance Monitor to examine CPU utilization. Performance

Manager provides statistics on processor time, user time, privileged time, interrupt

time, and DPC time. (NT Performance Monitor is not the same as Performance

Manager, which is an Oracle Enterprise Manager tool.)
Understanding Operating System Resources 16-11

Finding System CPU Utilization
Checking Memory Management
Check the following memory management areas:

Paging and Swapping
Use tools such as sar or vmstat on UNIX or Performance Monitor on NT to

investigate the cause of paging and swapping.

Oversize Page Tables
On UNIX, if the processing space becomes too large, then it can result in the page

tables becoming too large. This is not an issue on NT.

Checking I/O Management
Thrashing is an I/O management issue. Ensure that your workload fits into

memory, so the machine is not thrashing (swapping and paging processes in and

out of memory). The operating system allocates fixed portions of time during which

CPU resources are available to your process. If the process wastes a large portion of

each time period checking to be sure that it can run and ensuring that all necessary

components are in the machine, then the process might be using only 50% of the

time allotted to actually perform work.

Checking Network Management
Check client/server round trips. There is an overhead in processing messages.

When an application generates many messages that need to be sent through the

network, the latency of sending a message can result in CPU overload. To alleviate

this problem, bundle multiple messages together rather than perform lots of round

trips. For example, you can use array inserts, array fetches, and so on.

Checking Process Management
Several process management issues discussed in this section should be checked.

Note: This section describes how to check system CPU utilization

on most UNIX-based and NT systems. For other platforms, see

your operating system documentation.

See Also: Chapter 15, "I/O Configuration and Design"
16-12 Oracle9i Database Performance Tuning Guide and Reference

Finding System CPU Utilization
Scheduling and Switching
The operating system can spend excessive time scheduling and switching processes.

Examine the way in which you are using the operating system, because you could

be using too many processes. On NT systems, do not overload your server with too

many non-Oracle processes.

Context Switching
Due to operating system specific characteristics, your system could be spending a

lot of time in context switches. Context switching can be expensive, especially with

a large SGA. Context switching is not an issue on NT, which has only one process

for each instance. All threads share the same page table.

Starting New Operating System Processes
There is a high cost in starting new operating system processes. Programmers often

create single-purpose processes, exit the process, and create a new one. Doing this

re-creates and destroys the process each time. Such logic uses excessive amounts of

CPU, especially with applications that have large SGAs. This is because you need to

build the page tables each time. The problem is aggravated when you pin or lock

shared memory, because you have to access every page.

For example, if you have a 1 gigabyte SGA, then you might have page table entries

for every 4 KB, and a page table entry might be 8 bytes. You could end up with

(1G / 4 KB) * 8 byte entries. This becomes expensive, because you need to

continually make sure that the page table is loaded.
Understanding Operating System Resources 16-13

Finding System CPU Utilization
16-14 Oracle9i Database Performance Tuning Guide and Reference

Configuring Instance Recovery Perf
17

Configuring Instance Recovery

Performance

This chapter offers guidelines for configuring the time to perform instance recovery.

This chapter contains the following sections:

■ Understanding Instance Recovery

■ Checkpointing and Cache Recovery

■ Reducing Checkpoint Frequency to Optimize Runtime Performance

■ Configuring the Duration of Cache Recovery

■ Monitoring Cache Recovery

■ MTTR Advisory

■ Tuning Transaction Recovery
ormance 17-1

Understanding Instance Recovery
Understanding Instance Recovery
Instance and crash recovery are the automatic application of redo log records to

Oracle data blocks after a crash or system failure. During normal operation, if an

instance is shutdown cleanly as when using a SHUTDOWN IMMEDIATE statement,

rather than terminated abnormally, then the in-memory changes that have not

already been written to the datafiles on disk are written to disk as part of the

checkpoint performed during shutdown.

However, if a single instance database crashes or if all instances of an Oracle Real

Application Cluster configuration crash, then Oracle performs crash recovery at the

next startup. If one or more instances of an Oracle Real Application Cluster

configuration crash, then a surviving instance performs instance recovery

automatically. Instance and crash recovery occur in two steps: cache recovery

followed by transaction recovery.

Cache Recovery (Rolling Forward) During the cache recovery step, Oracle applies all

committed and uncommitted changes in the redo log files to the affected data

blocks. The work required for cache recovery processing is proportional to the rate

of change to the database (update transactions each second) and the time between

checkpoints.

Transaction Recovery (Rolling Back) To make the database consistent, the changes that

were not committed at the time of the crash must be undone (in other words, rolled

back). During the transaction recovery step, Oracle applies the rollback segments to

undo the uncommitted changes. The work required to do transaction recovery is

proportional to the number and size of uncommitted transactions when the system

fault occurred.

Checkpointing and Cache Recovery
Periodically, Oracle records a checkpoint. A checkpoint is the highest system

change number (SCN) such that all data blocks less than or equal to that SCN are

known to be written out to the data files. If a failure occurs, then only the redo

records containing changes at SCNs higher than the checkpoint need to be applied

during recovery. The duration of cache recovery processing is determined by two

factors: the number of data blocks that have changes at SCNs higher than the SCN

of the checkpoint, and the number of log blocks that need to be read to find those

changes.
17-2 Oracle9i Database Performance Tuning Guide and Reference

Reducing Checkpoint Frequency to Optimize Runtime Performance
How Checkpoints Affect Performance
Frequent checkpointing writes dirty buffers to the datafiles more often than

otherwise, and so reduces cache recovery time in the event of an instance failure. If

checkpointing is frequent, then applying the redo records in the redo log between

the current checkpoint position and the end of the log involves processing relatively

few data blocks. This means that the cache recovery phase of recovery is fairly

short.

However, in a high-update system, frequent checkpointing can reduce runtime

performance, because checkpointing causes DBWn processes to perform writes.

Fast Instance Recovery Trade-offs
To minimize the duration of instance recovery, you must force Oracle to checkpoint

often, thus keeping the number of redo log records to be applied during recovery to

a minimum. However, in a high-update system, frequent checkpointing increases

the overhead for normal database operations.

If daily operational efficiency is more important than minimizing recovery time,

then decrease the frequency of writes to data files due to checkpoints. This should

improve operational efficiency, but also increase instance recovery time.

Reducing Checkpoint Frequency to Optimize Runtime Performance
To reduce the checkpoint frequency and optimize runtime performance, you can do

the following:

■ Size your online redo log files according to the amount of redo your system

generates. A rough guide is to switch logs at most once every twenty minutes.

Small log files can increase checkpoint activity and reduce performance. You

should make all logs the same size.

■ Set the value of the LOG_CHECKPOINT_INTERVAL initialization parameter (in

multiples of physical block size) to zero. This value eliminates interval

checkpoints.

See Also:

■ "Reducing Checkpoint Frequency to Optimize Runtime

Performance" for information on how to maximize runtime

performance

■ "Configuring the Duration of Cache Recovery" for information

on how to minimize instance recovery time
Configuring Instance Recovery Performance 17-3

Configuring the Duration of Cache Recovery
■ Set the value of the LOG_CHECKPOINT_TIMEOUT initialization parameter to

zero. This value eliminates time-based checkpoints.

■ Set the value of FAST_START_MTTR_TARGET(and FAST_START_IO_TARGET)
to zero to disable fast-start checkpointing.

Configuring the Duration of Cache Recovery
There are several methods for tuning cache recovery to keep the duration of

recovery within user-specified bounds. These include the following:

■ Initialization Parameters that Influence Cache Recovery Time

■ Use Fast-Start Checkpointing to Limit Instance Recovery Time

■ Set LOG_CHECKPOINT_TIMEOUT to Influence the Amount of Redo

■ Set LOG_CHECKPOINT_INTERVAL to Influence the Amount of Redo

■ Use Parallel Recovery to Speed up Redo Application

Initialization Parameters that Influence Cache Recovery Time
The initialization parameters in Example 17–1 influence cache recovery time.

See Also: Oracle9i Database Concepts for a complete discussion of

checkpoints

Table 17–1 Initialization Parameters Influencing Cache Recovery

Parameter Purpose

FAST_START_MTTR_TARGET Lets you specify in seconds the expected mean time to
recover (MTTR), which is the expected amount of time
Oracle takes to perform recovery and startup the instance.

FAST_START_IO_TARGET This initialization parameter has been deprecated in
favour of FAST_START_MTTR_TARGET. This parameter
specifies the upper limit on the number of dirty buffers.

LOG_CHECKPOINT_TIMEOUT Limits the number of seconds between the most recent
redo record and the checkpoint.

LOG_CHECKPOINT_INTERVAL Limits the number of redo blocks generated between the
most recent redo record and the checkpoint.

RECOVERY_PARALLELISM Specifies the number of concurrent recovery processes to
be used in instance or crash recovery.
17-4 Oracle9i Database Performance Tuning Guide and Reference

Configuring the Duration of Cache Recovery
Use Fast-Start Checkpointing to Limit Instance Recovery Time
Oracle Enterprise Edition features include a fast-start fault recovery functionality to

control instance recovery. This reduces the time required for cache recovery and

makes the recovery bounded and predictable by limiting the number of dirty

buffers and the number of redo records generated between the most recent redo

record and the last checkpoint.

The foundation of fast-start recovery is the fast-start checkpointing architecture.

Instead of the conventional event driven (that is, log switching) checkpointing,

which does bulk writes, fast-start checkpointing occurs incrementally. Each DBWn

process periodically writes buffers to disk to advance the checkpoint position. The

oldest modified blocks are written first to ensure that every write lets the

checkpoint advance. Fast-start checkpointing eliminates bulk writes and the

resultant I/O spikes that occur with conventional checkpointing.

Administrators specify a target (bounded) time to complete the cache recovery

phase of recovery with the FAST_START_MTTR_TARGET initialization parameter,

and Oracle automatically varies the incremental checkpoint writes to meet that

target. The FAST_START_MTTR_TARGETinitialization parameter lets you specify in

seconds the expected mean time to recover (MTTR), which is the expected amount

of time Oracle takes to perform crash or instance recovery for a single instance.

LOG_PARALLELISM Specifies the level of concurrency for redo allocation
within Oracle.

Note: Oracle recommends using the FAST_START_MTTR_
TARGET initialization parameter to control the duration of startup

after instance failure. Fast-start checkpointing is only available with

Enterprise Edition.

The FAST_START_IO_TARGET initialization parameter has been

deprecated in favor of the FAST_START_MTTR_TARGETparameter.

The initialization parameter DB_BLOCK_MAX_DIRTY_TARGET has

been removed.

Table 17–1 (Cont.) Initialization Parameters Influencing Cache Recovery

Parameter Purpose
Configuring Instance Recovery Performance 17-5

Configuring the Duration of Cache Recovery
FAST_START_MTTR_TARGET
The FAST_START_MTTR_TARGET initialization parameter simplifies the

configuration of recovery time from instance or system failure. This parameter lets

you specify the number of seconds crash or instance recovery is expected to take.

The FAST_START_MTTR_TARGETis internally converted to a set of parameters that

modify the operation of Oracle such that recovery time is as close to this estimate as

possible.

The maximum value for FAST_START_MTTR_TARGET is 3600, or one hour. If you

set the value to more than 3600, then Oracle rounds it to 3600. There is no minimum

value for FAST_START_MTTR_TARGET. However, this does not mean that you can

target the recovery time as low as you want. The time to do a crash recovery is

limited by the low limit of the target number of dirty buffers, which is 1000, as well

as factors such as how long initialization and file open take.

If you set the value of FAST_START_MTTR_TARGET too low, then the effective

mean time to recover (MTTR) target will be the best MTTR target the system can

achieve. If you set the value of FAST_START_MTTR_TARGET to such a high value

that even in the worst-case recovery would not take that long, then the effective

MTTR target will be the estimated MTTR in the worst-case scenario when the whole

buffer cache is dirty. Use the TARGET_MTTR column in the V$INSTANCE_
RECOVERY view to see the effective MTTR.

Note: You should disable or remove the FAST_START_IO_
TARGET, LOG_CHECKPOINT_INTERVAL, and LOG_CHECKPOINT_
TIMEOUT initialization parameters when using FAST_START_
MTTR_TARGET. Setting these parameters to active values interferes

with FAST_START_MTTR_TARGET, resulting in a different than

expected value in the TARGET_MTTR column of the V$INSTANCE_
RECOVERY view.

Note: The TARGET_MTTR column in V$INSTANCE_RECOVERY
could be different than FAST_START_MTTR_TARGET if the latter is

set too low or too high. Periodically check the MTTR_TARGET
column in the V$INSTANCE_RECOVERY view and compare it with

the parameter setting. Adjust the parameter setting if it is

consistently different from the value in the target.
17-6 Oracle9i Database Performance Tuning Guide and Reference

Configuring the Duration of Cache Recovery
Set LOG_CHECKPOINT_TIMEOUT to Influence the Amount of Redo
Set the initialization parameter LOG_CHECKPOINT_TIMEOUT to an integer value n
to require that the latest checkpoint position follow the most recent redo block by no

more than n seconds. In other words, at most, n seconds worth of logging activity

can occur between the most recent checkpoint position and the last block written to

the redo log. This forces the checkpoint position to keep pace with the most recent

redo block.

You can also interpret LOG_CHECKPOINT_TIMEOUT as specifying an upper bound

on the time a buffer can be dirty in the cache before DBWn must write it to disk. For

example, if you set LOG_CHECKPOINT_TIMEOUTto 60, then no buffers remain dirty

in the cache for more than 60 seconds. The default value for LOG_CHECKPOINT_
TIMEOUT is 1800, or 30 minutes.

Set LOG_CHECKPOINT_INTERVAL to Influence the Amount of Redo
Set the initialization parameter LOG_CHECKPOINT_INTERVALto a value n (where n
is an integer) to require that the checkpoint position never follow the most recent

redo block by more than n blocks. In other words, at most n redo blocks can exist

between the checkpoint position and the last block written to the redo log. In effect,

you are limiting the amount of redo blocks that can exist between the checkpoint

and the end of the log.

Oracle limits the maximum value of LOG_CHECKPOINT_INTERVAL to 90% of the

smallest log to ensure that the checkpoint advances into the current log before that

log fills and a log switch is attempted.

LOG_CHECKPOINT_INTERVALis specified in redo blocks. Redo blocks are the same

size as operating system blocks. Use the LOG_FILE_SIZE_REDO_BLKS column in

V$INSTANCE_RECOVERYto see the number of redo blocks corresponding to 90% of

the size of the smallest log file.

See Also: "Monitoring Estimated MTTR: Example Scenario" on

page 17-10 for more information on setting FAST_START_MTTR_
TARGET

See Also:

■ "Calculating Performance Overhead" on page 17-12

■ Chapter 15, "I/O Configuration and Design" for more

information on tuning checkpoints
Configuring Instance Recovery Performance 17-7

Configuring the Duration of Cache Recovery
Use Parallel Recovery to Speed up Redo Application
Use parallel recovery to tune the cache recovery phase of recovery. Parallel recovery

uses a division of labor approach to allocate different processes to different data

blocks during the cache recovery phase of recovery.

For example, during recovery the redo log is read, and blocks that require redo

application are parsed out. These blocks are subsequently distributed evenly to all

recovery processes to be read into the buffer cache. Crash, instance, and media

recovery of datafiles on different disk drives are good candidates for parallel

recovery.

Use the RECOVERY_PARALLELISM initialization parameter to specify the number

of concurrent recovery processes for instance or crash recovery. To use parallel

processing, the value of RECOVERY_PARALLELISM must be greater than 1 and

cannot exceed the value of the PARALLEL_MAX_SERVERS initialization parameter.

The LOG_PARALLELISM initialization parameter allows the parallel generation of

redo and can increase the throughput of certain update-intensive workloads. If you

are using Oracle on high-end servers that have more than 16 processors, and you

are experiencing very high contention on the redo allocation latch, then you should

consider enabling parallel redo.

Recovery is usually I/O bound on reads to data blocks. Consequently, parallelism at

the block level can only help recovery performance if it speeds up total I/Os.

Performance on systems with efficient asynchronous I/O typically does not

improve significantly with parallel recovery, unless the recovery is CPU-bound.

Note: The RECOVERY_PARALLELISM initialization parameter

specifies the number of concurrent recovery processes for instance

or crash recovery only.

Media recovery is not affected by this parameter. Use the

PARALLEL clause in the RECOVER DATABASE statement for media

recovery.

See Also: Oracle9i Database Reference for more information on

initialization parameters
17-8 Oracle9i Database Performance Tuning Guide and Reference

Monitoring Cache Recovery
Monitoring Cache Recovery
Use the V$INSTANCE_RECOVERY view to see the current recovery parameter

settings. You can also use statistics from this view to calculate which parameter has

the greatest influence on checkpointing. V$INSTANCE_RECOVERY contains the

columns shown in Table 17–2.

Note: The last three fields in V$INSTANCE_RECOVERY are new

with Oracle9i, and they are the most important. With the

initialization parameter FAST_START_MTTR_TARGET, the other

seven fields of V$INSTANCE_RECOVERY are less useful.

Table 17–2 V$INSTANCE_RECOVERY View

Column Description

RECOVERY_ESTIMATED_IOS Contains the number of dirty buffers in the buffer cache. (In Standard
Edition, the value of this field is always NULL).

ACTUAL_REDO_BLKS Current number of redo blocks required to be read for recovery.

TARGET_REDO_BLKS Goal for the maximum number of redo blocks to be processed during
recovery. This value is the minimum of the next three columns (LOG_
FILE_SIZE_REDO_BLKS, LOG_CHKPT_TIMEOUT_REDO_BLKS, LOG_CHKPT_
INTERVAL_REDO_BLKS).

LOG_FILE_SIZE_REDO_BLKS Number of redo blocks to be processed during recovery corresponding to
90% of the size of the smallest log file.

LOG_CHKPT_TIMEOUT_REDO_BLKS Number of redo blocks that must be processed during recovery to satisfy
LOG_CHECKPOINT_TIMEOUT.

LOG_CHKPT_INTERVAL_REDO_BLKS Number of redo blocks that must be processed during recovery to satisfy
LOG_CHECKPOINT_INTERVAL.

FAST_START_IO_TARGET_REDO_BLKS This field is obsolete. It is retained for backward compatibility. The value
of this field is always NULL.
Configuring Instance Recovery Performance 17-9

Monitoring Cache Recovery
Monitoring Estimated MTTR: Example Scenario
The TARGET_MTTR field of V$INSTANCE_RECOVERY contains the MTTR target in

effect. The ESTIMATED_MTTR field of V$INSTANCE_RECOVERY contains the

estimated MTTR should a crash happen right away. Query these two fields to see if

the system can keep up with your specified MTTR target.

For example, assume the initialization parameter setting is as follows:

FAST_START_MTTR_TARGET = 6 # seconds

Execute the following query after database open:

SELECT TARGET_MTTR, ESTIMATED_MTTR, CKPT_BLOCK_WRITES
FROM V$INSTANCE_RECOVERY;

Oracle responds with the following:

TARGET_MTTR ESTIMATED_MTTR CKPT_BLOCK_WRITES
18 15 0

TARGET_MTTR Effective mean time to recover (MTTR) target in seconds. Usually, it
should be equal to the value of the FAST_START_MTTR_TARGET
initialization parameter. If FAST_START_MTTR_TARGET is set to such a
small value that it is impossible to do a recovery within its time frame,
then the TARGET_MTTR field contains the effective MTTR target, which is
larger than FAST_START_MTTR_TARGET. If FAST_START_MTTR_
TARGET is set to such a high value that even in the worst-case (the whole
buffer cache is dirty) recovery would not take that long, then the
TARGET_MTTR field contains the estimated MTTR in the worst-case
scenario. This field is 0 if FAST_START_MTTR_TARGET is not specified.

ESTIMATED_MTTR The current estimated mean time to recover (MTTR) in the number of
seconds based on the number of dirty buffers and log blocks (gives the
current estimated MTTR even if FAST_START_MTTR_TARGET is not
specified).

CKPT_BLOCK_WRITES Number of writes to disk that would be avoided if checkpointing has
been disabled.

See Also: Oracle9i Database Reference for more information on the

V$INSTANCE_RECOVERY view

Table 17–2 (Cont.) V$INSTANCE_RECOVERY View

Column Description
17-10 Oracle9i Database Performance Tuning Guide and Reference

Monitoring Cache Recovery
You see that TARGET_MTTR is 18 seconds, which is higher than the value of FAST_
START_MTTR_TARGET specified (6 seconds). This means that it is impossible to

recover the database within 6 seconds. 18 seconds is the minimum MTTR target that

the system can achieve.

The 18 second minimum is calculated based on the absolute low limit of 1000 blocks

on the target of number of dirty buffers (The deprecated initialization parameter

FAST_START_IO_TARGET follows this low limit; that is, you cannot set FAST_
START_IO_TARGET to less than 1000). The ESTIMATED_MTTR field contains the

estimated mean time to recovery. Because the database has just opened, the system

contains few dirty buffers. That is why ESTIMATED_MTTR can be lower than the

minimum possible TARGET_MTTR.

Now assume that you use the following statement to modify FAST_START_MTTR_
TARGET:

ALTER SYSTEM SET FAST_START_MTTR_TARGET = 30;

Reissue the query to V$INSTANCE_RECOVERY, and Oracle responds with the

following:

TARGET_MTTR ESTIMATED_MTTR CKPT_BLOCK_WRITES
30 15 0

The ESTIMATED_MTTR field is still 15 seconds, which means that the estimated

MTTR at the current time (should a crash happen immediately) is still 15 seconds.

This is because no new redo is written, and no data block has become dirty.

Assume that heavy update activity occurs in the database and then you query

V$INSTANCE_RECOVERY immediately afterward. Oracle responds with the

following:

TARGET_MTTR ESTIMATED_MTTR CKPT_BLOCK_WRITES
30 36 54367

You see that the effective MTTR target is 30 seconds. The estimated MTTR at the

current time (should a crash happen immediately) is 36 seconds. This is fine. This

means that some checkpoints writes might not have finished yet, so the buffer cache

contains more dirty buffers than targeted.

Assume that you wait for one minute and reissue the query to V$INSTANCE_
RECOVERY. Oracle responds with the following:

TARGET_MTTR ESTIMATED_MTTR CKPT_BLOCK_WRITES
30 31 55230
Configuring Instance Recovery Performance 17-11

Monitoring Cache Recovery
The estimated MTTR at this time has dropped to 31 seconds. This is because more

dirty buffers have been written out during this period. This is shown by the

increase of CKPT_BLOCK_WRITES field of V$INSTANCE_RECOVERY.

Calculating Performance Overhead
To calculate performance overhead, use the V$SYSSTAT view. For example, assume

that you execute the following query:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME IN ('physical reads',’physical writes',
 ’physical writes non checkpoint’);

Oracle responds with the following:

NAME VALUE
physical reads 2376
physical writes 14932
physical writes non checkpoint 11165

The first row shows the number of data blocks retrieved from disk. The second row

shows the number of data blocks written to disk. The last row shows the number of

writes to disk that would occur if you turned off checkpointing.

Use this data to calculate the overhead imposed by setting the FAST_START_MTTR_
TARGET initialization parameter. To effectively measure the percentage of extra

writes, mark the values for these statistics at different times, t_1 and t_2 .

Calculate the percentage of extra I/Os generated by fast-start checkpointing using

the following formula:

[((PW_2 - PW_1) - (PWNC_2 - PWNC_1)) / ((PR_2 - PR_1) + (PW_2 - PW_1))] x 100% = EIO

where the variables are described in Table 17–3.

Note: The number of physical writes minus the number of

physical writes non checkpoint (from V$SYSSTAT) equals

the field CKPT_BLOCK_WRITES in V$INSTANCE_RECOVERY.
17-12 Oracle9i Database Performance Tuning Guide and Reference

Monitoring Cache Recovery
It can take some time for database statistics to stabilize after instance startup or

dynamic initialization parameter modification. After such events, wait until all

blocks age out of the buffer cache at least once before taking measurements. If the

percentage of extra I/Os is too high, then increase the value of FAST_START_
MTTR_TARGET.

The number of extra writes caused by setting FAST_START_MTTR_TARGET to a

nonzero value is application-dependent; it is not dependent on cache size.

Calculating Performance Overhead: Example Scenario
As an example, assume the initialization parameter setting is as follows:

FAST_START_MTTR_TARGET = 90 # 90 seconds

After the statistics stabilize, you issue this query on V$SYSSTAT:

SELECT NAME, VALUE
FROM V$SYSSTAT
WHERE NAME IN ('physical reads',’physical writes',
 ’physical writes non checkpoint’);

Oracle responds with the following:

NAME VALUE
physical reads 2376
physical writes 14932
physical writes non checkpoint 11165

Table 17–3 Variable Definitions

Variable Definition

*_1 Value of prefixed variable at time t_1 , which is any time after the database has
been running for a while

*_2 Value of prefixed variable at time t_2 , which is later than t_1 and not
immediately after changing any of the checkpoint parameters

PWNC physical writes non checkpoint

PW physical writes

PR physical reads

EIO Percentage of estimated extra I/Os generated by enabling checkpointing
Configuring Instance Recovery Performance 17-13

Monitoring Cache Recovery
The physical write checkpoint statistics can also be found in the CKPT_
BLOCK_WRITES field of the V$INSTANCE_RECOVERY view. For example:

SELECT CKPT_BLOCK_WRITES
FROM V$INSTANCE_RECOVERY;

Oracle responds with the following:

CKPT_BLOCK_WRITES 3767

It is consistent with the result from V$SYSSTAT: 3767 = 14932 - 11165.

After making updates for a few hours, you reissue the query. Oracle responds with

the following:

NAME VALUE
physical reads 3011
physical writes 17467
physical writes non checkpoint 13231

Substitute the values from the SELECT statements in the formula on page 17-12 to

determine how much performance overhead you are incurring:

[((17467 - 14932) - (13231 - 11165)) / ((3011 - 2376) + (17467 - 14932))] x 100% = 14.8%

As the result indicates, enabling fast-start checkpointing generates about 15% more

I/O than required had you not enabled fast-start checkpointing. After calculating

the extra I/O, you decide you can afford more system overhead if you decrease

recovery time.

To decrease recovery time, reduce the value for the parameter FAST_START_MTTR_
TARGET to 60. After items in the buffer cache age out, calculate V$SYSSTAT
statistics across a second interval to determine the new performance overhead.

Query V$SYSSTAT:

SELECT NAME, VALUE FROM V$SYSSTAT
WHERE NAME IN ('physical reads', 'physical writes',
'physical writes non checkpoint');

Oracle responds with the following:

NAME VALUE
physical reads 4652
physical writes 28864
physical writes non checkpoint 21784

After making updates, reissue the query. Oracle responds with the following:
17-14 Oracle9i Database Performance Tuning Guide and Reference

Monitoring Cache Recovery
NAME VALUE
physical reads 6000
physical writes 35394
physical writes non checkpoint 26438

Calculate how much performance overhead you are incurring using the values from

the two SELECT statements:

[(35394 - 28864) - (26438 - 21784)) / ((6000 - 4652) + (35394 - 28864))] x 100% = 23.8%

After changing the parameter, the percentage of I/Os performed by Oracle is now

about 24% more than it would be if you disabled fast-start checkpointing.

Calibrating the MTTR
The FAST_START_MTTR_TARGET initialization parameter calculates internal

system trigger values to limit the length of the redo log and the number of dirty

data buffers in the data cache. This calculation uses estimated times to read a redo

block and to read and write a data block.

Initially, internal defaults are used. These defaults are replaced by execution time

estimates during system operation. However, the best values are obtained from

measurements taken from an actual recovery from a failure.

Before doing instance recoveries to calibrate the FAST_START_MTTR_TARGET,

decide whether FAST_START_MTTR_TARGET is being calibrated for a database

crash or a hardware crash. This is a consideration if your database files are stored in

a file system or if your I/O subsystem has a memory cache, because there is a

considerable difference in the read and write time to disk depending on whether or

not the files are cached. The workload being run during the instance recovery

should be a very good representation of the average workload on the system to

ensure that the amount of redo records generated are similar.

Note: To effectively align FAST_START_MTTR_TARGET, make

sure that you perform several instance recoveries to ensure that the

time to read a redo block and the time to read and write a data

block are recorded accurately.
Configuring Instance Recovery Performance 17-15

MTTR Advisory
MTTR Advisory
Starting with Oracle9i Release 2 (9.2), MTTR advisory is available to help you

evaluate the effect of different MTTR settings on system performance in terms of

extra physical writes.

How MTTR Advisory Works
When MTTR advisory is enabled, after the system runs a typical workload for a

while, you can query V$MTTR_TARGET_ADVICE, which tells you the ratio of

estimated number of cache writes under other MTTR settings to the number of

cache writes under the current MTTR. For instance, a ratio of 1.2 indicates 20% more

cache writes.

By looking at the different MTTR settings and their corresponding cache write ratio,

you can decide which MTTR value fits your recovery and performance needs.

V$MTTR_TARGET_ADVICE also gives the ratio on total physical writes (including

direct writes), and the ratio on total I/Os (including reads).

Enabling MTTR Advisory
Enabling MTTR Advisory involves setting two initialization parameters:

■ STATISTICS_LEVEL

■ FAST_START_MTTR_TARGET

STATISTICS_LEVEL
Make sure that STATISTICS_LEVEL is set to TYPICAL or ALL.

FAST_START_MTTR_TARGET
To enable MTTR advisory, set the initialization parameter FAST_START_MTTR_
TARGET to a nonzero value. If FAST_START_MTTR_TARGET is not specified, then

MTTR advisory will be OFF.

When MTTR advisory is ON, it simulates checkpoint queue behavior under five

different MTTR settings:

■ Current FAST_START_MTTR_TARGET setting

■ Current setting times 0.1, 0.5, 1.5, and 2
17-16 Oracle9i Database Performance Tuning Guide and Reference

MTTR Advisory
Viewing MTTR Advisory
Oracle9i Release 2 (9.2) provides a dynamic performance view for viewing statistics

or advisories collected by MTTR advisory.

V$MTTR_TARGET_ADVICE
If MTTR advisory has been turned on, V$MTTR_TARGET_ADVICE shows the

advisory information collected. Usually this view show five rows, corresponding to

the current MTTR, 0.1 times the current MTTR, 0.5 times the current MTTR, 1.5

times the current MTTR and 2 times the current MTTR. However, if one or more of

the 5 values are less than the smallest MTTR target the system can sustain, their

corresponding rows are replaced with a single row corresponding to the smallest

MTTR target the system can have. Similarly, if one or more of the 5 values are larger

than the worst-case MTTR target the system can have, their corresponding rows are

replaced with a single row corresponding to the worst-case MTTR target the system

can have.

If MTTR advisory is currently OFF, the view shows information collected the last

time MTTR advisory was on.

Note: Whenever you set FAST_START_MTTR_TARGET to a

nonzero value, and while MTTR advisory is ON, Oracle Corporation

recommends that you disable (set to 0) the following parameters:

■ LOG_CHECKPOINT_TIMEOUT

■ LOG_CHECKPOINT_INTERVAL

■ FAST_START_IO_TARGET

Because these initialization parameters either override FAST_
START_MTTR_TARGET or potentially drive checkpoints more

aggressively than FAST_START_MTTR_TARGET does, they can

interfere with the simulation.

See Also: "V$MTTR_TARGET_ADVICE" on page 24-21 for

column details of these views
Configuring Instance Recovery Performance 17-17

Tuning Transaction Recovery
Tuning Transaction Recovery
During the second phase of instance recovery, Oracle rolls back uncommitted

transactions. Oracle uses two features, fast-start on-demand rollback and fast-start

parallel rollback, to increase the efficiency of this recovery phase.

This section contains the following topics:

■ Using Fast-Start On-Demand Rollback

■ Using Fast-Start Parallel Rollback

Using Fast-Start On-Demand Rollback
Using the fast-start on-demand rollback feature, Oracle automatically allows new

transactions to begin as soon as the database opens, which is usually a very short

time after cache recovery completes. If a user attempts to access a row that is locked

by a terminated transaction, Oracle rolls back only those changes necessary to

complete the transaction; in other words, it rolls them back on demand.

Consequently, new transactions do not have to wait until all parts of a long

transaction are rolled back.

Using Fast-Start Parallel Rollback
In fast-start parallel rollback, the background process SMON acts as a coordinator

and rolls back a set of transactions in parallel using multiple server processes.

Essentially, fast-start parallel rollback is to transaction recovery what parallel

recovery is to cache recovery.

Fast-start parallel rollback is mainly useful when a system has transactions that run

a long time before committing, especially parallel INSERT, UPDATE, and DELETE
operations. SMON automatically decides when to begin parallel rollback and

disperses the work among several parallel processes: process one rolls back one

transaction, process two rolls back a second transaction, and so on.

Note: These features are part of fast-start fault recovery and are

only available in the Oracle9i Enterprise Edition.

Note: Oracle does this automatically. You do not need to set any

parameters or issue statements to use this feature.
17-18 Oracle9i Database Performance Tuning Guide and Reference

Tuning Transaction Recovery
One special form of fast-start parallel rollback is intra-transaction recovery. In

intra-transaction recovery, a single transaction is divided among several processes.

For example, assume eight transactions require recovery with one parallel process

assigned to each transaction. The transactions are all similar in size except for

transaction five, which is quite large. This means it takes longer for one process to

roll this transaction back than for the other processes to roll back their transactions.

In this situation, Oracle automatically begins intra-transaction recovery by

dispersing transaction five among the processes: process one takes one part, process

two takes another part, and so on.

You control the number of processes involved in transaction recovery by setting the

initialization parameter FAST_START_PARALLEL_ROLLBACKto one of three values

listed in Table 17–4.

Parallel Rollback in an Oracle Real Application Clusters Configuration
In Oracle Real Application Clusters, you can perform fast-start parallel rollback on

each instance. Within each instance, you can perform parallel rollback on

transactions that are:

■ Online on a given instance

■ Offline and not being recovered on instances other than the given instance

After a rollback segment is online for a given instance, only this instance can

perform parallel rollback on transactions on that segment.

Monitoring Progress of Fast-Start Parallel Rollback
Monitor the progress of fast-start parallel rollback by examining the V$FAST_
START_SERVERS and V$FAST_START_TRANSACTIONS views. V$FAST_START_
SERVERS provides information about all recovery processes performing fast-start

parallel rollback. V$FAST_START_TRANSACTIONS contains data about the

progress of the transactions.

Table 17–4 FAST_START_PARALLEL_ROLLBACK Parameter Values

Value Meaning

FALSE Turns off fast-start parallel rollback.

LOW Specifies that the number of recovery servers cannot exceed twice the value
of the CPU_COUNT initialization parameter.

HIGH Specifies that the number of recovery servers cannot exceed four times the
value of the CPU_COUNT initialization parameter.
Configuring Instance Recovery Performance 17-19

Tuning Transaction Recovery
See Also:

■ Oracle9i Database Administrator’s Guide for more information on

managing undo space

■ Oracle9i Real Application Clusters Deployment and Performance for

more information on fast-start parallel rollback in an Oracle

Real Application Clusters environment

■ Oracle9i Database Reference for more information about

initialization parameters

■ Oracle9i Net Services Administrator’s Guide for information on

transparent application failure (TAF)
17-20 Oracle9i Database Performance Tuning Guide and Reference

Configuring Undo and Temporary
18

Configuring Undo and Temporary

Segments

There are performance considerations when configuring undo and temporary

segments.

This chapter contains the following topics:

■ Configuring Undo Segments

■ Configuring Temporary Tablespaces
Segments 18-1

Configuring Undo Segments
Configuring Undo Segments
Oracle provides automatic undo management, which completely automates the

management of undo data. A database running in automatic undo management

mode transparently creates and manages undo segments. Oracle Corporation

strongly recommends using automatic undo management, because it significantly

simplifies database management and removes the need for any manual tuning of

undo (rollback) segments. Manual undo management using rollback segments is

supported for backward compatibility reasons.

Configuring Automatic Undo Management
To configure automatic undo, you can simply include the following initialization

parameter:

UNDO_MANAGEMENT=AUTO

You can also create an undo tablespace, and determine the maximum retention time

for undo data kept in that tablespace.

Configuring Rollback Segments
Automatic undo management is the preferred way of handling rollback space.

Automatic undo management lets you allocate undo space in a single undo

tablespace, instead of distributing undo space in a set of statically allocated rollback

segments. The creation and allocation of space among the undo segments is

handled automatically by the Oracle server.

With rollback segments, one or more tablespaces are created; rollback segments are

manually created in those tablespaces. The number and size of the rollback

segments must be determined by the DBA.

Determining the Number and Size of Rollback Segments
The size of rollback segments can affect performance. Rollback segment size is

determined by the rollback segment’s storage parameter values. Your rollback

segments must be large enough to hold the rollback entries for your transactions.

As with other objects, avoid dynamic space management in rollback segments.

See Also: Oracle9i Database Administrator’s Guide for detailed

information on how to configure automatic undo
18-2 Oracle9i Database Performance Tuning Guide and Reference

Configuring Undo Segments
Table 18–1 shows some general guidelines for choosing how many rollback

segments to allocate based on the number of concurrent transactions on your

database. These guidelines are appropriate for most application mixes.

Use the SET TRANSACTIONstatement to assign transactions to rollback segments of

the appropriate size based on the recommendations in the following sections. If you

do not explicitly assign a transaction to a rollback segment, then Oracle

automatically assigns it to a rollback segment.

For example, the following statement assigns the current transaction to the rollback

segment oltp_13 :

SET TRANSACTION USE ROLLBACK SEGMENT oltp_13

Also, monitor the shrinking, or dynamic deallocation, of rollback segments based

on the OPTIMAL storage parameter.

For Long Queries Assign large rollback segments to transactions that modify data

that is concurrently selected by long queries. Such queries might require access to

rollback segments to reconstruct a read-consistent version of the modified data. The

rollback segments must be large enough to hold all the rollback entries for the data

while the query is running.

Table 18–1 Choosing the Number of Rollback Segments

Number of Current Transactions (n) Number of Rollback Segments Recommended

n < 16 4

16 <= n < 32 8

32 <= n n/4

Note: If you are running multiple concurrent copies of the same

application, then be careful not to assign the transactions for all

copies to the same rollback segment. This leads to contention for

that rollback segment.

See Also: Oracle9i Database Administrator’s Guide for information

on choosing values for this parameter, monitoring rollback segment

shrinking, and adjusting the OPTIMAL parameter
Configuring Undo and Temporary Segments 18-3

Configuring Temporary Tablespaces
For Long Transactions Assign large rollback segments to transactions that modify

large amounts of data. A large rollback segment can improve the performance of

such a transaction, because the transaction generates large rollback entries. If a

rollback entry does not fit into a rollback segment, then Oracle extends the segment.

Dynamic extension reduces performance; avoid it whenever possible.

For OLTP Transactions OLTP applications are characterized by frequent concurrent

transactions, each of which modifies a small amount of data. Assign OLTP

transactions to small rollback segments, as long as their data is not concurrently

queried. Small rollback segments are more likely to remain stored in the buffer

cache where they can be accessed quickly. A typical OLTP rollback segment might

have two extents, each approximately 10 kilobytes in size. To best avoid contention,

create many rollback segments and assign each transaction to its own rollback

segment.

Configuring Temporary Tablespaces
Configuring the temporary tablespace helps optimize disk sort performance. This

involves choosing good storage clauses and the correct type of tablespace to use for

sorting.

Choosing the default storage clause for the sort tablespace includes the following:

■ Setting PCTINCREASE to zero

■ Setting INITIAL and NEXT to the same size and a factor of SORT_AREA_SIZE

Choosing the correct type of tablespace makes disk sorting more efficient. The

various tablespaces that could be used for disk sorting include the following:

■ Temporary Tablespaces

■ Tablespaces of Type TEMPORARY

■ Permanent Tablespaces

Temporary Tablespaces These are the most efficient tablespaces for disk sorts.

Characteristics of a temporary tablespace include the following:

■ Space management (extent allocation and deallocation) is locally managed.

Therefore, use of the ST-enqueue is avoided.

■ The sort segment created for each instance is reused (it is only dropped if the

tablespace is dropped). With Oracle Real Application Clusters, one sort segment

is required for each instance.
18-4 Oracle9i Database Performance Tuning Guide and Reference

Configuring Temporary Tablespaces
■ All processes performing sorts reuse existing sort extents of the sort segment,

rather than allocating a segment (and potentially many extents) for each sort. If

an insufficient number of extents exist for the number of sorts currently in

operation, then the required extents are added once for each instance startup.

They are recycled thereafter.

■ Temporary tablespaces can be striped, as described in "Basic I/O Configuration"

on page 15-6. Only when the tablespaces is creating an I/O bottleneck should

the tablespace be segregated from others.

■ To create temporary tablespaces, use the CREATE TEMPORARY TABLESPACE
statement.

Tablespaces of Type TEMPORARY After temporary tablespaces, these are next best

tablespaces to use for sort operations. Characteristics of tablespaces of type

TEMPORARY include the following:

■ Space management is dictionary managed so they use the ST-enqueue.

■ The sort segment for an instance is dropped on instance startup and re-created

when the first sort is performed. Extents are then allocated as needed.

■ Although space management is dictionary-managed, the frequency of space

allocation and deallocation is reduced. All processes performing sorts reuse the

existing sort extents of a single sort segment, rather than allocating an

deallocating extents and segments for each sort. With Oracle Real Application

Clusters, one sort segment is required for each instance. If insufficient extents

exist for the number of sorts, then the required extents are added once for each

instance startup, and are recycled thereafter. This in turn reduces the load on

the ST enqueue considerably.

■ To create tablespaces of type TEMPORARY, use the CREATE TABLESPACE or

ALTER TABLESPACE statements with the TEMPORARY clause.

See Also:

■ Oracle9i Database Concepts for more information on temporary

tablespaces

■ Oracle9i SQL Reference for more information on using the

CREATE TEMPORARY TABLESPACE statement

See Also: Oracle9i SQL Reference for more information on using

the TEMPORARY clause
Configuring Undo and Temporary Segments 18-5

Configuring Temporary Tablespaces
Permanent Tablespaces Permanent tablespaces (which are not of type TEMPORARY)
are least efficient for performance of disk sorts. This is because of the following

reasons:

■ The ST-enqueue is used for allocation and de-allocation of each extent allocated

to a sort segment.

■ Sort-segments are not reused. Each process performing a disk sort creates then

drops it’s own sort segment. In addition, a single sort operation can require the

allocation and deallocation of many extents, and each extent allocation requires

the ST-enqueue.

For optimal performance, the best choice is to use temporary tablespaces. They

bypass the need of using the ST enqueue for space management and have the

additional benefit of reuse of sort extents.

Temporary tablespaces, and tablespaces of type TEMPORARY, cannot contain

permanent objects, such as tables or rollback segments.

Table 18–2 Sort Tablespaces

Tablespace Type
Space
Management

Sort Segment
Reuse Sort Extent Reuse

Creation
Statement

Temporary

(uses tempfiles)

Locally
Managed

Yes. Sort
segment is not
dropped

Always CREATE
TEMPORARY
TABLESPACE

Type TEMPORARY

(uses datafiles)

Dictionary
Managed

Sort segment is
re-created on
instance startup

Yes. Extents are
reused until sort
segment is dropped
on instance startup

CREATE
TABLESPACE
... TYPE
TEMPORARY

Permanent Dictionary
Managed

No. Sort
segments are not
reused

No. Sort segments
are not reused

CREATE
TABLESPACE

See Also: Oracle9i SQL Reference for more information about the

syntax of the CREATE TABLESPACE and ALTER TABLESPACE
statements
18-6 Oracle9i Database Performance Tuning Guide and Reference

Configuring Shared S
19

Configuring Shared Servers

Proper configuration of shared servers can result in significant performance

improvement.

This chapter contains the following topic:

■ Introduction to Shared Server Performance

■ Configuring the Number of Shared Servers
ervers 19-1

Introduction to Shared Server Performance
Introduction to Shared Server Performance
Using shared servers enables you to reduce the number of processes and the

amount of memory consumed on the server machine. Shared servers are beneficial

for systems where there are many OLTP users performing intermittent transactions.

Using shared servers rather than dedicated servers is also generally better for

systems that have a high connection rate to the database. With shared servers, when

a connect request is received, a dispatcher is already available to handle concurrent

connection requests. With dedicated servers, on the other hand, a

connection-specific dedicated server is sequentially initialized for each connection

request.

Performance of certain database features can improve when a shared server

architecture is used, and performance of certain database features can degrade

slightly when a shared server architecture is used. For example, a session can be

prevented from migrating to another shared server while parallel execution is

active.

A session can remain nonmigratable even after a request from the client has been

processed, because not all the user information has been stored in the UGA. If a

server were to process the request from the client, then the part of the user state that

was not stored in the UGA would be inaccessible. To avoid this, individual shared

servers often need to remain bound to a user session.

Configuring the Number of Shared Servers
When using some features, you may need to configure more shared servers,

because some servers might be bound to sessions for an excessive amount of time.

This section discusses how to reduce contention for processes used by Oracle’s

architecture:

■ Identifying Contention Using the Dispatcher-Specific Views

■ Reducing Contention for Dispatcher Processes

■ Reducing Contention for Shared Servers

■ Determining the Optimal Number of Dispatchers and Shared Servers
19-2 Oracle9i Database Performance Tuning Guide and Reference

Configuring the Number of Shared Servers
Identifying Contention Using the Dispatcher-Specific Views
The following views provide dispatcher performance statistics:

■ V$DISPATCHER - general information about dispatcher processes

■ V$DISPATCHER_RATE - dispatcher processing statistics

Analyzing V$DISPATCHER_RATE Statistics
The V$DISPATCHER_RATE view contains current, average, and maximum

dispatcher statistics for several categories. Statistics with the prefix CUR_ are

statistics for the current sample. Statistics with the prefix AVG_ are the average

values for the statistics since the collection period began. Statistics with the prefix

MAX_ are the maximum values for these categories since statistics collection began.

To assess dispatcher performance, query the V$DISPATCHER_RATE view and

compare the current values with the maximums. If your present system throughput

provides adequate response time and current values from this view are near the

average and less than the maximum, then you likely have an optimally tuned

shared server environment.

If the current and average rates are significantly less than the maximums, then

consider reducing the number of dispatchers. Conversely, if current and average

rates are close to the maximums, then you might need to add more dispatchers. A

general rule is to examine V$DISPATCHER_RATE statistics during both light and

heavy system use periods. After identifying your shared server load patterns, adjust

your parameters accordingly.

If needed, you can also mimic processing loads by running system stress tests and

periodically polling the V$DISPATCHER_RATE statistics. Proper interpretation of

these statistics varies from platform to platform. Different types of applications also

can cause significant variations on the statistical values recorded in

V$DISPATCHER_RATE.

See Also:

■ Oracle9i Database Reference for detailed information about these

views

■ Oracle Enterprise Manager Concepts Guide for information about

Oracle Tuning Pack applications that monitor statistics
Configuring Shared Servers 19-3

Configuring the Number of Shared Servers
Reducing Contention for Dispatcher Processes
This section discusses how to add dispatcher processes and how to enable

connection pooling.

Adding Dispatcher Processes
Add dispatcher processes while Oracle is running with the SEToption of the ALTER
SYSTEM statement to increase the value for the DISPATCHERS initialization

parameter.

The total number of dispatcher processes is limited by the value of the initialization

parameter MAX_DISPATCHERS. You might need to increase this value before

adding dispatcher processes. The default value of this parameter is five, and the

maximum value varies depending on your operating system.

Enabling Connection Pooling
When system load increases and dispatcher throughput is maximized, it is not

necessarily a good idea to immediately add more dispatchers. Instead, consider

configuring the dispatcher to support more users with connection pooling.

DISPATCHERS lets you enable various attributes for each dispatcher. Oracle

supports a name-value syntax to let you specify attributes in a

position-independent, case-insensitive manner. For example:

DISPATCHERS = "(PROTOCOL=TCP)(POOL=ON)"

The optional attribute POOL enables the Oracle Net connection pooling feature.

TICK is the size of a network TICK in seconds. The TICK default is 1 second.

Enabling Session Multiplexing
Multiplexing is used by a connection manager process to establish and maintain

network sessions from multiple users to individual dispatchers. For example,

several user processes can connect to one dispatcher by way of a single connection

from a connection manager process.

See Also: Oracle9i Database Administrator’s Guide and Oracle9i Net
Services Administrator’s Guide for more information on adding

dispatcher processes

See Also: Oracle9i Database Reference and the Oracle9i Net Services
Administrator’s Guide for more information about the

DISPATCHERS parameter and its options
19-4 Oracle9i Database Performance Tuning Guide and Reference

Configuring the Number of Shared Servers
The connection manager manages communication from users to the dispatcher by

way of a shared connection. At any one time, zero, one, or a few users might need

the connection, while other user processes linked to the dispatcher by way of the

connection manager process are idle. This way, session multiplexing is beneficial

because it maximizes use of the dispatcher process connections.

Multiplexing is also useful for multiplexing database link sessions between

dispatchers. The limit on the number of sessions for each dispatcher is platform

dependent. For example:

DISPATCHERS="(PROTOCOL=TCP)(MULTIPLEX=ON)"

Reducing Contention for Shared Servers
This section discusses how to identify contention for shared servers and how to

increase the maximum number of shared servers.

Identifying Contention for Shared Servers
Steadily increasing wait times in the requests queue indicate contention for shared

servers. To examine wait time data, use the dynamic performance view V$QUEUE.
This view contains statistics showing request queue activity for shared servers. By

default, this view is available only to the user SYS and to other users with SELECT
ANY TABLEsystem privilege, such as SYSTEM. Table 19–1 lists the columns showing

the wait times for requests and the number of requests in the queue.

Monitor these statistics occasionally while your application is running by issuing

the following SQL statement:

SELECT DECODE(TOTALQ, 0, ’No Requests’,
WAIT/TOTALQ || ’ HUNDREDTHS OF SECONDS’)

"AVERAGE WAIT TIME PER REQUESTS"
FROM V$QUEUE
WHERE TYPE = ’COMMON’;

Table 19–1 Wait Time and Request Columns in V$QUEUE

Column Description

WAIT Displays the total waiting time, in hundredths of a second, for
all requests that have ever been in the queue

TOTALQ Displays the total number of requests that have ever been in
the queue
Configuring Shared Servers 19-5

Configuring the Number of Shared Servers
This query returns the results of a calculation that show the following:

AVERAGE WAIT TIME PER REQUEST

.090909 HUNDREDTHS OF SECONDS

From the result, you can tell that a request waits an average of 0.09 hundredths of a

second in the queue before processing.

You can also determine how many shared servers are currently running by issuing

the following query:

SELECT COUNT(*) "Shared Server Processes"
FROM V$SHARED_SERVER
WHERE STATUS != ’QUIT’;

The result of this query could look like the following:

Shared Server Processes

10

If you detect resource contention with shared servers, then first make sure that this

is not a memory contention issue by examining the shared pool and the large pool.

If performance remains poor, then you might want to create more resources to

reduce shared server process contention. Do this by modifying the optional server

process parameters, as explained in the following section.

Setting and Modifying Shared Server Processes
This section explains how to set optional parameters affecting processes for the

shared server architecture. This section also explains how and when to modify these

parameters to tune performance.

The following static initialization parameters are discussed in this section:

■ MAX_DISPATCHERS

■ MAX_SHARED_SERVERS

This section also describes the following initialization/session parameters:

■ DISPATCHERS

■ SHARED_SERVERS

Values for the initialization parameters MAX_DISPATCHERS and MAX_SHARED_
SERVERS define upper limits for the number of dispatchers and servers running on
19-6 Oracle9i Database Performance Tuning Guide and Reference

Configuring the Number of Shared Servers
an instance. These parameters are static and cannot be changed after your database

is running. You can create as many dispatcher and server processes as you need, but

the total number of processes cannot exceed the host operating system’s limit for

the number of running processes.

You can also define starting values for the number of dispatchers and servers by

setting the DISPATCHERS parameter’s DISPATCHER attribute and the SHARED_
SERVERS parameter. After system startup, you can dynamically reset values for

these parameters to change the number of dispatchers and servers using the SET
option of the ALTER SYSTEM statement. If you enter values for these parameters in

excess of limits set by the static parameters, then Oracle uses the static parameter

values.

The default value of MAX_SHARED_SERVERS is dependent on the value of SHARED_
SERVERS. If SHARED_SERVERS is less than or equal to 10, then MAX_SHARED_
SERVERS defaults to 20. If SHARED_SERVERS is greater than 10, then MAX_
SHARED_SERVERS defaults to two times the value of SHARED_SERVERS.

Self-adjusting Shared Server Architecture Features
When the database starts, SHARED_SERVERS is the number of shared servers

created. Oracle does not allow the number of shared servers to be less than this

minimum. During processing, Oracle automatically adds shared servers up to the

limit defined by MAX_SHARED_SERVERS if Oracle perceives that the load based on

the activity of the requests on the common queue warrant additional shared

servers. Therefore, you are unlikely to improve performance by explicitly adding

shared servers. However, you might need to adjust your system to accommodate

certain resource issues.

If the number of shared server processes has reached the limit set by the

initialization parameter MAX_SHARED_SERVERS and the average wait time in the

request queue is still unacceptable, then you might improve performance by

increasing the MAX_SHARED_SERVERS value.

If resource demands exceed expectations, then you can either allow Oracle to

automatically add shared server processes or you can add shared processes by

altering the value for SHARED_SERVERS. You can change the value of this

parameter in the initialization parameter file, or alter it using the SHARED_SERVERS

Note: Setting MAX_DISPATCHERS sets the limit on the number of

dispatchers for all DISPATCHERS’ dispatcher values.
Configuring Shared Servers 19-7

Configuring the Number of Shared Servers
parameter of the ALTER SYSTEM statement. Experiment with this limit and monitor

shared servers to determine an ideal setting for this parameter.

Increasing the Maximum Number of Shared Servers
The shared servers are the processes that perform data access and pass back this

information to the dispatchers.

The dispatchers then forward the data to the client process. If there are not enough

shared servers to handle all the requests, then the queue backs up (V$QUEUE), and

requests take longer to process. However, before you check the V$QUEUE statistics,

it is best to first check if you are running out of shared servers.

Find out the amount of free RAM in the system. Examine ps or any other operating

system utility to find out the amount of memory a shared server uses. Divide the

amount of free RAM by the size of a shared server. This gives you the maximum

number of shared servers you can add to your system.

The best way to proceed is to increase the MAX_SHARED_SERVERS parameter

gradually until you begin to swap. If swapping occurs due to the shared server,

then reduce the number until swapping stops, or increase the amount of physical

RAM. Because each operating system and application is different, the only way to

find out the ideal setting for MAX_SHARED_SERVERS is through trial and error.

To change the MAX_SHARED_SERVERS, first edit the initialization parameter file.

Save the file and restart the instance. Remember that setting SHARED_SERVERS to

MAX_SHARED_SERVERS should only be done if you are sure that you want to fix

the number of shared server processes. Keep in mind the following rules:

■ SHARED_SERVERS should be set for slightly greater than the expected number

of shared servers that will be needed when the database is at an average load.

■ MAX_SHARED_SERVERS should be set for slightly greater than the expected

number of shared servers that will be needed when the database is at an peak

load.

Determining the Optimal Number of Dispatchers and Shared Servers
As mentioned, SHARED_SERVERS determines the number of shared servers

activated at instance startup. The default setting for SERVER_SERVERS is one when

DISPATCHERS is specified.

To determine the optimal number of dispatchers and shared servers, consider the

number of users typically accessing the database and how much processing each

requires. Also consider that user and processing loads vary over time. For example,
19-8 Oracle9i Database Performance Tuning Guide and Reference

Configuring the Number of Shared Servers
a customer service system’s load might vary drastically from peak OLTP-oriented

daytime use to DSS-oriented nighttime use. System use can also predictably change

over longer time periods, such as the loads experienced by an accounting system

that vary greatly from mid-month to month-end.

If each user makes relatively few requests over a given period of time, then each

associated user process is idle for a large percentage of time. In this case, one shared

server process can serve 10 to 20 users. If each user requires a significant amount of

processing, then establish a higher ratio of servers to user processes.

In the beginning, it is best to allocate fewer shared servers. Additional shared

servers start automatically as needed and are deallocated automatically if they

remain idle too long. However, the initial servers always remain allocated, even if

they are idle.

If you set the initial number of servers too high, then your system might incur

unnecessary overhead. Experiment with the number of initial shared servers and

monitor shared servers until you achieve ideal system performance for your typical

database activity.

Estimating the Maximum Number of Dispatcher Processes
Use values for MAX_DISPATCHERS and DISPATCHERS that are at least equal to the

maximum number of concurrent sessions divided by the number of connections for

each dispatcher. For most systems, a value of 1,000 connections for each dispatcher

provides good performance.

Disallowing Further Shared Server Use with Concurrent Shared Server Use
You can use the SET option of the ALTER SYSTEM statement to alter the number of

active, shared servers. To prevent additional users from accessing shared servers,

set SHARED_SERVERS to zero. This temporarily disables additional use of shared

servers. Resetting SHARED_SERVERS to a positive value enables shared servers for

all current users.

To prevent a dispatcher from being used, issue the statement ALTER SYSTEM
SHUTDOWN [IMMEDIATE]. To bring the dispatcher back online, use the ALTER
SYSTEM SET command for the DISPATCHERS parameter.
Configuring Shared Servers 19-9

Configuring the Number of Shared Servers
See Also:

■ Oracle9i Database Reference for information about dispatchers,

specifically the description of the V$DISPATCHER and

V$DISPATCHER_RATE views

■ Oracle9i SQL Reference for more information about the ALTER
SYSTEM statement

■ Oracle9i Database Administrator’s Guide for more information on

changing the number of shared servers
19-10 Oracle9i Database Performance Tuning Guide and Reference

PartIV

 System-Related Performance Tools

Part IV provides information about Oracle’s system-related performance tools.

The chapters in this part are:

■ Chapter 20, "Oracle Tools to Gather Database Statistics"

■ Chapter 21, "Using Statspack"

Oracle Tools to Gather Database S
20

Oracle Tools to Gather Database Statistics

This chapter explains why performance data gathering is important, and it

describes how to use available Oracle tools.

This chapter contains the following sections:

■ Overview of Tools

■ Principles of Data Gathering

■ Interpreting Statistics

■ Oracle Enterprise Manager Diagnostics Pack

■ Statspack

■ V$ Performance Views
tatistics 20-1

Overview of Tools
Overview of Tools
Effective data collection and analysis is essential for identifying and correcting

system performance problems. Oracle provides a number of tools that allow a

performance engineer to gather information regarding instance and database

performance.

■ Oracle Enterprise Manager Diagnostics Pack, with a graphical user interface, is

the most feature-rich performance tool. It provides data analysis and collection

of operating system statistics.

■ Statspack and BSTAT/ESTAT are command-line interface tools that gather

instance related performance data. Statspack is the successor of BSTAT/ESTAT,
with significantly increased functionality over the BSTAT/ESTAT tool.

■ V$ views can be queried using SQL. They contain dynamic performance data

related to an Oracle instance’s performance. The data is lost when the instance

is shut down.

Principles of Data Gathering
To effectively diagnose a performance problem, it is vital to have an established

performance baseline for later comparison when the system is running poorly.

Without a baseline data point, it can be very difficult to identify new problems. For

example, perhaps the volume of transactions on the system has increased, or the

transaction profile or application has changed, or the number of users has

increased.

Although Oracle Enterprise Manager, Statspack and BSTAT/ESTAT, and the V$
views have different interfaces (GUI, command line, SQL), the majority of data they

collect and report on is extracted from the V$ views. Because the V$ views are based

on memory-resident data, when an instance is shut down, the data related to the

instance is lost.

In order to perform analysis of data from one day to the next, data visible through

the V$ views must be saved. On each instance startup, the memory resident V$
views are reinitialized; hence, to determine what has changed within any particular

period, you must calculate the difference in the performance data. This is done by

subtracting the statistic values at the beginning of the period from the statistic

values at the end of the period. This gives you the activity of the instance during

that period, or the delta.The delta of each statistic can then be normalized (for

example, over seconds or over transactions).
20-2 Oracle9i Database Performance Tuning Guide and Reference

Interpreting Statistics
The delta of all statistics for a period of time can be considered a baseline, assuming

the response time and operations performed on the instance were representative of

some typical load on your system (that is, batch, online, or both).

Each of the tools Oracle provides (except for the V$ views themselves) has a

mechanism for saving this data and for determining the delta.

It is also important to gather operating system and network statistics. These can

then be correlated with the Oracle performance data. If you are using Statspack,

BSTAT/ESTAT, or your own tool, you should devise a mechanism for collecting

operating system statistics. With Oracle Enterprise Manager, this capability is

built-in.

Interpreting Statistics
When initially examining performance data, you can formulate potential theories

by examining your statistics. One way to ensure that your interpretation of the

statistics is correct is to perform cross-checks with other data. This establishes

whether a statistic or event is really of interest.

Some pitfalls are discussed in the following sections:

■ Hit ratios

When tuning, it is common to compute a ratio that helps determine whether

there is a problem. Such ratios include the buffer cache hit ratio, the soft-parse

ratio, and the latch hit ratio. These ratios should not be used as 'hard and fast'

identifiers of whether there is or is not a performance bottleneck. Rather, they

should be used as indicators. In order to identify whether there is a bottleneck,

other related evidence should be examined.

■ Wait events with timed statistics

Setting TIMED_STATISTICS to true at the instance level directs the Oracle

server to gather wait time for events, in addition to wait counts already

available. This data is useful for comparing the total wait time for an event to

the total elapsed time between the performance data collections. For example, if

the wait event accounts for only 30 seconds out of a two hour period, then there

is probably little to be gained by investigating this event, even though it may be

the highest ranked wait event when ordered by time waited. However, if the

event accounts for 30 minutes of a 45 minute period, then the event is worth

investigating.
Oracle Tools to Gather Database Statistics 20-3

Interpreting Statistics
■ Comparing Oracle statistics with other factors

When looking at statistics, it is important to consider other factors that influence

whether the statistic is of value. Such factors include the user load and the

hardware capability. Even an event that had a wait of 30 minutes in a 45 minute

snapshot might not be indicative of a problem if you discover that there were

2000 users on the system, and the host hardware was a 64 node machine.

■ Wait events without timed statistics

If TIMED_STATISTICS is false, then the amount of time waited for an event is

not available. Therefore, it is only possible to order wait events by the number

of times each event was waited for. Although the events with the largest

number of waits might indicate the potential bottleneck, they might not be the

main bottleneck. This can happen when an event is waited for a large number

of times, but the total time waited for that event is small. The converse is also

true: an event with fewer waits might be a problem if the wait time is a

significant proportion of the total wait time. Without having the wait times to

use for comparison, it is difficult to determine whether a wait event is really of

interest.

■ Idle wait events

Oracle uses some wait events to indicate if the Oracle server process is idle.

Typically, these events are of no value when investigating performance

problems, and they should be ignored when examining the wait events.

■ Computed statistics

When interpreting computed statistics (such as rates, statistics normalized over

transactions, or ratios), it is important to cross-verify the computed statistic

with the actual statistic counts. This confirms whether the derived rates are

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .
20-4 Oracle9i Database Performance Tuning Guide and Reference

Oracle Enterprise Manager Diagnostics Pack
really of interest: small statistic counts usually can discount an unusual ratio.

For example, on initial examination, a soft-parse ratio of 50% generally

indicates a potential tuning area. If, however, there was only one hard parse

and one soft parse during the data collection interval, then the soft-parse ratio

would be 50%, even though the statistic counts show this is not an area of

concern. In this case, the ratio is not of interest due to the low raw statistic

counts.

Oracle Enterprise Manager Diagnostics Pack
Oracle Enterprise Manager (EM) Diagnostics Pack captures related operating

system, middle-tier, and application performance data, in addition to instance

performance data, allowing end-to-end diagnostics.

The Diagnostics Pack can automatically analyze this performance data, display it in

a graphical interface, and use alerts to immediately direct you to any performance

problems. You can be alerted automatically through email or page when a problem

is detected. Oracle Enterprise Manager also includes an integrated diagnostics

methodology that uses guided drilldowns and expert advice to help you quickly

resolve performance issues. Figure 20–1 is a screen of the Oracle Performance

Manager.

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings
Oracle Tools to Gather Database Statistics 20-5

Oracle Enterprise Manager Diagnostics Pack
Figure 20–1 Oracle Performance Manager

EM also lets you store the captured data in a separate performance repository

database. You can store the performance data for multiple databases in the same

repository.

The EM Intelligent Agent data gathering service collects performance data on a

scheduled basis. A single agent can manage the data collections for all Oracle

databases and the operating system of the target node. The data is automatically

stored in an historical data repository for performance reporting. Data stored in the

repository can be used to analyze many facets of database performance, such as

database load, cache allocations and efficiency, resource contention, and

high-impact SQL.
20-6 Oracle9i Database Performance Tuning Guide and Reference

V$ Performance Views
Performance data collections can be initiated directly from the EM Console or

through the Capacity Planner application of the Oracle Enterprise Manager

Diagnostics Pack. HTML reports of historical performance data can be generated

from the EM Console. These reports provide a comprehensive analysis of database

system usage and performance, which can be easily accessed and navigated from a

browser. EM also provides a graphical real-time Performance Overview for

monitoring a subset of these performance metrics using line charts, bar graphs, and

so forth.

The Performance Overview charts let you troubleshoot existing performance

problems by drilling into performance data to track down the source of a

performance bottleneck. For example, a decline in the memory sort percentage can

be immediately investigated by drilling down to the sessions and corresponding

SQL responsible for high volume sort activity. High-impact SQL statements

discovered through this process can be further investigated by launching SQL

diagnostic tools in the context of the problem.

Statspack
Statspack fundamentally differs from the well known UTLBSTAT/UTLESTAT
tuning scripts by collecting more information, and by storing the performance

statistics data permanently in Oracle tables, which can later be used for reporting

and analysis. The data collected can be analyzed using the report provided, which

includes an instance health and load summary page, high resource SQL statements,

as well as the traditional wait events and initialization parameters.

V$ Performance Views
The V$ views are the performance information sources used by all Oracle

performance tuning tools. The V$ views are based on memory structures initialized

at instance startup. The memory structures, and the views that represent them, are

automatically maintained by Oracle throughout the life of the instance.

See Also:

■ Oracle Enterprise Manager Concepts Guide

■ Getting Started with the Oracle Diagnostics Pack

See Also: Chapter 21, "Using Statspack"

See Also: Chapter 24, "Dynamic Performance Views for Tuning"
Oracle Tools to Gather Database Statistics 20-7

V$ Performance Views
If you choose not to use an Oracle tool to gather your performance data, then you

need to develop your own. You need to save data from the required performance

views to a structure on disk, so that the data can be analyzed and compared with

other data collected. Because there are multiple collections, you need a key to

identify each collection. This method is very similar to the method used by

Statspack.

The following is an example of how to save performance data from a single V$ view

to an Oracle table. To implement your own collection tool, you must perform a

similar collection mechanism for all essential V$ views.

Example - Saving File I/O Data
The following example creates a table that stores the collection data. The table has

all V$FILESTAT columns and also includes the collection ID column and the

collection date column. A sample SQL statement that reports the delta in this table

for the first two collections has also been included.

Create the table, and insert the first data collection:

CREATE TABLE coll_filestat AS
 SELECT 1 coll_id -- collection number
 , sysdate coll_date -- collection date
 , fs.*
 FROM V$FILESTAT fs;

ALTER TABLE coll_filestat add
 (CONSTRAINT coll_filestat PRIMARY KEY (coll_id, file#));

At the end of the interval, insert second collection:

 INSERT INTO coll_filestat
 SELECT 2 -- collection number
 , sysdate -- collection date
 , fs.*
 FROM V$FILESTAT fs;

Note: Oracle recommends using Oracle Enterprise Manager

Diagnostics Pack or Statspack to gather performance data. These

tools have been designed to capture all of the data needed for

performance analysis.
20-8 Oracle9i Database Performance Tuning Guide and Reference

V$ Performance Views
To query for high I/O tablespaces:

SELECT t.tablespace_name
 , SUM(fs2.phyrds-fs1.phyrds)
 / MAX(86400*(fs2.coll_date-fs1.coll_date)) "Rd/sec"
 , SUM(fs2.phyblkrd-fs1.phyblkrd)
 / MAX(86400*(fs2.coll_date-fs1.coll_date)) "Blk/sec"
 , SUM(fs2.phywrts-fs1.phywrts)
 / MAX(86400*(fs2.coll_date-fs1.coll_date)) "Wr/sec"
 , SUM(fs2.phyblkwrt-fs1.phyblkwrt)
 / MAX(86400*(fs2.coll_date-fs1.coll_date)) "Blk/sec"
 FROM coll_filestat fs1, coll_filestat fs2, dba_data_files t
 WHERE fs2.file# = fs1.file#
 AND fs2.coll_id = fs1.coll_id + 1
 AND t.file_id = fs2.file#
 GROUP BY t.tablespace_name
 ORDER BY sum(fs2.phyblkrd+fs2.phyblkwrt-fs1.phyblkrd-fs1.phyblkwrt) DESC;

The following is a sample output from the preceding select statement:

TABLESPACE_N Rd/sec Blk/sec Wr/sec Blk/sec
------------ ------ ------- ------ -------
AP_T_02 287.1 2245.7 .0 .0
PO_T_01 313.5 650.6 .2 .2
RECEIVABLE_T 401.0 613.8 2.4 2.4
INV_T_01 154.3 155.3 .0 .0
APPLSYS_T_01 63.3 139.6 .4 .4
PA_T_01 102.3 102.3 .0 .0
SO_I_01 63.4 63.4 34.5 34.5
TEMP 2.3 45.0 1.9 47.0
RECEIVABLE_I 73.0 73.0 .1 .1
AP_T_03 69.3 69.3 .0 .0
RECEIVABLE_I 65.1 65.1 1.9 1.9
SO_T_01 54.0 57.8 2.9 2.9
SYSTEM 45.2 59.0 .3 .3
PER_T_01 48.0 58.7 .0 .0
AP_T_01 12.9 51.0 .2 .2
SO_T_03 43.0 43.0 1.2 1.2

Note: In order to insert any other collections, you need to keep the

collection ID key unique. This could be done using a sequence

number. (The sequence number should have value for all V$ views

captured in one collection.)
Oracle Tools to Gather Database Statistics 20-9

V$ Performance Views
PER_I_01 30.8 30.8 .0 .0
FA_T_01 22.3 22.3 .0 .0
INV_I_01 20.7 20.7 .7 .7
PO_I_01 19.5 19.5 .7 .7
GSR_T_01 19.2 19.2 .4 .4
INV_I_03 18.3 18.3 .0 .0
ROLL_01 1.4 1.4 14.7 14.7
PA_I_01 14.3 14.3 .2 .2
20-10 Oracle9i Database Performance Tuning Guide and Reference

Using Sta
21

Using Statspack

This chapter explains how to install, configure, and use Statspack.

The chapter contains the following sections:

■ Introduction to Statspack

■ Statspack Compared with BSTAT/ESTAT

■ How Statspack Works

■ Configuring Database Space Requirements for Statspack

■ Installing Statspack

■ Using Statspack

■ Removing Statspack

■ Statspack Supplied Scripts and Documentation

Note: Statspack is not supported with releases earlier than 8.1.6.

Storing data from multiple databases in one PERFSTAT user

account is currently not supported.

See Also: "Statspack Documentation" on page 21-28 for

information about the SPDOC.TXT file, installed with the Oracle

database
tspack 21-1

Introduction to Statspack
Introduction to Statspack
When tuning a database, it is important to have an established baseline for later

comparison when the system is running poorly. A baseline data point helps identify

the factors to check when diagnosing new performance problems. Some factors to

check are:

■ Has the volume of transactions on the system increased?

■ Has the transaction profile or application changed?

■ Has the number of users increased?

The Statspack package is a set of SQL, PL/SQL, and SQL*Plus scripts that allow the

collection, automation, storage, and viewing of performance data. Statspack stores

the performance statistics permanently in Oracle tables, which can later be used for

reporting and analysis. The data collected can be analyzed using Statspack reports,

which includes an instance health and load summary page, high resource SQL

statements, and the traditional wait events and initialization parameters.

Statspack Compared with BSTAT/ESTAT
Statspack differs from the existing UTLBSTAT/UTLESTAT performance scripts in

the following ways:

■ Statspack collects more data, including high-resource SQL.

■ Statspack precalculates many ratios useful when performance tuning, such as

cache hit ratios, rates, and transaction statistics. Many of these ratios must be

calculated manually when using BSTAT/ESTAT.

■ Statspack uses permanent tables owned by the PERFSTAT user to store

performance statistics. Rather than creating and dropping tables each time, data

is inserted into the existing tables, making it easier to compare historical data.

■ Statspack separates data collection from report generation. Data is collected

when a snapshot is taken. The performance engineer then runs the performance

report and views the data collected.

See Also: Oracle provides a diagnostics pack which contains GUI

tools for collecting and analyzing statistics. See "Oracle Enterprise

Manager Diagnostics Pack" on page 20-5.
21-2 Oracle9i Database Performance Tuning Guide and Reference

How Statspack Works
■ Statspack makes data collection easy to automate using either DBMS_JOB or an

operating system utility to schedule collection tasks.

■ Statspack considers a transaction to finish either with a COMMITor a ROLLBACK,
and so calculates the number of transactions as user commits + user
rollbacks . BSTAT/ESTATconsiders a transaction to complete with a COMMIT
only, and so assumes that transactions = user commits . For this reason,

comparing statistics for each transaction between Statspack and BSTAT/ESTAT
can result in significantly different ratios.

How Statspack Works
When you run the Statspack installation script, the PERFSTAT user is created

automatically. PERFSTAT owns all objects needed by the Statspack package and is

granted limited query-only privileges on the V$ views required for performance

tuning.

Statspack users become familiar with the concept of a snapshot, a single collection

of performance data. Each snapshot taken is identified by a snapshot ID, which is a

unique number generated at the time the snapshot is taken. Each time a new

collection is taken, a new SNAP_ID is generated.

The SNAP_ID, along with the database identifier (DBID) and instance number

(INSTANCE_NUMBER), comprise the unique key for a snapshot. Use of this unique

combination allows storage of multiple instances of an Oracle Real Application

Clusters database in the same tables.

After snapshots are taken, you can run the performance report. The report prompts

you for start and end snapshot IDs and then calculates activity on the instance

between the two snapshots, much like a BSTAT/ESTATreport. To compare, the first

Note: The term snapshot as used here denotes a set of

performance statistics gathered at a single time, identified by a

unique ID that includes the snapshot number (or SNAP_ID). This

kind of snapshot has nothing to do with Oracle's snapshot

replication technology.

Caution: If you choose to run BSTAT/ESTAT in conjunction with

Statspack, do not run both as the same user. There is a name conflict

with the STATS$WAITSTAT table.
Using Statspack 21-3

Configuring Database Space Requirements for Statspack
SNAP_ID supplied can be considered the equivalent of running BSTAT; the second

SNAP_ID specified can be considered the equivalent of ESTAT. Unlike

BSTAT/ESTAT, which can by its nature only compare two static data points, the

report can compare any two snapshots specified.

Configuring Database Space Requirements for Statspack
The default initial and next extent sizes are 100K, 1MB, or 5MB for all Statspack

tables and indexes. Approximately 64MB is required to install Statspack.

The amount of database space required by the Statspack package depends on the

frequency of snapshots, the size of the database and instance, and the amount of

data collected, which can be configured. It is therefore difficult to provide general

storage clauses and space utilization predictions that are accurate at each site.

■ If you install the package in a dictionary-managed tablespace, then you should

monitor the space used by the objects created and, if required, adjust the storage

clauses of the segments.

■ If you install the package in a locally managed tablespace, then storage clauses

are not required, because the storage characteristics are automatically managed.

Installing Statspack
There are two ways to install Statspack:

■ Interactive Statspack Installation

■ Batch Mode Statspack Installation

Batch mode is useful when you do not want to be prompted for the PERFSTAT
user's password, default tablespace, and temporary tablespace.

Interactive Statspack Installation
The first step in the installation is the creation of the PERFSTAT user, which owns

all PL/SQL code and database objects created, including the Statspack tables,

constraints, and the Statspack package. During installation, you are prompted for

the PERFSTAT user's password, default tablespace, and temporary tablespace. The

default tablespace is used to create all Statspack objects, such as tables and indexes.

The temporary tablespace is used for sort-type activities.

See Also: Oracle9i Database Concepts for more information on

temporary tablespaces
21-4 Oracle9i Database Performance Tuning Guide and Reference

Installing Statspack
When installing the Statspack package, you can either change to the ORACLE_
HOME/rdbms/admin directory, or fully specify the ORACLE_HOME/rdbms/admin
directory when calling the installation script, SPCREATE.SQL.

To install Statspack, perform the following:

■ Start SQL*Plus.

■ Connect as a user with SYSDBA privilege. For example:

SQL> CONNECT / AS SYSDBA

■ Run the SPCREATE.SQL script.

– On UNIX platforms, enter the following:

SQL> @?/rdbms/admin/spcreate

– On Windows platforms, enter the following:

SQL> @%ORACLE_HOME%\rdbms\admin\spcreate

■ Enter appropriate information when prompted for the PERFSTAT user's

password, default tablespace, and temporary tablespace.

The SPCREATE.SQL install script runs the following scripts automatically:

Note:

■ A password is mandatory and should be kept confidential.

■ Do not specify the SYSTEM tablespace for the PERFSTAT user’s

DEFAULT or TEMPORARY tablespaces. If SYSTEM is specified,

the installation aborts with an error specifying the problem.

Oracle Corporation does not recommend using the SYSTEM
tablespace to store statistics data or for sorting. Use a TOOLS
tablespace to store the data, and use your instance's TEMP
tablespace for sorting. To recover from this error, run the

de-install (SPDROP.SQL) script, then rerun the installation.

■ During installation, the DBMS_SHARED_POOL and DBMS_JOB
PL/SQL packages are created. DBMS_SHARED_POOL pins the

Statspack package in the shared pool. DBMS_JOB is created on

the assumption that you want to schedule periodic snapshots

automatically using DBMS_JOB.
Using Statspack 21-5

Using Statspack
■ SPCUSR.SQL: Creates the user and grants privileges

■ SPCTAB.SQL: Creates the tables

■ SPCPKG.SQL: Creates the package

To ensure that no errors were encountered during the installation, check the

SPCUSR.LIS , SPCTAB.LIS , and SPCPKG.LIS output files. For example:

ORACLE_HOME/bin/spcusr.lis
ORACLE_HOME/bin/spctab.lis
ORACLE_HOME/bin/spcpkg.lis

Batch Mode Statspack Installation
To install Statspack in batch mode, you must assign values to the SQL*Plus

variables that specify the default and temporary tablespaces before running

SPCREATE.SQL. The variables are:

■ DEFAULT_TABLESPACE: For the default tablespace

■ TEMPORARY_TABLESPACE: For the temporary tablespace

■ PERFSTAT_PASSWORD: For the PERFSTAT user

For example, on UNIX:

SQL> CONNECT / AS SYSDBA
SQL> define default_tablespace='TOOLS'
SQL> define temporary_tablespace='TEMP'
SQL> define perfstat_password=' my_perfstat_password '
SQL> @?/rdbms/admin/spcreate

When SPCREATE.SQL is run, it does not prompt for the information provided by

the variables.

Using Statspack
The following topics are discussed in this section:

■ Taking a Statspack Snapshot

■ Automating Statistics Gathering

Note: After the setup is complete, change the password of the

PERFSTAT user for security purposes.
21-6 Oracle9i Database Performance Tuning Guide and Reference

Using Statspack
■ Running a Statspack Performance Report

■ Configuring the Amount of Data Captured in Statspack

■ Time Units Used for Wait Events

■ Event TimingsManaging and Sharing Statspack Performance Data

■ Oracle Real Application Clusters Considerations with Statspack

Taking a Statspack Snapshot
The simplest interactive way to take a snapshot is to login to SQL*Plus as the

PERFSTAT user and run the procedure STATSPACK.SNAP. For example:

SQL> CONNECT perfstat/ my_perfstat_password
SQL> EXECUTE statspack.snap;

Taking such a snapshot stores the current values for the performance statistics in the

Statspack tables. This snapshot can be used as a baseline for comparison with

another snapshot taken at a later time.

For better performance analysis, set the initialization parameter TIMED_
STATISTICS to TRUE. Statspack will then include important timing information in

the data it collects. You can change the TIMED_STATISTICS parameter

dynamically by using the ALTER SYSTEM statement. Timing data is important and

is usually required by Oracle support to diagnose performance problems.

Note: In an Oracle Real Application Clusters environment, you

must connect to the instance for which you want to collect data.

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .
Using Statspack 21-7

Using Statspack
Typically, to automate the gathering and reporting phases (during a benchmark, for

example), you might need to know the snap_id of the snapshot just taken. To take

a snapshot and display the snap_id , call the STATSPACK.SNAP function.

Example 21–1 Calling the snap Function in SQL*Plus

Using an anonymous PL/SQL block,

SQL> variable snap number;
SQL> begin :snap := statspack.snap; end;
 2 /
PL/SQL procedure successfully completed.
SQL> print snap
 SNAP

 12

Automating Statistics Gathering
To make performance comparisons from one day, week, or year to the next, you

need multiple snapshots taken over a period of time. The best method to gather

snapshots is to automate the collection at regular intervals. You have the following

options:

■ Within the database, use the Oracle DBMS_JOB procedure to schedule

snapshots.

■ Use an operating system utility, such as cron on UNIX, to schedule snapshots.

On Windows platforms, you can use the at utility on Windows NT or System
Tools > Scheduled Tasks on Windows 2000.

Using DBMS_JOB to Collect Statistics
The DBMS_JOB package is an Oracle-automated method for scheduling and

running different tasks, such as collecting statistics. A sample script on how to do

this is supplied in SPAUTO.SQL, which schedules a snapshot every hour, on the

hour.

You might want to schedule snapshots at regular times each day to reflect your

system's OLTP or batch peak loads. For example, you could take snapshots at 9 a.m,

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings
21-8 Oracle9i Database Performance Tuning Guide and Reference

Using Statspack
10 a.m, 11 a.m, 12 noon, and 6 p.m. for the OLTP load, and then take a snapshot at

12 midnight and 6 a.m for the batch window.

In order to use DBMS_JOB to schedule snapshots, you must set the JOB_QUEUE_
PROCESSES initialization parameter to greater than 0 in the initialization file, so

that the job can be run automatically.

Changing the Interval of Statistics Collection
Use the DBMS_JOB.INTERVAL procedure to change the interval of statistics

collection. For example:

EXECUTE DBMS_JOB.INTERVAL(job_number ,'SYSDATE+(1/48)');

Where 'SYSDATE+(1/48)' results in the statistics being gathered each 1/48 hours, or

every half hour, and job_number refers to the specific job that you want to run.

To force a job to run immediately:

EXECUTE DBMS_JOB.RUN(job_number);

To remove a specified job:

EXECUTE DBMS_JOB.REMOVE(job_number);

Running a Statspack Performance Report
After snapshots are taken, you can generate performance reports. The SQL scripts

that generate the reports prompts you for a beginning snapshot ID, an ending

snapshot ID, and a report name. The Statspack package includes two reports.

■ First, run a Statspack report, SPREPORT.SQL, which is a general instance health

report that covers all aspects of instance performance. This reports calculates

and prints ratios and differences for all statistics between the two snapshots,

similar to the BSTAT/ESTAT report.

Note: If you are using SPAUTO.SQL in an Oracle Real Application

Clusters environment, you must run the SPAUTO.SQL script once

on each instance in the cluster. Similarly, you must set the JOB_
QUEUE_PROCESSES parameter for each instance.

See Also: Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on the DBMS_JOB package
Using Statspack 21-9

Using Statspack
■ After examining the instance report, run a SQL report, SPREPSQL.SQL, on a

single SQL statement (identified by its hash value). The SQL report only reports

on data relating to the single SQL statement.

Because data gathering is separate from report production, you have flexibility to

base a report on any data points you select. For example, as DBA you might want to

use the supplied automation script to automate data collection every hour, on the

hour. If, at some later point, a performance issue arose that might be better

investigated by looking at a three-hour data window, all you have to do is specify

the required start point and end point when running the report.

Running the Statspack Report
 To examine the change in instance-wide statistics between two time periods, the

SPREPORT.SQL script is run while connected to the PERFSTAT user. The

SPREPORT.SQL script is located in the rdbms/admin directory of the Oracle home.

When the report is run, you are prompted for the following:

■ The beginning snapshot ID

■ The ending snapshot ID

Note: It is not correct to specify begin and end snapshots where

the begin snapshot and end snapshot were taken from different

instance startups. In other words, the instance must not have been

shutdown between the times that the begin and end snapshots

were taken.

This is necessary because the database's dynamic performance

tables, which Statspack queries to gather the data, reside in

memory. Hence, shutting down the database resets the values in

the performance tables to 0. Because Statspack subtracts the

begin-snapshot statistics from the end-snapshot statistics, the

resulting output is invalid. If begin and end snapshots taken

between shutdowns are specified in the report, then the report

shows an appropriate error to indicate this.

Note: In an Oracle Real Application Clusters environment, you

must connect to the instance on which you want to report.
21-10 Oracle9i Database Performance Tuning Guide and Reference

Using Statspack
■ The name of the report text file to be created

Example 21–2 shows the SQL commands to run the report and an example of the

partial report output.

Example 21–2 Creating a Statspack Report with Prompts

SQL> connect perfstat/ my_perfstat_password
SQL> @?/rdbms/admin/spreport

On Windows platforms, the command to run the report is:

SQL> @%ORACLE_HOME%\rdbms\admin\spreport

Sample output:

SQL> connect perfstat/ my_perfstat_password
Connected.
SQL> @?/rdbms/admin/spreport

DB Id DB Name Inst Num Instance
----------- ------------ -------- ------------
2618106428 PRD1 1 prd1
Completed Snapshots
 Snap Snap
Instance DB Name Id Snap Started Level Comment
------------ ------------ ----- ----------------- ----- ----------------
prd1 PRD1 1 11 May 2000 12:07 5
 2 11 May 2000 12:08 5

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 1
Begin Snapshot Id specified: 1

Enter value for end_snap: 2

Note: Both the serial number and the session_id (SID) must be the

same for the begin and end snapshots. Blank lines between lines of

snapshot IDs means that the instance has been restarted

(shutdown/startup) between those times, changing the serial

number. The blank lines thus identify begin and end snapshots that

cannot be used together when running a Statspack report.
Using Statspack 21-11



Using Statspack
End   Snapshot Id specified: 2

Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is sp_1_2 To use this name, press <return> to
continue, otherwise enter an alternative. Enter value for report_name: <press
return or enter a new name>

Using the report name sp_1_2

The report now scrolls past and is also written to the file specified. For example:

ORACLE_HOME/bin/sp_1_2.lis

To run a report without being prompted, assign values to the SQL*Plus variables

that specify the begin snap ID, the end snap ID, and the report name before running

SPREPORT.

The variables are:

■ BEGIN_SNAP: Specifies the begin snapshot ID

■ END_SNAP: Specifies the end snapshot ID

■ REPORT_NAME: Specifies the report output name

Example 21–3 Creating a Statspack Report Without Prompts (UNIX)

SQL> connect perfstat/ my_perfstat_password
SQL> define begin_snap=1
SQL> define end_snap=2
SQL> define report_name=batch_run
SQL> @?/rdbms/admin/spreport

When SPREPORT.SQL is run, it does not prompt for the information provided by

the variables.

Running the SQL Report
When you examine the instance report, you often find high-load SQL statements

that you want to examine more closely. The SQL report, SPREPSQL.SQL, displays

statistics, the complete SQL text, and (if a level six snapshot has been taken),

information on any SQL plan(s) associated with that statement.

See Also: "Snapshot Levels" on page 21-17 for information about

levels
21-12 Oracle9i Database Performance Tuning Guide and Reference

Using Statspack
The SQL statement to be reported on is identified by a hash value, which is a

numerical representation of the statement's SQL text. The hash value for each

statement is displayed for each statement in the SQL sections of the instance report.

You run the SPREPSQL.SQL script while connected as the PERFSTAT user. The

report is located in the rdbms/admin directory of the Oracle home.

The SPREPSQL.SQL report prompts you for the following:

■ Beginning snapshot ID

■ Ending snapshot ID

■ Hash value for the SQL statement

■ Name of the report text file to be created

Example 21–4 Sample Output of SPREPORT.SQL

SQL> connect perfstat/ my_perfstat_password
Connected.
SQL> @?/rdbms/admin/sprepsql

 DB Id DB Name Inst Num Instance
----------- ------------ -------- ---------
 2618106428 PRD1 1 prd1

Completed Snapshots

 Snap Snap
Instance DB Name Id Snap Started Level Comment
------------ ------------ ----- ----------------- ----- -------
prd1 PRD1 37 02 Mar 2001 11:01 6
 38 02 Mar 2001 12:01 6

 39 08 Mar 2001 09:01 5
 40 08 Mar 2001 10:02 5

Specify the Begin and End Snapshot Ids
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Enter value for begin_snap: 39
Begin Snapshot Id specified: 39

Note: In an Oracle Real Application Clusters environment, you

must connect to the instance on which you want to report.
Using Statspack 21-13



Using Statspack
Enter value for end_snap: 40
End   Snapshot Id specified: 40

Specify the Hash Value
~~~~~~~~~~~~~~~~~~~~~~
Enter value for hash_value: 1988538571
Hash Value specified is: 1988538571

Specify the Report Name
~~~~~~~~~~~~~~~~~~~~~~~
The default report file name is sp_39_40_1988538571.  To use this name,
press <return> to continue, otherwise enter an alternative.
Enter value for report_name:

Using the report name sp_39_40_1988538571

The report scrolls past and is also written to the file you specified. For example:

sp_39_40_1988538571.lis

The SPREPSQL.SQL script can run the SQL report in batch mode. To run a report

without being prompted, assign values to the SQL*Plus variables that specify the

begin snap ID, the end snap ID, the hash value, and the report name before running

the SPREPSQL.SQL script. The variables are:

■ BEGIN_SNAP: specifies the begin snapshot ID

■ END_SNAP: specifies the end snapshot ID

■ HASH_VALUE: specifies the hash value

■ REPORT_NAME: specifies the report output name

Example 21–5 Running SPREPORT.SQL in Batch Mode

SQL>  connect perfstat/ my_perfstat_password
SQL>  define begin_snap=39
SQL>  define end_snap=40
SQL   define hash_value=1988538571
SQL>  define report_name=batch_sql_run
SQL>  @?/rdbms/admin/sprepsql

When SPREPSQL.SQL is run, it does not prompt for the information provided by

the variables.
21-14 Oracle9i Database Performance Tuning Guide and Reference



Using Statspack
Gathering Optimizer Statistics on the PERFSTAT Schema
For best performance when running the performance reports, collect optimizer

statistics for tables and indexes owned by PERFSTAT. You should do this whenever

there is significant change in data volumes in PERFSTAT's tables.

To collect optimizer statistics on the PERFSTAT schema, use DBMS_STATS or DBMS_
UTILITY , and specify the PERFSTAT user. For example:

EXECUTE DBMS_STATS.GATHER_SCHEMA_STATS(OWNNAME=>'PERFSTAT',CASCADE=>TRUE);

or

EXECUTE DBMS_UTILITY.ANALYZE_SCHEMA('PERFSTAT','COMPUTE');

Configuring the Amount of Data Captured in Statspack
Both the snapshot level and the thresholds specified affect the amount of data

Statspack captures. You can change the amount of information gathered by

specifying a different snapshot level. The higher the snapshot level, the more data is

gathered. The default level set at installation is level 5.

For typical usage, level 5 snapshot is effective on most sites. There are certain

situations when using a level 6 snapshot is beneficial. These include the following:

■ When taking your first baseline

■ When a new application or an application change is installed to take a new

baseline

■ After gathering optimizer statistics

Snapshot SQL Thresholds
There are other parameters you can configure, in addition to the snapshot level.

These parameters are used as thresholds when collecting data on SQL statements;

data is captured on any SQL statements that breach the specified thresholds.

Snapshot level and threshold information used by the package is stored in the

STATS$STATSPACK_PARAMETER table.

Changing the Default Values for Snapshot Levels and SQL Thresholds
You can change the default parameters used for taking snapshots so that they are

tailored to the instance's workload. Simply use the appropriate parameter and the

See Also: "Snapshot Levels" on page 21-17
Using Statspack 21-15



Using Statspack
new value with the Statspack MODIFY_STATSPACK_PARAMETER or SNAP
procedure. For example:

SQL>  EXECUTE STATSPACK.SNAP(i_ucomment=>'this is a temporary commment');
SQL>  EXECUTE STATSPACK.MODIFY_STATSPACK_PARAMETER(i_ucomment=>'this is a
commment that is saved');

The parameters that can be passed into the MODIFY_STATSPACK_PARAMETER and

SNAP procedures are listed in Table 21–1 on page 21-20.

Temporarily Using New Values To temporarily use a snapshot level or threshold that is

different from the instance's default snapshot values, you specify the required

threshold or snapshot level when taking the snapshot. This value is used only for

the immediate snapshot taken; the new value is not saved as the default.

For example, to take a single level 6 snapshot:

SQL>  EXECUTE STATSPACK.SNAP(i_snap_level=>6);

Saving New Defaults You can save the new value as the instance's default in either of

two ways:

■ Take a snapshot and specify the new defaults to be saved to the database, using

STATSPACK.SNAP the I_MODIFY_PARAMETER input variable.

SQL>  EXECUTE STATSPACK.SNAP(i_snap_level=>10, i_modify_parameter=>'true');

Setting the I_MODIFY_PARAMETER value to TRUE saves the new thresholds in

the STATS$STATSPACK_PARAMETER table. These thresholds are used for all

subsequent snapshots.

If the I_MODIFY_PARAMETER was set to FALSE or omitted, then the new

parameter values are not saved. Only the snapshot taken at that point uses the

specified values. Any subsequent snapshots use the preexisting values in the

STATS$STATSPACK_PARAMETER table.

■ Change the defaults immediately without taking a snapshot, using the

STATSPACK.MODIFY_STATSPACK_PARAMETER procedure. For example, the

following statement changes the snapshot level to 10 and modifies the SQL

thresholds for BUFFER_GETS and DISK_READS:

SQL>  EXECUTE STATSPACK.MODIFY_STATSPACK_PARAMETER
      (i_snap_level=>10, i_buffer_gets_th=>10000, i_disk_reads_th=>1000);

This procedure changes the values permanently, but does not take a snapshot.
21-16 Oracle9i Database Performance Tuning Guide and Reference



Using Statspack
Snapshot Levels
This section discusses the snapshot levels.

Levels >= 0 General Performance Statistics Any level greater than 0 collects general

performance statistics, such as wait statistics, system events, system statistics,

rollback segment data, row cache, SGA, background events, session events, lock

statistics, buffer pool statistics, and parent latch statistics.

Levels >= 5 Additional Data: SQL Statements This level includes all statistics gathered in

the lower levels, as well as performance data on SQL statements with high resource

usage. In a level 5 snapshot (or higher), the time required for the snapshot to

complete depends on the SHARED_POOL_SIZE and on the number of SQL

statements in the shared pool at the time of the snapshot. The larger the shared

pool, the longer it takes to complete the snapshot.

SQL statements gathered by Statspack are those that exceed one of six predefined

threshold parameters:

■ Number of executions of the SQL statement. The default 100.

■ Number of disk reads performed by the SQL statement. The default 1,000.

■ Number of parse calls performed by the SQL statement. The default 1,000.

■ Number of buffer gets performed by the SQL statement. The default 10,000.

■ Size of sharable memory used by the SQL statement. The default 1 Mb.

■ Version count for the SQL statement. The default 20.

The values of each of these threshold parameters are used when deciding which

SQL statements to collect. If a SQL statement's resource usage exceeds any one of

these threshold values, then it is captured during the snapshot.

The SQL threshold levels used are either those stored in the table

STATS$STATSPACK_PARAMETER or by the thresholds specified when the snapshot

is taken.

Levels >= 6 Additional Data: SQL Plans and SQL Plan Usage This level includes all

statistics gathered in the lower levels, as well a SQL plans and plan usage data for

each of the high-resource SQL statements captured.

A level 6 snapshot gathers valuable information for determining whether the

execution plan used for a SQL statement has changed. Therefore, level 6 snapshots

should be used whenever a plan might have changed.
Using Statspack 21-17



Using Statspack
To gather the plan for a SQL statement, the statement must be in the shared pool at

the time the snapshot is taken, and it must exceed one of the SQL thresholds. To

gather plans for all statements in the shared pool, specify the executions threshold

to be zero (0) for those snapshots.

Levels >= 7 Additional data: Segment Level Statistics This level includes all statistics

gathered in the lower levels, and additionally gathers the performance data on

highly used segments. RAC specific segment level statistics are also captured with

level 7.

A level 7 snapshot gathers information which determines what segments are more

heavily accessed and contended. With this information, you can decide to modify

the physical layout of some segments or of the tablespaces they reside in. For

example, to better spread the segment IO load, you can add files residing on

different disks to a tablespace storing a heavily accessed segment or you can

partition a segment. This information can also help decide on changing segment

attributes values such as PCTFREE or INITRANS . On a RAC environment, this

information allows us to easily spot the segments responsible for much of the

cross-instance traffic.

Level 7 includes the following segment statistics:

■ Logical reads

■ Db block changes

■ Physical reads

■ Physical writes

■ Physical reads direct

■ Physical writes direct

■ Global cache consistent read blocks served (RAC specific)

■ Global cache current blocks served (RAC specific)

■ Buffer busy waits

■ ITL waits

■ Row lock waits

See Also: "Changing the Default Values for Snapshot Levels and

SQL Thresholds" on page 21-15 for information on how to do this
21-18 Oracle9i Database Performance Tuning Guide and Reference



Using Statspack
Although Statspack captures all segment statistics, it reports only the following

statistics that exceed one of the predefined threshold parameters:

■ Number of logical reads on the segment. The default is 10,000.

■ Number of physical reads on the segment. The default is 1,000.

■ Number of buffer busy waits on the segment. The default is 100.

■ Number of row lock waits on the segment. The default is 100.

■ Number of ITL waits on the segment. The default is 100.

■ Number of global cache consistent read blocks served (RAC only). The default

is 1,000.

■ Number of global cache current blocks served (RAC only). The default is 1,000.

The values of the threshold parameters are used when deciding which segment

statistics to collect. If a segment’s statistic exceeds a threshold value, all statistics

regarding this segment are captured during the snapshot.The threshold levels used

are either those stored in the table stats$statspack_parameter , or by the

thresholds specified when the snapshot is taken.

Levels >= 10 Additional Statistics: Parent and Child Latches This level includes all

statistics gathered in the lower levels, as well as parent and child latch information.

Sometimes data gathered at this level can cause the snapshot to take longer to

complete. This level can be resource-intensive, and it should only be used when

advised by Oracle personnel.

Specifying a Session ID
If you want to gather session statistics and wait events for a particular session (in

addition to the instance statistics and wait events), specify the session ID in the call

to Statspack. The statistics gathered for the session include session statistics, session

events, and lock activity. The default behavior is to not gather session level

statistics.

For example:

SQL>  EXECUTE STATSPACK.SNAP(i_session_id=>3);

Parameters for SNAP and MODIFY_STATSPACK_PARAMETER Procedures
Parameters that can be passed to the STATSPACK.SNAP and STATSPACK.MODIFY_
STATSPACK_PARAMETER procedures are as follows:
Using Statspack 21-19



Using Statspack
Time Units Used for Wait Events
Oracle supports capturing certain performance data with microsecond granularity.

Views that include microsecond timing include the following:

Table 21–1 Parameters for SNAP and MODIFY_STATSPACK_PARAMETER Procedures

Parameter Name
Range of
Valid Values

Default
Value Meaning

i_snap_level 0, 5, 6, 7, 10 5 Snapshot level

i_ucomment Text Blank Comment to be stored with snapshot

i_executions_th Integer >=0 100 SQL threshold: number of times statement was executed

i_disk_reads_th Integer >=0 1000 SQL threshold: number of disk reads the statement made

i_parse_calls_th Integer >=0 1000 SQL threshold: number of parse calls the statement made

i_buffer_gets_th Integer >=0 10000 SQL threshold: number of buffer gets the statement made

i_sharable_mem_th Integer >=0 1048576 SQL threshold: amount of sharable memory

i_version_count_th Integer >=0 20 SQL threshold: number of versions of a SQL statement

i_seg_phy_reads_th Integer >=0 1000 Segment statistic threshold: number of physical reads on a
segment

i_seg_log_reads_th Integer >=0 10000 Segment statistic threshold: number of logical reads on a
segment

i_seg_buff_busy_th Integer >=0 100 Segment statistic threshold: number of buffer busy waits
for a segment

i_seg_rowlock_w_th Integer >=0 100 Segment statistic threshold: number of row lock waits for
a segment

i_seg_itl_waits_th Integer >=0 100 Segment statistic threshold: number of ITL  waits for a
segment

i_seg_cr_bks_sd_th Integer >=0 1000 Segment statistic threshold: number of consistent reads
blocks served by the instance for the segment (RAC)

i_seg_cu_bks_sd_th Integer >=0 1000 Segment statistic threshold: number of current blocks
served by the instance for the segment (RAC)

i_session_id Valid SID
from
V$SESSION

0 (no
session)

Session ID of the Oracle session for which to capture
session granular statistics

i_modify_parameter TRUE,
FALSE

FALSE Determines whether the parameters specified are used for
future snapshots
21-20 Oracle9i Database Performance Tuning Guide and Reference



Using Statspack
■ V$SYSTEM_EVENT, V$SESSION_EVENT (TIME_WAITED_MICRO column)

■ V$SQL (CPU_TIME, ELAPSED_TIME columns)

■ V$LATCH (WAIT_TIME column)

■ V$SQL_WORKAREA, V$SQL_WORKAREA_ACTIVE (ACTIVE_TIME column)

Because microsecond timing might not be appropriate for rolled-up data, Statspack

displays most times in seconds. It displays average times in milliseconds for easier

comparison with operating system monitoring utilities, which often report timing

in milliseconds.

For clarity, the time units used are specified in the column headings of each timed

column in the Statspack report. The following convention are used:

■ second (s)

■ centisecond (cs) - 100th of a second

■ millisecond (ms) - 1,000th of a second

■ microsecond (us) - 1,000,000th of a second

Event Timings
If timings are available, the Statspack report orders wait events by time.These are

listed in the Top-5 and background and foreground wait events sections.

If TIMED_STATISTICS is FALSEfor the instance, but a subset of users or programs

set TIMED_STATISTICS to TRUEdynamically, then the Statspack report output can

look inconsistent, where some events have timings (those which the individual

programs/users waited for) and some do not. The Top-5 section also looks unusual

in this situation.

Optimally, TIMED_STATISTICS  should be set to true  at the instance level, for

ease of diagnosing performance problems.

Note: Existing columns in other views continue to use centisecond

times.
Using Statspack 21-21



Using Statspack
Managing and Sharing Statspack Performance Data
This section discusses the following topics:

■ Sharing Data Through Export

■ Removing Unnecessary Data

■ Truncating All Statspack Data

Sharing Data Through Export
If you want to share data with other sites (for example, if Oracle Support requires

the raw statistics), then you can export the PERFSTAT user. An export parameter

file (SPUEXP.PAR) is supplied for this purpose. To use this file, supply the export

command with the userid parameter, along with the export parameter file name.

For example:

exp userid=perfstat/ my_perfstat_password  parfile=spuexp.par

This creates a file called SPUEXP.DMP and the log file SPUEXP.LOG. If you want to

load the data into another database, use the import command.

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL  is set to

TYPICAL or ALL. If STATISTICS_LEVEL  is set to BASIC, then you

must set TIMED_STATISTICS  to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL  settings

See Also: Oracle9i Database Utilities for more information on using

export and import
21-22 Oracle9i Database Performance Tuning Guide and Reference



Using Statspack
Removing Unnecessary Data
Purge unnecessary data from the PERFSTATschema using the SPPURGE.SQLscript.

This deletes snapshots that fall between the begin and end snapshot IDs you

specify.

Purging can require the use of a large rollback segment, because all data relating to

each snapshot ID to be purged is deleted. You can avoid rollback segment extension

errors in one of two ways:

■ Specify a smaller range of snapshot IDs to purge.

■ Explicitly use a large rollback segment, by executing the SET TRANSACTION
USE ROLLBACK SEGMENT statement before running the SPPURGE.SQL script.

When you run SPPURGE.SQL, it displays the instance to which you are connected

and the available snapshots. It then prompts you for the low snap ID and high snap

ID. All snapshots that fall within this range are purged.

Example 21–6 Sample Run of SPPURGE.SQL

SQL>  CONNECT perfstat/ my_perfstat_password
SQL>  SET TRANSACTION USE ROLLBACK SEGMENT rbig;
SQL>  @?/rdbms/admin/sppurge

   Database Instance currently connected to
   ========================================
                                   Instance
      DB Id    DB Name    Inst Num Name
   ----------- ---------- -------- ----------
     720559826 PERF              1 perf

   Snapshots for this database instance
   ====================================
               Snap
      Snap Id Level Snapshot Started      Host            Comment
   ---------- ----- --------------------- --------------- -------------------

Note: You should export the schema as a backup before running

this script, either using your own export parameters or those

provided in SPUEXP.PAR.

See Also: Oracle9i SQL Reference
Using Statspack 21-23



Using Statspack
            1     5  30 Feb 2000 10:00:01 perfhost
            2     5  30 Feb 2000 12:00:06 perfhost
            3     5  01 Mar 2000 02:00:01 perfhost
            4     5  01 Mar 2000 06:00:01 perfhost

Specify the Low Snap ID and High Snap ID range to purge
   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 Enter value for losnapid: 1
 Using 1 for lower bound.

 Enter value for hisnapid: 2
 Using 2 for upper bound.

 Deleting snapshots 1 - 2

Purge of specified snapshot range complete. If you want to rollback the purge,
it is still possible to do so. Exiting from SQL*Plus automatically commits the
purge.

SQL> -- end of example output

To purge in batch mode, you must assign values to the SQL*Plus variables that

specify the low and high snapshot IDs to purge. The variables are:

■ LOSNAPID: Begin snapshot ID

■ HISNAPID : End snapshot ID

Example 21–7 Running SPPURGE.SQL in Batch Mode

SQL> CONNECT perfstat/ my_perfstat_password
SQL> DEFINE losnapid=1
SQL> DEFINE hisnapid=2
SQL> @?/rdbms/admin/sppurge

When SPPURGE.SQLis run, it does not prompt for the information provided by the

variables.

Caution: SPPURGE.SQL deletes all snapshots ranging between the

lower and upper bound snapshot IDs specified for the database

instance connected to. You might want to export this data before

continuing.
21-24 Oracle9i Database Performance Tuning Guide and Reference

Using Statspack
Truncating All Statspack Data
To truncate all performance data indiscriminately, use SPTRUNC.SQL. This script

truncates all statistics data gathered.

Example 21–8 Sample Run of SPTRUNC.SQL

SQL> CONNECT perfstat/ my_perfstat_password
SQL> @?/rdbms/admin/sptrunc
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

If you would like to continue, enter any string, followed by <return>.
Enter value for anystring:
entered - starting truncate operation
Table truncated.
<etc>
Truncate operation complete.

Oracle Real Application Clusters Considerations with Statspack
The unique identifiers for a database instance used by Statspack are the DBID and

the INSTANCE_NUMBER. When you use Oracle Real Application Clusters, the

INSTANCE_NUMBER could change between startups (either because the INSTANCE_
NUMBER parameter is set in the initialization file or because the instances are started

in a different order).

Statspack uses the INSTANCE_NUMBER and the DBID to identify the instance's

snapshot preferences, so you could have a different set of levels or thresholds being

used when taking snapshots of an instance. This happens only under the following

set of conditions:

■ The instance numbers have switched between startups.

■ The DBA has modified the default Statspack parameters used for at least one of

the instances.

Note: Oracle Corporation recommends that you export the

schema as a backup before running this script, either using your

own export parameters or those provided in SPUEXP.PAR.

Note: Running SPTRUNC.SQL removes all data from Statspack

tables. You might want to export the data before continuing.
Using Statspack 21-25



Removing Statspack
■ The parameters used (for example, thresholds and snapshot level) are not the

same on all instances.

The parameters differ only if the DBA explicitly modified them after installation,

either by saving the specified values or by using the MODIFY_STATSPACK_
PARAMETERprocedure. To check whether any of the Statspack snapshot parameters

are different for the instances, query the STATS$STATSPACK_PARAMETER table.

Removing Statspack
To deinstall Statspack, connect as a user with SYSDBA privilege and run the

following SPDROP script from SQL*Plus. For example:

SQL>  CONNECT / AS SYSDBA
SQL>  @?/rdbms/admin/spdrop

The SPDROP.SQL script calls the following scripts:

■ SPDTAB.SQL - drops tables and public synonyms

■ SPDUSR.SQL - drops the user

Check each of two output files produced (SPDTAB.LIS , SPDUSR.LIS ) to ensure that

the package was completely deinstalled.

Statspack Supplied Scripts and Documentation
This section discusses the following:

■ Scripts for Statspack Installation and Removal

■ Scripts for Statspack Reporting and Automation

■ Scripts for Upgrading Statspack

Note: If you have changed the default Statspack parameters, you

can avoid encountering this problem by hard-coding the

INSTANCE_NUMBER in the initialization parameter file for each of

the instances in the Oracle Real Application Clusters database.

See Also: Oracle9i Real Application Clusters Administration for

recommendations and issues with setting the INSTANCE_NUMBER
initialization parameter
21-26 Oracle9i Database Performance Tuning Guide and Reference



Statspack Supplied Scripts and Documentation
■ Scripts for Statspack Performance Data Maintenance

■ Statspack Documentation

Scripts for Statspack Installation and Removal
The Statspack installation and removal scripts must be run as a user with the

SYSDBA privilege.

■ SPCREATE.SQL: Creates entire Statspack environment, calling the following

scripts:

– SPCUSR.SQL: Creates the Statspack user (PERFSTAT)

– SPCTAB.SQL: Creates Statspack tables

– SPCPKG.SQL: Creates the Statspack package

■ SPDROP.SQL: Drops entire Statspack environment, calling the following scripts:

– SPDTAB.SQL: Drops Statspack tables

– SPDUSR.SQL: Drops the Statspack user (PERFSTAT)

Scripts for Statspack Reporting and Automation
The Statspack reporting and automation scripts must be run as the PERFSTAT user.

■ SPREPORT.SQL: Generates a Statspack report

■ SPREPSQL.SQL: Generates a Statspack SQL report for the specific SQL hash

value specified

■ SPREPINS.SQL: Generates a Statspack report for the database and instance

specified

■ SPAUTO.SQL: Automates Statspack statistics collection (using DBMS_JOB)

Scripts for Upgrading Statspack
The Statspack upgrade scripts must be run as a user with the SYSDBA privilege.

■ SPUP90.SQL: Converts data from the 9.0 schema to the 9.2 schema. Back up the

existing schema before running the upgrade.

■ SPUP817.SQL: If upgrading from Statspack 8.1.7, this script must be run first.

■ SPUP816.SQL: If upgrading from Statspack 8.1.6, this script must be run first,

followed by SPUP817.SQL.
Using Statspack 21-27



Statspack Supplied Scripts and Documentation
Scripts for Statspack Performance Data Maintenance
The Statspack data maintenance scripts must be run as the PERFSTAT user.

■ SPPURGE.SQL: Purges a limited range of Snapshot IDs for a given database

instance.

■ SPTRUNC.SQL: Truncates all performance data in Statspack tables

■ SPUEXP.PAR: An export parameter file supplied for exporting the whole

PERFSTAT user.

Statspack Documentation
The SPDOC.TXT file in the ORACLE_HOME/rdbms/admin directory contains

instructions and documentation on the Statspack package.

Caution: Do not use this script unless you wan to remove all data

in the schema you are using. You can choose to export the data as a

backup before using this script.
21-28 Oracle9i Database Performance Tuning Guide and Reference



Part V

 Optimizing Instance Performance

Part V describes how to tune various elements of your database system to optimize

performance of an Oracle instance.

The chapters in this part are:

■ Chapter 22, "Instance Tuning"

■ Chapter 23, "Tuning Networks"





Instanc
22

Instance Tuning

After the initial configuration of a database, tuning an instance is important to

eliminate any performance bottlenecks.

This chapter contains the following sections:

■ Performance Tuning Principles

■ Performance Tuning Steps

■ Interpreting Oracle Statistics

■ Wait Events

■ Idle Wait Events
e Tuning 22-1



Performance Tuning Principles
 Performance Tuning Principles
Performance tuning requires a different, although related, method to the initial

configuration of a system. Configuring a system involves allocating resources in an

ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the

appropriate changes to reduce or eliminate the effect of that bottleneck. Usually,

tuning is performed reactively, either while the system is preproduction or after it is

live.

Baselines
The most effective way to tune is to have an established performance baseline that

can be used for comparison if a performance issue arises. Most DBAs know their

system well and can easily identify peak usage periods. For example, the peak

periods could be between 10.00am and 12.00pm and also between 1.30pm and

3.00pm. This could include a batch window of 12.00am midnight to 6am.

It is important to identify these high-load times at the site and install a monitoring

tool that gathers performance data for those times. Optimally, data gathering

should be configured from when the application is in its initial trial phase during

the QA cycle. Otherwise, this should be configured when the system is first in

production.

Note: Before using this performance tuning reference, make sure

you have read Oracle9i Database Performance Planning. Oracle

Corporation has designed a new performance methodology, based

on years of Oracle designing and performance experience. This

brief book explains clear and simple activities that can dramatically

improve system performance. It discusses the following topics:

■ Investment Options

■ Scalability

■ System Architecture

■ Application Design Principles

■ Workload Testing, Modeling, and Implementation

■ Deploying New Applications
22-2 Oracle9i Database Performance Tuning Guide and Reference



Performance Tuning Principles
Ideally, baseline data gathered should include the following:

■ Application statistics (transaction volumes, response time)

■ Database statistics

■ operating system statistics

■ Disk I/O statistics

■ Network statistics

The Symptoms and the Problems
A common pitfall in performance tuning is to mistake the symptoms of a problem

for the actual problem itself. It is important to recognize that many performance

statistics indicate the symptoms, and that identifying the symptom is not sufficient

data to implement a remedy. For example:

■ Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be

caused by a significant amount of unnecessary physical I/O on those disks

issued by poorly-tuned SQL.

■ Latch contention

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch

contention usually is resolved through application changes.

■ Excessive CPU usage

Note: Oracle recommends using the Enterprise Manager (EM)

Diagnostics Pack for systems monitoring and tuning due to its

extended feature list. However, if your site does not have EM, then

Statspack can be used to gather Oracle instance statistics.

For illustration purposes, a combination of Statspack report output

and direct queries from the V$ views are used in examples, because

they are available on all installations.

See Also: Chapter 20, "Oracle Tools to Gather Database Statistics"

for detailed information on Oracle instance performance tuning

tools
Instance Tuning 22-3



Performance Tuning Principles
Excessive CPU usage usually means that there is little idle CPU on the system.

This could be caused by an inadequately-sized system, by untuned SQL

statements, or by inefficient application programs.

When to Tune
There are two distinct types of tuning: proactive monitoring and bottleneck

elimination.

Proactive Monitoring
Proactive monitoring usually occurs on a regularly scheduled interval, where a

number of performance statistics are examined to identify whether the system

behavior and resource usage has changed. Proactive monitoring also can be called

proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless

the monitoring exposes a serious problem that is developing. In some situations,

experienced performance engineers can identify potential problems through

statistics alone, although accompanying performance degradation is usual.

’Tweaking’ a system when there is no apparent performance degradation as a

proactive action can be a dangerous activity, resulting in unnecessary performance

drops. Tweaking a system should be considered reactive tuning, and the steps for

reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource

consumption is examined to see the changes in the way the application is being

used and the way the application is using the database and host resources.

Bottleneck Elimination: Tuning
Tuning usually implies fixing a performance problem. However, tuning should be

part of the lifecycle of an application, through the analysis, design, coding,

production, and maintenance stages. Many times, the tuning phase is left until the

system is in production. At this time, tuning becomes a reactive fire-fighting

exercise, where the most important bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the

elapsed time for an operation to complete. Either way, the goal is to improve the

effective use of a particular resource. In general, performance problems are caused

See Also: Table 22–1, " Wait Events and Potential Causes" on

page 22-19
22-4 Oracle9i Database Performance Tuning Guide and Reference



Performance Tuning Steps
by the over-use of a particular resource. That resource is the bottleneck in the system.

There are a number of distinct phases in identifying the bottleneck and the potential

fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by

making changes in the following places:

■ Changes in the application, or the way the application is used

■ Changes in Oracle

■ Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

Performance Tuning Steps
These are the main steps in the Oracle Performance Method:

1. Get candid feedback from users about the scope of the performance problem.

This step is to Define the Problem.

2. Obtain a full set of operating system, database, and application statistics. Then

Examine the Host System and Examine the Oracle Statistics for any evidence.

3. Consider the list of common performance errors to see whether the data

gathered suggests that they are contributing to the problem.

4. Build a conceptual model of what is happening on the system using the

performance data gathered.

5. Propose changes to be made and the expected result of implementing the

changes. Then, Implement and Measure Change in application performance.

6. Determine whether the performance objective defined in step 1 has been met. If

not, then repeat steps 5 and 6 until the performance goals are met.

The remainder of this chapter covers the steps of the Oracle performance method in

detail.

See Also: Oracle9i Database Performance Planning for a list of

common errors and for a theoretical description of this performance

method
Instance Tuning 22-5



Performance Tuning Steps
Define the Problem
It is vital to develop a good understanding of the purpose of the tuning exercise and

the nature of the problem before attempting to implement a solution. Without this

understanding, it is virtually impossible to implement effective changes. The data

gathered during this stage helps determine the next step to take and what evidence

to examine.

Gather the following data:

1. Identify the performance objective.

What is the measure of acceptable performance? How many transactions an

hour, or seconds, response time will meet the required performance level?

2. Identify the scope of the problem.

What is affected by the slowdown? For example, is the whole instance slow? Is

it a particular application, program, specific operation, or a single user?

3. Identify the time frame when the problem occurs.

Is the problem only evident during peak hours? Does performance deteriorate

over the course of the day? Was the slowdown gradual (over the space of

months or weeks) or sudden?

4. Quantify the slowdown.

This helps identify the extent of the problem and also acts as a measure for

comparison when deciding whether changes implemented to fix the problem

have actually made an improvement. Find a consistently reproducible measure

of the response time or job run time. How much worse are the timings than

when the program was running well?

5. Identify any changes.

Identify what has changed since performance was acceptable. This may narrow

the potential cause quickly. For example, has the operating system software,

hardware, application software, or Oracle release been upgraded? Has more

data been loaded into the system, or has the data volume or user population

grown?

At the end of this phase, you should have a good understanding of the symptoms.

If the symptoms can be identified as local to a program or set of programs, then the

problem is handled in a different manner than instance-wide performance issues.
22-6 Oracle9i Database Performance Tuning Guide and Reference



Performance Tuning Steps
Examine the Host System
Look at the load on the database server, as well as the database instance. Consider

the operating system, the I/O subsystem, and network statistics, because examining

these areas helps determine what might be worth further investigation. In multitier

systems, also examine the application server middle-tier hosts.

Examining the host hardware often gives a strong indication of the bottleneck in the

system. This determines which Oracle performance data could be useful for

cross-reference and further diagnosis.

Data to examine includes the following:

CPU Usage
If there is a significant amount of idle CPU, then there could be an I/O, application,

or database bottleneck. Note that wait I/O should be considered as idle CPU.

If there is high CPU usage, then determine whether the CPU is being used

effectively. Is the majority of CPU usage attributable to a small number of high-CPU

using programs, or is the CPU consumed by an evenly distributed workload?

If the CPU is used by a small number of high-usage programs, then look at the

programs to determine the cause.

Non-Oracle Processes If the programs are not Oracle programs, then identify whether

they are legitimately requiring that amount of CPU. If so, then can their execution

can be delayed to off-peak hours?

Oracle Processes If a small number of Oracle processes consumes most of the CPU

resources, then use SQL_TRACE and TKPROF to identify the SQL or PL/SQL

statements to see if a particular query or PL/SQL program unit can be tuned. For

example, a SELECT statement could be CPU-intensive if its execution involves

many reads of data in cache (logical reads) that could be avoided with better SQL

optimization.

Oracle CPU Statistics Oracle CPU statistics are available in three V$ views:

■ V$SYSSTAT shows Oracle CPU usage for all sessions. The statistic "CPU used

by this session" shows the aggregate CPU used by all sessions.

See Also: Chapter 6, "Optimizing SQL Statements" for

information on solving performance problems specific to an

application or user
Instance Tuning 22-7



Performance Tuning Steps
■ V$SESSTAT shows Oracle CPU usage for each session. Use this view to

determine which particular session is using the most CPU.

■ V$RSRC_CONSUMER_GROUPshows CPU utilization statistics for each consumer

group when the Oracle Database Resource Manager is running.

Interpreting CPU Statistics It is important to recognize that CPU time and real time are

distinct. With eight CPUs, for any given minute in real time, there are eight minutes

of CPU time available. On NT and UNIX, this can be either user time or system time

(privileged mode on NT). Thus, average CPU time utilized by all processes (threads)

on the system could be greater than one minute for every one minute real time

interval.

At any given moment, you know how much time Oracle has used on the system.

So, if eight minutes are available and Oracle uses four minutes of that time, then

you know that 50% of all CPU time is used by Oracle. If your process is not

consuming that time, then some other process is. Identify the processes that are

using CPU time, figure out why, and then attempt to tune them.

If the CPU usage is evenly distributed over many Oracle server processes, then

examine the Statspack report for other evidence.

Detecting I/O Problems
An overly active I/O system can be evidenced by disk queue lengths greater than

two, or disk service times that are over 20-30ms. If the I/O system is overly active,

then check for potential hot spots that could benefit from distributing the I/O across

more disks. Also identify whether the load can be reduced by lowering the resource

requirements of the programs using those resources.

Use operating system monitoring tools to determine what processes are running on

the system as a whole and to monitor disk access to all files. Remember that disks

holding datafiles and redo log files can also hold files that are not related to Oracle.

Reduce any heavy access to disks that contain database files. Access to non-Oracle

files can be monitored only through operating system facilities, rather than through

the V$ views.

Tools, such as sar -d  (or iostat ) on many UNIX systems and Performance

Monitor on Windows 2000 systems, examine I/O statistics for the entire system.

See Also: Chapter 10, "Using SQL Trace and TKPROF"

See Also: Your operating system documentation for the tools

available on your platform
22-8 Oracle9i Database Performance Tuning Guide and Reference



Performance Tuning Steps
Check the Oracle wait event data in V$SYSTEM_EVENT to see whether the top wait

events are I/O related. I/O related events include db file sequential read , db
file scattered read , db file single write , and db file parallel write .

These are all events corresponding to I/Os performed against the data file headers,

control files, or data files. If any of these wait events correspond to high average

time, then investigate the I/O contention.

Cross reference the host I/O system data with the I/O sections in the Statspack

report to identify hot datafiles and tablespaces. Also compare the I/O times

reported by the operating system with the times reported by Oracle to see if they

are consistent.

Before investigating whether the I/O system should be reconfigured, determine if

the load on the I/O system can be reduced. To reduce Oracle I/O load, look at SQL

statements that perform many physical reads by querying the V$SQLAREA view or

by reviewing the ’SQL ordered by physical reads’ section of the Statspack report.

Examine these statements to see how they can be tuned to reduce the number of

I/Os.

If there are Oracle-related I/O problems caused by SQL statements, then tune them.

If the Oracle server is not consuming the available I/O resources, then identify the

process that is using up the I/O. Determine why the process is using up the I/O,

and then tune this process.

Network
Using operating system utilities, look at the network round-trip ping time and the

number of collisions. If the network is causing large delays in response time, then

investigate possible causes.

Network load can be reduced by scheduling large data transfers to off-peak times,

or by coding applications to batch requests to remote hosts, rather than accessing

remote hosts once (or more) for one request.

See Also:

■ Chapter 6, "Optimizing SQL Statements"

■ "V$SQLAREA" on page 24-57

■ Chapter 15, "I/O Configuration and Design"

■ "db file scattered read" on page 22-29 and "db file sequential

read" on page 22-31 for the difference between a scattered read

and a sequential read, and how this affects I/O
Instance Tuning 22-9



Performance Tuning Steps
Examine the Oracle Statistics
Oracle statistics should be examined and cross-referenced with-operating system

statistics to ensure a consistent diagnosis of the problem. operating-system statistics

can indicate a good place to begin tuning. However, if the goal is to tune the Oracle

instance, then look at the Oracle statistics to identify the resource bottleneck from

Oracle’s perspective before implementing corrective action.

Setting the Level of Statistics Collection
Oracle9i Release 2 (9.2) provides the initialization parameter STATISTICS_LEVEL ,

which controls all major statistics collections or advisories in the database. This

parameter sets the statistics collection level for the database.

Depending on the setting of STATISTICS_LEVEL , certain advisories and statistics

are collected, as follows:

BASIC: No advisories or statistics are collected.

TYPICAL: The following advisories or statistics are collected:

■ Buffer cache advisory

■ MTTR advisory

■ Shared Pool sizing advisory

■ Segment level statistics

■ PGA target advisory

■ Timed statistics

ALL: All of the preceding advisories or statistics are collected, plus the following:

■ Timed operating system statistics

■ Row source execution statistics

The default level is TYPICAL. STATISTICS_LEVEL  is a dynamic parameter and

can be altered at the system or the session level.

See Also: Oracle9i Database Performance Planning for a description

of important operating system statistics

See Also: "Interpreting Oracle Statistics" on page 22-15
22-10 Oracle9i Database Performance Tuning Guide and Reference



Performance Tuning Steps
When modified by ALTER SYSTEM, all advisories or statistics in the preceding list

are dynamically turned on or off, depending on the new value of STATISTICS_
LEVEL.

When modified by ALTER SESSION, only the following advisories or statistics are

turned on or off in the local session only. Their system-wide state is not changed.

■ Timed statistics

■ Timed operating system statistics

■ Row source execution statistics

V$STATISTICS_LEVEL This view lists the status of the statistics or advisories

controlled by STATISTICS_LEVEL .

The following sections discuss the common Oracle data sources used while tuning.

The sources can be divided into two types of statistics: wait events and system

statistics.

Wait Events
Wait events are statistics that are incremented by a server process/thread to indicate

that it had to wait for an event to complete before being able to continue processing.

Wait event data reveals various symptoms of problems that might be impacting

performance, such as latch contention, buffer contention, and I/O contention.

Remember that these are only symptoms of problems—not the actual causes.

A server process can wait for the following:

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL  is set to

TYPICAL or ALL. If STATISTICS_LEVEL  is set to BASIC, then you

must set TIMED_STATISTICS  to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "V$STATISTICS_LEVEL" on page 24-61 for column

details of this view
Instance Tuning 22-11



Performance Tuning Steps
■ A resource to become available, such as a buffer or a latch

■ An action to complete, such as an I/O

■ More work to do, such as waiting for the client to provide the next SQL

statement to execute. Events that identify that a server process is waiting for

more work are known as idle events.

Wait event statistics include the number of times an event was waited for and the

time waited for the event to complete. The views V$SESSION_WAIT, V$SESSION_
EVENT, and V$SYSTEM_EVENT can be queried for wait event statistics. If the

configuration parameter TIMED_STATISTICS  is set to true , then you can also see

how long each resource was waited for. To minimize user response time, reduce the

time spent by server processes waiting for event completion. Not all wait events

have the same wait time. Therefore, it is more important to examine events with the

most total time waited rather than wait events with a high number of occurrences.

Usually, it is best to set the dynamic parameter TIMED_STATISTICS  to true  at

least while monitoring performance.

Investigate wait events and related timing data when performing reactive

performance tuning. The events with the most time listed against them are often

strong indications of the performance bottleneck. For example, by looking at

V$SYSTEM_EVENT, you might notice lots of buffer busy waits . It might be that

many processes are inserting into the same block and must wait for each other

before they can insert. The solution could be to introduce freelists for the object in

question.

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL  is set to

TYPICAL or ALL. If STATISTICS_LEVEL  is set to BASIC, then you

must set TIMED_STATISTICS  to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL  settings
22-12 Oracle9i Database Performance Tuning Guide and Reference



Performance Tuning Steps
System Statistics
System statistics are typically used in conjunction with wait event data to find

further evidence of the cause of a performance problem.

For example, if V$SYSTEM_EVENT indicates that the largest wait event (in terms of

wait time) is the event buffer busy waits , then look at the specific buffer wait

statistics available in the view V$WAITSTAT to see which block type has the highest

wait count and the highest wait time. After the block type has been identified, also

look at V$SESSION_WAIT real-time while the problem is occurring to identify the

contended-for object(s) using the file number and block number indicated. The

combination of this data indicates the appropriate corrective action.

Statistics are available in many V$ views. Some common views include the

following:

V$SYSSTAT This contains overall statistics for many different parts of Oracle,

including rollback, logical and physical I/O, and parse data. Data from V$SYSSTAT
is used to compute ratios, such as the buffer cache hit ratio.

V$FILESTAT This contains detailed file I/O statistics for each file, including the

number of I/Os for each file and the average read time.

V$ROLLSTAT This contains detailed rollback and undo segment statistics for each

segment.

V$ENQUEUE_STAT This contains detailed enqueue statistics for each enqueue,

including the number of times an enqueue was requested and the number of times

an enqueue was waited for, and the wait time.

V$LATCH This contains detailed latch usage statistics for each latch, including the

number of times each latch was requested and the number of times the latch was

waited for.

See Also: See Wait Events on page 22-24 for a description of the

differences between the views V$SESSION_WAIT, V$SESSION_
EVENT, and V$SYSTEM_EVENT

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

for detailed descriptions of the V$ views used in tuning
Instance Tuning 22-13



Performance Tuning Steps
Segment-Level Statistics
With Oracle9i Release 2 (9.2) and higher, you can gather segment-level statistics to

help you spot performance problems associated with individual segments.

Collecting and viewing segment-level statistics is a good way to effectively identify

the hot table or index in an instance.

After viewing wait events or system statistics to identify the performance problem,

you can use segment-level statistics to find specific tables or indexes that are

causing the problem. Consider, for example, that V$SYSTEM_EVENT indicates that

buffer busy waits cause a fair amount of wait time. You can select from

V$SEGMENT_STATISTICS the top segments that cause the buffer busy waits. Then

you can focus your effort on eliminating the problem in those segments.

You can query segment-level statistics through the following dynamic performance

views:

■ V$SEGSTAT_NAMEThis view lists the segment statistics being collected, as

well as the properties of each statistic (for instance, if it is a sampled statistic).

■ V$SEGSTATThis is a highly efficient, real-time monitoring view that shows the

statistic value, statistic name, and other basic information.

■ V$SEGMENT_STATISTICSThis is a user-friendly view of statistic values. In

addition to all the columns of V$SEGSTAT, it has information about such things

as the segment owner and table space name. It makes the statistics easy to

understand, but it is more costly.

Implement and Measure Change
Often at the end of a tuning exercise, it is possible to identify two or three changes

that could potentially alleviate the problem. To identify which change provides the

most benefit, it is recommended that only one change be implemented at a time.

The effect of the change should measured against the baseline data measurements

found in the problem definition phase.

Typically, most sites with dire performance problems implement a number of

overlapping changes at once, and thus cannot identify which changes provided any

benefit. Although this is not immediately an issue, this becomes a significant

hindrance if similar problems subsequently appear, because it is not possible to

know which of the changes provided the most benefit and which efforts to

prioritize.

See Also: Chapter 24, "Dynamic Performance Views for Tuning"

for detailed column information, starting on page 24-31
22-14 Oracle9i Database Performance Tuning Guide and Reference



Interpreting Oracle Statistics
If it is not possible to implement changes separately, then try to measure the effects

of dissimilar changes. For example, measure the effect of making an initialization

change to optimize redo generation separately from the effect of creating a new

index to improve the performance of a modified query. It is impossible to measure

the benefit of performing an operating system upgrade if SQL is tuned, the

operating system disk layout is changed, and the initialization parameters are also

changed at the same time.

Performance tuning is an iterative process. It is unlikely to find a ’silver bullet’ that

solves an instance-wide performance problem. In most cases, excellent performance

requires iteration through the performance tuning phases, because solving one

bottleneck often uncovers another (sometimes worse) problem.

Knowing when to stop tuning is also important. The best measure of performance is

user perception, rather than how close the statistic is to an ideal value.

Interpreting Oracle Statistics
Gather statistics that cover the time when the instance had the performance

problem. If you previously captured baseline data for comparison, then you can

compare the current data to the data from the baseline that most represents the

problem workload.

When comparing two reports, ensure that the two reports are from times where the

system was running comparable workloads.

Examine Load
Usually, wait events are the first data examined. However, if you have a baseline

report, then check to see if the load has changed. Regardless of whether you have a

baseline, it is useful to see whether the resource usage rates are high.

Load-related statistics to examine include redo size , session logical reads ,

db block changes , physical reads , physical writes , parse count
(total ), parse count  (hard ), and user calls . This data is queried from

V$SYSSTAT. It is best to normalize this data over seconds and over transactions.

In the Statspack report, look at the Load Profile section. The data has been

normalized over transactions and over seconds.

See Also: "Principles of Data Gathering" on page 20-2
Instance Tuning 22-15



Interpreting Oracle Statistics
Changing Load
The load profile statistics over seconds show the changes in throughput (that is,

whether the instance is performing more work each second). The statistics over

transactions identify changes in the application characteristics by comparing these

to the corresponding statistics from the baseline report.

High Rates of Activity
Examine the statistics normalized over seconds to identify whether the rates of

activity are very high. It is difficult to make blanket recommendations on high

values, because the thresholds are different on each site and are contingent on the

application characteristics, the number and speed of CPUs, the operating system,

the I/O system, and the Oracle release.

The following are some generalized examples (acceptable values vary at each site):

■ A hard parse rate of more than 100 a second indicates that there is a very high

amount of hard parsing on the system. High hard parse rates cause serious

performance issues and must be investigated. Usually, a high hard parse rate is

accompanied by latch contention on the shared pool and library cache latches.

Check whether waits for ’latch free’ appear in the top-5 wait events, and if so,

examine the latching sections of the Statspack report.

■ A high soft parse rate could be in the rate of 300a second or more. Unnecessary

soft parses also limit application scalability. Optimally, a SQL statement should

be soft parsed once in each session and executed many times.

Using Wait Event Statistics to Drill Down to Bottlenecks
Whenever an Oracle process waits for something, it records the wait using one of a

set of predefined wait events. (See V$EVENT_NAME for a list of all wait events.)

Some of these events are termed idle events, because the process is idle, waiting for

work to perform. Non-idle events indicate nonproductive time spent waiting for a

resource or action to complete.

The most effective way to use wait event data is to order the events by the wait

time. This is only possible if TIMED_STATISTICS  is set to true . Otherwise, the

Note: Not all symptoms can be evidenced by wait events. See

"Additional Statistics" on page 22-20 for the statistics that can be

checked.
22-16 Oracle9i Database Performance Tuning Guide and Reference



Interpreting Oracle Statistics
wait events can only be ranked by the number of times waited, which is often not

the ordering that best represents the problem.

To get an indication of where time is spent, follow these steps:

1. Examine the data collection for V$SYSTEM_EVENT. The events of interest

should be ranked by wait time.

Identify the wait events that have the most significant percentage of wait time.

To determine the percentage of wait time, add the total wait time for all wait

events, excluding idle events (such as Null event , SQL*Net message from
client , SQL*Net message to client , SQL*Net more data ). Calculate the

relative percentage of the five most prominent events by dividing each event’s

wait time by the total time waited for all events.

.

Alternatively, look at the Top 5 Wait Events section on the front page of the

Statspack report; this section automatically orders the wait events (omitting idle

events), and calculates the relative percentage:

Top 5 Wait Events
~~~~~~~~~~~~~~~~~                                           Wait     % Total
Event Waits Time (cs) Wt Time
-- ------------ ------------ -------
latch free 217,224 65,056 63.55

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings

See Also: "Idle Wait Events" for the complete list of idle events on

page 22-49
Instance Tuning 22-17

Interpreting Oracle Statistics
db file sequential read 39,836 31,844 31.11
db file scattered read 3,679 2,846 2.78
SQL*Net message from dblink 1,186 870 .85
log file sync 830 775 .76

In the previous example, the highest ranking wait event is the latch free
event. In some situations, there might be a few events with similar percentages.

This can provide extra evidence if all the events are related to the same type of

resource request (for example, all I/O related events).

2. Look at the number of waits for these events, and the average wait time. For

example, for I/O related events, the average time might help identify whether

the I/O system is slow. The following example of this data is taken from the

Wait Event section of the Statspack report:

 Avg
 Total Wait wait Waits
Event Waits Timeouts Time (s) (ms) /txn
-------------------------- ------------ ---------- ----------- ----- ------
latch free 5,560,989 2,705,969 26,117 5 827.7
db file sequential read 137,027 0 2,129 16 20.4
SQL*Net break/reset to cli 1,566 0 1,707 1091 0.2

3. The top wait events identify the next places to investigate. A table of common

wait events is listed in Table 22–1. For the previous example, the appropriate

data to check would be latch-related. (It is usually a good idea to also have

quick look at high-load SQL).

4. Examine the related data indicated by the wait events to see what other

information this data provides. Determine whether this information is

consistent with the wait event data. In most situations, there is enough data to

begin developing a theory about the potential causes of the performance

bottleneck.

5. To determine whether this theory is valid, cross-check data you have already

examined with other statistics available for consistency. (The appropriate

statistics vary depending on the problem, but usually include load

profile-related data in V$SYSSTAT, operating system statistics, and so on).

Perform cross-checks with other data to confirm or refute the developing

theory.
22-18 Oracle9i Database Performance Tuning Guide and Reference

Interpreting Oracle Statistics
Table of Wait Events and Potential Causes
Table 22–1 links wait events to possible causes and gives an overview of the Oracle

data that could be most useful to review next.

Table 22–1 Wait Events and Potential Causes

Wait Event General Area Possible Causes Look for / Examine

buffer busy
waits

Buffer cache,
DBWR

Depends on buffer type.
For example, waits for an
index block may be caused
by a primary key that is
based on an ascending
sequence.

Examine V$SESSION_WAIT while the problem is
occurring to determine the type of block in
contention.

free buffer
waits

Buffer cache,
DBWR, I/O

Slow DBWR (possibly due
to I/O?)

Cache too small

Examine write time using operating system
statistics. Check buffer cache statistics for evidence
of too small cache.

db file
scattered
read

I/O, SQL
statement
tuning

Poorly tuned SQL

Slow I/O system

Investigate V$SQLAREA to see whether there are
SQL statements performing many disk reads.
Cross-check I/O system and V$FILESTAT for
poor read time.

db file
sequential
read

I/O, SQL
statement
tuning

Poorly tuned SQL

Slow I/O system

Investigate V$SQLAREA to see whether there are
SQL statements performing many disk reads.
Cross-check I/O system and V$FILESTAT for
poor read time.

enqueue Locks Depends on type of
enqueue

Look at V$ENQUEUE_STAT.

latch free Latch
contention

Depends on latch Check V$LATCH.

log buffer
space

Log buffer,
I/O

Log buffer small

Slow I/O system

Check the statistic redo buffer allocation
retries in V$SYSSTAT. Check configuring log
buffer section in configuring memory chapter.
Check the disks that house the online redo logs for
resource contention.

log file
sync

I/O, over-
committing

Slow disks that store the
online logs

Un-batched commits

Check the disks that house the online redo logs for
resource contention. Check the number of
transactions (commits + rollbacks) each
second, from V$SYSSTAT.
Instance Tuning 22-19

Interpreting Oracle Statistics
Additional Statistics
There are a number of statistics that can indicate performance problems that do not

have corresponding wait events.

Redo Log Space Requests Statistic
The V$SYSSTAT statistic redo log space requests indicates how many times a

server process had to wait for space in the online redo log, not for space in the redo

log buffer. A significant value for this statistic and the wait events should be used as

an indication that checkpoints, DBWR, or archiver activity should be tuned, not

LGWR. Increasing the size of log buffer does not help.

Read Consistency
Your system might spend excessive time rolling back changes to blocks in order to

maintain a consistent view. Consider the following scenarios:

■ If there are many small transactions and an active long-running query is

running in the background on the same table where the changes are happening,

then the query might need to roll back those changes often, in order to obtain a

read-consistent image of the table. Compare the following V$SYSSTATstatistics

to determine whether this is happening:

■ consistent changes statistic indicates the number of times a database

block has rollback entries applied to perform a consistent read on the block.

Workloads that produce a great deal of consistent changes can

consume a great deal of resources.

■ consistent gets statistic counts the number of logical reads in consistent

mode.

■ If there are few very, large rollback segments, then your system could be

spending a lot of time rolling back the transaction table during delayed block

cleanout in order to find out exactly which SCN a transaction was committed.

The ratio of the following V$SYSSTAT statistics should be close to 1:

See Also:

■ "Wait Events" on page 22-24 for detailed information on each

event listed in Table 22–1 and for other information to

cross-check

■ Chapter 24, "Dynamic Performance Views for Tuning" for

detailed information on querying V$ views
22-20 Oracle9i Database Performance Tuning Guide and Reference

Interpreting Oracle Statistics
ratio = transaction tables consistent reads undo records applied /
 transaction tables consistent read rollbacks

A solution is to create more, smaller rollback segments, or to use automatic

undo management.

■ If there are insufficient rollback segments, then there is rollback segment

(header or block) contention. Evidence of this problem is available by the

following:

■ Comparing the number of WAITS to the number of GETS in V$ROLLSTAT;
the proportion of WAITS to GETS should be small.

■ Examining V$WAITSTAT to see whether there are many WAITS for buffers

of CLASS ’undo header ’.

A solution is to create more rollback segments.

Table Fetch by Continued Row
You can detect migrated or chained rows by checking the number of table fetch
continued row statistic in V$SYSSTAT. A small number of chained rows (less than

1%) is unlikely to impact system performance. However, a large percentage of

chained rows can affect performance.

Chaining on rows larger than the block size is inevitable. You might want to

consider using tablespace with larger block size for such data.

However, for smaller rows, you can avoid chaining by using sensible space

parameters and good application design. For example, do not insert a row with key

values filled in and nulls in most other columns, then update that row with the real

data, causing the row to grow in size. Rather, insert rows filled with data from the

start.

If an UPDATE statement increases the amount of data in a row so that the row no

longer fits in its data block, then Oracle tries to find another block with enough free

space to hold the entire row. If such a block is available, then Oracle moves the

entire row to the new block. This is called migrating a row. If the row is too large to

fit into any available block, then Oracle splits the row into multiple pieces and

stores each piece in a separate block. This is called chaining a row. Rows can also be

chained when they are inserted.

Migration and chaining are especially detrimental to performance with the

following:

■ UPDATE statements that cause migration and chaining to perform poorly
Instance Tuning 22-21

Interpreting Oracle Statistics
■ Queries that select migrated or chained rows because these must perform

additional input and output

Identify migrated and chained rows in a table or cluster using the ANALYZE
statement with the LIST CHAINED ROWSclause. This statement collects information

about each migrated or chained row and places this information in a specified

output table.

The definition of a sample output table named CHAINED_ROWS appears in a SQL

script available on your distribution medium. The common name of this script is

UTLCHN1.SQL, although its exact name and location varies depending on your

platform. Your output table must have the same column names, datatypes, and

sizes as the CHAINED_ROWS table.

Increasing PCTFREE can help to avoid migrated rows. If you leave more free space

available in the block, then the row has room to grow. You can also reorganize or

re-create tables and indexes that have high deletion rates. If tables frequently have

rows deleted, then data blocks can have partially free space in them. If rows are

inserted and later expanded, then the inserted rows might land in blocks with

deleted rows but still not have enough room to expand. Reorganizing the table

ensures that the main free space is totally empty blocks.

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer will

eventually use only statistics that have been collected by DBMS_
STATS. See Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on this package.

However, you must use the ANALYZE statement rather than DBMS_
STATS for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks

Note: PCTUSED is not the opposite of PCTFREE.
22-22 Oracle9i Database Performance Tuning Guide and Reference

Interpreting Oracle Statistics
Parse-Related Statistics
The more your application parses, the more potential for contention exists, and the

more time your system spends waiting. If parse time CPU represents a large

percentage of the CPU time, then time is being spent parsing instead of executing

statements. If this is the case, then it is likely that the application is using literal SQL

and so SQL cannot be shared, or the shared pool is poorly configured.

There are a number of statistics available to identify the extent of time spent parsing

by Oracle. Query the parse related statistics from V$SYSSTAT. For example:

SELECT NAME, VALUE
 FROM V$SYSSTAT
 WHERE NAME IN ('parse time cpu', 'parse time elapsed'
 , 'parse count (hard)', ’CPU used by this session’);

There are various ratios that can be computed to assist in determining whether

parsing may be a problem:

■ parse time CPU / parse time elapsed

This ratio indicates how much of the CPU time spent parsing was due to the

parse operation itself, rather than waiting for resources, such as latches. A ratio

of one is good, indicating that the elapsed time was not spent waiting for highly

contended resources.

■ parse time CPU / CPU used by this session

This ratio indicates how much of the total CPU used by Oracle server processes

was spent on parse-related operations. A ratio closer to zero is good, indicating

that the majority of CPU is not spent on parsing.

See Also:

■ Oracle9i Database Concepts for more information on PCTUSED

■ Oracle9i Database Administrator’s Guide for information on

reorganizing tables

See Also: Chapter 14, "Memory Configuration and Use"
Instance Tuning 22-23

Wait Events
Wait Events
The views V$SESSION_WAIT, V$SESSION_EVENT and V$SYSTEM_EVENT provide

information on what resources were waited for, and, if the configuration parameter

TIMED_STATISTICS is set to true , how long each resource was waited for.

Investigate wait events and related timing data when performing reactive

performance tuning. The events with the most time listed against them are often

strong indications of the performance bottleneck.

The three views contain related, but different, views of the same data:

■ V$SESSION_WAIT is a current state view. It lists either the event currently

being waited for or the event last waited for on each session

■ V$SESSION_EVENT lists the cumulative history of events waited for on each

session. After a session exits, the wait event statistics for that session are

removed from this view.

■ V$SYSTEM_EVENT lists the events and times waited for by the whole instance

(that is, all session wait events data rolled up) since instance startup.

Because V$SESSION_WAIT is a current state view, it also contains a

finer-granularity of information than V$SESSION_EVENT or V$SYSTEM_EVENT. It
includes additional identifying data for the current event in three parameter

columns: P1, P2, and P3.

For example, V$SESSION_EVENT can show that session 124 (SID=124) had many

waits on the db file scattered read event , but it does not show which file and

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings
22-24 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
block number. However, V$SESSION_WAIT shows the file number in P1, the block

number read in P2, and the number of blocks read in P3 (P1 and P2 let you

determine for which segments the wait event is occurring).

This chapter concentrates on examples using V$SESSION_WAIT. However, Oracle

recommends capturing performance data over an interval and keeping this data for

performance and capacity analysis. This form of rollup data is queried from the

V$SYSTEM_EVENT view by tools such as Enterprise Manager Diagnostics Pack and

Statspack.

Most commonly encountered events are described in this chapter, listed in

case-sensitive alphabetical order. Other event-related data to examine is also

included. The case used for each event name is that which appears in the

V$SYSTEM_EVENT view.

SQL*Net
The following events signify that the database process is waiting for

acknowledgment from a database link or a client process:

■ SQL*Net break/reset to client

■ SQL*Net break/reset to dblink

■ SQL*Net message from client

■ SQL*Net message from dblink

■ SQL*Net message to client

■ SQL*Net message to dblink

■ SQL*Net more data from client

■ SQL*Net more data from dblink

■ SQL*Net more data to client

■ SQL*Net more data to dblink

If these waits constitute a significant portion of the wait time on the system or for a

user experiencing response time issues, then the network or the middle-tier could

be a bottleneck.

See Also: Oracle9i Database Reference for a complete list of wait

events
Instance Tuning 22-25

Wait Events
Events that are client-related should be diagnosed as described for the event

SQL*Net message from client . Events that are dblink-related should be

diagnosed as described for the event SQL*Net message from dblink .

SQL*Net message from client
Although this is an idle event, it is important to explain when this event can be used

to diagnose what is not the problem. This event indicates that a server process is

waiting for work from the client process. However, there are several situations

where this event could accrue most of the wait time for a user experiencing poor

response time. The cause could be either a network bottleneck or a resource

bottleneck on the client process.

Network Bottleneck A network bottleneck can occur if the application causes a lot of

traffic between server and client and the network latency (time for a round-trip) is

high. Symptoms include the following:

■ Large number of waits for this event

■ Both the database and client process are idle (waiting for network traffic) most

of the time

To alleviate network bottlenecks, try the following:

■ Tune the application to reduce round trips.

■ Explore options to reduce latency (for example, terrestrial lines opposed to

VSAT links).

■ Change system configuration to move higher traffic components to lower

latency links.

Resource Bottleneck on the Client Process If the client process is using most of the

resources, then there is nothing that can be done in the database. Symptoms include

the following:

■ Number of waits might not be large, but the time waited might be significant

■ Client process has a high resource usage

In some cases, you can see the wait time for a waiting user tracking closely with the

amount of CPU used by the client process. The term client here refers to any process

other than the database process (middle-tier, desktop client) in the n-tier

architecture.

See Also: Oracle9i Database Performance Planning
22-26 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
SQL*Net message from dblink
This event signifies that the session has sent a query to the remote node and is

waiting for a response from the database link. This time could go up because of the

following:

■ Network bottleneck

For information, see "SQL*Net message from client" on page 22-26.

■ Time taken to run the query on the remote node

It is useful to see the query being run on the remote node. Login to the remote

database, find the session created by the database link, and examine the SQL

statement being run by it.

buffer busy waits
This wait indicates that there are some buffers in the buffer cache that multiple

processes are attempting to access concurrently. Query V$WAITSTAT for the wait

statistics for each class of buffer. Common buffer classes that have buffer busy waits

include data block , segment header , undo header , and undo block .

Check the following V$SESSION_WAIT parameter columns:

■ P1 - File ID

■ P2 - Block ID

Causes
To determine the possible causes, identify the type of class contended for by

querying V$WAITSTAT:

SELECT class, count
 FROM V$WAITSTAT
 WHERE count > 0
 ORDER BY count DESC;

Example output:

CLASS COUNT
------------------ ----------
data block 43383
undo header 10680
undo block 5237
segment header 785
Instance Tuning 22-27

Wait Events
To identify the segment and segment type contended for, query DBA_EXTENTS
using the values for File Id and Block Id returned from V$SESSION_WAIT (p1 and

p2 columns):

SELECT segment_owner, segment_name
 FROM DBA_EXTENTS
 WHERE file_id = <&p1>
 AND <&p2> BETWEEN block_id AND block_id + blocks - 1;

Actions
The action required depends on the class of block contended for and the actual

segment.

segment header If the contention is on the segment header, then this is most likely

freelist contention.

Automatic segment-space management in locally managed tablespaces eliminates

the need to specify the PCTUSED, FREELISTS, and FREELIST GROUPS parameters.

If possible, switch from manual space management to automatic segment-space

management.

The following information is relevant if you are unable to use automatic

segment-space management (for example, because the tablespace uses dictionary

space management).

A freelist is a list of free data blocks that usually includes blocks existing in a

number of different extents within the segment. Blocks in freelists contain free space

greater than PCTFREE. This is the percentage of a block to be reserved for updates

to existing rows. In general, blocks included in process freelists for a database object

must satisfy the PCTFREE and PCTUSED constraints. Specify the number of process

freelists with the FREELISTS parameter. The default value of FREELISTS is one.

The maximum value depends on the data block size.

To find the current setting for freelists for that segment, run the following:

SELECT SEGMENT_NAME, FREELISTS
 FROM DBA_SEGMENTS
 WHERE SEGMENT_NAME =segment name
 AND SEGMENT_TYPE = segment type ;

Set freelists, or increase of number of freelists. If adding more freelists does not

alleviate the problem, then use freelist groups (even in single instance this can make

a difference). If using Oracle Real Application Clusters, then ensure that each

instance has its own freelist group(s).
22-28 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
data block If the contention is on tables or indexes (not the segment header):

■ Check for SQL statements using unselective indexes.

■ Check for 'right-hand-indexes' (that is, indexes that are inserted into at the same

point by many processes; for example, those which use sequence number

generators for the key values).

■ Consider using automatic segment-space management, or increasing freelists to

avoid multiple processes attempting to insert into the same block.

undo header For contention on rollback segment header:

■ If you are not using automatic undo management, then add more rollback

segments.

undo block For contention on rollback segment block:

■ If you are not using automatic undo management, then consider making

rollback segment sizes larger.

db file scattered read
This event signifies that the user process is reading buffers into the SGA buffer

cache and is waiting for a physical I/O call to return. A db file scattered read
issues a scatter-read to read the data into multiple discontinuous memory locations.

A scattered read is usually a multiblock read. It can occur for a fast full scan (of an

index) in addition to a full table scan.

The db file scattered read wait event identifies that a full table scan is

occurring. When performing a full table scan into the buffer cache, the blocks read

are read into memory locations that are not physically adjacent to each other. Such

reads are called scattered read calls, because the blocks are scattered throughout

memory. This is why the corresponding wait event is called 'db file scattered read'.

Multiblock (up to DB_FILE_MULTIBLOCK_READ_COUNTblocks) reads due to full

table scans into the buffer cache show up as waits for ’db file scattered read’.

See Also:

■ Oracle9i Database Concepts for information on automatic

segment-space management, freelists, PCTFREE, and PCTUSED

■ Oracle9i Real Application Clusters Setup and Configuration for

information about using freelist groups in an Oracle Real

Application Clusters environment
Instance Tuning 22-29

Wait Events
Check the following V$SESSION_WAIT parameter columns:

■ P1 - The absolute file number

■ P2 - The block being read

■ P3 - The number of blocks (should be greater than 1)

Actions
On a healthy system, physical read waits should be the biggest waits after the idle

waits. However, also consider whether there are direct read waits (signifying full

table scans with parallel query) or db file scattered read waits on an

operational (OLTP) system that should be doing small indexed accesses.

Other things that could indicate excessive I/O load on the system include the

following:

■ Poor buffer cache hit ratio

■ These wait events accruing most of the wait time for a user experiencing poor

response time

Managing Excessive I/O
There are several ways to handle excessive I/O waits. In the order of effectiveness,

these are as follows:

1. Reduce the I/O activity by SQL tuning.

2. Reduce the need to do I/O by managing the workload.

3. Add more disks to reduce the number of I/Os for each disk.

4. Alleviate I/O hot spots by redistributing I/O across existing disks.

The first course of action should be to find opportunities to reduce I/O. Examine

the SQL statements being run by sessions waiting for these events, as well as

statements causing high physical I/Os from V$SQLAREA. Factors that can adversely

affect the execution plans causing excessive I/O include the following:

■ Improperly optimized SQL

■ Missing indexes

■ High degree of parallelism for the table (skewing the optimizer toward scans)

See Also: Chapter 15, "I/O Configuration and Design"
22-30 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
■ Lack of accurate statistics for the optimizer

Inadequate I/O Distribution
Besides reducing I/O, also examine the I/O distribution of files across the disks. Is

I/O distributed uniformly across the disks, or are there hot spots on some disks?

Are the number of disks sufficient to meet the I/O needs of the database?

See the total I/O operations (reads and writes) by the database, and compare those

with the number of disks used. Remember to include the I/O activity of LGWR and

ARCH processes.

Finding the SQL Statement executed by Sessions Waiting for I/O
Use the following query to see, at a point in time, which sessions are waiting for

I/O:

SELECT s.sql_address, s.sql_hash_value
 FROM V$SESSION s, V$SESSION_WAIT w
 WHERE w.event LIKE 'db file%read'
 AND w.sid = s.sid ;

Finding the Object Requiring I/O
Use the following query to find the object being accessed:

SELECT segment_owner, segment_name
 FROM DBA_EXTENTS
 WHERE file_id = &p1
 AND &p2 between block_id AND block_id + blocks - 1 ;

db file sequential read
This event signifies that the user process is reading buffers into the SGA buffer

cache and is waiting for a physical I/O call to return. This call differs from a

scattered read, because a sequential read is reading data into contiguous memory

space. A sequential read is usually a single-block read.

Single block I/Os are usually the result of using indexes. Rarely, full table scan calls

could get truncated to a single block call due to extent boundaries, or buffers

already present in the buffer cache. These waits would also show up as ’db file

sequential read'.

Check the following V$SESSION_WAIT parameter columns:

■ P1 - The absolute file number
Instance Tuning 22-31

Wait Events
■ P2 - The block being read

■ P3 - The number of blocks (should be 1)

Actions
On a healthy system, physical read waits should be the biggest waits after the idle

waits. However, also consider whether there are db file sequential reads on a

large data warehouse that should be seeing mostly full table scans with parallel

query.

Figure 22–1 depicts the differences between the following wait events:

■ db file sequential read (single block read into one SGA buffer)

■ db file scattered read (multiblock read into many discontinuous SGA

buffers)

■ direct read (single or multiblock read into the PGA, bypassing the SGA)

See Also: "db file scattered read" on page 22-29 for information

on managing excessive I/O, inadequate I/O distribution, and

finding the SQL causing the I/O and the segment the I/O is

performed on
22-32 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
Figure 22–1 Scattered Read, Sequential Read, and Direct Path Read

direct path read and direct path read (lob)
When a session is reading buffers from disk directly into the PGA (opposed to the

buffer cache in SGA), it waits on this event. If the I/O subsystem does not support

asynchronous I/Os, then each wait corresponds to a physical read request.

If the I/O subsystem supports asynchronous I/O, then the process is able to

overlap issuing read requests with processing the blocks already existing in the

PGA. When the process attempts to access a block in the PGA that has not yet been

read from disk, it then issues a wait call and updates the statistics for this event.

Hence, the number of waits is not necessarily the same as the number of read

requests (unlike ’db file scattered read’ and ’db files sequential read’).

Check the following V$SESSION_WAIT parameter columns:

■ P1 - File_id for the read call

SGA Buffer Cache

DB file
Sequential Read

SGA Buffer Cache

DB file
Scattered Read

Process PGA

Direct path
read

Direct Path
Read
Instance Tuning 22-33

Wait Events
■ P2 - Start block_id for the read call

■ P3 - Number of blocks in the read call

Causes
This happens in the following situations:

■ The sorts are too large to fit in memory and go to disk. If a sort does not fit into

memory, then some of the sort data is written out directly to disk. This data is

later read back in, using direct reads.

■ Parallel slaves are used for scanning data.

■ The server process is processing buffers faster than the I/O system can return

the buffers. This can indicate an overloaded I/O system.

Actions
The file_id shows if the reads are for an object in TEMP tablespace (sorts to disk)

or full table scans by parallel slaves. This is the biggest wait for large data

warehouse sites. However, if the workload is not a DSS workload, then examine

why this is happening.

Sorts to Disk Examine the SQL statement currently being run by the session

experiencing waits to see what is causing the sorts. Query V$TEMPSEG_USAGE to

find the SQL statement that is generating the sort. Also query the statistics from

V$SESSTAT for the session to determine the size of the sort. See if it is possible to

reduce the sorting by tuning the SQL statement. If WORKAREA_SIZE_POLICY is
MANUAL, then consider increasing the SORT_AREA_SIZE for the system (if the sorts

are not too big) or for individual processes. If WORKAREA_SIZE_POLICY is AUTO,

then investigate whether to increase PGA_AGGREGATE_TARGET.

Full Table Scans If tables are defined with a high degree of parallelism, then this

could skew the optimizer to use full table scans with parallel slaves. Check the

object being read into using the direct path reads, as well as the SQL statement

being run by the query-coordinator. If the full table scans are a valid part of the

workload, then ensure that the I/O subsystem is sized adequately for the degree of

parallelism.

Hash Area Size For query plans that call for a hash join, excessive I/O could result

from having HASH_AREA_SIZE too small. If WORKAREA_SIZE_POLICY is MANUAL,

See Also: "Configuring the PGA Working Memory" on page 14-48
22-34 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
then consider increasing the HASH_AREA_SIZE for the system or for individual

processes. If WORKAREA_SIZE_POLICY is AUTO, then investigate whether to

increase PGA_AGGREGATE_TARGET.

direct path write
When a process is writing buffers directly from PGA (as opposed to the DBWR

writing them from the buffer cache), the process waits on this event for the write

call to complete. Operations that could perform direct path writes include when a

sort goes to disk, during parallel DML operations, direct-path INSERTs, parallel

create table as select, and some LOB operations.

Like direct path reads, the number of waits is not the same as number of write calls

issued if the I/O subsystem supports asynchronous writes. The session waits if it

has processed all buffers in the PGA and is unable to continue work until an I/O

request completes.

Check the following V$SESSION_WAIT parameter columns:

■ P1 - File_id for the write call

■ P2 - Start block_id for the write call

■ P3 - Number of blocks in the write call

Causes
This happen in the following situations:

■ Sorts are too large to fit in memory and are going to disk

■ Parallel DML are issued to create/populate objects

Actions
For large sorts see "Sorts to Disk" on page 22-34.

For parallel DML, check the I/O distribution across disks and make sure that the

I/O subsystem is adequately sized for the degree of parallelism.

See Also:

■ "Managing Excessive I/O" on page 22-30

■ "Configuring the PGA Working Memory" on page 14-48
Instance Tuning 22-35

Wait Events
enqueue
Enqueues are locks that serialize access to database resources. This event indicates

that the session is waiting for a lock that is held by another session.

Check the following V$SESSION_WAIT parameter columns:

■ P1 - Lock TYPE (or name) and MODE

■ P2 - Resource identifier ID1 for the lock

■ P3 - Resource identifier ID2 for the lock

Check the comparison with V$LOCK columns:

■ V$LOCK.ID1 = P2

■ V$LOCK.ID2 = P3

Performing the following SQL transformation of the P1 column results in the same

value displayed in V$LOCK.TYPE:

V$LOCK.TYPE = chr(bitand(P1,-16777216)/16777215)||
chr(bitand(P1,16711680)/65535)

To obtain the mode in which the enqueue is being requested, issue the following

statement:

request = mod(P1, 65536);

Finding Locks and Lock Holders
Query V$LOCK to find the sessions holding the lock. For every session waiting for

the event enqueue , there is a row in V$LOCK with REQUEST <> 0. Therefore, use

either of the following two queries to find the sessions holding the locks and

waiting for the locks.

If there are enqueue waits, you can see these using the following statement:

SELECT * FROM V$LOCK WHERE request > 0:

To show only holders and waiters for locks being waited on, use the following:

SELECT DECODE(request,0,'Holder: ','Waiter: ')|| sid sess, id1, id2, lmode,
request, type
 FROM V$LOCK
 WHERE (id1, id2, type) IN (SELECT id1, id2, type FROM V$LOCK WHERE request>0)
 ORDER BY id1, request;
22-36 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
Actions
The appropriate action depends on the type of enqueue.

ST enqueue If the contended-for enqueue is the ST enqueue, then the problem is

most likely to be dynamic space allocation. Oracle dynamically allocates an extent

to a segment when there is no more free space available in the segment. This

enqueue is only used for dictionary managed tablespaces.

To solve contention on this resource:

■ Check to see whether the temporary (that is, sort) tablespace uses TEMPFILES.

If not, then switch to using TEMPFILES.

■ Switch to using locally managed tablespaces if the tablespace that contains

segments that are growing dynamically.

■ If it is not possible to switch to locally managed tablespaces, then ST enqueue

resource usage can be decreased by changing the next extent sizes of the

growing objects to be large enough to avoid constant space allocation. To

determine which segments are growing constantly, monitor the EXTENTS
column of the DBA_SEGMENTS view for all SEGMENT_NAMEs over time to

identify which segments are growing and how quickly.

■ Preallocate space in the segment (for example, by allocating extents using the

ALTER TABLE ALLOCATE EXTENT SQL statement).

HW enqueue The HW enqueue is used to serialize the allocation of space beyond the

high-water mark of a segment.

■ V$SESSION_WAIT.P2 / V$LOCK.ID1 is the tablespace number.

■ V$SESSION_WAIT.P2 / V$LOCK.ID2 is the relative dba of segment header of

the object for which space is being allocated.

See Also:

■ Chapter 24, "Dynamic Performance Views for Tuning" for more

information on using V$LOCK

■ Oracle9i Database Reference for more information on enqueues

See Also: Oracle9i Database Concepts for detailed information on

TEMPFILEs and locally managed tablespaces
Instance Tuning 22-37

Wait Events
If this is a point of contention for an object, then manual allocation of extents solves

the problem.

TM enqueue The most common reason for waits on TM locks tend to involve foreign

key constraints where the constrained columns are not indexed. Index the foreign

key columns to avoid this problem.

TX enqueue These are acquired exclusive when a transaction initiates its first change

and held until the transaction does a COMMIT or ROLLBACK.

■ Waits for TX in mode 6: occurs when a session is waiting for a row level lock

that is already held by another session. This occurs when one user is updating

or deleting a row, which another session wishes to update or delete.

The solution is to have the first session already holding the lock perform a

COMMIT or ROLLBACK.

■ Waits for TX in mode 4 can occur if the session is waiting for an ITL (interested

transaction list) slot in a block. This happens when the session wants to lock a

row in the block but one or more other sessions have rows locked in the same

block, and there is no free ITL slot in the block. Usually, Oracle dynamically

adds another ITL slot. This may not be possible if there is insufficient free space

in the block to add an ITL. If so, the session waits for a slot with a TX enqueue

in mode 4.

The solution is to increase the number of ITLs available, either by changing the

INITTRANS or MAXTRANS for the table (either by using an ALTER statement, or

by re-creating the table with the higher values).

■ Waits for TX in mode 4 can also occur if a session is waiting due to potential

duplicates in UNIQUE index. If two sessions try to insert the same key value the

second session has to wait to see if an ORA-0001 should be raised or not.

The solution is to have the first session already holding the lock perform a

COMMIT or ROLLBACK.

■ Waits for TX in mode 4 is also possible if the session is waiting due to shared

bitmap index fragment. Bitmap indexes index key values and a range of

ROWIDs. Each ’entry’ in a bitmap index can cover many rows in the actual

table. If two sessions want to update rows covered by the same bitmap index

fragment, then the second session waits for the first transaction to either

COMMIT or ROLLBACK by waiting for the TX lock in mode 4.

■ Waits for TX in Mode 4 can also occur waiting for a PREPARED transaction.
22-38 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
free buffer waits
This wait event indicates that a server process was unable to find a free buffer and

has posted the database writer to make free buffers by writing out dirty buffers. A

dirty buffer is a buffer whose contents have been modified. Dirty buffers are freed

for reuse when DBWR has written the blocks to disk.

Causes
DBWR may not be keeping up with writing dirty buffers in the following situations:

■ The I/O system is slow.

■ There are resources it is waiting for, such as latches.

■ The buffer cache is so small that DBWR spends most of it’s time cleaning out

buffers for server processes.

■ The buffer cache is so big that one DBWR process is not enough to free enough

buffers in the cache to satisfy requests.

Actions
If this event occurs frequently, then examine the session waits for DBWR to see

whether there is anything delaying DBWR.

Writes If it is waiting for writes, then determine what is delaying the writes and fix

it. Check the following:

■ Examine V$FILESTAT to see where most of the writes are happening.

■ Examine the host operating system statistics for the I/O system. Are the write

times acceptable?

If I/O is slow:

■ Consider using faster I/O alternatives to speed up write times.

■ Spread the I/O activity across large number of spindles (disks) and controllers.

See Also: Oracle9i Application Developer’s Guide - Fundamentals for

more information about referential integrity and locking data

explicitly

See Also: Chapter 15, "I/O Configuration and Design" for

information on balancing I/O
Instance Tuning 22-39

Wait Events
Cache is Too Small It is possible DBWR is very active because of the cache is too

small. Investigate whether this is a probable cause by looking to see if the buffer

cache hit ratio is low. Also use the V$DB_CACHE_ADVICE view to determine

whether a larger cache size would be advantageous.

Cache Is Too Big for One DBWR If the cache size is adequate and the I/O is already

evenly spread, then you can potentially modify the behavior of DBWR by using

asynchronous I/O or by using multiple database writers.

Consider Multiple Database Writer (DBWR) Processes or I/O Slaves
Configuring multiple database writer processes, or using I/O slaves, is useful when

the transaction rates are high or when the buffer cache size is so large that a single

DBWn process cannot keep up with the load.

DB_WRITER_PROCESSESThe DB_WRITER_PROCESSES initialization parameter

lets you configure multiple database writer processes (from DBW0 to DBW9 and

from DBWa to DBWj). Configuring multiple DBWR processes distributes the work

required to identify buffers to be written, and it also distributes the I/O load over

these processes. Multiple db writer processes are highly recommended for systems

with multiple CPUs (at least one db writer for every 8 CPUs) or multiple processor

groups (at least as many db writers as processor groups).

Based upon the number of CPUs and the number of processor groups, Oracle either

selects an appropriate default setting for DB_WRITER_PROCESSES or adjusts a

user-specified setting.

DBWR_IO_SLAVES If it is not practical to use multiple DBWR processes, then Oracle

provides a facility whereby the I/O load can be distributed over multiple slave

processes. The DBWR process is the only process that scans the buffer cache LRU

list for blocks to be written out. However, the I/O for those blocks is performed by

the I/O slaves. The number of I/O slaves is determined by the parameter DBWR_
IO_SLAVES.

DBWR_IO_SLAVES is intended for scenarios where you cannot use multiple DB_
WRITER_PROCESSES (for example, where you have a single CPU). I/O slaves are

also useful when asynchronous I/O is not available, because the multiple I/O

slaves simulate nonblocking, asynchronous requests by freeing DBWR to continue

identifying blocks in the cache to be written. Asynchronous I/O at the operating

system level, if you have it, is generally preferred.

See Also: "Sizing the Buffer Cache" on page 14-6
22-40 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
DBWR I/O slaves are allocated immediately following database open when the first

I/O request is made. The DBWR continues to perform all of the DBWR-related

work, apart from performing I/O. I/O slaves simply perform the I/O on behalf of

DBWR. The writing of the batch is parallelized between the I/O slaves.

Choosing Between Multiple DBWR Processes and I/O Slaves Configuring multiple DBWR

processes benefits performance when a single DBWR process is unable to keep up

with the required workload. However, before configuring multiple DBWR

processes, check whether asynchronous I/O is available and configured on the

system. If the system supports asynchronous I/O but it is not currently used, then

enable asynchronous I/O to see if this alleviates the problem. If the system does not

support asynchronous I/O, or if asynchronous I/O is already configured and there

is still a DBWR bottleneck, then configure multiple DBWR processes.

Using multiple DBWRs parallelizes the gathering and writing of buffers. Therefore,

multiple DBWn processes should deliver more throughput than one DBWR process

with the same number of I/O slaves. For this reason, the use of I/O slaves has been

deprecated in favor of multiple DBWR processes. I/O slaves should only be used if

multiple DBWR processes cannot be configured.

latch free
A latch is a low-level internal lock used by Oracle to protect memory structures. The

latch free event is updated when a server process attempts to get a latch, and the

latch is unavailable on the first attempt.

Note: Implementing DBWR_IO_SLAVESrequires that extra shared

memory be allocated for I/O buffers and request queues. Multiple

DBWR processes cannot be used with I/O slaves. Configuring I/O

slaves forces only one DBWR process to start.

Note: If asynchronous I/O is not available on your platform, then

asynchronous I/O can be disabled by setting the DISK_ASYNCH_
IO initialization parameter to FALSE.

See Also: Chapter 17, "Configuring Instance Recovery

Performance" for details on tuning checkpoints
Instance Tuning 22-41

Wait Events
Actions
This event should only be a concern if latch waits are a significant portion of the

wait time on the system as a whole, or for individual users experiencing problems.

■ To help determine the cause of this wait event, identify the latch(es) contended

for. There are many types of latches used for different purposes. For example,

the shared pool latch protects certain actions in the shared pool, and the cache

buffers LRU chain protects certain actions in the buffer cache.

■ Examine the resource usage for related resources. For example, if the library

cache latch is heavily contended for, then examine the hard and soft parse rates.

■ Examine the SQL statements for the sessions experiencing latch contention to

see if there is any commonality.

Check the following V$SESSION_WAIT parameter columns:

■ P1 - Address of the latch

■ P2 - Latch number

■ P3 - Number of times process has already slept, waiting for the latch

Example: Find Latches Currently Waiting For
SELECT n.name, SUM(w.p3) Sleeps
 FROM V$SESSION_WAIT w, V$LATCHNAME n
 WHERE w.event = ‘latch free’
 AND w.p2 = n.latch#
 GROUP BY n.name;

See Also: Oracle9i Database Concepts for more information on

latches and internal locks
22-42 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
Shared Pool and Library Cache Latch Contention
A main cause of shared pool or library cache latch contention is parsing. There are a

number of techniques that can be used to identify unnecessary parsing and a

number of types of unnecessary parsing:

Table 22–2 Latch Free Wait Event

Latch SGA Area Possible Causes Look For:

Shared pool,
library cache

Shared pool Lack of statement reuse

Statements not using bind variables

Insufficient size of application cursor cache

Cursors closed explicitly after each
execution

Frequent logon/logoffs

Underlying object structure being modified
(for example truncate)

Shared pool too small

Sessions (in V$SESSTAT) with high:

parse time CPU

parse time elapse d

Ratio of parse count (hard) /
execute coun t

Ratio of parse count (total) /
execute count

Cursors (in V$SQLAREA/V$SQL) with:

High ratio of PARSE_CALLS /
EXECUTIONS

EXECUTIONS= 1 differing only in literals
in the WHERE clause (that is, no bind
variables used)

High RELOADS

High INVALIDATIONS

Large (> 1mb) SHARABLE_MEM

cache buffers lru
chain

Buffer cache
LRU lists

Excessive buffer cache throughput. For
example, inefficient SQL that accesses
incorrect indexes iteratively (large index
range scans) or many full table scans

DBWR not keeping up with the dirty
workload; hence, foreground process
spends longer holding the latch looking for
a free buffer

Cache may be too small

Statements with very high logical I/O or
physical I/O, using unselective indexes

cache buffers
chains

Buffer cache
buffers

Repeated access to a block (or small
number of blocks), known as a hot block

Sequence number generation code that
updates a row in a table to generate the
number, rather than using a sequence
number generator

Index leaf chasing from very many
processes scanning the same unselective
index with very similar predicate

Identify the segment the hot block belongs
to
Instance Tuning 22-43

Wait Events
Unshared SQL This method identifies similar SQL statements that could be shared if

literals were replaced with bind variables. The idea is to either:

■ Manually inspect SQL statements that have only one execution to see whether

they are similar:

SELECT sql_text
 FROM V$SQLAREA
 WHERE executions < 4
 ORDER BY sql_text;

■ Or, automate this process by grouping together what may be similar statements.

Do this by estimating the number of bytes of a SQL statement which will likely

be the same, and group the SQL statements by that many bytes. For example,

the following example groups together statements that differ only after the first

60 bytes.

SELECT SUBSTR(sql_text,1, 60), COUNT(*)
 FROM V$SQLAREA
 WHERE executions < 4
 GROUP BY SUBSTR(sql_text, 1, 60)
 HAVING COUNT(*) > 1;

Reparsed Sharable SQL check the V$SQLAREA view. Enter the following query:

SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS
FROM V$SQLAREA
ORDER BY PARSE_CALLS;

When the PARSE_CALLS value is close to the EXECUTIONS value for a given

statement, you might be continually reparsing that statement. Tune the statements

with the higher numbers of parse calls.

By Session Identify unnecessary parse calls by identifying the session in which they

occur. It might be that particular batch programs or certain types of applications do

most of the reparsing. To do this, run the following query:

SELECT pa.sid, pa.value "Hard Parses", ex.value "Execute Count"
 FROM v$sesstat pa, v$sesstat ex
 WHERE pa.sid=ex.sid
 AND pa.statistic#=(select statistic#
 FROM v$statname where name='parse count (hard)')
 AND ex.statistic#=(select statistic#
 FROM v$statname where name='execute count')
 AND pa.value>0;
22-44 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
The result is a list of all sessions and the amount of reparsing they do. For each

system identifier (SID), go to V$SESSION to find the name of the program that

causes the reparsing.

The output is similar to the following:

 SID Hard Parses Execute Count
------ ----------- -------------
 7 1 20
 8 3 12690
 6 26 325
 11 84 1619

cache buffer lru chain The cache buffer lru chain latches protect the lists of

buffers in the cache. When adding, moving, or removing a buffer from a list, a latch

must be obtained.

For symmetric multiprocessor (SMP) systems, Oracle automatically sets the number

of LRU latches to a value equal to one half the number of CPUs on the system. For

non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP machines with a

large number of CPUs. LRU latch contention is detected by querying V$LATCH,

V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention, consider tuning

the application, bypassing the buffer cache for DSS jobs, or redesigning the

application.

cache buffers chains The cache buffers chains latches are used to protect a

buffer list in the buffer cache. These latches are used when searching for, adding, or

removing a buffer from the buffer cache. Contention on this latch usually means

that there is a block that is greatly contended for (known as a hot block).

To identify the heavily accessed buffer chain, and hence the contended for block,

look at latch statistics for the cache buffers chains latches using the view

V$LATCH_CHILDREN. If there is a specific cache buffers chains child latch that

Note: Because this query counts all parse calls since instance

startup, it is best to look for sessions with high rates of parse. For

example, a connection which has been up for 50 days might show a

high parse figure, but a second connection might have been up for

10 minutes and be parsing at a much faster rate.
Instance Tuning 22-45

Wait Events
has many more GETS, MISSES, and SLEEPS when compared with the other child

latches, then this is the contended for child latch.

This latch has a memory address, identified by the ADDR column. Use the value in

the ADDR column joined with the V$BH view to identify the blocks protected by this

latch. For example, given the address (V$LATCH_CHILDREN.ADDR) of a heavily

contended latch, this queries the file and block numbers:

SELECT file#, dbablk, class, state, TCH
 FROM X$BH
 WHERE HLADDR=’address of latch’;

X$BH.TCH is a touch count for the buffer. A high value for X$BH.TCH indicates a

hot block.

Many blocks are protected by each latch. One of these buffers will probably be the

hot block. Any block with a high TCH value is a potential hot block. Perform this

query a number of times, and identify the block that consistently appears in the

output. After you have identified the hot block, query DBA_EXTENTS using the file

number and block number, to identify the segment.

log buffer space
This event occurs when server processes are waiting for free space in the log buffer,

because you are writing redo to the log buffer faster than LGWR can write it out.

Actions
Modify the redo log buffer size. If the size of the log buffer is already reasonable,

then ensure that the disks on which the online redo logs reside do not suffer from

I/O contention. The log buffer space wait event could be indicative of either

disk I/O contention on the disks where the redo logs reside, or of a too-small log

buffer. Check the I/O profile of the disks containing the redo logs to investigate

whether the I/O system is the bottleneck. If the I/O system is not a problem, then

the redo log buffer could be too small. Increase the size of the redo log buffer until

this event is no longer significant.

log file switch
There are two wait events commonly encountered:

See Also: "Finding the Object Requiring I/O" on page 22-31 for

instructions on how to do this
22-46 Oracle9i Database Performance Tuning Guide and Reference

Wait Events
■ log file switch (archiving needed)

■ log file switch (checkpoint incomplete)

In both of the events, the LGWR is unable to switch into the next online redo log,

and all the commit requests wait for this event.

Actions
For the log file switch (archiving needed) event, examine why the archiver

is unable to archive the logs in a timely fashion. It could be due to the following:

■ Archive destination is running out of free space.

■ Archiver is not able to read redo logs fast enough (contention with the LGWR).

■ Archiver is not able to write fast enough (contention on the archive destination,

or not enough ARCH processes). If you have ruled out other possibilities (such

as slow disks or a full archive destination) consider increasing the number of

ARCn processes. The default is 2.

■ If you have mandatory remote shipped archive logs, check whether this process

is slowing down because of network delays or the write is not completing

because of errors.

Depending on the nature of bottleneck, you might need to redistribute I/O or add

more space to the archive destination to alleviate the problem. For the log file
switch (checkpoint incomplete) event:

■ Check if DBWR is slow, possibly due to an overloaded or slow I/O system.

Check the DBWR write times, check the I/O system, and distribute I/O if

necessary.

■ Check if there are too few, or too small redo logs. If you have a few redo logs or

small redo logs (for example two x 100k logs), and your system produces

enough redo to cycle through all of the logs before DBWR has been able to

complete the checkpoint, then increase the size or number of redo logs.

See Also: Chapter 15, "I/O Configuration and Design"

See Also: "Sizing Redo Log Files" on page 13-5
Instance Tuning 22-47

Wait Events
log file sync
When a user session commits (or rolls back), the session’s redo information must be

flushed to the redo logfile by LGWR. The server process performing the COMMIT or

ROLLBACK waits under this event for the write to the redo log to complete.

Actions
If this event’s waits constitute a significant wait on the system or a significant

amount of time waited by a user experiencing response time issues or on a system,

then examine the average time waited.

If the average time waited is low, but the number of waits are high, then the

application might be committing after every INSERT, rather than batching

COMMITs. Applications can reduce the wait by committing after 50 rows, rather than

every row.

If the average time waited is high, then examine the session waits for the log writer

and see what it is spending most of its time doing and waiting for. If the waits are

because of slow I/O, then try the following:

■ Reduce other I/O activity on the disks containing the redo logs, or use

dedicated disks.

■ Alternate redo logs on different disks to minimize the effect of the archiver on

the log writer.

■ Move the redo logs to faster disks or a faster I/O subsystem (for example,

switch from RAID 5 to RAID 1).

■ Consider using raw devices (or simulated raw devices provided by disk

vendors) to speed up the writes.

■ Depending on the type of application, it might be possible to batch COMMITs by

committing every N rows, rather than every row, so that fewer log file syncs are

needed.

rdbms ipc reply
This event is used to wait for a reply from one of the background processes.
22-48 Oracle9i Database Performance Tuning Guide and Reference

Idle Wait Events
Idle Wait Events
These events indicate that the server process is waiting because it has no work. This

usually implies that if there is a bottleneck, then the bottleneck is not for database

resources.

The majority of the idle events should be ignored when tuning, because they do not

indicate the nature of the performance bottleneck. Some idle events can be useful in

indicating what the bottleneck is not. An example of this type of event is the most

commonly encountered idle wait-event SQL Net message from client . This

and other idle events (and their categories) are listed in Table 22–3.

Table 22–3 Idle Wait Events

Wait Name

Background
Process Idle
Event

User Process
Idle Event

Parallel Query
Idle Event

Shared Server
Idle Event

Oracle Real
Application
Clusters Idle Event

dispatcher timer . . . X .

lock manager wait for
remote message

. . . . X

pipe get . X . . .

pmon timer X

PX Idle Wait . . X . .

PX Deq Credit: need
buffer

. . X . .

PX Deq Credit: send
blkd

. . X . .

rdbms ipc message X

smon timer X

SQL*Net message from
client

. X . . .

virtual circuit
status

. . . X .

Note: If Statspack is installed, then it is also possible to query the

STATS$IDLE_EVENT table, which contains a list of idle events.

See Also: Oracle9i Database Reference for explanations of each idle

wait event
Instance Tuning 22-49

Idle Wait Events
22-50 Oracle9i Database Performance Tuning Guide and Reference

Tuning
23

Tuning Networks

This chapter describes different connection models and introduces networking

issues that affect tuning.

This chapter contains the following sections:

■ Understanding Connection Models

■ Detecting Network Problems

■ Solving Network Problems
 Networks 23-1

Understanding Connection Models
Understanding Connection Models
The techniques used to determine the source of problems vary depending on the

configuration. You can have a shared server configuration or a dedicated server

configuration.

■ If you have a shared server configuration, then LSNRCTL services lists

dispatchers .

■ If you have a dedicated server configuration, then LSNRCTL services lists

dedicated servers .

It is possible to connect to dedicated server with a database configured for shared

servers by placing the parameter (SERVER = DEDICATED) in the connect descriptor.

Shared Server Configuration
This section discusses the setups for the shared server configuration.

Registering the Dispatchers The LSNRCTL control utility’s services statement lists

every dispatcher registered with it. This list includes the dispatchers process ID.

You can check the alert log to confirm that the dispatchers have been started

successfully.

LSNRCTL> services
Connecting to
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=helios)(PORT=1521)))
Services Summary...
Service "sales.us.acme.com" has 1 instance(s).
 Instance "sales", status READY, has 3 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:0 refused:0 state:ready
 LOCAL SERVER
 "D000" established:0 refused:0 current:0 max:10000 state:ready
 DISPATCHER <machine: helios, pid: 1689>
 (ADDRESS=(PROTOCOL=tcp)(HOST=helios)(PORT=52414))
 "D001" established:0 refused:0 current:0 max:10000 state:ready
 DISPATCHER <machine: helios, pid: 1691>
 (ADDRESS=(PROTOCOL=tcp)(HOST=helios)(PORT=52415))
The command completed successfully.

Note: Remember that PMON can take a minute to register the

dispatcher with the listener.
23-2 Oracle9i Database Performance Tuning Guide and Reference

Understanding Connection Models
Configuring the Initialization Parameter File

■ Make sure that the DISPATCHERS line is correctly set. For example:

DISPATCHERS = "(DESCRIPTION=(ADDRESS=(PROTOCOL=TCP)
 (HOST= hostname)(PORT=1492)(queuesize=32)))
 (DISPATCHERS = 1)
 (LISTENER = alias)
 (SERVICE = servicename)
 (SESSIONS = 1000)
 (CONNECTIONS = 1000)
 (MULTIPLEX = ON)
 (POOL = ON)
 (TICK = 5)"

One, and only one, of the following attributes is required:

■ PROTOCOL

■ ADDRESS

■ DESCRIPTION

ADDRESSand DESCRIPTIONprovide support for the specification of additional

network attributes beyond PROTOCOL. In the previous example, the entire

DISPATCHERS line can be (PROTOCOL=TCP). The attributes DISPATCHERS,
LISTENER, SERVICE, SESSIONS, CONNECTIONS, MULTIPLEX, POOL, and

TICKS are all optional.

■ Make sure that the optional MAX_DISPATCHERS line is correctly set. For

example:

MAX_DISPATCHERS = 4

This line should reflect the total number of dispatchers you want to start.

■ Make sure that the optional MAX_SHARED_SERVERS line is correctly set. For

example:

MAX_SHARED_SERVERS = 5

This line sets the upper bound on the total number of shared servers PMON can

create, based on the peak load of the system. This should be set high enough so

that all requests can be serviced, but not so high that the system swaps if they

See Also: Oracle9i Net Services Administrator’s Guide for

information on setting the output mode
Tuning Networks 23-3

Understanding Connection Models
are reached. The purpose of this parameter is to prevent the server from

swapping. Run the following script to see what the highwater mark is for the

number of servers running, and then set MAX_SHARED_SERVERS to more then

this.

SELECT maximum_connections "MAX CONN", servers_started "STARTED", servers_
terminated "TERMINATED", servers_highwater "HIGHWATER" FROM V$SHARED_SERVER_
MONITOR;

■ Make sure that the optional SHARED_SERVERS line is correctly set. For

example:

SHARED_SERVERS = 5

This is the total number of shared servers started when the database is started.

It also represents the total number of shared servers PMON tries to keep. It

should be the total number of servers expected to be used when the database is

active. MAX_SHARED_SERVERS is intended to handle peak load.

Checking the Connections Use the LSNRCTL control utility’s services command to

see if there are excessive connection refusals. Check the listener's log file to see if

this is a connection problem. For example:

LSNRCTL> services
Connecting to
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=helios)(PORT=1521)))
Services Summary...
Service "sales.us.acme.com" has 1 instance(s).
 Instance "sales", status READY, has 2 handler(s) for this service...
 Handler(s):
 "DEDICATED" established:11 refused:0 state:ready
 LOCAL SERVER
 "D000" established:565 refused:4 current:155 max:10000 state:ready
 DISPATCHER <machine: helios, pid: 5673>
 (ADDRESS=(PROTOCOL=tcp)(HOST=helios)(PORT=38411))
The command completed successfully.

Under normal conditions, the number refused should be zero. Shut down the

listener and restart it to erase these statistics. If the refused count is increasing after

the listener restarts, then the connections are being refused. If the refused count

stays at zero, and if the problem you are troubleshooting is occurring, then your

problem is not with the connections being refused.
23-4 Oracle9i Database Performance Tuning Guide and Reference

Understanding Connection Models
Checking the Connect/Second Rate Connection refusals can occur for many reasons.

Examine the listener log to see what the connect rate is. Run the listener log

analyzer script to check.

The listener is a queue-based process. It receives connect requests from the lower

level protocol stack. It has a limited queue stack which is configurable to the

operating system maximum. It can only process one connection at a time, and there

is a limit to the number of connections a second the process can handle.

If the rate at which the connect requests arrive exceeds that limit, then the requests

are queued. The queue stack is also limited, but you can configure it. If there are

more listener processes, then the requests made against each individual process are

fewer and are handled more quickly.

Increasing the listener queue is done in the listener .ora file. The listener .ora
file can contain many listeners, each by a different name. It is assumed that only one

of those listed is having a problem. If not, then apply this method to all applicable

listeners. To increase the listener queue, add (queuesize = number) to the

listener .ora file. For example:

listener =
 (address =
 (protocol = tcp)
 (host = sales-pc)
 (port = 1521)
 (queuesize = 20)
)

Stop and restart the listener to initialize this new parameter. If you are not currently

running a shared server configuration, then consider doing so. It is faster for the

listener to handle a client request in a shared server configuration than it is in a

dedicated server configuration.

See Also: Oracle9i Net Services Administrator’s Guide

Note: Shared server dispatchers also receive connect requests and

can also benefit from tuning the queue size.

The maximum queue size is subject to the maximum size possible

for a particular operating system.
Tuning Networks 23-5

Detecting Network Problems
Detecting Network Problems
This section encompasses local area network (LAN) and wide area network (WAN)

troubleshooting methods.

Using Dynamic Performance Views for Network Performance
Networks entail overhead that adds a certain amount of delay to processing. To

optimize performance, you must ensure that your network throughput is fast, and

you should try to reduce the number of messages that must be sent over the

network. It can be difficult to measure the delay the network adds.

Three dynamic performance views are useful for measuring the network delay:

■ V$SESSION_EVENT

■ V$SESSION_WAIT

■ V$SESSTAT

In V$SESSION_EVENT, the AVERAGE_WAIT column indicates the amount of time

that Oracle waits between messages. You can use this statistic as a yardstick to

evaluate the effectiveness of the network.

In V$SESSION_WAIT, the EVENT column lists the events for which active sessions

are waiting. The "sqlnet message from client" wait event indicates that the shared or

foreground process is waiting for a message from a client. If this wait event has

occurred, then you can check to see whether the message has been sent by the user

or received by Oracle.

You can investigate hang-ups by looking at V$SESSION_WAIT to see what the

sessions are waiting for. If a client has sent a message, then you can determine

whether Oracle is responding to it or is still waiting for it.

In V$SESSTAT you can see the number of bytes that have been received from the

client, the number of bytes sent to the client, and the number of calls the client has

made.

Understanding Latency and Bandwidth
The most critical aspects of a network that contribute to performance are latency

and bandwidth.

■ Latency refers to a time delay; for example, the gap between the time a device

requests access to a network and the time it receives permission to transmit.
23-6 Oracle9i Database Performance Tuning Guide and Reference

Detecting Network Problems
■ Bandwidth is the throughput capacity of a network medium or protocol.

Variations in the network signals can cause degradation on the network.

Sources of degradation can be cables that are too long or wrong cable type.

External noise sources, such as elevators, air handlers, or florescent lights, can

also cause problems.

Common Network Topologies
Local Area Network Topologies:

■ Ethernet

■ Fast Ethernet

■ 1 Gigabit Ethernet

■ Token Ring

■ FDDI

■ ATM

Wide Area Network Topologies:

■ DSL

■ ISDN

■ Frame Relay

■ T-1, T-3, E-1, E-3

■ ATM

■ SONAT

Table 23–1 lists the most common ratings for various topologies.

Table 23–1 Bandwidth Ratings

Topology or Carrier Bandwidth

Ethernet 10 Megabits/second

Fast Ethernet 100 Megabits/second

1 Gigabit Ethernet 1 Gigabits/second

Token Ring 16 Megabits/second

FDDI 100 Megabits/second
Tuning Networks 23-7

Solving Network Problems
Solving Network Problems
This section describes several techniques for enhancing performance and solving

network problems.

■ Finding Network Bottlenecks

■ Dissecting Network Bottlenecks

■ Using Array Interfaces

■ Adjusting Session Data Unit Buffer Size

■ Using TCP.NODELAY

■ Using Connection Manager

Finding Network Bottlenecks
The first step in solving network problem is to understand the overall topology.

Gather as much information about the network that you can. This kind of

information usually manifests itself as a network diagram. Your diagram should

contain the types of network technology used in the Local Area Network and the

ATM 155 Megabits/second (OC3), 622 Megabits/second (OC12)

T-1 (US only) 1.544 Megabits/second

T-3 (US only) 44.736 Megabits/second

E-1 (non-US) 2.048 Megabits/second

E-3 (non-US) 34.368 Megabits/second

Frame Relay Committed Information Rate, which can be up to the carrier speed,
but usually is not.

DSL This can be up to the carrier speed.

ISDN This can be up to the carrier speed. Usually, it is used with slower
modems.

Dial Up Modems 56 Kilobits/second. Usually, it is accompanied with data
compression for faster throughput.

See Also: Oracle9i Net Services Administrator’s Guide

Table 23–1 (Cont.) Bandwidth Ratings

Topology or Carrier Bandwidth
23-8 Oracle9i Database Performance Tuning Guide and Reference

Solving Network Problems
Wide Area Network. It should also contain addresses of the various network

segments.

Examine this information. Obvious network bottlenecks include the following:

■ Using a dial-up modem (normal modem or ISDN) to access time critical data.

■ A frame relay link is running on a T-1, but has a 9.6 Kilobits CIR so that it only

reliably transmits up to 9.6 Kilobit's a second and if the rest of the bandwidth is

used, then there is a possibly that the data will be lost.

■ Data from high speed networks channels through low speed networks.

■ There are too many network hops. A router constitutes one hop.

■ A 10 Megabit network for a Web site.

There are many problems that can cause a performance breakdown. Follow this

checklist:

■ Get a network sniffer trace.

■ Check the following:

■ Is the bandwidth being exceeded on the network, the client, or the server?

■ Ethernet collisions.

■ Token ring or FDDI ring beacons.

■ Are there many runt frames?

■ The stability of the WAN links.

■ Get a bandwidth utilization chart for frame relay, and see if CIR is being

exceeded.

■ Is any quality of service or packet prioritizing going on?

■ Is a firewall in the way somewhere?

If nothing is revealed, then find the network route from the client to the data server.

Understanding the travel times on a network gives you an idea as to the time a

transaction will take. Client-server communication requires many small packets.

High latency on a network slows the transaction down due to the time interval

between sending a request and getting the response.

Use trace route (trcroute or equivalent) from the client to the server to get

address information for each device in the path. For example:

tracert usmail05
Tuning Networks 23-9

Solving Network Problems
Tracing route to usmail05.us.oracle.com [144.25.88.200]over a maximum of 30
hops:
 1 <10 ms <10 ms 10 ms whq1davis-rtr-749-f1-0-a.us.oracle.com
[144.25.216.1]
 2 <10 ms <10 ms <10 ms whq4op3-rtr-723-f0-0.us.oracle.com
[144.25.252.23]
 3 220 ms 210 ms 231 ms usmail05.us.oracle.com [144.25.88.200]

Trace complete.

Ping each device in turn to get the timings. Use large packets to get the slowest

times. Make sure you set the "don't fragment bit" so that routers do not spend time

disassembling and reassembling the packet. Also note that the packet size is 1472.

This is for Ethernet. Ethernet packets are 1536 octets (actual 8 bit bytes) in size.

ICPM packets (this is what ping is designed to use) have 64 octets of header.

Evaluate the area where the slowness seems to occur. For example:

ping -l 1472 -n 1 -f 144.25.216.1
Pinging 144.25.216.1 with 1472 bytes of data:
Reply from 144.25.216.1: bytes=1472 time<10ms TTL=255

ping -l 1472 -n 1 -f 144.25.252.23
Pinging 144.25.252.23 with 1472 bytes of data:
Reply from 144.25.252.23: bytes=1472 time=10ms TTL=254

ping -l 1472 -n 1 -f 144.25.88.200
Pinging 144.25.88.200 with 1472 bytes of data:
Reply from 144.25.88.200: bytes=1472 time=271ms TTL=253

The previous example validates trace route. Ideally, you ping from the workstation

to 144.25.216.1, from 144.25.216.1 to 144.25.252.23, then from 144.25.252.23 to

144.25.88.200. This would show the exact latency on each segment traveled.

Dissecting Network Bottlenecks
This section helps you determine the problem with your network bottleneck.

Determining if the Problem is with Oracle Net or the Network
Oracle Net tracing reveals whether an error is Oracle-specific or due to conditions

that the operating system is passing to the Transparent Network Substrate (Oracle

TNS layer).

Enable Oracle Net tracing at the Oracle server, the listener, and at a client suspected

of having the problem you are trying to resolve.
23-10 Oracle9i Database Performance Tuning Guide and Reference

Solving Network Problems
To enable tracing at the server, find the sqlnet .ora file for the server and create

the following lines in it:

TRACE_TIMESTAMP_SERVER = ON
TRACE_LEVEL_SERVER = 16
TRACE_UNIQUE_SERVER = ON

To enable tracing at the client, find the sqlnet .ora file for the client and create the

following lines in it:

TRACE_TIMESTAMP_CLIENT = ON
TRACE_LEVEL_CLIENT = 16
TRACE_UNIQUE_CLIENT = ON

To enable tracing at the listener, find the listener .ora file and create the

following line in it:

TRACE_TIMESTAMP_listener_name = ON
TRACE_LEVEL_listener_name = 16

Reproduce the problem, so that you generate traces on the client and server. Now

analyze the traces generated.

If the problem is with the network and not Oracle Net, then you must determine the

following:

■ Does the problem only occur in one location on the local network?

■ Does the problem only occur in one area on the WAN?

For example, perhaps the system is fine in the building where the Data Center is

located, but it is slow in other buildings that are several miles away.

Note: The TRACE_TIMESTAMP_x parameters are optional, but

they should be included for better debugging

See Also:

■ Oracle9i Net Services Administrator’s Guide for detailed directions

on enabling Oracle Net tracing

■ Oracle9i Database Error Messages for definitions to Oracle Net

errors noted in the trace file
Tuning Networks 23-11

Solving Network Problems
Not all Oracle error codes represent pure Oracle troubles. ORA-3113 is the most

common error that points to an underlying network problem.

If you are getting an Oracle error message, then look into the trace file to find the

error. For troubleshooting bugs, Oracle Net trace analysis takes some time to fully

find the problem. However, high-level simple trace analysis is rather simple.

Determining if the Problem is on the Client or the Server (on Oracle Net)
If the problem is with Oracle Net, then use Oracle Net tracing to show you where

the problem lies. If there are errors in the trace files, then do they appear in only the

client traces, only in the server traces, or in both?

Errors Only in the Client Trace

The problem is on the client. However, if you are getting ORA-3113 or ORA-3114
errors, then the problem is on the server.

Errors Only in the Server Trace or Listener Trace

Note: Enabling tracing on the server can generate a large amount

of trace files. To prevent this, set up a separate environment that

traces itself. This configuration works for dedicated connections.

First, log in to the server's operating system as the Oracle software

owner. Create a temporary directory to keep configuration files and

trace files that will be created. Copy the sqlnet .ora ,

listener .ora , and tnsnames .ora to that directory. Edit the

sqlnet .ora file to enable tracing. Add to the sqlnet .ora file the

following line:

TRACE_DIRECTORY_SERVER =temporary_directory_just_created

Now, modify the listener .ora file and change the listening port

(for TCP, other protocols, use a similar technique) to an unused

port. You need to make a similar modification to the client's

tnsnames .ora file for the connect string you will be using for this

test.

Set the TNS_ADMIN environment to point to the temporary

directory. Start the listener. Now all new connections to the new

listener send Server traces to this directory. Reproduce the problem.
23-12 Oracle9i Database Performance Tuning Guide and Reference

Solving Network Problems
The problem is on the server. However, if you are getting ORA-3113 or ORA-3114
errors, then the problem is on the client.

Errors in All: Client, Server, and Listener Trace

If you are getting ORA-3113 or ORA-3114 errors, then the problem is on the

Network. Troubleshoot the server first. If it is fine, then the client is at fault.

Checking if the Server is Configured for Shared Servers
The shared server architecture can be more complex to troubleshoot. Check the

initialization parameter file for any shared server parameters. Look at the operating

system to see if any of the shared server processes are present.

Check for dispatchers by looking for names such as ora_d000 , ora_d001 , and so

on. For example:

ps -ef | grep ora_d

Check for shared servers by looking for names such as ora_s000 , ora_s001 , and

so on. For example:

ps -ef | grep ora_s

Using Array Interfaces
Reduce network calls by using array interfaces. Instead of fetching one row at a

time, it is more efficient to fetch 10 rows with a single network round trip.

Adjusting Session Data Unit Buffer Size
Before sending data across the network, Oracle Net buffers data into the Session

Data Unit (SDU). It sends the data stored in this buffer when the buffer is full or

when an application tries to read the data. When large amounts of data are being

See Also:

■ "Shared Server Configuration" on page 23-2 for more

information on tuning the shared server

■ Oracle9i Database Concepts and Oracle9i Net Services
Administrator’s Guide for more information on shared server

concepts and parameters

See Also: Oracle Call Interface Programmer’s Guide for more

information on array interfaces
Tuning Networks 23-13

Solving Network Problems
retrieved and when packet size is consistently the same, it might speed retrieval to

adjust the default SDU size.

Optimal SDU size depends on the normal transport size. Use a sniffer to find out

the frame size, or set tracing on to its highest level to check the number of packets

sent and received and to determine whether they are fragmented. Tune your system

to limit the amount of fragmentation.

Use Oracle Net Configuration Assistant to configure a change to the default SDU

size on both the client and the server; SDU size is generally the same on both.

Using TCP.NODELAY
When a session is established, Oracle Net packages and sends data between server

and client using packets. The TCP.NODELAY parameter, which causes packets to be

flushed on to the network more frequently, is enabled by default. Although Oracle

Net supports many networking protocols, TCP tends to have the best scalability.

Using Connection Manager
In Oracle Net, you can use the Connection Manager to conserve system resources

by multiplexing. Multiplexing means funneling many client sessions through a

single transport connection to a server destination. This way, you can increase the

number of sessions that a process can handle. This applies only to shared server

configurations. Alternately, you can use Connection Manager to control client access

to dedicated servers. Connection Manager provides multiple protocol support

allowing a client and server with different networking protocols to communicate.

See Also: Oracle9i Net Services Administrator’s Guide

See Also: Your platform-specific Oracle documentation for more

information on TCP.NODELAY

See Also: Oracle9i Net Services Administrator’s Guide for more

information on Connection Manager
23-14 Oracle9i Database Performance Tuning Guide and Reference

Part VI

 Performance-Related Reference

Information

Part VI provides reference information regarding dynamic performance views and

wait events.

The chapters in this part are:

■ Chapter 24, "Dynamic Performance Views for Tuning"

Dynamic Performance Views
24

Dynamic Performance Views for Tuning

This chapter provides detailed information on some of the dynamic views that can

help you tune your system and investigate performance problems.

The topics discussed in this chapter are:

■ Dynamic Performance Tables

■ Description of Dynamic Performance Views

See Also: Oracle9i Database Reference for a complete list of the

dynamic performance views and their columns
 for Tuning 24-1

Dynamic Performance Tables
Dynamic Performance Tables
Throughout its operation, Oracle maintains a set of virtual tables that record current

database activity. These tables are created by Oracle and are called dynamic

performance tables.

Database administrators can query and create views on the tables and grant access

to those views to other users. These views are called fixed views because they

cannot be altered or removed by the database administrator.

SYS owns the dynamic performance tables. By default, they are available only to

the user SYS and to users granted SELECT ANY TABLE system privilege, such as

SYSTEM. Their names all begin with V_$. Views are created on these tables, and

then public synonyms are created for the views. The synonym names begin

with V$.

Each view belongs to one of the following categories:

■ Current State Views

■ Counter/Accumulator Views

■ Information Views

Current State Views
The views listed in Table 24–1 give a picture of what is currently happening on the

system.

Counter/Accumulator Views
These views keep track of how many times some activity has occurred since

instance/session startup. Select from the view directly to see activity since startup.

Table 24–1 Current State Views

Fixed View Description

V$LOCK Locks currently held/requested on the instance

V$LATCHHOLDER Sessions/processes holding a latch

V$OPEN_CURSOR Cursors opened by sessions on the instance

V$SESSION Sessions currently connected to the instance

V$SESSION_WAIT Different resources sessions are currently waiting for
24-2 Oracle9i Database Performance Tuning Guide and Reference

Dynamic Performance Tables
If you are interested in activity happening in a given time interval, then take a

snapshot before and after the time interval, and the delta between the two

snapshots provides the activity during that time interval. This is similar to how

operating system utilities like sar, vmstat, and iostat work. Tools provided by

Oracle, like Statspack and BSTAT/ESTAT, do this delta to provide a report of

activity in a given interval.

Note: Snapshots should be taken during steady-state, not

immediately after system startup. Extra overhead is incurred

during system ramp-up, which may not accurately reflect the

performance of the system at steady-state.

Table 24–2 Summary Since Session Startup

Fixed View Description

V$DB_OBJECT_CACHEObject level statistics in shared pool

V$FILESTAT File level summary of the I/O activity

V$LATCH Latch activity summary

V$LATCH_CHILDREN Latch activity for child latches

V$LIBRARYCACHE Namespace level summary for shared pool

V$LIBRARY_CACHE_
MEMORY

Summary of the current memory use of the library
cache, by library cache object type

V$MYSTAT Resource usage summary for your own session

V$ROLLSTAT Rollback segment activity summary

V$ROWCACHE Data dictionary activity summary

V$SEGMENT_
STATISTICS

User-friendly DBA view for real-time monitoring of
segment-level statistics

V$SEGSTAT High-efficiency view for real-time monitoring of
segment-level statistics

V$SESSION_EVENT Session-level summary of all the waits for current
sessions

V$SESSTAT Session-level summary of resource usage since
session startup

V$LIBRARY_CACHE_
MEMORY

Simulation of the shared pool's LRU list mechanism
Dynamic Performance Views for Tuning 24-3

Dynamic Performance Tables
Information Views
In information views, the information is not as dynamic as in the current state view.

Hence, it does not need to be queried as often as the current state views.

V$SQL Child cursor details for V$SQLAREA

V$SQLAREA Shared pool details for statements/anonymous
blocks

V$SYSSTAT Summary of resource usage

V$SYSTEM_EVENT Instance wide summary of resources waited for

V$UNDOSTAT Histogram of undo usage. Each row represents a
10-minute interval.

V$WAITSTAT Break down of buffer waits by block class

Table 24–3 Information Views

Fixed View Description

V$MTTR_TARGET_
ADVICE

Advisory information collected by MTTR advisory,
when FAST_START_MTTR_TARGET is set

V$PARAMETER and
V$SYSTEM_
PARAMETER

Parameters values for your session

Instance wide parameter values

V$PROCESS Server processes (background and foreground)

V$SEGSTAT_NAME Statistics property view for segment-level statistics

V$SQL_PLAN Execution plan for cursors that were recently
executed

V$SQL_PLAN_
STATISTICS

Execution statistics of each operation in the
execution plan

V$SQL_PLAN_
STATISTICS_ALL

Concatenates information in V$SQL_PLAN with
execution statistics from V$SQL_PLAN_
STATISTICS and V$SQL_WORKAREA

V$SQLTEXT SQL text of statements in the shared pool

V$STATISTICS_
LEVEL

Status of the statistics or advisories controlled by the
STATISTICS_LEVEL initialization parameter

Table 24–2 (Cont.) Summary Since Session Startup

Fixed View Description
24-4 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
Description of Dynamic Performance Views
This section discusses the details of some of the dynamic performance views.

V$DB_OBJECT_CACHE
This view provides object level statistics for objects in the library cache (shared

pool). This view provides more details than V$LIBRARYCACHE and is useful for

finding active objects in the shared pool.

Useful Columns for V$DB_OBJECT_CACHE
Most of the columns of this table provide current state information.

■ OWNER: Object owner

■ NAME: Object name (First 1000 characters of SQL text for anonymous

blocks/cursors)

■ TYPE: Type of object (for example, sequence, procedure, function, package,

package body, trigger)

■ KEPT: Tells if the object is pinned in the shared pool (yes, no)

■ SHARABLE_MEM: Amount of sharable memory used

■ PINS: Sessions currently executing this object

■ LOCKS: Sessions currently locking this object

Instantaneous State Columns
The following columns keep statistics on the object since its first load:

■ LOADS: Number of times this object had to be loaded

■ INVALIDATIONS : Number of times this object was invalidated

Example 24–1 Summary of Shared Pool Executions and Memory Usage

The following query shows the distribution of shared pool memory across different

type of objects. It also shows if any of the objects have been pinned in the shared

pool using the procedure DBMS_SHARED_POOL.KEEP().

SELECT type, kept, COUNT(*), SUM(sharable_mem)
FROM V$DB_OBJECT_CACHE
GROUP BY type, kept;
Dynamic Performance Views for Tuning 24-5

Description of Dynamic Performance Views
Example 24–2 Finding Objects with Large Number of Loads

SELECT owner, name sharable_mem, kept, loads
FROM V$DB_OBJECT_CACHE
WHERE loads > 1
OR invalidations > 0
ORDER BY loads DESC;

Example 24–3 Finding Large Unpinned Objects

The following query finds all objects using large amounts of memory. They can be

pinned using DBMS_SHARED_POOL.KEEP().

SELECT owner, name, sharable_mem, kept
FROM V$DB_OBJECT_CACHE
WHERE sharable_mem > 102400
AND kept = ‘NO’
ORDER BY sharable_mem DESC;

V$FILESTAT
This view keeps information on physical I/O activity for each file. This is useful in

isolating where the I/O activity is happening if the bottleneck is I/O related.

V$FILESTAT shows the following information for database I/O (but not for log file

I/O):

■ Number of physical reads and writes

■ Number of blocks read and written

■ Total I/O time for reads and writes

The numbers reflect activity since the instance startup. If two snapshots are taken,

then the differences in the statistics provides the I/O activity for the time interval.

Useful Columns for V$FILESTAT
■ FILE# : Number of the file

■ PHYRDS: Number of physical reads done

■ PHYBLKRD: Number of physical blocks read

■ PHYWRTS: Number of physical writes done

■ PHYBLKWRT: Number of physical blocks written
24-6 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
Notes on V$FILESTAT
■ Physical reads and blocks read can be different because of multiblock read calls.

■ Physical writes and blocks written can differ because of direct writes by

processes.

■ Sum(Physical blocks read) should correlate closely with physical reads from

V$SYSSTAT.

■ Sum(Physical blocks written) should correlate closely with physical writes
from V$SYSSTAT.

■ Reads (into buffer cache as well as direct reads) are done by server processes.

Writes from buffer cache are handled only by the DBWR. The direct writes are

handled by the server processes.

Join Columns for V$FILESTAT
Table 24–4 lists the join columns for V$FILESTAT.

Example 24–4 Checking Oracle Datafile I/O

The following query monitors the values of physical reads and physical writes over

some period of time while your application is running:

SELECT NAME, PHYRDS, PHYWRTS
FROM V$DATAFILE df, V$FILESTAT fs
WHERE df.FILE# = fs.FILE#;

The preceding query also retrieves the name of each datafile from the dynamic

performance view V$DATAFILE. Sample output might look like the following:

NAME PHYRDS PHYWRTS
-- ---------- ----------
/oracle/ora81/dbs/ora_system.dbf 7679 2735
/oracle/ora81/dbs/ora_temp.dbf 32 546

The PHYRDS and PHYWRTS columns of V$FILESTAT can also be obtained through

SNMP.

Table 24–4 Join Columns for V$FILESTAT

Column View Joined Column(s)

FILE# DBA_DATA_FILES FILE_ID
Dynamic Performance Views for Tuning 24-7

Description of Dynamic Performance Views
The total I/O for a single disk is the sum of PHYRDS and PHYWRTS for all the

database files managed by the Oracle instance on that disk. Determine this value for

each of your disks. Also, determine the rate at which I/O occurs for each disk by

dividing the total I/O by the interval of time over which the statistics were

collected.

Example 24–5 Finding the Files with Large Numbers of Multiblock Reads

The following example is useful for finding tablespaces that might be getting hit by

large number of scans.

SELECT t.tablespace_name
 ,SUM(a.phyrds-b.phyrds)
 /MAX(86400*(a.snap_date-b.snap_date)) "Rd/sec"
 ,SUM(a.phyblkrd-b.phyblkrd)
 /greatest(SUM(a.phyrds-b.phyrds),1) "Blk/rd"
 ,SUM(a.phywrts-b.phywrts)
 /MAX(86400*(a.snap_date-b.snap_date)) "Wr/sec"
 ,SUM(a.phyblkwrt-b.phyblkwrt)
 /greatest(SUM(a.phywrts-b.phywrts),1) "Blk/wr"
 FROM snap_filestat a, snap_filestat b, dba_data_files t
 WHERE a.file# = b.file#
 AND a.snap_id = b.snap_id + 1
 AND t.file_id = a.file#
 GROUP BY t.tablespace_name
HAVING sum(a.phyblkrd-b.phyblkrd)
 /greatest(SUM(a.phyrds-b.phyrds),1) > 1.1
 OR SUM(a.phyblkwrt-b.phyblkwrt)
 /greatest(SUM(a.phywrts-b.phywrts),1) > 1.1
 ORDER BY 3 DESC, 5 DESC;

TABLESPACE_N Rd/sec Blk/rd Wr/sec Blk/wr
------------ ------ ------ ------ ------
TEMP 2.3 19.7 1.9 24.7
AP_T_02 287.1 7.8 .0 1.0

Note: Although Oracle records read and write times accurately, a

database that is running on Unix file system (UFS) might not reflect

true disk accesses. For example, the read times might not reflect a

true disk read, but rather a UFS cache hit. However, read and write

times should be accurate for raw devices. Additionally, write times

are only recorded for each batch, with all blocks in the same batch

given the same time after the completion of the write I/O.
24-8 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
AP_T_01 12.9 4.0 .2 1.0
APPLSYS_T_01 63.3 2.2 .4 1.0
PO_T_01 313.5 2.1 .2 1.0
RECEIVABLE_T 401.0 1.5 2.4 1.0
SHARED_T_01 9.2 1.3 .4 1.0
SYSTEM 45.2 1.3 .3 1.0
PER_T_01 48.0 1.2 .0 .0
DBA_T_01 .2 1.0 .4 1.4

You can see that most of the multiblock reads and writes are going to TEMP
tablespace, due to large sorts going to disk. Other tablespaces are getting multiblock

reads due to full table scans.

V$LATCH
This view keeps a summary of statistics for each type of latch since instance startup.

It is useful for identifying the area within SGA experiencing problems when latch

contention is observed in V$SESSION_WAIT.

Useful Columns for V$LATCH
■ NAME: Latch name

■ IMMEDIATE_GETS: Requests for the latch in immediate mode

■ IMMEDIATE_MISSES: IMMEDIATE_GETS that failed

■ GETS: Requests for the latch in a willing to wait mode

■ MISSES: GETS that did not obtain the latch on first try

■ SPIN_GETS: GETSthat got the latch within SPIN_GETtries and did not have to

sleep

■ SLEEP1-SLEEP3: GETS that succeeded only after sleeping one to three times

■ SLEEP4: GETS that only succeeded after sleeping four or more times

■ WAIT_TIME: Elapsed time spent waiting for this latch

■ MISSES_WAITLIST: Number of latch misses on the associated wait list latch

■ SLEEPS_WAITLIST: Number of sleeps while trying to acquire the associated

wait list latch

See Also: Chapter 20, "Oracle Tools to Gather Database Statistics"

for an example of how to gather file I/O data.
Dynamic Performance Views for Tuning 24-9

Description of Dynamic Performance Views
■ WAIT_TIME_WAITLIST : Wait time for the associated wait list latch

Join Columns for V$LATCH
Table 24–5 lists the join columns for V$LATCH.

Example 24–6 Querying V$LATCH

In the following example, a table is created to hold data queried from V$LATCH:

CREATE TABLE snap_latch as
SELECT 0 snap_id, sysdate snap_date, a.*
 FROM V$LATCH a;
 ALTER TABLE snap_latch add
 (constraint snap_filestat primary key (snap_id, name));

Initially, the snap_id has been set to 0. After some interval of time, the snap_
latch table is updated with the snap_id set to 1:

INSERT INTO snap_latch
SELECT 1, sysdate, a.*
 FROM V$LATCH a;

Note that you must increment the snap_id each time you use the previous SQL

statement to insert records.

After you inserted records for consecutive intervals, use the following SELECT

statement to displays statistics. Note that zero is substituted when there is an

attempt to divide by zero.

SELECT SUBSTR(a.name,1,20) NAME, (a.gets-b.gets)/1000 "Gets(K)",
 (a.gets-b.gets)/(86400*(a.snap_date-b.snap_date)) "Get/s",
 DECODE ((a.gets-b.gets), 0, 0, (100*(a.misses-b.misses)/(a.gets-b.gets))) MISS,
 DECODE ((a.misses-b.misses), 0, 0,

Table 24–5 Join Columns for V$LATCH

Column View Joined Column(s)

NAME V$LATCH_CHILDREN

V$LATCHHOLDER

V$LATCHNAME

NAME

NAME V$LATCH_MISSES PARENT_NAME

LATCH# V$LATCH_CHILDREN

V$LATCHNAME

LATCH#
24-10 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
 (100*(a.spin_gets-b.spin_gets)/(a.misses-b.misses))) SPIN,
 (a.immediate_gets-b.immediate_gets)/1000 "Iget(K)",
 (a.immediate_gets-b.immediate_gets)/ (86400*(a.snap_date-b.snap_date)) "IGet/s",
 DECODE ((a.immediate_gets-b.immediate_gets), 0, 0,
 (100*(a.immediate_misses-b.immediate_misses)/ (a.immediate_gets-b.immediate_gets))) IMISS
 FROM snap_latch a, snap_latch b
 WHERE a.name = b.name
 AND a.snap_id = b.snap_id + 1
 AND ((a.misses-b.misses) > 0.001*(a.gets-b.gets)
 or (a.immediate_misses-b.immediate_misses) >
 0.001*(a.immediate_gets-b.immediate_gets))
ORDER BY 2 DESC;

Before running the previous SQL statement, you may want to specify various

display formatting setups, such as:

SET LIN 120
SET PAGES 60
SET NUMFORMAT 999999.9

Example 24–7 Sample Latch Statistics

The following example output shows the latch statistics obtained by doing a delta

over a period of one hour as was done with the V$FILESTAT numbers. Those

latches that had misses less than 0.1% of the gets have been filtered out.

NAME Gets(K) Get/s MISS SPIN IGets(K) IGet/s IMISS
------------------ -------- ------- ----- ------ -------- ------- -----
cache buffers chai 255,272 69,938 0.4 99.9 3,902 1,069 0.0
library cache 229,405 62,851 9.1 96.9 51,653 14,151 3.7
shared pool 24,206 6,632 14.1 72.1 0 0 0.0
latch wait list 1,828 501 0.4 99.9 1,836 503 0.5
row cache objects 1,703 467 0.7 98.9 1,509 413 0.2
redo allocation 984 270 0.2 99.7 0 0 0.0
messages 116 32 0.2 100.0 0 0 0.0
cache buffers lru 91 25 0.3 99.0 7,214 1,976 0.3
modify parameter v 2 0 0.1 100.0 0 0 0.0
redo copy 0 0 92.3 99.3 1,460 400 0.0

When examining latch statistics, look at the following:

■ What is the ratio of misses/gets?

■ What percentage of misses are obtained by just spinning?

■ How many times was the latch requested?
Dynamic Performance Views for Tuning 24-11

Description of Dynamic Performance Views
■ How many sleeps were on the latch?

There seems to be a lot of contention for the redo copy latch with a 92.3 percent miss

rate. But, look carefully. Redo copy latches are obtained mostly in immediate mode.

The numbers for immediate gets look fine, and the immediate gets are several

orders of magnitude bigger than the willing to wait gets. So, there is no contention

for redo copy latches.

However, there does seem to be contention for the shared pool and library cache

latches. Consider running a query that checks the sleeps for these latches to see if

there is actually a problem, such as the following output:

NAME Gets(K) Get/s MISS SPIN SL01 SL02 SL03 SL04
------------------ -------- ------- ----- ------ ----- ----- ----- -----
cache buffers chai 255,272 69,938 0.4 99.9 0.1 0.0 0.0 0.0
library cache 229,405 62,851 9.1 96.9 3.0 0.1 0.0 0.0
shared pool 24,206 6,632 14.1 72.1 22.4 4.8 0.8 0.0
latch wait list 1,828 501 0.4 99.9 0.1 0.0 0.0 0.0
row cache objects 1,703 467 0.7 98.9 0.6 0.0 0.4 0.0
redo allocation 984 270 0.2 99.7 0.1 0.0 0.2 0.0
messages 116 32 0.2 100.0 0.0 0.0 0.0 0.0
cache buffers lru 91 25 0.3 99.0 1.0 0.0 0.0 0.0
modify parameter v 2 0 0.1 100.0 0.0 0.0 0.0 0.0
redo copy 0 0 92.3 99.3 0.0 0.7 0.0 0.0

You can see that there is a 14% miss rate on the shared pool latches. 72% of the

missed latched without relinquishing the CPU (having to sleep even once) by

spinning. There are some misses for which you have to sleep multiple times.

Investigate why the shared pool latch is needed so many times. Look at the SQL

being run by sessions holding or waiting for the latch, as well as the resource usage

characteristics of the system. Compare them with baselines when there was no

problem.

Tuning Latches
Do not tune latches. If you see latch contention, then it is a symptom of a part of

SGA experiencing abnormal resource usage. Latches control access with certain

assumptions (for example, a cursor is parsed once and executed many times). To fix

the problem, examine the resource usage for the parts of SGA experiencing

contention. Merely looking at V$LATCH does not address the problem.

See Also: Oracle9i Database Concepts for more information on

latches
24-12 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$LATCH_CHILDREN
There are multiple latches in the database for some type of latches. V$LATCH
provides aggregate summary for each type of latch. To look at individual latches,

query the V$LATCH_CHILDREN view.

Example 24–8 Finding the Number of Multiple Latches on the System

SELECT name, count(*)
 FROM v$latch_children
 ORDER BY count(*) desc;

NAME COUNT(*)
-- ----------
global tx hash mapping 2888
global transaction 2887
cache buffers chains 2048
latch wait list 32
Token Manager 23
enqueue hash chains 22
session idle bit 22
redo copy 22
process queue reference 20
Checkpoint queue latch 11
library cache 11
msg queue latch 11
session queue latch 11
process queue 11
cache buffers lru chain 11
done queue latch 11
channel operations parent latch 4
session switching 4
message pool operations parent latch 4
ksfv messages 2
parallel query stats 2
channel handle pool latch 1
temp table ageout allocation latch 1

V$LATCHHOLDER
This view is useful to see if the session holding the latch is changing. Most of the

time, the latch is held for such a small time that it is impossible to join to some other

table to see the SQL statement being executed or the events that latch holder is

waiting for.
Dynamic Performance Views for Tuning 24-13

Description of Dynamic Performance Views
This latch is useful in finding sessions that might be holding latches for a significant

amount of time.

Join Columns for V$LATCHHOLDER
Table 24–6 lists the join columns for V$LATCHHOLDER.

Example 24–9 Finding the SQL Statement Executed by the Latch Holder

SELECT s.sql_hash_value, l.name
 FROM V$SESSION s, V$LATCHHOLDER l
WHERE s.sid = l.sid;

SQL_HASH_VALUE NAME
-------------- --
 299369270 library cache
 1052917712 library cache
 3198762001 library cache
SQL> /

SQL_HASH_VALUE NAME
-------------- --
 749899113 cache buffers chains
 1052917712 library cache
SQL> /

SQL_HASH_VALUE NAME
-------------- --
 1052917712 library cache
SQL> /

SQL_HASH_VALUE NAME
-------------- --

Table 24–6 Join Columns for V$LATCHHOLDER

Column View Joined Column(s)

LADDR V$LATCH_CHILDREN ADDR

NAME V$LATCH,
V$LATCHNAME,
V$LATCH_CHILDREN

NAME

PID V$PROCESS PID

SID V$SESSION SID
24-14 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
 749899113 library cache
 1052917712 library cache

This example indicates that the SQL statement 1052917712 is using a lot of parsing

resources. The next step is to find the resources used by the session and examine the

statement.

V$LIBRARYCACHE
This view has a namespace level summary for the objects in library cache since

instance startup. When experiencing performance issues related to the library cache,

this view can help identify the following:

■ Specific parts (namespace) of the library cache (shared pool)

■ Possible causes of problems

Then use VDB_OBJECT_CACHE, VSQLAREA to get more details.

Useful Columns for V$LIBRARYCACHE
■ NAMESPACE: Class of objects (SQL area, trigger, and so on)

■ GETS: Handle requests for objects of this namespace

■ GETHITS: Requests that found handle in the cache

■ PINS: PIN requests for objects of this namespace

■ PINHITS : Requests able to reuse an existing PIN

■ RELOADS: Number of times objects stored in the library cache had to be

reloaded into memory because part of the object had been flushed from the

cache. If there are a significant number of reloads, then reusable information is

being flushed from the library cache. This requires a reload/rebuild of the

object before it can again be accessed.

■ INVALIDATIONS : The number of times objects were invalidated. For example,

an object is invalidated automatically by Oracle when it is no longer safe to

execute. For example, if the optimizer statistics for a table were recomputed,

then all SQL statements currently in the library cache at the time the recompute

occurred would be invalidated, because their execution plans may no longer be

optimal.

GETHITRATIO (GETHITS/GETS) and GETPINRATIO(PINHITS /PINS) can be used

if just examining activity since instance startup. If examining activity over a
Dynamic Performance Views for Tuning 24-15

Description of Dynamic Performance Views
specified time interval, it is better to compute these from the differences in

snapshots before and after the interval.

Example 24–10 Querying V$LIBRARYCACHE

SELECT namespace, gets, 100*gethits/gets gethitratio,
 pins, 100* pinhits/pins getpinratio,
 reloads, invalidations
 FROM V$LIBRARYCACHE
 ORDER BY gets DESC

Look for the following when querying this view:

■ High RELOADS or INVALIDATIONS

■ Low GETHITRATIO or GETPINRATIO

High number of RELOADS could be due to the following:

■ Objects being invalidated (large number of INVALIDATIONS)

■ Objects getting swapped out of memory

Low GETHITRATIO could indicate that objects are getting swapped out of memory.

Low PINHITRATIO could indicate the following:

■ Session not executing the same cursor multiple times (even though it might be

shared across different sessions)

■ Session not finding the cursor shared

The next step is to query VDB_OBJECT_CACHE/VSQLAREA to see if problems are

limited to certain objects or spread across different objects. If invalidations are high,

then it might be worth investigating which of the (invalidated object’s) underlying

objects are being changed.

V$LIBRARY_CACHE_MEMORY
This fixed view summarizes the current memory use of the library cache, by library

cache object type. The view can be queried often, without increasing library cache

latch contention. Column descriptions are listed in Table 24–7.

Table 24–7 V$LIBRARY_CACHE_MEMORY Column Description

Column Name Datatype Column Description

libcache_object_name char(24) Name of the library cache object type
24-16 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$LOCK
This view has a row for every lock held or requested on the system. You should

examine this view if you find sessions waiting for the wait event enqueue . If you

find sessions waiting for a lock, then the sequence of events could be the following:

1. Use V$LOCK to find the sessions holding the lock.

2. Use V$SESSION to find the SQL statements being executed by the sessions

holding the lock and waiting for the lock.

3. Use V$SESSION_WAIT to find what the session holding the lock is blocked on.

4. Use V$SESSION to get more details about the program and user holding the

lock.

Useful Columns for V$LOCK
■ SID : Identifier of the session holding/requesting the lock

■ TYPE: Type of lock

■ LMODE: Lock mode in which the session holds the lock

■ REQUEST: Lock mode in which the session requests the lock

■ ID1 , ID2 : Lock resource identifiers

Common Lock Types
Several common locks are described in this section.

libcache_pinned_memory number Amount of library cache memory pinned
for all library cache objects of this type

libcache_pinned_count number Number of library cache objects of this
type currently pinned

libcache_unpinned_memory number Amount of library cache memory
unpinned for all library cache objects of
this type

libcache_unpnned_count number Number of library cache objects of this
type currently unpinned

Table 24–7 V$LIBRARY_CACHE_MEMORY Column Description

Column Name Datatype Column Description
Dynamic Performance Views for Tuning 24-17

Description of Dynamic Performance Views
TX: Row Transaction Lock
■ This lock is required in exclusive mode (mode 6) to change data.

■ One lock is acquired for each active transaction. It is released when the

transaction ends due to a commit or rollback.

■ If a block containing the row(s) to be changed does not have any ITL (interested

transaction list) entries left, then the session requests the lock in shared mode

(mode 4). It is released when the session gets an ITL entry for the block.

■ If any of the rows to be changed are locked by another session, then locking

session’s transaction lock is requested in exclusive mode. When the locking

transaction ends, this request ends, and the rows are covered under the

requesting session’s existing TX lock.

■ The lock points to the rollback segment and transaction table entries for the

transaction.

Do the following to avoid contention on this enqueue:

■ To avoid contention on TX-6 enqueues, review the application.

■ To avoid contention on TX-4 enqueues, consider increasing INITRANS for the

object.

TM: DML Lock

■ This lock is required in exclusive mode for executing any DDL statements on a

database object; for example, lock table in exclusive mode, alter table, drop

table.

■ This lock is also acquired in shared mode when executing DML statements such

as INSERT, UPDATE, or DELETE. This prevents other sessions from executing a

DDL statement on the same object concurrently.

■ For every object whose data is being changed, a TM lock is required.

■ The lock points to the object.

To avoid contention on TM enqueues, consider disabling the table lock for the

object. Disabling the table lock prevents any DDL from executing on the object.

ST - Space Transaction Lock

■ There is only one lock for each database (not instance).

■ This lock is required in exclusive mode for any space management activity

(creation or dropping any extents) except with locally managed tablespaces.
24-18 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ Object creation, dropping, extension, and truncation all serialize on this lock.

■ Most common causes for contention on this lock are sorting to disk (not using

true temporary tablespaces) or rollback segment extension and shrinking.

Do the following to avoid contention on this enqueue:

■ Use true temporary tablespaces, utilizing tempfiles. Temporary segments are

not created and dropped after every sort to disk.

■ Use locally managed tablespaces

■ Size rollback segments to avoid dynamic extension and shrinking, or use

automatic undo management.

■ Avoid application practices that create and drop database objects.

UL - User Defined Locks

Users can define their own locks.

Common Modes for Request/Lmode
■ 0: None

■ 2: Row Share: used for shared DML locks

■ 4: Share: used for shared TX when waiting for ITL entry

■ 6: Exclusive used for row level, DML locks

Any row in V$LOCK either has LMODE=0 (indicating it is a request) or REQUEST=0
(indicating it is a held lock).

Resource Identifier ID1
For DML locks, ID1 is the object_id.

For TX locks, ID1 points to the rollback segment and transaction table entry.

Join Columns for V$LOCK
Table 24–8 lists the join columns for V$LOCK.

See Also: Oracle9i Database Concepts for more information on

locks
Dynamic Performance Views for Tuning 24-19

Description of Dynamic Performance Views
1. This is used to find the session holding the lock, if a session is waiting for a

lock.

2. This can be used to find the locked object for DML locks (type = ‘TM’).

3. This can be used to find the rollback segment in use for row transaction locks

(TYPE = ‘TX’). However, a less cryptic join might be through V$TRANSACTION.

Example 24–11 Finding the Sessions Holding the Lock

Find the (ID1, ID2, type) for sessions waiting for a lock (LMODE=0).

Find the session holding the lock (REQUEST=0) for that ID1, ID2, type.

SELECT lpad(' ',DECODE(request,0,0,1))||sid sess, id1, id2, lmode, request, type
FROM V$LOCK
 WHERE id1 IN (SELECT id1 FROM V$LOCK WHERE lmode = 0)
 ORDER BY id1,request

SID ID1 ID2 LMODE REQUEST TY
------ ---------- ---------- ---------- ---------- --
1237 196705 200493 6 0 TX <- Lock Holder
 1256 196705 200493 0 6 TX <- Lock Waiter
 1176 196705 200493 0 6 TX <- Lock Waiter
938 589854 201352 6 0 TX <- Lock Holder
 1634 589854 201352 0 6 TX <- Lock Waiter

Example 24–12 Finding the Statements being Executed by These Sessions

SELECT sid, sql_hash_value
FROM V$SESSION
WHERE SID IN (1237,1256,1176,938,1634);

SID SQL_HASH_VALUE
----- --------------
 938 2078523611 <-Holder

Table 24–8 Join Columns for V$LOCK

Column View Joined Column(s)

SID V$SESSION SID

ID1, ID2, TYPE V$LOCK ID1, ID2, TYPE

ID1 DBA_OBJECTS OBJECT_ID

TRUNCID1/65536) V$ROLLNAME USN
24-20 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
 1176 1646972797 <-Waiter
 1237 3735785744 <-Holder
 1256 1141994875 <-Waiter
 1634 2417993520 <-Waiter

Example 24–13 Finding the Text for These SQL Statements

HASH_VALUE SQL_TEXT
---------- --
1141994875 SELECT TO_CHAR(CURRENT_MAX_UNIQUE_IDENTIFIER + 1) FROM PO_UNI
 QUE_IDENTIFIER_CONTROL WHERE TABLE_NAME = DECODE(:b1,'RFQ','PO_
 HEADERS_RFQ','QUOTATION','PO_HEADERS_QUOTE','PO_HEADERS') FOR UP
 DATE OF CURRENT_MAX_UNIQUE_IDENTIFIER
1646972797 SELECT TO_CHAR(CURRENT_MAX_UNIQUE_IDENTIFIER + 1) FROM PO_UNI
 QUE_IDENTIFIER_CONTROL WHERE TABLE_NAME = 'PO_HEADERS' FOR UPD
 ATE OF CURRENT_MAX_UNIQUE_IDENTIFIER
2078523611 select CODE_COMBINATION_ID, enabled_flag, nvl(to_char(start_da
 te_active, 'J'), -1), nvl(to_char(end_date_active, 'J'), -1), S
 EGMENT2||'.'||SEGMENT1||'.'||||SEGMENT6,detail_posting_allowed_f
 lag,summary_flag from GL_CODE_COMBINATIONS where CHART_OF_ACCO
 UNTS_ID = 101 and SEGMENT2 in ('000','341','367','388','389','4
 52','476','593','729','N38','N40','Q21','Q31','U21') order by S
 EGMENT2, SEGMENT1, SEGMENT6
2417993520 select 0 into :b0 from pa_projects where project_id=:b1 for upd
 ate
3735785744 begin :X0 := FND_ATTACHMENT_UTIL_PKG.GET_ATCHMT_EXISTS(:L_ENTITY
 _NAME, :L_PKEY1, :L_PKEY2, :L_PKEY3, :L_PKEY4, :L_PKEY5, :L_FUNC
 TION_NAME, :L_FUNCTION_TYPE); end;

The locked sessions’ statements show that the sessions 1176 and 1256 are waiting

for a lock on the PO_UNIQUE_IDENTIFIER_CONTROL held by session 1237, while

session 1634 is waiting for a lock on PA_PROJECTS held by session 938. Query

V$SESSION_WAIT, V$SESSION, and V$SESSION_EVENT to get more details about

the sessions and users. For example:

■ Who is holding the lock?

■ Is the session holding the lock active or idle

■ Is the session executing long running queries while holding the lock?

V$MTTR_TARGET_ADVICE
V$MTTR_TARGET_ADVICE contains rows that predict the number of physical I/Os

for the MTTR corresponding to each row. The rows also compute a physical I/O
Dynamic Performance Views for Tuning 24-21

Description of Dynamic Performance Views
factor, which is the ratio of the number of estimated I/Os to the number of I/Os

actually performed by the current MTTR setting during the measurement interval.

Column descriptions are listed in Table 24–9.

V$MYSTAT
This view is a subset of V$SESSTAT returning current session’s statistics. When

auditing resource usage for sessions through triggers, use V$MYSTAT to capture the

resource usage, because it is much cheaper than scanning the rows in V$SESSTAT.

Table 24–9 V$MTTR_TARGET_ADVICE Column Description

Column Name Datatype Column Description

MTTR_TARGET_FOR_ESTIMATE NUMBER MTTR setting being simulated. It should
equal to the current MTTR setting if this
is the first row of the view.

ADVICE_STATUS VARCHAR2
(5)

Current status of MTTR simulation
(ON|READY|OFF).

DIRTY_LIMIT NUMBER The dirty buffer limit derived from the
MTTR being simulated.

ESTD_CACHE_WRITES NUMBER The estimated number of cache physical
writes under this MTTR.

ESTD_CACHE_WRITE_FACTOR NUMBER The estimated cache physical write ratio
under this MTTR. It is the ratio of the
estimated number of cache writes to the
number of cache writes under current
MTTR setting.

ESTD_TOTAL_WRITES NUMBER The estimated total number of physical
write under this MTTR.

ESTD_TOTAL_WRITE_FACTOR NUMBER The estimated total physical write ratio
under this MTTR. It is the ratio of the
estimated total number of physical writes
to the total number of physical writes
under current MTTR setting.

ESTD_TOTAL_IOS NUMBER The estimated total number of I/Os
under this MTTR.

ESTD_TOTAL_IO_FACTOR NUMBER The estimated total I/O ratio under this
MTTR. It is the ratio of the estimated total
number of I/Os to the total number of
I/Os under current MTTR setting.
24-22 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$OPEN_CURSOR
This view lists all the cursors opened by the sessions. There are several ways it can

be used. For example, you can monitor the number of cursors opened by different

sessions.

When diagnosing system resource usage, it is useful to query V$SQLAREA and

V$SQL for expensive SQL (high logical or physical I/O). In such cases, the next step

is to find it’s source. On applications where users log in to the database as the same

generic user (and have the same PARSING_USER_ID in V$SQLAREA), this can get

difficult. The statistics in V$SQLAREA are updated after the statement completes

execution (and disappears from V$SESSION.SQL_HASH_VALUE). Therefore, unless

the statement is being executed again, you cannot find the session directly.

However, if the cursor is still open for the session, then use V$OPEN_CURSORto find

the session(s) that have executed the statement.

Join Columns for V$OPEN_CURSOR
Table 24–10 lists the join columns for V$OPEN_CURSOR.

Example 24–14 Finding the Session(s) that Executed a Statement

SELECT hash_value, buffer_gets, disk_reads
FROM V$SQLAREA
WHERE disk_reads > 1000000
ORDER BY buffer_gets DESC;

HASH_VALUE BUFFER_GETS DISK_READS
---------- ----------- ----------
1514306888 177649108 3897402
 478652562 63168944 2532721
 360282550 14158750 2482065
 226079402 40458060 1592621
2144648214 1493584 1478953
1655760468 1997868 1316010
 160130138 6609577 1212163
3000880481 2122483 1158608

Table 24–10 Join Columns for V$OPEN_CURSOR

Column View Joined Column(s)

HASH_VALUE,
ADDRESS

V$SQLAREA, V$SQL,
V$SQLTEXT

HASH_VALUE,
ADDRESS

SID V$SESSION SID
Dynamic Performance Views for Tuning 24-23

Description of Dynamic Performance Views
8 rows selected.

SQL> SELECT sid FROM V$SESSION WHERE sql_hash_value = 1514306888 ;

no rows selected

SQL> SELECT sid FROM V$OPEN_CURSOR WHERE hash_Value = 1514306888 ;

 SID

 1125
 233
 935
 1693
 531

5 rows selected.

Example 24–15 Finding Sessions That Have More Than 400 Cursors Open

SELECT sid, count(*)
FROM v$open_cursor
 GROUP BY sid
HAVING COUNT(*) > 400
 ORDER BY count(*) desc;

 SID COUNT(*)
----- ----------
 2359 456
 1796 449
 1533 445
 1135 442
 1215 442
 810 437
 1232 429
 27 426
 1954 421
 2067 421
 1037 416
 1584 413
 416 407
 398 406
 307 405
 1545 403
24-24 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$PARAMETER and V$SYSTEM_PARAMETER
These views list each initialization parameter by name and show the value for that

parameter. The V$PARAMETER view shows the current value for the session

performing the query. The V$SYSTEM_PARAMETER view shows the instance-wide

value for the parameter.

For example, executing the following query shows the SORT_AREA_SIZE
parameter setting for the session executing the query:

SELECT value
 FROM V$PARAMETER
 WHERE name = 'sort_area_size';

Useful Columns for V$PARAMETER
■ NAME: Name of the parameter

■ VALUE: Current value for this session (if modified within the session);

otherwise, the instance-wide value

■ ISDEFAULT: Whether the parameter value is the default value

■ ISSES_MODIFIABLE: Whether this parameter can be modified at the session

level

■ ISSYS_MODIFIABLE: Whether this parameter can be modified at an

instance-wide level dynamically after the instance has started

■ ISMODIFIED : Whether this parameter has been modified after instance startup,

and if so, whether it was modified at the session level or at the instance (system)

level

■ ISADJUSTED: Whether Oracle has adjusted a value specified by the user

■ DESCRIPTION: Brief description of the parameter

■ UPDATE_COMMENT: Set if a comment has been supplied by the DBA for this

parameter

See Also:

■ Oracle9i Database Reference for more information on the range

column values

■ Oracle9i Database Administrator’s Guide for information on

server parameter files
Dynamic Performance Views for Tuning 24-25

Description of Dynamic Performance Views
Uses for V$PARAMETER and V$SYSTEM_PARAMETER Data
V$PARAMETER is queried during performance tuning to determine the current

settings for a parameter. For example, if the buffer cache hit ratio is low, then the

value for DB_BLOCK_BUFFERS (or DB_CACHE_SIZE) can be queried to determine

the current buffer cache size.

The SHOW PARAMETER statement in SQL*Plus queries data from V$PARAMETER.

Example 24–16 Determining the SORT_AREA_SIZE From Within SQL*Plus

column name format a20
column value format a10
column isdefault format a5
column isses_modifiable format a5

SELECT name, value, isdefault, isses_modifiable, issys_modifiable, ismodified
 FROM V$PARAMETER
 WHERE name = 'sort_area_size';

NAME VALUE ISDEF ISSES ISSYS_MOD ISMODIFIED
-------------------- ---------- ----- ----- --------- ----------
sort_area_size 1048576 TRUE TRUE DEFERRED MODIFIED

The preceding example shows that the SORT_AREA_SIZE initialization parameter

was not set as an initialization parameter on instance startup, but was modified at

the session level (indicated by the ISMODIFIED column having the value of

MODIFIED) for this session.

V$PROCESS
This view contains information about all Oracle processes running on the system. It

is used to relate the Oracle or operating system process ID of the server process to

the database session. This is needed in several situations:

■ If the bottleneck on the database server is related to an operating system

resource (for example, CPU, memory), and if the top resource users are

localized within a small set of server processes, then perform the following

steps:

Note: Use caution when querying from V$PARAMETER. If you

want to see the instance-wide parameters, use V$SYSTEM_
PARAMETER view instead of V$PARAMETER.
24-26 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
1. Find the resource intensive processes.

2. Find their sessions. You must relate the processes to sessions.

3. Find out why the session is using so many resources.

■ The SQL*Trace file names are based on the operating system process ID of the

server process. To locate the trace file for a session, you must relate the session

to the server process.

■ Some events, like rdbms ipc reply , identify the Oracle process ID of the

process a session is waiting on. To find out what those processes are doing, you

must find their sessions.

■ The background processes you see on the server (DBWR, LGWR, PMON, and

so on) are all server processes. To see what they are doing in the database, you

must find their session.

Useful Columns for V$PROCESS
■ PID : Oracle process ID of the process

■ SPID: Operating system process ID of the process

Join Columns for V$PROCESS
Table 24–11 lists the join columns for V$PROCESS.

Example 24–17 Finding the Session for Server Process 20143

SELECT ' sid, serial#, aud sid : '|| s.sid||' , '||s.serial#||' , '||
 s.audsid||chr(10)|| ' DB User / OS User : '||s.username||
 ' / '||s.osuser||chr(10)|| ' Machine - Terminal : '||
 s.machine||' - '|| s.terminal||chr(10)||
 ' OS Process Ids : '|| s.process||' (Client) '||
 p.spid||' - '||p.pid||' (Server)'|| chr(10)||
 ' Client Program Name : '||s.program "Session Info"
 FROM V$PROCESS P,V$SESSION s
 WHERE p.addr = s.paddr
 AND p.spid = '20143';

Session Info

Table 24–11 Join Columns for V$PROCESS

Column View Joined Column(s)

ADDR V$SESSION PADDR
Dynamic Performance Views for Tuning 24-27

Description of Dynamic Performance Views

 Sid, Serial#, Aud sid : 2204 , 5552 , 14478782
 DB User / OS User : APPS / sifapmgr
 Machine - Terminal : finprod3 -
 OS Process Ids : 9095 (Client) 20143 - 1404 (Server)
 Client Program Name : RGRARG@finprod3 (TNS V1-V3)

Example 24–18 Finding the Session for PMON

SELECT ' sid, serial#, aud sid : '|| s.sid||' , '||s.serial#||' , '||
 s.audsid||chr(10)|| ' DB User / OS User : '||s.username||
 ' / '||s.osuser||chr(10)|| ' Machine - Terminal : '||
 s.machine||' - '|| s.terminal||chr(10)||
 ' OS Process Ids : '|| s.process||' (Client) '||
 p.spid||' - '||p.pid||' (Server)'|| chr(10)||
 ' Client Program Name : '||s.program "Session Info"
 FROM V$PROCESS p, V$SESSION s
 WHERE p.addr = s.paddr
 AND s.program LIKE '%PMON%'

Session Info

 Sid, Serial#, Aud sid : 1 , 1 , 0
 DB User / OS User : / oracle
 Machine - Terminal : finprod7 - UNKNOWN
 OS Process Ids : 20178 (Client) 20178 - 2 (Server)
 Client Program Name : oracle@finprod7 (PMON)

You can see that the client and server processes are the same for the background

process, which is why we could specify the client program name.

V$ROLLSTAT
This view keeps a summary of statistics for each rollback segment since startup.

Useful Columns for V$ROLLSTAT
■ USN: Rollback segment number

■ RSSIZE: Current size of the rollback segment

■ XACTS: Number of active transactions

Columns Useful for Doing a Delta Over a Period of Time
■ WRITES: Number of bytes written to the rollback segment
24-28 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ SHRINKS: Number of times the rollback segment grew past OPTIMAL and

shrank back

■ EXTENDS: Number of times the rollback segment had to extend because there

was an active transaction in the next extent

■ WRAPS: Number of times the rollback segment wrapped around

■ GETS: Number of header gets

■ WAITS: Number of header waits

Join Columns for V$ROLLSTAT
Table 24–12 lists the join columns for V$ROLLSTAT.

Example 24–19 Querying V$ROLLSTAT

By dividing the elapsed time by wraps, you can determine the average time taken

for a rollback segment to wrap. This is useful in sizing rollback segments for long

running queries to avoid ’Snapshot Too Old’ errors.

Also, monitor the extends and shrinks to see if the optimal size should be increased.

V$ROWCACHE
This view displays statistics for the dictionary cache (also known as the rowcache).

Each row contains statistics for the various types of dictionary cache data. Note that

there is a hierarchy in the dictionary cache, so the same cache name can appear

more than once.

Useful Columns for V$ROWCACHE
■ PARAMETER: Name of the cache

■ COUNT: Number of entries allocated to this cache

■ USAGE: Current number of used entries

■ GETS: Total number of requests

■ GETMISSES: Number of requests resulting in dictionary cache miss

Table 24–12 Join Columns for V$ROLLSTAT

Column View Joined Column(s)

USN V$ROLLNAME USN
Dynamic Performance Views for Tuning 24-29

Description of Dynamic Performance Views
■ SCANS: Number of scan requests

■ SCANMISSES: Number of times a scan failed to find the required data

■ MODIFICATIONS: Number of additions, changes or deletions of cache entries

■ DLM_REQUESTS: Number of DLM Real Application Clusters requests

■ DLM_CONFLICTS: Number of DLM Real Application Clusters conflicts

■ DLM_RELEASES: Number of DLM Real Application Clusters releases

Uses for V$ROWCACHE Data
■ Determine whether the dictionary cache is adequately sized. If the shared pool

is too small, then the dictionary cache is not able to grow to a sufficient size to

cache the required information.

■ Determine whether the application is accessing the cache efficiently. If the

application design uses the dictionary cache inefficiently (in this case, a larger

dictionary cache will not alleviate the performance problem). For example, if a

large number of GETS appear for the DC_USERS cache within the sample

period, then it is likely that there are large number of distinct users created

within the database, and that the application is logging the users on and off

frequently. To verify this, check the logon rate and also the number of users in

the system. The parse rates will also be high. If this is a large OLTP system with

a middle tier, then it might be more efficient to manage individual accounts on

the middle tier, allowing the middle tier to logon as a single use: the application

owner. Reducing logon/logoff rate by keeping connections active also helps.

■ Determine whether dynamic space allocation is occurring. A large number of

similarly sized modifications for DC_SEGMENTS, DC_USED_EXTENTS, and DC_
FREE_EXTENTScan indicate much dynamic space allocation. Possible solutions

include sizing the next extents appropriately, or using locally managed

tablespaces. If the space allocation is occurring on the temp tablespace, then use

a true temporary tablespace for the temp.

■ Identify large amounts of sequence number generation occurring. Modifications

to dc_sequences indicates this. Check to see whether the number of cache

entries for each sequence number are sufficient for then number of changes.

See Also: "Sizing the Shared Pool" on page 14-27 for details about

tuning the shared pool
24-30 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ Gather evidence for hard parsing. Hard parsing can also be evidenced by many

GETS to DC_COLUMNS, DC_VIEWS and DC_OBJECTS caches.

Example 24–20 Querying V$ROWCACHE Data

A good way to view dictionary cache statistics is to group the data by the cache

name.

SELECT parameter
 , sum("COUNT")
 , sum(usage)
 , sum(gets)
 , sum(getmisses)
 , sum(scans)
 , sum(scanmisses)
 , sum(modifications)
 , sum(dlm_requests)
 , sum(dlm_conflicts)
 , sum(dlm_releases)
 FROM V$ROWCACHE
 GROUP BY parameter;

V$SEGMENT_STATISTICS
This is a user-friendly view, available with Oracle9i Release 2 (9.2) and higher, that

allows real-time monitoring of segment-level statistics, enabling a DBA to identify

performance problems associated with an individual table or index.

Table 24–13 V$SEGMENT_STATISTICS View

Column Datatype Description

OWNER VARCHAR2(30) Owner of the object

OBJECT_NAME VARCHAR2(30) Name of the object

SUBOBJECT_NAME VARCHAR2(30) Name of the sub-object

TABLESPACE_NAME VARCHAR2(30) Name of the table space to which the object
belongs

TS# NUMBER Tablespace number

OBJ# NUMBER Dictionary object number

DATAOBJ# NUMBER Data object number

OBJECT_TYPE VARCHAR2(18) Type of the object
Dynamic Performance Views for Tuning 24-31

Description of Dynamic Performance Views
V$SEGSTAT
This is a high-efficiency view for real-time monitoring of segment-level statistics,

available with Oracle9i Release 2 (9.2) and higher.

V$SEGSTAT_NAME
This is a statistics property view for segment-level statistics, available with Oracle9i
Release 2 (9.2) and higher.

STATISTIC_NAME VARCHAR2(64) Name of the statistic

STATISTIC# NUMBER Statistic number

VALUE NUMBER Statistic value

Table 24–14 V$SEGSTAT View

Column Datatype Description

TS# NUMBER Tablespace number

OBJ# NUMBER Dictionary object number

DATAOBJ# NUMBER Data object number

STATISTIC_NAME VARCHAR2(64) Name of the statistic

STATISTIC# NUMBER Statistic number

VALUE NUMBER Statistic value

Table 24–15 V$SEGSTAT_NAME View

Column Datatype Description

STATISTIC# NUMBER Statistic number

NAME VARCHAR2(64) Statistic name

SAMPLED VARCHAR2(3) Whether or not it is a sampled statistic

Table 24–13 (Cont.) V$SEGMENT_STATISTICS View

Column Datatype Description
24-32 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$SESSION
This view has one row for every session connected to the database instance. The

sessions include user sessions, as well as background processes like DBWR, LGWR,

archiver.

Useful Columns for V$SESSION
V$SESSION is basically an information view used for finding the SID or SADDR of

a user. However, it has some columns that change dynamically and are useful for

examining a user. For example:

SQL_HASH_VALUE, SQL_ADDRESS: These identify the SQL statement currently

being executed by the session. If NULL or 0, then the session is not executing any

SQL statement. PREV_HASH_VALUE and PREV_ADDRESS identify the previous

statement being executed by the session.

STATUS: This column identifies if the session is:

■ Active: executing a SQL statement (waiting for/using a resource)

■ Inactive: waiting for more work (that is, SQL statements)

■ Killed: marked to be killed

The following columns provide information about the session and can be used to

find a session when a combination (one or more) of the following are known:

Session Information

■ SID : Session identifier, used to join to other columns

■ SERIAL# : Counter, which is incremented each time a SID is reused by another

session (when a session ends and another session starts and uses the same SID)

■ AUDSID: Auditing session ID uniquely identifies a session over the life of a

database. It is also useful when finding the parallel query slaves for a query

coordinator (during the PQ execution they have the same AUDSID)

See Also: Oracle9i Database Concepts

Note: When selecting from SQL*Plus, make sure that you have

the column defined with adequate width (11 numbers wide) to see

the complete number.
Dynamic Performance Views for Tuning 24-33

Description of Dynamic Performance Views
■ USERNAME: The Oracle user name for the connected session

Client Information

The database session is initiated by a client process that could be running on the

database server or connecting to the database across SQL*Net from a middle tier

server or even a desktop. The following columns provide information about this

client process:

■ OSUSER: Operating system user name for the client process

■ MACHINE: Machine where the client process is executing

■ TERMINAL: Terminal (if applicable) where the client process is running

■ PROCESS: Process ID of the client process

■ PROGRAM: Client program being executed by the client process

To display TERMINAL, OSUSER for users connecting from PCs, set the keys

TERMINAL, USERNAME in ORACLE.INI or the Windows registry on their PCs if they

are not showing up by default.

Application Information

Call the package DBMS_APPLICATION_INFO to set some information to identify

the user. This shows up in the following columns:

■ CLIENT_INFO : Set in DBMS_APPLICATION_INFO

■ ACTION: Set in DBMS_APPLICATION_INFO

■ MODULE: Set in DBMS_APPLICATION_INFO

The following V$SESSION columns are also useful:

■ ROW_WAIT_OBJ#

■ ROW_WAIT_FILE#

■ ROW_WAIT_BLOCK#

■ ROW_WAIT_ROW#

Join Columns for V$SESSION
Table 24–16 is a list of several columns that can be used to join to other fixed views.
24-34 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
Example 24–21 Finding Your Session

SELECT SID, OSUSER, USERNAME, MACHINE, PROCESS
 FROM V$SESSION
 WHERE audsid = userenv('SESSIONID');

 SID OSUSER USERNAME MACHINE PROCESS
----- ---------- ----------- ----------- --------
 398 amerora PERFSTAT rgmdbs1 26582

Example 24–22 Finding a Session When the Machine Is Known

SELECT SID, OSUSER, USERNAME, MACHINE, TERMINAL
 FROM V$SESSION
 WHERE terminal = 'pts/tl'
 AND machine = 'rgmdbs1';

 SID OSUSER USERNAME MACHINE TERMINAL
---- --------- --------- ---------- ----------
 398 amerora PERFSTAT rgmdbs1 pts/tl

Example 24–23 Finding the SQL Statement Currently Being Run by a Session

It is a common requirement to find the SQL statement currently being executed by a

given session. If a session is experiencing or responsible for a bottleneck, then the

statement explains what the session might be doing.

col hash_value form 99999999999
SELECT sql_hash_value hash_value

Table 24–16 Join Columns for V$SESSION

Column View Joined Column(s)

SID V$SESSION_WAIT,
V$SESSTAT, V$LOCK,
V$SESSION_EVENT,
V$OPEN_CURSOR

SID

(SQL_HASH_VALUE,
SQL_ADDRESS)

V$SQLTEXT,
V$SQLAREA, V$SQL

(HASH_VALUE,
ADDRESS)

(PREV_HASH_VALUE,
PREV_SQL_ADDRESS)

V$SQLTEXT,
V$SQLAREA, V$SQL

(HASH_VALUE,
ADDRESS)

TADDR V$TRANSACTION ADDR

PADDR V$PROCESS ADDR
Dynamic Performance Views for Tuning 24-35

Description of Dynamic Performance Views
 FROM V$SESSION WHERE sid = 406;

HASH_VALUE

4249174653
SQL> /

HASH_VALUE

4249174653
SQL> /

HASH_VALUE

4249174653
SQL> /

HASH_VALUE

4249174653

This example waited for five seconds, executed the statement again, and repeated

the action couple of times. The same hash_value comes up again and again,

indicating that the statement is being executed by the session. As a next step, find

the statement text using the view V$SQLTEXT and statement statistics from

V$SQLAREA.

V$SESSION_EVENT
This view summarizes wait events for every session. While V$SESSION_WAIT
shows the current waits for a session, V$SESSION_EVENT provides summary of all

the events the session has waited for since it started.

Useful Columns for V$SESSION_EVENT
■ SID : Identifier for the session

■ EVENT: Name of the wait event

■ TOTAL_WAITS: Total number of waits for this event by this session

■ TIME_WAITED: Total time waited for this event (in hundredths of a second)

■ AVERAGE_WAIT: Average amount of time waited for this event by this session

(in hundredths of a second)
24-36 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ TOTAL_TIMEOUTS: Number of times the wait timed out

Join Columns for V$SESSION_EVENT
Table 24–17 is a list of join columns for V$SESSION_EVENT.

Example 24–24 Finding the Waits for the Database Writer

SELECT s.sid, bgp.name
 FROM V$SESSION s, V$BGPROCESS bgp
 WHERE bgp.name LIKE '%DBW%'
 AND bgp.paddr = s.paddr;

SELECT event, total_waits waits, total_timeouts timeouts,
 time_waited total_time, average_wait avg
 FROM v$session_event
 WHERE sid = 3
 ORDER BY time_waited DESC;

EVENT WAITS TIMEOUTS TOTAL_TIME AVG
------------------------------ -------- -------- ---------- -----
rdbms ipc message 1684385 921495 284706709 169.03
db file parallel write 727326 0 3012982 4.14
latch free 157 157 281 1.78
control file sequential read 123 0 61 0.49
file identify 45 0 29 0.64
direct path read 41 0 5 0.12
file open 49 0 2 0.04
db file sequential read 2 0 2 1.00

V$SESSION_WAIT
This is a key view for finding bottlenecks. It tells what every session in the database

is currently waiting for (or the last event waited for by the session if it is not waiting

for anything). This view can be used as a starting point to find which direction to

proceed in when a system is experiencing performance problems.

V$SESSION_WAIT has a row for every session connected to the instance. It

indicates if the session is:

Table 24–17 Join Columns for V$SESSION_EVENT

Column View Joined Column(s)

SID V$SESSION SID
Dynamic Performance Views for Tuning 24-37

Description of Dynamic Performance Views
■ Using a resource

■ Waiting for a resource

■ Idle (waiting on one of the idle events)

Useful Columns for V$SESSION_WAIT
■ SID : Session identifier for the session

■ EVENT: Event the session is currently waiting for, or the last event the session

had to wait for

■ WAIT_TIME: Time (in hundredths of a second) that the session waited for the

event; if the WAIT_TIME is 0, then the session is currently waiting for the event

■ SEQ#: Gets incremented with every wait of the session

■ P1, P2, P3: Wait event specific details for the wait

■ P1TEXT, P2TEXT, P3TEXT: Description of P1,P2,P3 for the given event

Table 24–19 shows an example of how the EVENT, SEQ#, and WAIT_TIME might

change over a period of time:

See Also: Oracle9i Database Reference and "Wait Events" on

page 22-24

Table 24–18 Wait Time Description

WAIT_TIME Meaning Waiting

>0 Time waited in the last wait (in 10 ms clock ticks) No

0 Session is currently waiting for this event Yes

-1 Time waited in the last wait was less than 10 ms No

-2 Timing is not enabled No

Table 24–19 Events Changing Over Time

Time Seq # Event
Wait
Time P1 P2 P3 Action Waiting

0 43 latch free 0 800043F8 31 1 Get LRU latch Yes

10 43 latch free 10 800043F8 31 1 Get free buffer No

20 44 db file sequential
read

0 5 1345 1 Issue the read call Yes
24-38 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
In this example, the session waited for a latch from 0-10, waited for db file
sequential read from 20-30, waited for a lock from 35-1040. The times in between

have been exaggerated for illustration purposes. Event and Seq# do not change

until the session has to wait again. The Wait Time indicates if the session is

actually waiting or using a resource.

Join Columns for V$SESSION_WAIT
Table 24–20 is a list of join columns for V$SESSION_WAIT.

Example 24–25 Finding Current Waits on the System

SELECT event,
 sum(decode(wait_time,0,1,0)) "Curr",
 sum(decode(wait_time,0,0,1)) "Prev",
 count(*)"Total"
 FROM v$session_wait
 GROUP BY event
 ORDER BY count(*);

EVENT Prev Curr Tot
--- ---- ----- -----
PL/SQL lock timer 0 1 1
SQL*Net more data from client 0 1 1
smon timer 0 1 1
pmon timer 0 1 1
SQL*Net message to client 2 0 2
db file scattered read 2 0 2
rdbms ipc message 0 7 7
enqueue 0 12 12

30 44 db file sequential
read

10 5 1345 1 Process the buffer No

35 45 enqueue 0 1415053318 196631 6355 Lock the buffer Yes

1040 45 enqueue 1000 1415053318 196631 6355 Modify the buffer No

Table 24–20 Join Columns for V$SESSION_WAIT

Column View Joined Column(s)

SID V$SESSION SID

Table 24–19 (Cont.) Events Changing Over Time

Time Seq # Event
Wait
Time P1 P2 P3 Action Waiting
Dynamic Performance Views for Tuning 24-39

Description of Dynamic Performance Views
pipe get 0 12 12
db file sequential read 3 10 13
latch free 9 6 15
SQL*Net message from client 835 1380 2215

This query, which groups the data by event and by wait_time (0=waiting,

nonzero=not waiting), shows the following:

■ Most of the sessions are waiting for idle events like SQL*Net message from
client , pipe get , PMON timer , and so on.

■ The number of sessions using the CPU can be approximated by the number of

sessions not waiting (prev), except for one problem: there seem to be a lot of

sessions that are not waiting for anything (hence actively using resources) and

whose last wait was SQL*Net message from client .

The next step should be to check V$SESSION to see if the session is active or not.

Only count the session as actively waiting or using a resource if it is active. Use the

following statement to accomplish this. The total column counts the total of all the

sessions, however the currently waiting and previously waited (using resource)

columns only count active sessions.

SELECT event,
 sum(decode(wait_Time,0,0,DECODE(s.status,'ACTIVE',1,0))) "Prev",
 sum(decode(wait_Time,0,1,DECODE(s.status,'ACTIVE',1,0))) "Curr",
 count(*) "Tot"
 FROM v$session s, v$session_wait w
 WHERE s.sid = w.sid
 GROUP BY event
 ORDER BY count(*);

EVENT Prev Curr Tot
-- ----- ----- -----
SQL*Net message to client 1 1 1 <- idle event
buffer busy waits 1 1 1
file open 1 1 1
pmon timer 0 1 1 <- idle event
smon timer 0 1 1 <- idle event
log file sync 0 1 1
db file scattered read 0 2 2
rdbms ipc message 0 7 7 <- idle event
pipe get 0 12 12 <- idle event
enqueue 0 14 14
latch free 10 17 20
db file sequential read 7 22 23
SQL*Net message from client 0 1383 2240 <- idle event
24-40 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
Now sessions are counted as actively waiting or using a resource only if they are

active. This highlights the following:

■ There are a total of 2324 sessions.

■ 20 sessions are actively using resources (active sessions without an active wait).

■ 1463 sessions are waiting.

■ 58 of these are waiting for non-idle events. The idle events here being SQL*Net
message from client , pipe get , rdbms ipc message , PMON timer , SMON
timer , and SQL*Net message to client .

■ 14 sessions are locked out (and may be experiencing poor performance).

■ PMON and SMON are sleeping on their timers.

■ 24 sessions are waiting for I/O calls to return (db file%read).

V$SESSTAT
V$SESSTAT stores session-specific resource usage statistics, beginning at login and

ending at logout.

Similar to V$SYSSTAT, this view stores the following types of statistics:

■ A count of the number of times an action occurred, such as user commits

■ A running total of volumes of data generated, accessed or manipulated, such as

redo size

■ The cumulative time spent performing some actions, such as CPU used by
this session , if TIMED_STATISTICS is set to TRUE

See Also: "Wait Events" on page 22-24
Dynamic Performance Views for Tuning 24-41

Description of Dynamic Performance Views
The differences between V$SYSSTAT and V$SESSTAT are the following:

■ V$SESSTAT only stores data for each session, whereas V$SYSSTAT stores the

accumulated values for all sessions.

■ V$SESSTAT is transitory, and is lost after a session logs out. V$SYSSTAT is
cumulative, and is only lost when the instance is shutdown.

■ V$SESSTAT does not include the name of the statistic. In order to find the

statistic name, this view must be joined to either V$SYSSTAT or V$STATNAME.

V$SESSTAT can be used to find sessions with the following:

■ The highest resource usage

■ The highest average resource usage rate (ratio of resource usage to logon time)

■ The current resource usage rate (delta between two snapshots)

Useful Statistics in V$SESSTAT
The most referenced statistics in V$SESSTAT are a subset of those described for

V$SYSSTAT and include session logical reads , CPU used by this session ,

db block changes , redo size , physical writes , parse count (hard) ,

parse count (total) , sorts (memory) , and sorts (disk) .

Useful Columns for V$SESSTAT
■ SID : Session identifier

Note: Timed statistics are automatically collected for the database

if the initialization parameter STATISTICS_LEVEL is set to

TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you

must set TIMED_STATISTICS to TRUE to enable collection of

timed statistics.

If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS , or

TIMED_OS_STATISTICS, either in the initialization parameter file

or by using ALTER_SYSTEM or ALTER SESSION, the explicitly set

value overrides the value derived from STATISTICS_LEVEL .

See Also: "Setting the Level of Statistics Collection" on page 22-10

for information about STATISTICS_LEVEL settings
24-42 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ STATISTIC# : Resource identifier

■ VALUE: Resource usage

Join Columns for V$SESSTAT
Table 24–21 lists the join columns for V$SESSTAT.

Example 24–26 Finding the Top Sessions with Highest Logical and Physical I/O Rates
Currently Connected to the Database

The following SQL statement shows the logical and physical read rates (each

second) for all active sessions connected to the database. Rates for logical and

physical I/O are calculated using the elapsed time since logon (from

V$SESSION.LOGON_TIME). This might not be particularly accurate for sessions

connected to the database for long periods, but it is sufficient for this example.

To determine the STATISTIC# ’s for the session logical reads and physical
reads statistics:

SELECT name, statistic#
 FROM V$STATNAME
 WHERE name IN ('session logical reads','physical reads') ;

NAME STATISTIC#
------------------------------ ----------
session logical reads 9
physical reads 40

Use these values in the following query, which orders the sessions by resource

usage:

SELECT ses.sid
 , DECODE(ses.action,NULL,'online','batch') "User"
 , MAX(DECODE(sta.statistic#,9,sta.value,0))
 /greatest(3600*24*(sysdate-ses.logon_time),1) "Log IO/s"
 , MAX(DECODE(sta.statistic#,40,sta.value,0))
 /greatest(3600*24*(sysdate-ses.logon_time),1) "Phy IO/s"
 , 60*24*(sysdate-ses.logon_time) "Minutes"

Table 24–21 Join Columns for V$SESSTAT

Column View Joined Column(s)

STATISTIC# V$STATNAME STATISTIC#

SID V$SESSION SID
Dynamic Performance Views for Tuning 24-43

Description of Dynamic Performance Views
 FROM V$SESSION ses
 , V$SESSTAT sta
WHERE ses.status = 'ACTIVE'
 AND sta.sid = ses.sid
 AND sta.statistic# IN (9,40)
GROUP BY ses.sid, ses.action, ses.logon_time
ORDER BY
 SUM(DECODE(sta.statistic#,40,100*sta.value,sta.value))
 / greatest(3600*24*(sysdate-ses.logon_time),1) DESC;

 SID User Log IO/s Phy IO/s Minutes
----- ------ -------- -------- -------
 1951 batch 291 257.3 1
 470 online 6,161 62.9 0
 730 batch 7,568 43.2 197
 2153 online 1,482 98.9 10
 2386 batch 7,620 35.6 35
 1815 batch 7,503 35.5 26
 1965 online 4,879 42.9 19
 1668 online 4,318 44.5 1
 1142 online 955 69.2 35
 1855 batch 573 70.5 8
 1971 online 1,138 56.6 1
 1323 online 3,263 32.4 5
 1479 batch 2,857 35.1 3
 421 online 1,322 46.8 15
 2405 online 258 50.4 8

To better show the impact of each individual session on the system, the results were

ordered by the total resource usage each second. The resource usage was calculated

by adding session logical reads and (a weighted) physical reads .

Physical reads was weighted by multiplying the raw value by a factor of 100, to

indicate that a physical I/O is significantly more expensive than reading a buffer

already in the cache.

To calculate the physical I/O weighting factor, the following assumptions were

made:

■ Average wait for a physical I/O (PIO) was 10 ms (queried from V$SYSTEM_
EVENT.AVERAGE_WAIT for the events db file sequential read and db
file scattered read).

■ Average logical I/O rate (LIO) was 13000/second/CPU (queried from

V$SYSSTAT for the statistic name session logical reads . This statistic was

divided by the elapsed time in seconds and the number of CPUs on the system).
24-44 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ This provides a ratio of 130 logical reads for each 10 ms, and 1 physical read for

each 10 ms for this configuration. This ratio was rounded to the ballpark

number of 100.

V$SHARED_POOL_ADVICE
V$SHARED_POOL_ADVICE displays information about estimated parse time

savings in the shared pool for different sizes. The sizes range from 50% to 200% of

the current shared pool size, in equal intervals. The value of the interval depends on

the current size of the shared pool.

V$SQL
A SQL statement can map to multiple cursors, because the objects referred to in the

cursor can differ from user to user. If there are multiple cursors (child cursors)

present, then V$SQLAREA provides aggregated information for all the cursors.

For looking at individual cursors, V$SQL can be used. This view contains cursor

level details for the SQL. It can be used when trying to locate the session or person

responsible for parsing the cursor.

The PLAN_HASH_VALUE column contains the numerical representation of the SQL

plan for the cursor and can be used for comparing plans. PLAN_HASH_VALUE
allows you to easily identify whether or not two plans are the same without

comparing the two plans line by line.

Table 24–22 V$SHARED_POOL_ADVICE View

Column Datatype Description

SHARED_POOL_SIZE_FOR_
ESTIMATE

NUMBER Shared pool size for the estimate (in megabytes)

SHARED_POOL_SIZE_FACTOR NUMBER Size factor with respect to the current shared pool size

ESTD_LC_SIZE NUMBER Estimated memory in use by the library cache (in megabytes)

ESTD_LC_MEMORY_OBJECTS NUMBER Estimated number of library cache memory objects in the shared pool of
the specified size

ESTD_LC_TIME_SAVED NUMBER Estimated elapsed parse time saved (in seconds), owing to library cache
memory objects being found in a shared pool of the specified size.

ESTD_LC_TIME_SAVED_FACTOR NUMBER Estimated parse time saved factor with respect to the current shared
pool size

ESTD_LC_MEMORY_OBJECT_HITS NUMBER Estimated number of times a library cache memory object was found in
a shared pool of the specified size
Dynamic Performance Views for Tuning 24-45

Description of Dynamic Performance Views
V$SQL_PLAN
This view provides a way of examining the execution plan for cursors that were

executed and are still cached.

Normally, the information in this view is very similar to the output of an EXPLAIN
PLAN statement. However, EXPLAIN PLAN shows a theoretical plan that might be

used if this statement were to be executed, whereas V$SQL_PLAN contains the

actual plan used. The execution plan obtained by the EXPLAIN PLAN statement can

be different from the execution plan used to execute the cursor, because the cursor

might have been compiled with different values of session parameters (for example,

HASH_AREA_SIZE).

Uses for V$SQL_PLAN Data
■ Determining the current execution plan

■ Identifying the effect of creating an index on a table

■ Finding cursors containing a certain access path (for example, full table scan or

index range scan)

■ Identifying indexes that are, or are not, selected by the optimizer

■ Determining whether the optimizer selects the particular execution plan (for

example, nested loops join) expected by the developer

This view can also be used as a key mechanism in plan comparison. Plan

comparison can be useful when the following types of changes occur:

■ Dropping or creating indexes

■ Running the ANALYZE statement on the database objects

■ Modifying initialization parameter values

■ Switching from the rule-based optimizer to the cost-based optimizer

■ After upgrading the application or the database to a new release

If previous plans are kept (for example, selected from V$SQL_PLAN and stored in

permanent Oracle tables for reference), then it is then possible to identify how

changes in the performance of a SQL statement can be correlated with changes in

the execution plan for that statement.
24-46 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
Useful Columns for V$SQL_PLAN
The view contains almost all PLAN_TABLE columns, in addition to new columns.

The columns that are also present in the PLAN_TABLE have the same values:

■ ADDRESS: Address of the handle to the parent for this cursor

■ HASH_VALUE: Hash value of the parent statement in the library cache

The two columns ADDRESS and HASH_VALUE can be used to join with V$SQLAREA
to add the cursor-specific information.

■ CHILD_NUMBER: Child cursor number using this execution plan

The columns ADDRESS, HASH_VALUE and CHILD_NUMBER can be used to join with

V$SQL to add the child cursor specific information.

■ OPERATION: Name of the internal operation performed in this step; for

example, TABLE ACCESS

■ OPTIONS: A variation on the operation described in the OPERATION column;

for example, FULL

■ OBJECT_NODE: Name of the database link used to reference the object (a table

name or view name); for local queries using parallel execution, this column

describes the order in which output from operations is consumed

■ OBJECT#: Object number of the table or the index

Note: Oracle Corporation strongly recommends that you use the

DBMS_STATS package rather than ANALYZE to collect optimizer

statistics. That package lets you collect statistics in parallel, collect

global statistics for partitioned objects, and fine tune your statistics

collection in other ways. Further, the cost-based optimizer will

eventually use only statistics that have been collected by DBMS_
STATS. See Oracle9i Supplied PL/SQL Packages and Types Reference for

more information on this package.

However, you must use the ANALYZE statement rather than DBMS_
STATS for statistics collection not related to the cost-based

optimizer, such as:

■ To use the VALIDATE or LIST CHAINED ROWS clauses

■ To collect information on freelist blocks
Dynamic Performance Views for Tuning 24-47

Description of Dynamic Performance Views
■ OBJECT_OWNER: Name of the user who owns the schema containing the table

or index

■ OBJECT_NAME: Name of the table or index

■ OPTIMIZER: Current mode of the optimizer for the first row in the plan

(statement line); for example, CHOOSE. In case the operation is a database access

(e.g, TABLE ACCESS), it tells whether the object is analyzed or not

■ ID : A number assigned to each step in the execution plan

■ PARENT_ID: ID of the next execution step that operates on the output of the

current step

■ DEPTH: The depth (or level) of the operation in the tree; that is, it is not

necessary to do a CONNECT BY to get the level information generally used to

indent the rows from the PLAN_TABLE- the root operation (statement) has level

0.

■ POSITION: Order of processing for operations that all have the same PARENT_
ID

■ COST: Cost of the operation as estimated by the optimizer's cost-based

approach; for statements that use the rule-based approach, this column is null

■ CARDINALITY: The estimate, by the cost-based optimizer, of the number of

rows produced by the operation

■ BYTES: The estimate, by the cost-based optimizer, of the number of bytes

produced by the operation

■ OTHER_TAG: Describes the contents of the OTHER column (see Chapter 9,

"Using EXPLAIN PLAN" for values)

■ PARTITION_START: The start partition of a range of accessed partition

■ PARTITION_STOP: The stop partition of a range of accessed partitions

■ PARTITION_ID : The step that has computed the pair of values of the

PARTITION_START and PARTITION_STOP columns

■ OTHER: Other information that is specific to the execution step that a user may

find useful (see Chapter 9, "Using EXPLAIN PLAN" for values)

■ DISTRIBUTION : For parallel query, stores the method used to distribute rows

from producer query servers to consumer query servers.
24-48 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ CPU_COST: The CPU cost of the operation as estimated by the optimizer's

cost-based approach; for statements that use the rule-based approach, this

column is null

■ IO_COST: The I/O cost of the operation as estimated by the optimizer's

cost-based approach; for statements that use the rule-based approach, this

column is null

■ TEMP_SPACE: Temporary space usage of the operation (sort or hash-join) as

estimated by the optimizer's cost-based approach; for statements that use the

rule-based approach, this column is null

■ ACCESS_PREDICATES: Predicates used to locate rows in an access structure;

for example, start or stop predicates for an index range scan

■ FILTER_PREDICATES: Predicates used to filter rows before producing them

The DEPTH column replaces the LEVEL pseudo-column produced by the CONNECT
BY operator, which sometimes is used in SQL scripts to help indent the PLAN_
TABLE data.

Join Columns for V$SQL_PLAN
The columns ADDRESS, HASH_VALUE and CHILD_NUMBER are used to join with

V$SQL or V$SQLAREA to fetch the cursor-specific information; for example,

BUFFER_GETS, or with V$SQLTEXT to return the full text of the SQL statement.

Table 24–23 lists the join columns for V$SQL_PLAN.

Determining the Optimizer Plan for a SQL Statement
The following statement shows the EXPLAIN PLAN for a specified SQL statement.

Looking at the plan for a SQL statement is one of the first steps in tuning a SQL

Table 24–23 Join Columns for V$SQL_PLAN

Column View Joined Column(s)

ADDRESS, HASH_
VALUE

V$SQLAREA ADDRESS, HASH_
VALUE

ADDRESS, HASH_
VALUE, CHILD_
NUMBER

V$SQL ADDRESS, HASH_
VALUE, CHILD_
NUMBER

ADDRESS, HASH_
VALUE

V$SQLTEXT ADDRESS, HASH_
VALUE
Dynamic Performance Views for Tuning 24-49

Description of Dynamic Performance Views
statement. The SQL statement for which to return the plan is identified by the

statement's HASH_VALUE and address.

Example 24–27 shows a query and sample output from V$SQL_PLAN(assumes only

one child cursor):

Example 24–27 Querying V$SQL_PLAN

SELECT /* TAG */ count(*)
 FROM employees e, departments d
 WHERE e.department_id = d.department_id;

 COUNT(*)

 14

column operation format a20
column options format a20
column object_name format a20
column cost format a20
column cost format 9999
SELECT sql_text, address, hash_value
 FROM v$sql
 WHERE sql_text like '%TAG%';

SQL_TEXT ADDRESS HASH_VALUE
-------- -------- ----------
 82117BEC 171077025

SELECT sql_text, address, hash_value
 FROM v$sql
 WHERE sql_text LIKE '%TAG%'

SELECT /* TAG */ count(*)
 FROM employees e, departments d
 WHERE e.department_id = d.department_id

SQL_TEXT ADDRESS HASH_VALUE
-------- -------- ----------
 82157784 1224822469

SELECT operation, options, object_name, cost
 FROM v$sql_plan
24-50 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
 WHERE address = '\ 82157784'
 AND hash_value = 1224822469;

OPERATION OPTIONS OBJECT_NAME COST
-------------------- ------------- ------------------ ----
SELECT STATEMENT 5
 SORT
 AGGREGATE
 HASH JOIN 5
 TABLE ACCESS FULL DEPARTMENTS 2
 TABLE ACCESS FULL EMPLOYEES 2

6 rows selected.

V$SQL_PLAN shows the plan for a cursor, not for a SQL statement. The difference is

that a SQL statement can have more than one cursor associated with it, with each

cursor further identified by a CHILD_NUMBER. The following are a few examples of

how a SQL statement can result in more than one cursor:

■ When the same table name resolves to two separate tables:

User1: SELECT * FROM EMPLOYEES;

User2: SELECT * FROM EMPLOYEES;

Where user2 has his own employee table, and user1 uses the table referenced by

a public synonym.

■ When the environment for user1 differs from user2. For example, if user2

specified the first rows (ALTER SESSION SET OPTIMIZER_GOAL = FIRST_
ROWS) in their login script, and user1 did not.

If the results of querying V$SQL_PLAN for a HASH_VALUE and ADDRESS result

in more than one plan appearing, it is because this SQL statement has more

than one child cursor. In this case, for each child cursor (identified by CHILD_
NUMBER), look at the plan to identify whether they differ significantly.

V$SQL_PLAN_STATISTICS
This view provides, for each cached cursor, the execution statistics of each operation

in the execution plan.

See Also: "Identifying and Gathering Data on Resource-Intensive

SQL" on page 6-3 for information on how to identify SQL

statements to tune
Dynamic Performance Views for Tuning 24-51

Description of Dynamic Performance Views
To view row source statistics in this view, the DBA must set the parameter

STATISTICS_LEVEL to ALL.

Table 24–24 V$SQL_PLAN_STATISTICS

Column Datatype Description

address raw(4) Address of the handle to the parent for this cursor

hash_value number Hash value of the parent statement in the library cache. The two
columns (address and hash_value) can be used to join with
v$sqlarea to locate the parent cursor.

child_number number Child cursor number using this work area. The columns (address ,
hash_value , and child_number) can be used to join with v$sql to
locate the child cursor using this area.

operation_id number Number assigned to each step in the execution plan.

executions number Number of times this cursor has been executed.

last_starts number Number of times this operation has been started,1 during the last
execution.

starts number Number of times this operation has been started, accumulated over
the past executions.

last_output_rows number Number of rows produced by the row source, during the last
execution.

output_rows number Number of rows produced by the row source, accumulated over the
past executions.

last_cr_buffer_
gets

number Number of buffers retrieved in consistent mode, during the last
execution. Buffers are usually retrieved in consistent mode for queries.

cr_buffer_gets number Number of buffers retrieved in consistent mode, accumulated over the
past executions. Buffers are usually retrieved in consistent mode for
queries.

last_cu_buffer_
gets

number Number of buffers retrieved in current mode, during the last
execution. Buffers are retrieved in current mode for statements such as
INSERT, UPDATE, and DELETE.

cu_buffer_gets number Number of buffers retrieved in current mode, accumulated over the
past executions. Buffers are retrieved in current mode for statements
such as INSERT, UPDATE, and DELETE.

last_disk_reads number Number of physical disk reads performed by the operation, during
the last execution.

disk_reads number Number of physical disk reads performed by the operation,
accumulated over the past executions.
24-52 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$SQL_PLAN_STATISTICS_ALL
This table concatenates information from V$SQL_PLAN with execution statistics

from V$SQL_PLAN_STATISTICS and V$SQL_WORKAREA. V$SQL_WORKAREA
contains memory usage statistics for row sources that use SQL memory (for

example, hash-join and sort).

last_disk_writes number Number of physical disk writes performed by the operation, during
the last execution.

disk_writes number Number of physical disk writes performed by the operation,
accumulated over the past executions.

last_elapsed_
time

number Elapsed time (in microseconds) corresponding to this operation,
during the last execution.

elapsed_time number Elapsed time (in microseconds) corresponding to this operation,
accumulated over the past executions.

1 An operation can be started several times if it is after an iterator (PARTITION or INLIST), i.e, the number of starts is in fact
the number of iterations (number of partitions or number of elements in the in-list).

Table 24–25 V$SQL_PLAN_STATISTICS_ALL

Column Datatype Description

address raw(4) Address of the handle to the parent for this cursor

hash_value number Hash value of the parent statement in the library cache. The
two columns (address and hash_value) can be used to
join with v$sqlarea to add information specific to the
cursor.

child_number number Child cursor number using this execution plan. The columns
(address , hash_value , and child_number) can be used
to join with v$sql to add information specific to the child
cursor.

operation varchar2(30) Name of the internal operation performed in this step—for
example, TABLE ACCESS.

options varchar2(30) A variation on the operation described in the OPERATION
column—for example, FULL.

Table 24–24 (Cont.) V$SQL_PLAN_STATISTICS

Column Datatype Description
Dynamic Performance Views for Tuning 24-53

Description of Dynamic Performance Views
object_node varchar2(10) Name of the database link used to reference the object (a
table name or view name). For local queries using parallel
execution, this column describes the order in which output
from operations is consumed.

object# number Object number of the table or the index.

object_owner varchar2(30) Name of the user who owns the schema containing the table
or index.

object_name varchar2(30) Name of the table or index.

optimizer varchar2(20) Current mode of the optimizer for the first row in the plan
(statement line)—for example, CHOOSE. In case the
operation is a database access (for example, TABLE ACCESS),
it tells whether the object is analyzed or not.

id number Number assigned to each step in the execution plan.

parent_id number ID of the next execution step that operates on the output of
the current step.

depth number Depth (or level) of the operation in the tree; it is not
necessary to do a CONNECT BY to get the level information,
generally used to indent the rows from the plan_table .
The root operation (statement) has level 0.

position number Order of processing for operations that all have the same
PARENT_ID.

cost number Cost of the operation as estimated by the optimizer’s
cost-based approach. For statements that use the rule-based
approach, this column is null.

cardinality number Estimate, by the cost-based optimizer, of the number of rows
produced by the operation.

bytes number Estimate, by the cost-based optimizer, of the number of
bytes produced by the operation.

other_tag varchar2(35) Describes the contents of the OTHER column; see Table 9–2
for values.

partition_start varchar2(5) Start partition of a range of accessed partitions.

partition_stop varchar2(5) Stop partition of a range of accessed partitions.

partition_id number Step that has computed the pair of values of the
PARTITION_START and PARTITION_STOP columns.

Table 24–25 (Cont.) V$SQL_PLAN_STATISTICS_ALL

Column Datatype Description
24-54 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
other varchar2(4000) Other information that is specific to the execution step that a
user may find useful; see Table 9–2 for values.

distribution varchar2(20) Method used to distribute rows from producer query servers
to consumer query servers; see Table 9–3 for values.

cpu_cost number CPU cost of the operation as estimated by the optimizer’s
cost-based approach. For statements that use the rule-based
approach, this column is null.

io_cost number I/O cost of the operation as estimated by the optimizer’s
cost-based approach. For statements that use the rule-based
approach, this column is null.

temp_space number Temporary space usage of the operation (sort or hash-join)
as estimated by the optimizer’s cost-based approach. For
statements that use the rule-based approach, this column is
null.

access_predicates varchar2(4000) Predicates used to locate rows in an access structure; for
example, start or stop predicates for an index range scan.

filter_predicates varchar2(4000) Predicates used to filter rows before producing them.

executions number Number of times this cursor has been executed.

last_starts number Number of times this operation has been started, during the
last execution.

starts number Number of times this operation has been started,
accumulated over the past executions.

last_output_rows number Number of rows produced by the row source, during the
last execution.

output_rows number Number of rows produced by the row source, accumulated
over the past executions.

last_cr_buffer_gets number Number of buffers retrieved in consistent mode, during the
last execution. Buffers are usually retrieved in consistent
mode for queries.

cr_buffer_gets number Number of buffers retrieved in consistent mode,
accumulated over the past executions. Buffers are usually
retrieved in consistent mode for queries.

last_cu_buffer_gets number Number of buffers retrieved in current mode, during the last
execution. Buffers are retrieved in current mode for
statements such as INSERT, UPDATE, and DELETE.

Table 24–25 (Cont.) V$SQL_PLAN_STATISTICS_ALL

Column Datatype Description
Dynamic Performance Views for Tuning 24-55

Description of Dynamic Performance Views
cu_buffer_gets number Number of buffers retrieved in current mode, accumulated
over the past executions. Buffers are retrieved in current
mode for statements such as INSERT, UPDATE, and DELETE.

last_disk_reads number Number of physical disk reads performed by the operation,
during the last execution.

disk_reads number Number of physical disk reads performed by the operation,
accumulated over the past executions.

last_disk_writes number Number of physical disk writes performed by the operation,
during the last execution.

disk_writes number Number of physical disk writes performed by the operation,
accumulated over the past executions.

last_elapsed_time number Elapsed time (in microseconds) corresponding to this
operation, during the last execution.

elapsed_time number Elapsed time (in microseconds) corresponding to this
operation, accumulated over the past executions.

policy varchar2(10) Sizing policy for this work area. Values are either MANUALor
AUTO.

estimated_optimal_
size

number Estimated size (in KB) required by this work area to execute
the operation completely in memory (optimal execution).
This is either derived from optimizer statistics or from
previous executions.

estimated_onepass_
size

number Estimated size (in KB) required by this work area to execute
the operation in a single pass. This is either derived from
optimizer statistics or from previous executions.

last_memory_used number Memory size, in KB, used by this work area during the last
execution of the cursor.

last_execution varchar(10) Whether this work area ran using OPTIMAL, ONE PASS, or
under ONE PASS memory requirement (that is,
MULTI-PASS), during the last execution of the cursor.

last_degree number Degree of parallelism used, during the last execution of the
cursor.

total_executions number Number of times this work area was active.

optimal_executions number Number of times this work area ran in optimal mode.

onepass_executions number Number of times this work area ran in one pass mode.

Table 24–25 (Cont.) V$SQL_PLAN_STATISTICS_ALL

Column Datatype Description
24-56 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$SQLAREA
This view keeps track of all the shared cursors present in the shared pool. It has one

row for every SQL statement present in the shared pool. It is an invaluable view for

finding the resource usage of a SQL statement.

Information columns in V$SQLAREA
■ HASH_VALUE: Hash value of the SQL statement

■ ADDRESS: SGA address for the SQL statement

These two columns are used to identify the SQL statement. Sometimes, two

different statements could hash to the same value. In such cases, it is necessary to

use the address along with the hash_value.

■ PARSING_USER_ID: User who parsed the first cursor for the statement

■ VERSION_COUNT: Number of cursors for the statement

■ KEPT_VERSIONS: Cursors of the statement pinned using DBMS_SHARED_
POOL.KEEP()

■ SHARABLE_MEMORY: Total shared memory used by the cursor

■ PERSISTENT_MEMORY: Total persistent memory used by the cursor

■ RUNTIME_MEMORY: Total runtime memory used by the cursor

■ SQL_TEXT: Up to first 1000 characters of SQL statement

■ MODULE, ACTION: Information about the session parsing the first cursor if set

using DBMS_APPLICATION_INFO

Other Useful Columns in V$SQLAREA
These columns get incremented with each execution of the statement.

multipasses_
executions

number Number of times this work area ran under the one-pass
memory requirement.

active_time number Time the work area has been active (in microseconds).

max_tempseg_size number Maximum temporary space used.

tempseg_size number Temporary space used.

Table 24–25 (Cont.) V$SQL_PLAN_STATISTICS_ALL

Column Datatype Description
Dynamic Performance Views for Tuning 24-57

Description of Dynamic Performance Views
■ BUFFER_GETS: Number of logical reads for this statement

■ DISK_READS: Number of physical reads for this statement

■ SORTS: Number of sorts for this statement

■ CPU_TIME: CPU time used for parsing and executing this statement

■ ELAPSED_TIME: Elapsed time for parsing and executing this statement

■ PARSE_CALLS: Number of parse calls (hard and soft) for this statement

■ EXECUTIONS: Number of times this statement was executed

■ INVALIDATIONS : Number of times the cursors for this statement have been

invalidated

■ LOADS: Number of loads (and reloads) for this statement

■ ROWS_PROCESSED: Total number of rows this statement returns

Join Columns in V$SQLAREA
Table 24–26 lists the join columns for V$SQLAREA.

Example 24–28 Finding Resource-intensive SQL

There are several costs you can use:

■ Total logical I/O (LIO), LIO for each execution

■ Total physical I/O (PIO), PIO for each execution

■ PIO/LIO (poor cache hit ratio)

■ parse_calls, parse_calls for each executions

SELECT hash_value, executions, buffer_gets, disk_reads, parse_calls
 FROM V$SQLAREA
 WHERE buffer_gets > 10000000

Table 24–26 Join Columns for V$SQLAREA

Column View Joined Column(s)

HASH_VALUE,
ADDRESS

V$SESSION SQL_HASH_VALUE,
SQL_ADDRESS

HASH_VALUE,
ADDRESS

V$SQLTEXT, V$SQL,
V$OPEN_CURSOR

HASH_VALUE,
ADDRESS

SQL_TEXT V$DB_OBJECT_CACHE NAME
24-58 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
 OR disk_reads > 1000000
 ORDER BY buffer_gets + 100*disk_reads DESC;

HASH_VALUE EXECUTIONS BUFFER_GETS DISK_READS PARSE_CALLS
---------- ---------- ----------- ---------- -----------
2676594883 126 7583140 6199113 126
4074144966 126 7264362 6195433 49
 228801498 136 236116544 2371187 136
 360282550 5467 21102603 4476317 2355
1559420740 201 8197831 4537591 39
3213702248 28039654 364516977 44 131
1547710012 865 7579025 3337735 865
3000880481 4481 3676546 2212658 2885
1398193708 4946 73018658 1515257 1418
1052917712 8342025 201246652 38240 327462
 371697988 7 74380777 862611 7
1514306888 3922461 29073852 1223482 268
1848522009 1 1492281 1483635 1
1478599096 28042103 140210513 594 164
 226079402 21473 22121577 1034787 4484
 478652562 4468 21669366 1020370 4438
2054874295 73520 118272694 29987 73520

Example 24–29 Finding Resources Used by a SQL Statement

SELECT hash_value, buffer_gets, disk_reads, executions, parse_calls
 FROM V$SQLAREA
 WHERE hash_Value = 228801498
 AND address = hextoraw('CBD8E4B0');

HASH_VALUE BUFFER_GETS DISK_READS EXECUTIONS PARSE_CALLS
---------- ----------- ---------- ---------- -----------
 228801498 236116544 2371187 136 136

V$SQLTEXT
This view contains the complete SQL text for the SQL statements in the shared pool.

Note: If a statement is executing for the first time on the system

and responsible for large fraction of the current resource usage,

then this statement does not find that statement, because the

BUFFER_GETSand DISK_READSstatistics do not get updated until

the statement finishes execution.
Dynamic Performance Views for Tuning 24-59

Description of Dynamic Performance Views
Useful Columns for V$SQLTEXT
■ HASH_VALUE: Hash value for the SQL statement

■ ADDRESS: Address of the SQL statement cursor in SGA

■ SQL_TEXT: Statement text in 64 character chunks

■ PIECE: Ordering information for the SQL statement pieces

Join Columns for V$SQLTEXT
Table 24–27 lists the join columns for V$SQLTEXT.

Example 24–30 Finding the SQL Statement for a Hash Value

SELECT sql_text
 FROM V$SQLTEXT
 WHERE hash_value = 228801498
 ORDER BY piece;

SQL_TEXT
--
select dbsu.primary_flag, i.site_use_code, i.rowid
from ra_customers dbc, ra_addresses dbad, ra_site_uses dbsu, ra_customers_
interface i
where (((((((i.orig_system_customer_ref=dbc.orig_system_reference and
dbad.address_id=dbsu.address_id) and i.site_use_code=dbsu.site_use_code) and
dbsu.status='A') and dbad.customer_id=dbc.customer_id) and i.request_id=:b0) and
nvl(i.validated_flag,'N')<>'Y') and ((i.primary_site_use_flag='Y' and
dbsu.primary_flag='Y') or dbsu.site_use_code in ('STMTS','DUN','LEGAL')))
group by dbsu.primary_flag,i.orig_system_customer_ref,i.site_use_code,i.insert_

update_flag,i.rowid

Note: V$SQLAREA only contains only the first 1000 characters.

Table 24–27 Join Columns for V$SQLTEXT

Column View Joined Column(s)

HASH_VALUE,
ADDRESS

VSQL, VSESSION HASH_VALUE,
ADDRESS

HASH_VALUE.
ADDRESS

V$SESSION SQL_HASH_VALUE.
SQL_ADDRESS
24-60 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
V$STATISTICS_LEVEL
V$STATISTICS_LEVEL lists the status of the statistics or advisories controlled by

the STATISTICS_LEVEL initialization parameter. Each row of V$STATISTICS_
LEVEL represents one of these statistics or advisories.

V$SYSSTAT
V$SYSSTAT stores instance-wide statistics on resource usage, cumulative since the

instance was started.

Similar to V$SESSTAT, this view stores the following types of statistics:

■ A count of the number of times an action occurred (user commits)

■ A running total of volumes of data generated, accessed, or manipulated (redo
size)

■ If TIMED_STATISTICS is true, then the cumulative time spent performing

some actions (CPU used by this session)

Table 24–28 V$STATISTICS_LEVEL View

Column Datatype Description

STATISTICS_NAME VARCHAR2(64) Name of the statistics/advisory.

DESCRIPTION VARCHAR2(4000) Description of what the statistics/advisory
does and what it can be used for.

SESSION_STATUS VARCHAR2(8) ENABLED|DISABLED. Status of the
statistics/advisory for this session.

SYSTEM_STATUS VARCHAR2(8) ENABLED|DISABLED. Status of the
statistics/advisory system-wide.

ACTIVATION_LEVEL VARCHAR2(7) BASIC|TYPICAL|ALL . What level of
STATISTICS_LEVEL enables this
statistics/advisory?

STATISTICS_VIEW_
NAME

VARCHAR2(64) If there is a single view externalizing this
statistics/advisory, the name of that view.
If there is no such a view, this column is
empty. If there are multiple views involved,
the DESCRIPTION column should mention
the view names.

SESSION_SETTABLE VARCHAR2(3) YES|NO. Whether this statistics/advisory
can be set at the session level.
Dynamic Performance Views for Tuning 24-61

Description of Dynamic Performance Views
Useful Columns in V$SYSSTAT
■ STATISTIC# : Identifier for the statistic

■ NAME: Statistic name

■ VALUE: Resource usage

The value for each statistic stores the resource usage for that statistic since instance

startup. The following are sample column values for the statistic execute count .

Uses for V$SYSSTAT Data
The data in this view is used for monitoring system performance. Derived statistics,

such as the buffer cache hit ratio and soft parse ratio, are computed from

V$SYSSTAT data.

Data in this view is also used for monitoring system resource usage and how the

system’s resource usage changes over time. As with most performance data,

examine the system’s resource usage over an interval. To do this, take a snapshot of

the data within the view at the beginning of the interval and another at the end. The

difference in the values (end value - begin value) for each statistic is the resource

used during the interval. This is the methodology used by Oracle tools such as

Statspack and BSTAT/ESTAT.

In order to compare one interval’s data with another, the data can be normalized

(for each transaction, for each execution, for each second, or for each logon).

Normalizing the data on both workloads makes identifying the variances between

the two workloads easier. This type of comparison is especially useful after patches

have been applied, applications have been upgraded, or simply over time to see

how increases in user population or data growth affects the resource usage.

You can also use V$SYSSTAT data to examine the resource consumption of

contended-for resources that were identified by querying the V$SYSTEM_EVENT
view.

Table 24–29 Useful Columns in V$SYSSTAT

Statistic# Name Value

215 execute count 19,003,070

Note: The STATISTIC# for a statistic can change between

releases. Do not rely on STATISTIC# to remain constant. Instead,

use the statistic NAME column to query the VALUE.
24-62 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
Useful Statistics for V$SYSSTAT
This section describes some of the V$SYSSTAT statistics that are most useful during

tuning, along with an explanation of the statistic. This list is in alphabetical order.

Key Database Usage Indicators

■ CPU used by this session : The total amount of CPU used by all sessions,

excluding background processes. This unit for this statistic is hundredths of a

second. Calls that complete in less than 10ms are rounded up to this unit.

■ db block changes : The number of changes made to database blocks in the

SGA that were part of an insert, update, or delete operation. This statistic is a

rough indication of total database work. On a for each transaction level, this

statistic indicates the rate at which buffers are being dirtied.

■ execute count : The total number of SQL statement executions (including

recursive SQL).

■ logons current : Sessions currently connected to the instance. When using

two snapshots across an interval, an average value (rather than the difference)

should be used.

■ logons cumulative : The total number of logons since the instance started. To

determine the number of logons in a particular period, subtract the end value

from the begin value. A useful derived statistic is to divide the number of

connections between a begin and end time, and divide this by the number of

seconds the interval covered. This gives the logon rate. Optimally, there should

be no more than two logons each second. To contrast, a logon rate of 50 a

second is considered very high. Applications that continually connect and

disconnect from the database (for example, once for each transaction) do not

scale well.

■ parse count (hard) : The number of parse calls that resulted in a miss in the

shared pool. A hard parse occurs when a SQL statement is executed and the

SQL statement is either not in the shared pool, or it is in the shared pool but it

cannot be shared because part of the metadata for the two SQL statements is

different. This can happen if a SQL statement is textually identical to a

preexisting SQL statement, but the tables referred to in the two statements

resolve to physically different tables. A hard parse is a very expensive operation

in terms of CPU and resource use (for example, latches), because it requires

See Also: Oracle9i Database Reference for a complete list of

statistics and their description
Dynamic Performance Views for Tuning 24-63

Description of Dynamic Performance Views
Oracle to allocate memory within the shared pool, then determine the execution

plan before the statement can be executed.

■ parse count (total) : The total number of parse calls, both hard and soft. A

soft parse occurs when a session executes a SQL statement, and the statement is

already in the shared pool and can be used. For a statement to be used (that is,

shared) all data pertaining to the existing SQL statement (including data such as

the optimizer execution plan) must be equally applicable to the current

statement being issued. These two statistics are used to calculate the soft-parse

ratio.

■ parse time cpu : Total CPU time spent parsing in hundredths of a second. This

includes both hard and soft parses.

■ parse time elapsed : The total elapsed time for the parse call to complete.

■ physical reads : The number of blocks read from the operating system. It

includes physical reads into the SGA buffer cache (a buffer cache miss) and

direct physical reads into the PGA (for example, during direct sort operations).

This statistic is not the number of I/O requests.

■ physical writes : The number of database blocks written from the SGA

buffer cache to disk by DBWR and from the PGA by processes performing

direct writes.

■ redo log space requests : The number of times a server process waited for

space in the redo logs, typically because a log switch is needed.

■ redo size : The total amount of redo generated (and hence written to the log

buffer), in bytes. This statistic (normalized over seconds or over transactions) is

a good indicator of update activity.

■ session logical reads : The number of logical read requests that can be

satisfied in the buffer cache or by a physical read.

■ sorts (memory) and sorts (disk) : sorts (memory) is the number of sort

operations that fit inside the SORT_AREA_SIZE (and hence did not require an

on disk sort). sorts (disk) is the number of sort operations that were larger

than SORT_AREA_SIZE and had to use space on disk to complete the sort.

These two statistics are used to compute the in-memory sort ratio.

■ sorts (rows) : The total number of rows sorted. This statistic can be divided

by the ’sorts (total)’ statistic to determine rows for each sort. It is an indicator of

data volumes and application characteristics.
24-64 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ table fetch by rowid : The number of rows returned using ROWID (due to

index access or because a SQL statement of the form "where rowid = &rowid"

was issued).

■ table scans (rows gotten) : The total number of rows processed during full

table scans.

■ table scans (blocks gotten) : The number of blocks scanned during full

table scans, excluding those for split rows.

■ user commits + user rollbacks : This provides the total number of

transactions on the system. This number is used as the divisor when calculating

the ratios for each transaction for other statistics. For example, to calculate the

number of logical reads for each transaction, use the following formula:

session logical reads / (user commits + user rollbacks).

Notes on Physical I/O
A physical read as reported by Oracle might not result in an actual physical disk

I/O operation. This is possible because most operating systems have an operating

system files system cache where the block might be present. Alternatively, the block

might also be present in disk or controller level cache, again avoiding an actual I/O.

A physical read as reported by Oracle merely indicates that the required block was

not in the buffer cache (or in the case of a direct read operation, was required to be

read into private memory).

Instance Efficiency Ratios From V$SYSSTAT Statistics
The following are typical instance efficiency ratios calculated from V$SYSSTAT
data. Each ratio’s computed value should all be as close as possible to 1:

Buffer cache hit ratio: This is a good indicator of whether the buffer cache is too

small.

1 - ((physical reads - physical reads direct - physical reads direct (lob)) /
session logical reads)

Soft parse ratio: This shows whether there are many hard parses on the system. The

ratio should be compared to the raw statistics to ensure accuracy. For example, a

soft parse ratio of 0.2 typically indicates a high hard parse rate. However, if the total

number of parses is low, then the ratio should be disregarded.

1 - (parse count (hard) / parse count (total))
Dynamic Performance Views for Tuning 24-65

Description of Dynamic Performance Views
In-memory sort ratio: This shows the proportion of sorts that are performed in

memory. Optimally, in an operational (OLTP) system, most sorts are small and can

be performed solely as in-memory sorts.

sorts (memory) / (sorts (memory) + sorts (disk))

Parse to execute ratio: In an operational environment, optimally a SQL statement

should be parsed once and executed many times.

1 - (parse count/execute count)

Parse CPU to total CPU ratio: This shows how much of the total CPU time used was

spent on activities other than parsing. When this ratio is low, the system is

performing too many parses.

1 - (parse time cpu / CPU used by this session)

Parse time CPU to parse time elapsed: Often, this can indicate latch contention. The

ratio calculates whether the time spent parsing is allocated to CPU cycles (that is,

productive work) or whether the time spent parsing was not spent on CPU cycles.

Time spent parsing not on CPU cycles usually indicates that the time was spent

sleeping due to latch contention.

parse time cpu / parse time elapsed

Load Profile Data from V$SYSSTAT Statistics
To determine the load profile of the system, normalize the following statistics over

seconds and over transactions: logons cumulative , parse count (total) ,

parse count (hard) , executes , physical reads , physical writes , block
changes , and redo size .

The normalized data can be examined to see if the ’rates’ are high, or it can be

compared to another baseline data set to identify how the system profile is

changing over time. For example, block changes for each transaction is calculated

by the following:

db block changes / (user commits + user rollbacks)

Additional computed statistics that measure load include the following:

■ Blocks changed for each read:

This shows the proportion of block changes to block reads. It is an indication of

whether the system is predominantly read only or whether the system performs

many data changes (inserts/updates/deletes).
24-66 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
db block changes / session logical reads

■ Rows for each sort:

sorts (rows) / (sorts (memory) + sorts (disk))

Join Columns for V$SYSSTAT
Table 24–30 lists the join columns for V$SYSSTAT.

V$SYSTEM_EVENT
This view is a summary of waits for an event by an instance. While V$SESSION_
WAIT shows the current waits on the system, V$SYSTEM_EVENT provides a

summary of all the event waits on the instance since it started. It is useful to get a

historical picture of waits on the system. By taking two snapshots and doing the

delta on the waits, you can determine the waits on the system in a given time

interval.

Useful Columns for V$SYSTEM_EVENT
■ EVENT: Name of the wait event

■ TOTAL_WAITS: Total number of waits for this event

■ TIME_WAITED: Total time waited for this event (in hundredths of a second)

■ AVERAGE_WAIT: Average amount of time waited for this event by this session

(in hundredths of a second)

■ TOTAL_TIMEOUTS: Number of times the wait timed out

Example 24–31 Finding the Total Waits on the System

SELECT event, total_waits waits, total_timeouts timeouts,
 time_waited total_time, average_wait avg
 FROM V$SYSTEM_EVENT
 ORDER BY 4 DESC;

EVENT WAITS TIMEOUTS TOTAL_TIME AVG
---------------------------------- ---------- --------- ---------- --------

Table 24–30 Join Columns for V$SYSSTAT

Column View Joined Column(s)

STATISTIC# V$STATNAME STATISTIC#
Dynamic Performance Views for Tuning 24-67

Description of Dynamic Performance Views
SQL*Net message from client 112079628 0 8622695365 76.93
virtual circuit status 83559794 1168000 4275791401 51.17
rdbms ipc message 131463191 115900505 2865926648 21.80
dispatcher timer 311975975 168152330 2296760866 7.36
PX Idle Wait 7198490 7198559 1439690729 199.99
pmon timer 939711 939639 287866277 306.33
smon timer 9892 9114 287627013 29076.73
lock manager wait for remote mes 72001548 71967858 287526387 3.99
db file sequential read 29419894 0 32395392 1.10
PL/SQL lock timer 19725 19688 29702609 1505.83
log file sync 7055611 86 9550819 1.35
log file parallel write 7184801 4 8123534 1.13
SQL*Net more data from client 991402 0 3543149 3.57
db file parallel write 727317 0 3012928 4.14
control file parallel write 950531 0 1975646 2.07
log file sequential read 1162465 0 813715 0.69
enqueue 9975 7692 423191 42.42
direct path read 453873 0 298944 0.65
db file scattered read 347172 0 292875 0.84
row cache lock 472207 25 169365 0.35
direct path write 124323 0 132075 1.06
buffer busy due to global cache 148122 0 122381 0.82
SQL*Net more data to client 17171954 52 101762 0.00
db file parallel read 68849 0 100842 1.46
DFS lock handle 18615 1080 97651 5.24
SQL*Net message to client 112079756 0 77604 0.00
control file sequential read 65793 0 62560 0.95
buffer busy waits 132402 97 60351 0.45
latch free 67675 57975 58365 0.86
log file switch completion 1449 24 34244 23.63
db file single write 10868 0 25518 2.34
SQL*Net break/reset to client 19130 0 9387 0.49
LGWR wait for redo copy 120199 356 8613 0.07
global cache lock busy 4447 0 7574 1.70
undo segment extension 5363841 5363828 6375 0.00
log file single write 2143 0 6267 2.92
refresh controlfile command 2644 0 4837 1.82
library cache load lock 49 10 3859 78.75
file open 178566 0 2930 0.01
switch logfile command 100 0 2468 24.68
library cache pin 9261 1 1716 0.18
pipe get 9 3 1460 162.22
rdbms ipc reply 10296 0 846 0.08
wait for gms registration 32 32 672 21.00
process startup 43 2 662 15.39
24-68 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
file identify 5438 0 584 0.10
control file single write 332 0 475 1.43
Null event 17 17 409 24.05
log buffer space 18 0 209 11.61
wait for lock db to unfreeze 1 1 199 199.00
local write wait 11 0 44 4.00
LMON wait for LMD to inherit commu 1 1 10 10.00
wait for lock db to become frozen 2 2 3 1.50
instance state change 2 0 0 0.00
global cache bg acks 2 0 0 0.00
buffer deadlock 141 141 0 0.00

To find the bottlenecks:

■ Statspack lists idle events at the end.

■ Examine the time spent waiting for different events.

■ Examine the average time for each wait also, because some waits (like log
file switch completion) might happen only periodically, but cause a big

performance hit when they happen.

V$UNDOSTAT
This view monitors how undo space and transactions are executed in the current

instance. Statistics for undo space consumption, transaction concurrency, and length

of queries in the instance are available.

Useful Columns for V$UNDOSTAT

■ Endtime : End time for each ten minute interval

■ UndoBlocksUsed : Total number of undo blocks consumed

■ TxnConcurrency : Maximum number of transactions executed concurrently

■ TxnTotal : Total number of transactions executed within the interval

■ QueryLength : Maximum length of queries, in seconds executed in the instance

■ ExtentsStolen : Number of times an undo extent must be transferred from

one undo segment to another within the interval

■ SSTooOldError : Number of ’Snapshot Too Old’ errors that occurred within

the interval

■ UNDOTSN: undo tablespaces in service during each time period
Dynamic Performance Views for Tuning 24-69

Description of Dynamic Performance Views
The first row of the view shows statistics for the current time interval. Each

subsequent row represents a ten minute interval. There is a total of 144 rows,

spanning a 24 hour cycle.

Example 24–32 Querying V$UNDOSTAT

This example shows how undo space is consumed in the system for the previous 24

hours from the time 16:07.

SELECT * FROM V$UNDOSTAT;

End-Time UndoBlocks TxnConcrcy TxnTotal QueryLen ExtentsStolen SSTooOldError
-------- ---------- ---------- -------- -------- ------------- -------------
16:07 252 15 1511 25 2 0
16:00 752 16 1467 150 0 0
15:50 873 21 1954 45 4 0
15:40 1187 45 3210 633 20 1
15:30 1120 28 2498 1202 5 0
15:20 882 22 2002 55 0 0

Among the statistics collected, you see that the peak undo consumption happened

at the interval of (15:30, 15:40). 1187 undo blocks were consumed in 10 minutes (or

about two blocks a second). Also, the highest transaction concurrency occurred

during that same period with 45 transactions executing at the same time. The

longest query (1202 seconds) was executed (and ended) in the period (15:20, 15:30).

Note that the query actually was started in the interval (15:00, 15:10) and continued

until around 15:20.

V$WAITSTAT
This view keeps a summary all buffer waits since instance startup. It is useful for

breaking down the waits by class if you see a large number of buffer busy waits on

the system.

Useful Columns for V$WAITSTAT
■ class : Class of block (data segment header, undo segment header, data block)

■ waits : Number of waits for this class of blocks

■ time : Total time waited for this class of block

Reasons for Waits
The following are possible reasons for waits:
24-70 Oracle9i Database Performance Tuning Guide and Reference

Description of Dynamic Performance Views
■ Undo segment header: not enough rollback segments

■ Data segment header/freelist: freelist contention

■ Data block

■ Large number of CR clones for the buffer

■ Range scans on indexes with large number of deletions

■ Full table scans on tables with large number of deleted rows

■ Blocks with high concurrency

See Also: Chapter 22, "Instance Tuning" for more information on

wait events
Dynamic Performance Views for Tuning 24-71

Description of Dynamic Performance Views
24-72 Oracle9i Database Performance Tuning Guide and Reference

Schemas Used in Performance Exam
A

Schemas Used in Performance Examples

The tables described in this appendix are used in various examples in this book. The

statistics are from representative systems.

This appendix discusses the following:

■ PER_ALL_PEOPLE_F Table

■ RA_CUSTOMERS Table

■ SO_HEADERS_ALL and SO_HEADERS Tables

■ MTL_SYSTEM_ITEMS Table

■ SO_LINES_ALL and SO_LINES Tables

Note: These schemas are used in examples in several chapters,

including Chapter 9, "Using EXPLAIN PLAN".
ples A-1

PER_ALL_PEOPLE_F Table
PER_ALL_PEOPLE_F Table
This table stores data for employees on the system. For large corporations, it is

common to have 10,000 to 30,000 rows in this table. The unique key is a

concatenated index, but person_id by itself is quite selective also. Other selective

columns are employee_number and full_name .

The following are indexes on the table:

Unique Index Name Column Name
------ -------------------- -------------------------
NO PER_PEOPLE_F_FK1 BUSINESS_GROUP_ID
NO PER_PEOPLE_F_FK2 PERSON_TYPE_ID
NO PER_PEOPLE_F_N50 LAST_NAME
NO PER_PEOPLE_F_N51 EMPLOYEE_NUMBER
NO PER_PEOPLE_F_N52 APPLICANT_NUMBER
NO PER_PEOPLE_F_N53 NATIONAL_IDENTIFIER
NO PER_PEOPLE_F_N54 FULL_NAME
YES PER_PEOPLE_F_PK PERSON_ID
 EFFECTIVE_START_DATE
 EFFECTIVE_END_DATE

RA_CUSTOMERS Table
This table has a row for every customer in the system. For large companies, this

table has several hundred thousand rows. The primary key is customer_id . Other

selective columns are the following:

■ Customer_number

■ Customer_name

■ Orig_system_reference - tracks the customer identifier for customers

imported from another system

The following are indexes on the table:

Unique Index Name Column Name
------ -------------------- ------------------------------
NO RA_CUSTOMERS_N1 CUSTOMER_NAME
NO RA_CUSTOMERS_N2 CREATION_DATE
NO RA_CUSTOMERS_N3 CUSTOMER_KEY
NO RA_CUSTOMERS_N4 JGZZ_FISCAL_CODE
YES RA_CUSTOMERS_U1 CUSTOMER_ID
YES RA_CUSTOMERS_U2 ORIG_SYSTEM_REFERENCE
YES RA_CUSTOMERS_U3 CUSTOMER_NUMBER
A-2 Oracle9i Database Performance Tuning Guide and Reference

MTL_SYSTEM_ITEMS Table
SO_HEADERS_ALL and SO_HEADERS Tables
This table has a row for every order on the system. For large companies, it is

common to have several million rows in this table. The primary key is header_id ,

and there is another unique key on (order_number , order_type_id). Other

selective columns are the following:

■ customer_id (the customer placing the order)

■ purchase_order_num (the purchase order for billing)

■ original_system_reference (tracks the order identifier for orders

imported from other systems)

The following are indexes on the table:

Unique Index Name Column Name
------ -------------------- ---------------------------
NO SO_HEADERS_N1 CUSTOMER_ID
NO SO_HEADERS_N10 WH_UPDATE_DATE
NO SO_HEADERS_N2 OPEN_FLAG
NO SO_HEADERS_N3 PURCHASE_ORDER_NUM
NO SO_HEADERS_N4 INVOICE_TO_SITE_USE_ID
NO SO_HEADERS_N5 ORIGINAL_SYSTEM_REFERENCE
NO SO_HEADERS_N6 S1
NO SO_HEADERS_N7 S4
NO SO_HEADERS_N8 S6
NO SO_HEADERS_N9 ORIGINAL_SYSTEM_REFERENCE
 ORIGINAL_SYSTEM_SOURCE_CODE
YES SO_HEADERS_U1 HEADER_ID
YES SO_HEADERS_U2 ORDER_NUMBER
 ORDER_TYPE_ID

MTL_SYSTEM_ITEMS Table
This table is the parts master for so_lines_all . It has a row for every part in

every organization. The primary key is inventory_item_id , organization_
id .

The following are indexes on the table:

Unique Index Name Column Name
------ -------------------- ----------------------------
NO MTL_SYSTEM_ITEMS_N1 ORGANIZATION_ID
 SEGMENT1
NO MTL_SYSTEM_ITEMS_N2 ORGANIZATION_ID
Schemas Used in Performance Examples A-3

SO_LINES_ALL and SO_LINES Tables
 DESCRIPTION
NO MTL_SYSTEM_ITEMS_N3 INVENTORY_ITEM_STATUS_CODE
NO MTL_SYSTEM_ITEMS_N4 ORGANIZATION_ID
 AUTO_CREATED_CONFIG_FLAG
NO MTL_SYSTEM_ITEMS_N5 WH_UPDATE_DATE
NO MTL_SYSTEM_ITEMS_N6 ITEM_CATALOG_GROUP_ID
 CATALOG_STATUS_FLAG
NO MTL_SYSTEM_ITEMS_N7 PRODUCT_FAMILY_ITEM_ID
 ORGANIZATION_ID
NO MTL_SYSTEM_ITEMS_N8 SEGMENT1
 SEGMENT2
 SEGMENT3
YES MTL_SYSTEM_ITEMS_U1 INVENTORY_ITEM_ID
 ORGANIZATION_ID

SO_LINES_ALL and SO_LINES Tables
This table has a row for every order line on the system. It joins to the so_headers_
all table using header_id . Because an order has 10 to 12 lines, this table is 10 to

12 times the rows in so_headers_all . The primary key is line_id . Other

selective columns are the following:

■ header_id

■ parent_line_id

■ service_parent_line_id

■ original_system_reference

The following are indexes on the table:

Unique Index Name Column Name
------ -------------------- -------------------------
NO SO_LINES_N1 HEADER_ID
NO SO_LINES_N10 S5
NO SO_LINES_N11 S6
NO SO_LINES_N12 S8
NO SO_LINES_N13 S9
NO SO_LINES_N14 S28
NO SO_LINES_N15 S29
NO SO_LINES_N16 S30
NO SO_LINES_N17 PARENT_LINE_ID
NO SO_LINES_N18 SHIPMENT_SCHEDULE_LINE_ID
NO SO_LINES_N19 ATO_LINE_ID
NO SO_LINES_N2 LINK_TO_LINE_ID
A-4 Oracle9i Database Performance Tuning Guide and Reference

SO_LINES_ALL and SO_LINES Tables
NO SO_LINES_N20 SERVICE_PARENT_LINE_ID
NO SO_LINES_N21 SHIP_TO_SITE_USE_ID
NO SO_LINES_N22 SOURCE_LINE_ID
NO SO_LINES_N23 ORIGINAL_SYSTEM_LINE_REFERENCE
NO SO_LINES_N24 RETURN_REFERENCE_ID
NO SO_LINES_N25 S27
NO SO_LINES_N26 CREDIT_INVOICE_LINE_ID
NO SO_LINES_N27 S25
NO SO_LINES_N28 WH_UPDATE_DATE
NO SO_LINES_N29 DEMAND_STREAM_ID
NO SO_LINES_N3 OPEN_FLAG
NO SO_LINES_N4 COMMITMENT_ID
NO SO_LINES_N5 INVENTORY_ITEM_ID
NO SO_LINES_N6 REQUEST_ID
NO SO_LINES_N7 S2
NO SO_LINES_N8 S3
NO SO_LINES_N9 S4
YES SO_LINES_U1 LINE_ID
Schemas Used in Performance Examples A-5

SO_LINES_ALL and SO_LINES Tables
A-6 Oracle9i Database Performance Tuning Guide and Reference

Glossary

asynchronous I/O

Independent I/O, in which there is no timing requirement for transmission, and

other processes can be started before the transmission has finished.

Autotrace

Generates a report on the execution path used by the SQL optimizer and the

statement execution statistics. The report is useful to monitor and tune the

performance of DML statements.

bind variable

A variable in a SQL statement that must be replaced with a valid value, or the

address of a value, in order for the statement to successfully execute.

block

A unit of data transfer between main memory and disk. Many blocks from one

section of memory address space form a segment.

bottleneck

The delay in transmission of data, typically when a system's bandwidth cannot

support the amount of information being relayed at the speed it is being processed.

There are, however, many factors that can create a bottleneck in a system.

buffer

A main memory address in which the buffer manager caches currently and recently

used data read from disk. Over time, a buffer can hold different blocks. When a new

block is needed, the buffer manager can discard an old block and replace it with a

new one.
Glossary-1

buffer pool

A collection of buffers.

cache

Also known as buffer cache. All buffers and buffer pools.

cache recovery

The part of instance recovery where Oracle applies all committed and uncommitted

changes in the redo log files to the affected data blocks. Also known as the rolling
forward phase of instance recovery.

Cartesian product

A join with no join condition results in a Cartesian product, or a cross product. A

Cartesian product is the set of all possible combinations of rows drawn one from

each table. In other words, for a join of two tables, each row in one table is matched

in turn with every row in the other. A Cartesian product for more than two tables is

the result of pairing each row of one table with every row of the Cartesian product

of the remaining tables. All other kinds of joins are subsets of Cartesian products

effectively created by deriving the Cartesian product and then excluding rows that

fail the join condition.

CBO

Cost-based optimizer. Generates a set of potential execution plans for SQL

statements, estimates the cost of each plan, calls the plan generator to generate the

plan, compares the costs, and chooses the plan with the lowest cost. This approach

is used when the data dictionary has statistics for at least one of the tables accessed

by the SQL statements. The CBO is made up of the query transformer, the estimator,

and the plan generator.

compound query

A query that uses set operators (UNION, UNION ALL, INTERSECT, or MINUS) to

combine two or more simple or complex statements. Each simple or complex

statement in a compound query is called a component query.

contention

When some process has to wait for a resource that is being used by another process.

dictionary cache

A collection of database tables and views containing reference information about

the database, its structures, and its users. Oracle accesses the data dictionary
Glossary-2

frequently during the parsing of SQL statements. Two special locations in memory

are designated to hold dictionary data. One area is called the data dictionary cache,

also known as the row cache because it holds data as rows instead of buffers (which

hold entire blocks of data). The other area is the library cache. All Oracle user

processes share these two caches for access to data dictionary information.

distributed statement

A statement that accesses data on two or more distinct nodes/instances of a

distributed database. A remote statement accesses data on one remote node of a

distributed database.

dynamic performance views

The views database administrators create on dynamic performance tables (virtual

tables that record current database activity). Dynamic performance views are called

fixed views because they cannot be altered or removed by the database

administrator.

enqueue

This is another term for a lock.

equijoin

A join condition containing an equality operator.

estimator

Uses statistics to estimate the selectivity, cardinality, and cost of execution plans.

The main goal of the estimator is to estimate the overall cost of an execution plan.

EXPLAIN PLAN

A SQL statement that enables examination of the execution plan chosen by the

optimizer for DML statements. EXPLAIN PLAN causes the optimizer to choose an

execution plan and then to put data describing the plan into a database table.

instance recovery

The automatic application of redo log records to Oracle uncommitted data blocks

after a crash or system failure.

join

A query that selects data from more than one table. A join is characterized by

multiple tables in the FROMclause. Oracle pairs the rows from these tables using the

condition specified in the WHERE clause and returns the resulting rows. This
Glossary-3

condition is called the join condition and usually compares columns of all the joined

tables.

latch

A simple, low-level serialization mechanism to protect shared data structures in the

System Global Area.

library cache

A memory structure containing shared SQL and PL/SQL areas. The library cache is

one of three parts of the shared pool.

LIO

Logical I/O. A block read which may or may not be satisfied from the buffer cache.

literal

A constant value, written at compile-time and read-only at run-time. Literals can be

accessed quickly, and are used when modification is not necessary.

MTBF

Mean time between failures. A common database statistic important to tuning I/O.

mirroring

Maintaining identical copies of data on one or more disks. Typically, mirroring is

performed on duplicate hard disks at the operating system level, so that if one of

the disks becomes unavailable, the other disk can continue to service requests

without interruptions.

nonequijoin

A join condition containing something other than an equality operator.

optimizer

Determines the most efficient way to execute SQL statements by evaluating

expressions and translating them into equivalent, quicker expressions. The

optimizer formulates a set of execution plans and picks the best one for a SQL

statement. See CBO.

Oracle Trace

Used by the Oracle Server to collect performance and resource utilization data, such

as SQL parse, execute, fetch statistics, and wait statistics. Oracle Trace provides

several SQL scripts that can be used to access server event tables, collects server
Glossary-4

event data and stores it in memory, and allows data to be formatted while a

collection is occurring.

outer join

A join condition using the outer join operator (+) with one or more columns of one

of the tables. Oracle returns all rows that meet the join condition. Oracle also returns

all rows from the table without the outer join operator for which there are no

matching rows in the table with the outer join operator.

paging

A technique for increasing the memory space available by moving

infrequently-used parts of a program’s working memory from main memory to a

secondary storage medium, usually a disk. The unit of transfer is called a page.

parse

A hard parse occurs when a SQL statement is executed, and the SQL statement is

either not in the shared pool, or it is in the shared pool but it cannot be shared. A

SQL statement is not shared if the metadata for the two SQL statements is different.

This can happen if a SQL statement is textually identical as a preexisting SQL

statement, but the tables referred to in the two statements resolve to physically

different tables, or if the optimizer environment is different.

A soft parse occurs when a session attempts to execute a SQL statement, and the

statement is already in the shared pool, and it can be used (that is, shared). For a

statement to be shared, all data, (including metadata, such as the optimizer

execution plan) pertaining to the existing SQL statement must be equally applicable

to the current statement being issued.

parse call

A call to Oracle to prepare a SQL statement for execution. This includes

syntactically checking the SQL statement, optimizing it, and building (or locating)

an executable form of that statement.

parser

Performs syntax analysis and semantic analysis of SQL statements, and expands

views (referenced in a query) into separate query blocks.

PGA

Program Global Area. A nonshared memory region that contains data and control

information for a server process, created when the server process is started.
Glossary-5

PIO

Physical I/O. A block read which could not be satisfied from the buffer cache, either

because the block was not present or because the I/O is a direct I/O (and bypasses

the buffer cache).

plan generator

Tries out different possible plans for a given query so that the CBO can choose the

plan with the lowest cost. It explores different plans for a query block by trying out

different access paths, join methods, and join orders.

predicate

A WHERE condition in SQL.

query transformer

Decides whether to rewrite a user query to generate a better query plan, merges

views, and performs subquery unnesting.

RAID

Redundant arrays of inexpensive disks. RAID configurations provide improved

data reliability with the option of striping (manually distributing data). Different

RAID configurations (levels) are chosen based on performance and cost, and are

suited to different types of applications, depending on their I/O characteristics.

RBO

Rule-based optimizer. Chooses an execution plan for SQL statements based on the

access paths available and the ranks of these access paths (if there is more than one

way, then the RBO uses the operation with the lowest rank). The RBO is used if no

statistics are available, otherwise the CBO is used.

row source generator

Receives the optimal plan from the optimizer and outputs the execution plan for the

SQL statement. A row source is an iterative control structure that processes a set of

rows in an iterated manner and produces a row set.

segment

A set of extents allocated for a specific type of database object such as a table, index,

or cluster.
Glossary-6

simple statement

An INSERT, UPDATE, DELETE, or SELECT statement that involves only a single

table.

simple query

A SELECT statement that references only one table and does not make reference to

GROUP BY functions.

SGA

System Global Area. A memory region within main memory used to store data for

fast access. Oracle uses the shared pool to allocate SGA memory for shared SQL and

PL/SQL procedures.

SQL Compiler

Compiles SQL statements into a shared cursor. The SQL Compiler is made up of the

parser, the optimizer, and the row source generator.

SQL statements (identical)

Textually identical SQL statements do not differ in any way.

SQL statements (similar)

Similar SQL statements differ only due to changing literal values. If the literal

values were replaced with bind variables, then the SQL statements would be

textually identical.

SQL Trace

A basic performance diagnostic tool to help monitor and tune applications running

against the Oracle server. SQL Trace lets you assess the efficiency of the SQL

statements an application runs and generates statistics for each statement. The trace

files produced by this tool are used as input for TKPROF.

SQL*Loader

Reads and interprets input files. It is the most efficient way to load large amounts of

data.

Statspack

A set of SQL, PL/SQL, and SQL*Plus scripts that allow the collection, automation,

storage, and viewing of performance data. Statspack supersedes the traditional

UTLBSTAT/UTLESTAT tuning scripts.
Glossary-7

striping

The interleaving of a related block of data across disks. Proper striping reduces I/O

and improves performance.

■ Stripe depth is the size of the stripe, sometimes called stripe unit.

■ Stripe width is the product of the stripe depth and the number of drives in the

striped set.

TKPROF

A diagnostic tool to help monitor and tune applications running against the Oracle

Server. TKPROF primarily processes SQL trace output files and translates them into

readable output files, providing a summary of user-level statements and recursive

SQL calls for the trace files. It can also assess the efficiency of SQL statements,

generate execution plans, and create SQL scripts to store statistics in the database.

transaction recovery

The part of instance recovery where Oracle applies the rollback segments to undo

the uncommitted changes. Also known as the rolling back phase of instance recovery.

UGA

User Global Area. A memory region in the large pool used for user sessions.

wait events

Statistics that are incremented by a server process/thread to indicate that it had to

wait for an event to complete before being able to continue processing. Wait events

are one of the first places for investigation when performing reactive performance

tuning.

wait events (idle)

These events indicate that the server process is waiting because it has no work.

These events should be ignored when tuning, because they do not indicate the

nature of the performance bottleneck.

work area

A private allocation of memory used for sorts, hash joins, and other operations that

are memory-intensive. A sort operator uses a work area (the sort area) to perform

the in-memory sort of a set of rows. Similarly, a hash-join operator uses a work area

(the hash area) to build a hash table from its left input.
Glossary-8

Index

A
access paths

cluster join, 8-6

cluster scans, 1-35

composite index, 8-8

defined, 1-22

execution plans, 1-18

hash cluster key, 8-7

hash scans, 1-36

index scans, 1-28

indexed cluster key, 8-7

single row by cluster join, 8-4

single row by hash cluster key (with unique

key), 8-5

single row by rowid, 8-4

single row by unique or primary key, 8-6

ALL operator, 2-23

ALL_ROWS

optimizer mode parameter, 1-7

ALL_ROWS hint, 1-8, 5-7

allocation

of memory, 14-2

ALTER INDEX statement, 4-7

ALTER SESSION statement

examples, 10-5

SET SESSION_CACHED_CURSORS

clause, 14-40

ALTER SYSTEM statement

DISPATCHERS initialization parameter, 19-4

ANALYZE statement, 1-8, 22-22

creating histograms, 3-22

AND_EQUAL hint, 4-6, 5-17

anti-joins, 1-43

transformations not allowed, 1-44

ANY operator, 2-22

APPEND hint, 5-34

APPINFO

tuning, 11-9

applications

data warehousing and star queries, 1-44

ApplReg event, 12-15

array interface, 23-13

ARRAYSIZE

tuning, 11-10

automatic segment-space management, 15-22,

22-28

automatic undo management, 18-2

AUTOTRACE

settings, 11-2

system variable, 11-2

autotrace

SQL*Plus, 11-1

B
BEGIN_SNAP variable, 21-12

BETWEEN comparison operator, 2-24

binary files

formatting using Oracle Trace, 12-3

bind variables, 14-22

optimization, 1-38

BITMAP CONVERSION row source, 4-18

bitmap indexes, 4-12, 4-17

compared with B-tree indexes, 4-13

inlist iterator, 9-19

maintenance, 4-14

on index-organized tables, 4-16
Index-1

on joins, 4-19

when to use, 4-12

BITMAP_MERGE_AREA_SIZE initialization

parameter, 4-14, 4-17

bitmaps

mapping to rowids, 4-16

block sampling, 3-4

bottlenecks

disk I/O, 15-3

memory, 14-2

resource, 22-26

broadcast

distribution value, 9-26

B-tree indexes, 4-15, 4-18

buffer busy wait events, 22-27

actions, 22-28

buffer caches

reducing buffers, 14-12, 14-35

buffer pools

default cache, 14-14

KEEP cache, 14-14

multiple, 14-13

RECYCLE cache, 14-14

BYTES column

PLAN_TABLE table, 9-24

C
CACHE hint, 5-35

caching tables

automatic caching of small tables, 5-35

CARDINALITY column

PLAN_TABLE table, 9-24

cartesian joins, 1-50

CATALOG.SQL script, 13-5

CATPROC.SQL script, 13-5

chained rows, 22-21

CHAR datatype, 13-3

character sets

database options, 13-3

checkpoints

choosing checkpoint frequency, 17-3

CHOOSE

optimizer mode parameter, 1-7

CHOOSE hint, 1-8, 5-9

CLEAR TIMING command

SQL*Plus, 11-7

client/server applications, 16-12

CLUSTER hint, 5-11

clusters, 4-20

hash and scans of, 1-36

joins and, 8-4, 8-6

scans of, 1-35, 8-4

scans of hash, 8-5, 8-7

scans of index, 8-7

scans of joins, 8-6

collections, 12-8

columns

pseudocolumn ROWNUM, 2-36, 2-45

ROWNUM pseudocolumn, 8-15

selectivity, 3-2

selectivity estimates and histograms, 3-20

to index, 4-3

command files

registering, 11-9

complex view merging, 2-37

composite indexes, 4-4

composite partitioning

examples of, 9-14

CONNECT BY clause

optimizing view queries, 2-36

Connection event, 12-15

connection manager, 23-14

connection pooling, 19-4

consistency

read, 22-20

consistent gets statistic, 14-9, 18-3

consistent mode

TKPROF, 10-13

constants

comparisons and, 2-19

evaluation of expressions, 2-19

when computed, 2-19

constraints, 4-8

contention

disk, 15-3

memory, 14-2, 22-1

tuning, 22-1

wait events, 22-41

context switches, 16-13
Index-2

CONTROL_FILES initialization parameter, 13-13

cost

optimizer calculation, 1-10

COST column

PLAN_TABLE table, 9-24

cost-based optimizations, 1-10

extensible optimization, 1-61

histograms, 3-20

procedures for plan stability, 7-12

selectivity of predicates, 3-2

selectivity of predicates and histograms, 3-20

selectivity of predicates for user-defined, 1-62

star queries, 1-44

statistics, 3-2

statistics and user-defined, 1-62

upgrading to, 7-14

user-defined costs, 1-63

counter/accumulator views, 24-2

CPU_COUNT initialization parameter, 17-19

CPUs

utilization, 16-11

CREATE DATABASE statement, 13-3

CREATE INDEX statement

example, 14-71

NOSORT clause, 14-71

PARALLEL clause, 13-11

CREATE OUTLINE statement, 7-5

CREATE_BITMAP_AREA_SIZE initialization

parameter, 4-14, 4-17

CREATE_STORED_OUTLINES parameter, 7-4

creating databases, 13-2

manually, 13-2

parameters, 13-2

with Installer, 13-2

cross-facility 3 event, 12-18

cross-product items

See also cross-facility 3 event

current mode

TKPROF, 10-13

current state views, 24-2

CURSOR_NUM column

TKPROF_TABLE table, 10-19

CURSOR_SHARING initialization

parameter, 1-58, 14-24, 14-44

CURSOR_SHARING_EXACT hint, 5-39

CURSOR_SPACE_FOR_TIME initialization

parameter

setting, 14-39

D
data cache, 16-2

data dictionary, 14-34

CATALOG.SQL scripts, 13-5

CATPROC.SQL scripts, 13-5

scripts, 13-5

statistics in, 3-15

views used in optimization, 3-15

data indexing, 13-10

data loading, 13-10

Data Viewer

collecting data for specific wait events, 12-35

tips on using, 12-35

data warehousing

dimensions, 1-44

star queries, 1-44

Database Connection event, 12-2

database options, 13-3

Database Resource Manager, 16-6, 16-10, 22-8

databases

buffers, 14-12, 14-34

character set options, 13-3

creating, 13-2

creating manually, 13-2

creation parameters, 13-2

creation with Installer, 13-2

distributed statement optimization on, 2-13

identifier (DBID), 21-3

location of initial datafile, 13-4

national character set options, 13-4

optimization on distributed statement, 2-13

SQL.BSQ file options, 13-4

datatypes

CHAR, 13-3

NCHAR, 13-4

NVARCHAR, 13-4

NVARCHAR2, 13-4

user-defined and statistics, 1-62

VARCHAR, 13-3

VARCHAR2, 13-3
Index-3

DATE_OF_INSERT column

TKPROF_TABLE table, 10-19

db block gets statistic, 14-9, 18-3

DB file scattered read wait events, 22-29

actions, 22-30

DB file sequential read wait events

actions, 22-32

DB file sequential/scattered read wait

events, 22-29, 22-31

DB_BLOCK_BUFFERS initialization

parameter, 14-12, 14-35

DB_BLOCK_SIZE initialization parameter, 13-2,

13-14, 15-14

DB_CACHE_ADVICE parameter, 14-12

DB_CACHE_SIZE initialization parameter, 13-14,

14-13

DB_DOMAIN initialization parameter, 13-13

DB_FILE_MULTIBLOCK_READ_COUNT

initialization parameter, 1-24

DB_FILE_MULTIBLOCK_READ_COUNT

initialization parameter, 1-58, 15-13, 15-14,

22-29

cost-based optimization, 1-43

DB_KEEP_CACHE_SIZE

initialization parameter, 14-17

DB_NAME initialization parameter, 13-13

DB_nK_CACHE_SIZE initialization

parameter, 14-12

DB_RECYCLE_CACHE_SIZE

initialization parameter, 14-18

DB_WRITER_PROCESSES initialization

parameter, 22-40

DBA_OBJECTS view, 14-16

DBID

database identifier, 21-3

Statspack, 21-25

DBMS_APPLICATION_INFO package, 11-9

DBMS_JOB procedure, 21-8

DBMS_JOB.INTERVAL procedure, 21-9

DBMS_OUTLN package, 7-4

DBMS_OUTLN_EDIT package, 7-4

DBMS_SHARED_POOL package, 14-42, 14-43

DBMS_STATS package, 1-8, 3-5, 3-6

creating histograms, 3-22

default cache, 14-14

DEFAULT_TABLESPACE variable, 21-6

DEFINE OFF

tuning, 11-10

deleting

data, 21-23

snapshots, 21-23

DEPTH column

TKPROF_TABLE table, 10-19

deterministic functions

PL/SQL, 2-28

dictionary managed tablespaces, 21-4

dimensions

star joins, 1-44

star queries, 1-44

direct path read events, 22-33

actions, 22-34

causes, 22-34

direct path wait events, 22-35

direct path write events

actions, 22-35

causes, 22-35

direct-path INSERT, 5-34

disabled constraints, 4-8

Disconnect event, 12-15

disk reads and buffer gets

monitoring, 11-9

disks

contention, 15-3

monitoring operating system file activity, 22-8

dispatcher processes, 19-4

DISPATCHERS initialization parameter, 19-4, 23-3

DISTINCT operator

optimizing views, 2-37

distributed databases

statement optimization on, 2-13

distributed transactions

optimizing, 2-13

sample table scan not supported, 1-36

distribution

hints for, 5-31

DISTRIBUTION column

PLAN_TABLE table, 9-25

DML locks, 24-18

domain indexes

and EXPLAIN PLAN, 9-20
Index-4

extensible optimization, 1-61

user-defined statistics, 1-62

using, 4-19

DRIVING_SITE hint, 5-27

duration events

in Oracle Trace, 12-2, 12-15

dynamic performance views, 24-2

DYNAMIC_SAMPLING hint, xxxii, 5-39

E
enabled constraints, 4-8

END_SNAP variable, 21-12

enforced constraints, 4-8

enqueue wait events

actions, 22-37

EPC_ERROR.LOG file, 12-37

equijoins, 6-10

ErrorStack event, 12-15

event timings, 21-21

examples

ALTER SESSION statement, 10-5

concurrently creating tablespaces, 13-7

CREATE DATABASE script, 13-4

CREATE INDEX statement, 14-71

creating indexes efficiently, 13-12

executing required data dictionary scripts, 13-5

execution plan, 8-18

EXPLAIN PLAN output, 8-18, 10-16

full table scan, 8-19

indexed query, 8-19

minimal initialization file, 13-14

NOSORT clause, 14-71

SET TRANSACTION statement, 18-3

SQL trace facility output, 10-16

V$DB_OBJECT_CACHE view, 24-5

V$FILESTAT view, 24-8

V$LATCH view, 24-11

V$LATCH_CHILDREN view, 24-13

V$LATCHHOLDER view, 24-14

V$LIBRARYCACHE view, 24-16

V$LOCK view, 24-20

V$OPEN_CURSOR view, 24-23, 24-24

V$PROCESS view, 24-27

V$ROLLSTAT view, 24-29

V$SESSION view, 24-35

V$SESSION_EVENT view, 24-37

V$SESSION_WAIT view, 24-39

V$SQLAREA view, 24-58, 24-59

V$SQLTEXT view, 24-60

Execute event, 12-15

execution plans

accessing views, 2-39, 2-42, 2-43

comparing with PLAN_HASH_VALUE, 24-45

complex statements, 2-34

compound queries, 2-48, 2-49, 2-50

examples, 2-34, 8-18, 10-7

execution sequence of, 1-23

joining views, 2-46

joins, 1-40

optimizer path, 11-3

OR operators, 2-31, 8-18

overview of, 1-18

plan stability, 7-2

preserving with plan stability, 7-2

table output, 11-3

TKPROF, 10-7, 10-11

viewing with the utlxpls.sql script, 1-18

EXPLAIN PLAN statement

access paths, 1-36, 8-4, 8-5, 8-6, 8-7, 8-8, 8-9,

8-10, 8-11, 8-12, 8-13, 8-14, 8-15

and domain indexes, 9-20

and full partition-wise joins, 9-17

and partial partition-wise joins, 9-16

and partitioned objects, 9-12

basic steps, 1-19

examples of output, 8-18, 10-16

execution order of steps in output, 1-19

invoking with the TKPROF program, 10-11

PLAN_TABLE table, 9-4

restrictions, 9-22

scripts for viewing output, 1-19

viewing the output, 1-18

Export utility

copying statistics, 3-2

exporting data, 21-22

extensible optimization, 1-61

user-defined costs, 1-63

user-defined selectivity, 1-62

user-defined statistics, 1-62
Index-5

F
FACT hint, 5-22

fact tables

star joins, 1-44

star queries, 1-44

fast full index scans, 1-34

FAST_START_IO_TARGET initialization

parameter, 17-4, 17-5

FAST_START_MTTR_TARGET initialization

parameter, 17-4, 17-5, 17-9, 17-12

FAST_START_PARALLEL_ROLLBACK

initialization parameter, 17-19

FastCGI

iSQL*Plus, 11-14

fast-start checkpoints

FAST_START_MTTR_TARGET initialization

parameter, 17-6

LOG_CHECKPOINT_INTERVAL initialization

parameter, 17-7

LOG_CHECKPOINT_TIMEOUT initialization

parameter, 17-7

fast-start on-demand rollback, 17-18

fast-start parallel rollback, 17-18

features, new, xxxi

Fetch event, 12-15

FIRST_ROWS

optimizer mode parameter, 1-7

FIRST_ROWS hint, 1-8

FIRST_ROWS(n) hint, 1-8, 5-7

FIRST_ROWS_n

optimizer mode parameter, 1-7

FLUSH OFF

tuning, 11-10

FORCE_UNION_REWRITE hint, xxxii, 5-19

FORMAT statement

in Oracle Trace, 12-3

formatter tables

in Oracle Trace, 12-3

free buffer wait events, 22-39

FULL hint, 4-6, 5-10

full outer joins, 1-54

full partition-wise joins, 9-17

full table scans, 8-14, 8-19, 22-34

rule-based optimizer, 8-14

function-based indexes, 4-10

functions

PL/SQL deterministic, 2-28

SQL and optimizing view queries, 2-43

user-defined and extensible optimization, 1-61

G
GATHER_ INDEX_STATS procedure

in DBMS_STATS package, 3-6

GATHER_DATABASE_STATS procedure

in DBMS_STATS package, 3-6

GATHER_SCHEMA_STATS procedure

in DBMS_STATS package, 3-6

GATHER_TABLE_STATS procedure

in DBMS_STATS package, 3-6

GETMISSES column

in V$ROWCACHE table, 14-34

GETS column

in V$ROWCACHE view, 14-34

global hints, 5-44

GLOGIN.SQL

site profile, 11-3

GROUP BY clause

NOSORT clause, 14-72

optimizing views, 2-37

H
hash

distribution value, 9-26

hash clusters

scans of, 1-36, 8-5, 8-7

HASH hint, 5-12

hash joins, 1-47

index join, 1-35

hash partitions, 9-12

examples of, 9-12

HASH_AJ hint, 1-43, 5-28

HASH_AREA_SIZE initialization parameter, 1-58

HASH_JOIN_ENABLED initialization

parameter, 1-59

HASH_SJ hint, 1-44, 5-28

hashing, 4-21

HIGH_VALUE statistics, 1-38
Index-6

hints, 5-2

access paths, 5-9, 5-17

ALL_ROWS hint, 5-7

AND_EQUAL hint, 4-6, 5-17

as used in outlines, 7-3

CACHE hint, 5-35

cannot override sample access path, 1-37

CHOOSE hint, 5-9

CLUSTER hint, 5-11

CURSOR_SHARING_EXACT hint, 5-39

degree of parallelism, 5-29

EXPAND_GSET_TO_UNION hint, 5-19

extensible optimization, 1-62

FACT hint, 5-22

FIRST_ROWS hint, 5-7

FIRST_ROWS(n) hint, 5-7

FORCE_UNION_REWRITE hint, 5-20

FULL hint, 4-6, 5-10

global, 5-44

HASH hint, 5-12

HASH_AJ hint, 5-28

HASH_SJ hint, 5-28

how to use, 5-2

INDEX hint, 4-6, 5-12, 5-23

INDEX_ASC hint, 5-14

INDEX_DESC hint, 5-14, 5-15

INDEX_FFS, 1-34

INDEX_JOIN, 1-35

join operations, 5-24

LEADING hint, 5-27

MERGE hint, 5-20

MERGE_AJ and HASH_AJ, 1-43

MERGE_AJ hint, 5-28

MERGE_SJ and HASH_SJ, 1-44

MERGE_SJ hint, 5-28

NL_AJ hint, 5-28

NL_SJ hint, 5-28

NO_EXPAND hint, 5-18

NO_FACT hint, 5-22

NO_INDEX, 4-6

NO_INDEX hint, 5-16

NO_MERGE hint, 5-21

NO_PUSH_PRED hint, 5-37

NO_PUSH_SUBQ, 5-38

NO_PUSH_SUBQ hint, 5-38

NO_UNNEST hint, 5-37

NOCACHE hint, 5-35

NOPARALLEL hint, 5-30

NOREWRITE hint, 5-20

optimization approach and goal, 5-6

ORDERED hint, 1-43, 5-23

overriding optimizer choice, 1-37

overriding OPTIMIZER_MODE, 1-8

PARALLEL hint, 5-29

parallel query option, 5-29

PQ_DISTRIBUTE hint, 5-31

PUSH_PRED hint, 5-37

PUSH_SUBQ hint, 5-37

REWRITE hint, 5-19

ROWID hint, 5-11

STAR hint, 5-23

syntax, 5-3

UNNEST hint, 5-36

USE_CONCAT hint, 5-18

USE_MERGE hint, 5-25

USE_NL hint, 5-24

histograms, 3-20

number of buckets, 3-22

HOLD_CURSOR clause, 14-27

I
ID column

PLAN_TABLE table, 9-24

idle timeout

tuning, 11-14

idle wait events, 22-49

SQL*Net message from client, 22-26

Import utility

copying statistics, 3-2

IN operator, 2-22

merging views, 2-38

IN subquery, 2-37

INDEX hint, 4-6, 4-15, 5-12

index joins, 1-35

INDEX_ASC hint, 5-14

INDEX_COMBINE hint, 4-6, 4-15

INDEX_DESC hint, 5-14, 5-15

INDEX_FFS hint, 1-34

INDEX_JOIN hint, 1-35
Index-7

indexes

avoiding the use of, 4-6

bitmap, 4-12, 4-17

choosing columns for, 4-3

composite, 4-4, 8-8

creating, 13-11

domain, 4-19

domain indexes and extensible

optimization, 1-61

domain indexes and user-defined statistics, 1-62

dropping, 4-2

enforcing uniqueness, 4-8

ensuring the use of, 4-6

example, 8-19

function-based, 4-10

improving selectivity, 4-4

index joins, 1-35

low selectivity, 4-6

modifying values of, 4-4

non-unique, 4-8

optimization and, 2-30, 8-17

placement on disk, 15-16

rebuilding, 4-7

re-creating, 4-7

restrictions on scans of, 8-14

scans of, 1-28

scans of bounded range, 8-10

scans of cluster key, 8-7

scans of composite, 8-8

scans of MAX or MIN, 8-13

scans of ORDER BY, 8-13

scans of single-column, 8-8

scans of unbounded range, 8-11

selectivity of, 4-3

statement conversion and, 2-30, 8-17

statistics gathering, 3-9

indexing data, 13-10

information views, 24-4

initial database creation, 13-2

initialization files, 13-2, 13-13

initialization parameters

CONTROL_FILES, 13-13

CPU_COUNT, 17-19

DB_BLOCK_SIZE, 13-2, 13-14

DB_CACHE_SIZE, 13-14

DB_DOMAIN, 13-13

DB_FILE_MULTIBLOCK_READ_COUNT, 1-43

DB_NAME, 13-2, 13-13

FAST_START_PARALLEL_ROLLBACK, 17-19

in Oracle Trace, 12-7

INITRANS, 13-8

JAVA_POOL_SIZE, 13-14

JOB_QUEUE_PROCESSES, 21-9

LOG_ARCHIVE_XXX, 13-14

LOG_CHECKPOINT_INTERVAL, 17-7

LOG_CHECKPOINT_TIMEOUT, 17-7

LOG_PARALLELISM, 17-8

OPEN_CURSORS, 13-13

OPTIMIZER_FEATURES_ENABLE, 1-34, 1-35,

2-37

OPTIMIZER_MODE, 1-6, 5-7, 8-2

PARALLEL_MAX_SERVERS, 17-8

PGA_AGGREGATE_TARGET, 13-11

PROCESSES, 13-14

RECOVERY_PARALLELISM, 17-8

SESSION_CACHED_CURSORS, 14-40

SESSIONS, 13-14

SHARED_POOL_SIZE, 13-14

SORT_AREA_SIZE, 1-42, 13-12

SQL_TRACE, 10-6

TIMED_STATISTICS, 21-7

USER_DUMP_DEST, 10-4

INIT.ORA file

ORACLE_TRACE_ENABLE parameter, 12-35

INITRANS initialization parameter, 13-8

IN-lists, 5-14, 5-18

input parameters

SNAP and MODIFY_STATSPACK_

PARAMETERS, 21-20

INPUT_IO item, 12-16

INSERT statement

append, 5-34

instance configuration, 13-13

instance numbers, 21-3

INSTANCE_NUMBER

Statspack, 21-25

instrumentation

of Oracle Server, 12-15

INTERSECT operator

example, 2-50
Index-8

optimizing view queries, 2-36

intratransaction recovery, 17-19

I/O

and SQL statements, 22-31

balancing, 15-4

excessive I/O waits, 22-30

objects causing I/O waits, 22-31

reducing, 4-4

iSQL*Plus

FastCGI, 11-14

idle timeout, 11-14

interpreting statistics, 11-13

iSQLPlusHashTableSize, 11-13

iSQLPlusNumberOfThreads, 11-13

iSQLPlusTimeOutInterval, 11-13

parameters for tuning, 11-13

server statistics report, 11-11

statistics report, 11-11

tuning statistics, 11-13

isqlplus.conf file, 11-13

iSQLPlusHashTableSize

tuning, 11-13

iSQLPlusNumberOfThreads

impact on iSQLPlusHashTableSize, 11-13

impact on request load, 11-13

tuning, 11-13

iSQLPlusTimeOutInterval

tuning, 11-13

items

cross-product, 12-17

standard resource utilization, 12-16

types of, 12-16

J
JAVA_POOL_SIZE initialization parameter, 13-14

JOB_QUEUE_PROCESSES initialization

parameter, 21-9

joins

anti-joins, 1-43

cartesian, 1-50

cluster, 8-4

convert to subqueries, 2-33

execution plans and, 1-40

full outer, 1-54

hash, 1-47

index joins, 1-35

join order and execution plans, 1-18

join order and selectivity of predicates, 1-62,

3-2, 3-20

nested loop, 1-45

nested loops and cost-based optimization, 1-42

optimization of, 8-16

outer, 1-51

outer and non-null values for nulls, 2-45

parallel, and PQ_DISTRIBUTE hint, 5-31

partition-wise

examples of full, 9-17

examples of partial, 9-16

full, 9-17

sample table scan not supported, 1-36

searches on clusters, 8-6

select-project-join views, 2-35

semi-joins, 1-43

sort merge, 1-49

sort-merge and cost-based optimization, 1-42

sort-merge example, 8-12

star joins, 1-44

star queries, 1-44

K
KEEP cache, 14-14

keys

searches, 8-5

L
LARGE_POOL_SIZE initialization

parameter, 14-36

latch free wait events

actions, 22-42

latches

tuning, 24-12

LEADING hint, 5-27

level 7 snapshot

Statspack, 21-18

library cache

memory allocation, 14-34

LIKE operator, 2-22
Index-9

Lmode modes, 24-19

load balancing, 15-4

loading data, 13-10

locally managed tablespaces, 21-4

location of initial datafile

database options, 13-4

lock types

common, 24-17

ST (space transaction) locks, 24-18

TM (DML) locks, 24-18

TX (row transaction) locks, 24-18

UL (user defined) locks, 24-19

locking rows, 13-8

locks and lock holders

finding, 22-36

log buffer tuning, 14-47

log file switch wait events, 22-46

log writer processes

tuning, 15-18

LOG_ARCHIVE_XXX initialization

parameter, 13-14

LOG_BUFFER initialization parameter, 14-47

setting, 14-48

LOG_CHECKPOINT_INTERVAL initialization

parameter, 17-3

recovery time, 17-7

LOG_CHECKPOINT_TIMEOUT initialization

parameter, 17-4

recovery time, 17-7

LOG_PARALLELISM initialization

parameter, 17-8

LogicalTX event, 12-15

lookup tables

star queries, 1-44

LOW_VALUE statistics, 1-38

LRU

aging policy, 14-13

latch contention, 22-45

M
manual database creation, 13-2

max session memory statistic, 14-37

MAX_DISPATCHERS initialization

parameter, 19-4

MAX_DUMP_FILE_SIZE initialization parameter

SQL Trace, 10-4

MAX_SHARED_SERVERS initialization

parameter, 19-7

MAXOPENCURSORS clause, 14-27

MAXRS_SIZE item, 12-16

mean time to recover, 17-4

advisory, xxxv

See also MTTR

memory allocation

importance, 14-2

library cache, 14-34

shared SQL areas, 14-34

sort areas, 14-69

tuning, 14-5

MERGE hint, 5-20

MERGE_AJ hint, 1-43, 5-28

MERGE_SJ hint, 1-44, 5-28

merging complex views, 2-37

merging views into statements, 2-35

migrated rows, 22-21

Migration event, 12-15

MINUS operator

optimizing view queries, 2-36

mirroring

redo logs, 15-19

modes

Lmode, 24-19

request, 24-19

monitoring

disk reads and buffer gets, 11-9

MTBF (mean time between failures)

tuning I/O, 15-2

MTTR

initialization parameter, 17-6

mean time to recover advisory, xxxv

See also mean time to recover

multiple buffer pools, 14-13

N
NAMESPACE column

V$LIBRARYCACHE view, 14-29

national character set database option, 13-4

NCHAR datatype, 13-4
Index-10

nested loop joins, 1-45

cost-based optimization, 1-42

network

array interface, 23-13

detecting performance problems, 23-6

problem solving, 23-8

Session Data Unit, 23-13

tuning, 23-1

network communication wait events, 22-25

DB file sequential/scattered read wait

events, 22-29, 22-31

SQL*Net message from Dblink, 22-27

new features, xxxi

NL_AJ hint, 5-28

NL_SJ hint, 5-28

NLS_SORT initialization parameter

ORDER BY access path, 8-13

NO_EXPAND hint, 5-18

NO_FACT hint, 5-22

NO_INDEX hint, 4-6, 5-16

NO_MERGE hint, 5-21

NO_PUSH_PRED hint, 5-37

NO_UNNEST hint, 5-37

NOAPPEND hint, 5-34

NOCACHE hint, 5-35

NOPARALLEL hint, 5-30

NOPARALLEL_INDEX hint, 5-33

NOREWRITE hint, 5-20

NOSORT clause, 14-71, 14-72

NOT IN subquery, 1-43

NOT operator, 2-24

NT performance, 16-7

nulls

non-null values for, 2-45

NUM_DISTINCT column

USER_TAB_COLUMNS view, 1-38

NUM_ROWS column

USER_TABLES view, 1-38

NVARCHAR datatype, 13-4

NVARCHAR2 datatype, 13-4

O
OBJECT_INSTANCE column

PLAN_TABLE table, 9-23

OBJECT_NAME column

PLAN_TABLE table, 9-23

OBJECT_NODE column

PLAN_TABLE table, 9-23

OBJECT_OWNER column

PLAN_TABLE table, 9-23

OBJECT_TYPE column

PLAN_TABLE table, 9-23

OPEN_CURSORS initialization parameter, 13-13

increasing cursors for each session, 14-34

operating system

data cache, 16-2

monitoring disk I/O, 22-8

OPERATION column

PLAN_TABLE table, 9-23, 9-27

OPTIMAL parameter, 18-3

optimization

choosing the approach, 1-6

conversion of expressions and predicates, 2-2

cost calculation, 1-10

cost-based, 1-10

cost-based and choosing an access path, 1-37

cost-based and histograms, 3-20

cost-based and star queries, 1-44

cost-based and user-defined costs, 1-63

cost-based examples, 1-37

cost-based on remote databases, 2-14

described, 1-3

DISTINCT, 2-37

distributed SQL statements, 2-13

extensible optimizer, 1-61

fast-response method, 1-9

GROUP BY views, 2-37

hints, 1-8, 1-34, 1-35

manual, 1-8

merging complex views, 2-37

merging views into statements, 2-35

non-null values for nulls, 2-45

operations performed, 1-5

rule-based, 8-2, 8-3, 8-16

selectivity of predicates, 3-2

selectivity of predicates and histograms, 3-20

selectivity of predicates for user-defined, 1-62

select-project-join views, 2-35

semi-joins, 1-43
Index-11

statistics, 3-2

statistics for user-defined, 1-62

transitivity and, 2-25

without merging, 2-45

optimizer

cost calculation, 1-10

execution path, 11-3

goals, 1-5

introduction, 1-3

operations, 1-5

plan stability, 7-2

response time, 1-5

throughput, 1-5

OPTIMIZER column

PLAN_TABLE, 9-24

optimizer mode parameters

ALL_ROWS, 1-7

CHOOSE, 1-7

FIRST_ROWS, 1-7

FIRST_ROWS_n, 1-7

RULE, 1-7

OPTIMIZER_FEATURES_ENABLE initialization

parameter, 1-34, 1-35, 1-56, 2-37

OPTIMIZER_INDEX_CACHING initialization

parameter, 1-59

OPTIMIZER_INDEX_COST_ADJ initialization

parameter, 1-59

OPTIMIZER_MAX_PERMUTATIONS initialization

parameter, 1-59

OPTIMIZER_MODE initialization parameter, 1-6,

1-7, 1-60, 5-7, 8-2

hints affecting, 1-8

OPTIONS column

PLAN_TABLE table, 9-23

Oracle Forms, 10-6

control of parsing and private SQL areas, 14-27

Oracle Net Configuration Assistant, 23-14

Oracle Performance Manager

illustration, 20-5

Oracle Real Application Clusters

and Statspack, 21-25

Oracle SQL Analyze

illustration, 6-3

Oracle Trace, 12-1

accessing collected data, 12-3

binary files, 12-3

collection results, 12-12

collections, 12-8

command-line interface, 12-3

deleting files, 12-7

deprecated, xxxvii

deprecated in future release, xxxvii

duration events, 12-2

events, 12-2

FORMAT statement, 12-3

formatter tables, 12-3

parameters, 12-7

point events, 12-2

reporting utility, 12-14

START statement, 12-3, 12-4

STOP statement, 12-3, 12-6

ORACLE_TRACE_COLLECTION_NAME

initialization parameter, 12-7

ORACLE_TRACE_COLLECTION_PATH

initialization parameter, 12-8

ORACLE_TRACE_COLLECTION_SIZE

initialization parameter, 12-8

ORACLE_TRACE_ENABLE initialization

parameter, 12-8, 12-35

ORACLE_TRACE_FACILITY_NAME initialization

parameter, 12-8, 12-9

ORACLE_TRACE_FACILITY_PATH initialization

parameter, 12-8

Oracle-managed files, 15-20

tuning, 15-20

ORDERED hint, 1-43, 5-23

ORDERED_PREDICATES hint, 5-38

OTHER column

PLAN_TABLE table, 9-25

OTHER_TAG column

PLAN_TABLE table, 9-24

outer joins, 1-51

non-null values for nulls, 2-45

Outline Editor

illustration, 7-7

outlines

CREATE OUTLINE statement, 7-5

creating and using, 7-4

execution plans and plan stability, 7-2

hints, 7-3
Index-12

moving tables, 7-11

storage requirements, 7-4

using, 7-6

using to move to the cost-based optimizer, 7-13

viewing data for, 7-10

OUTPUT_IO item, 12-16

overloaded disks, 15-10

P
page table, 16-12

PAGEFAULT_IO item, 12-16

PAGEFAULTS item, 12-16

paging, 16-12

reducing, 14-4

parallel broadcast, 1-57

PARALLEL clause

CREATE INDEX statement, 13-11

RECOVER statement, 17-8

parallel execution

hints, 5-29

PARALLEL hint, 5-29

parallel joins

and PQ_DISTRIBUTE hint, 5-31

parallel recovery, 17-8

PARALLEL_MAX_SERVERS initialization

parameter, 17-8

parameter files, 13-2

parameters

iSQL*Plus tuning, 11-13

SNAP and MODIFY_STATSPACK_

PARAMETERS, 21-20

PARENT_ID column

PLAN_TABLE table, 9-24

Parse event, 12-15

parsing

Oracle Forms, 14-27

Oracle precompilers, 14-27

reducing unnecessary calls, 14-26

PARTITION_ID column

PLAN_TABLE table, 9-25

PARTITION_START column

PLAN_TABLE table, 9-24

PARTITION_STOP column

PLAN_TABLE table, 9-25

PARTITION_VIEW_ENABLED initialization

parameter, 1-60

partitioned objects

and EXPLAIN PLAN statement, 9-12

partitioning

distribution value, 9-26

examples of, 9-12

examples of composite, 9-14

hash, 9-12

range, 9-12

start and stop columns, 9-13

partitions

statistics, 3-4

partition-wise joins

full, 9-17

full, and EXPLAIN PLAN output, 9-17

partial, and EXPLAIN PLAN output, 9-16

PCTFREE parameter, 13-8, 22-22

PCTINCREASE parameter, 18-4

PCTUSED parameter, 22-22

performance

generating reports, 21-9

mainframe, 16-8

NT, 16-7

of SQL statements, 11-2

running reports, 21-3, 21-9

UNIX-based systems, 16-7

viewing execution plans, 1-18

Performance Monitor

NT, 16-12

PERFSTAT user, 21-3, 21-4, 21-15

PGA_AGGREGATE_TARGET initialization

parameter, 13-11, 14-50

physical reads statistic, 14-10

PhysicalTX event, 12-15

plan stability, 7-2

limitations of, 7-2

preserving execution plans, 7-2

procedures for the cost-based optimizer, 7-12

use of hints, 7-2

PLAN_HASH_VALUE

V$SQL view column, 24-45

PLAN_TABLE table

BYTES column, 9-24

CARDINALITY column, 9-24
Index-13

COST column, 9-24

creating, 9-4, 11-2

DISTRIBUTION column, 9-25

ID column, 9-24

OBJECT_INSTANCE column, 9-23

OBJECT_NAME column, 9-23

OBJECT_NODE column, 9-23

OBJECT_OWNER column, 9-23

OBJECT_TYPE column, 9-23

OPERATION column, 9-23

OPTIMIZER column, 9-24

OPTIONS column, 9-23

OTHER column, 9-25

OTHER_TAG column, 9-24

PARENT_ID column, 9-24

PARTITION_ID column, 9-25

PARTITION_START column, 9-24

PARTITION_STOP column, 9-25

POSITION column, 9-24

REMARKS column, 9-23

SEARCH_COLUMNS column, 9-24

STATEMENT_ID column, 9-23

TIMESTAMP column, 9-23

PL/SQL

deterministic functions, 2-28

PLUSTRACE

creating role, 11-2

granting role, 11-3

PLUSTRACE role, 11-2

point events

in Oracle Trace, 12-2, 12-15

POOL attribute, 19-4

POSITION column

PLAN_TABLE table, 9-24

PQ_DISTRIBUTE hint, 5-31

precompilers

control of parsing and private SQL areas, 14-27

predicates

pushing into a view, 2-38, 2-43

pushing into a view examples, 2-39, 2-41

selectivity, 3-2

selectivity estimates and histograms, 3-20

selectivity for user-defined, 1-62

PRIMARY KEY constraint, 4-8

primary keys

optimization, 2-34

searches, 8-6

PRIVATE_SGA variable, 14-38

procedures

DBMS_JOB, 21-8

DBMS_JOB.INTERVAL, 21-9

deterministic functions, 2-28

STATSPACK.MODIFY_STATSPACK_

PARAMETER, 21-16, 21-19

STATSPACK.SNAP, 21-7, 21-8, 21-19

processes

dispatcher process configuration, 19-4

priority, 16-5

scheduler, 16-5

scheduling, 16-13

PROCESSES initialization parameter, 13-14

program global area (PGA)

direct path read, 22-33

direct path write, 22-35

shared servers, 14-36

pseudocolumns

ROWNUM and optimizing view queries, 2-36,

2-45

ROWNUM cannot use indexes, 8-15

PUSH_PRED hint, 5-37

Q
queries

avoiding the use of indexes, 4-6

compound and optimization of, 2-48

compound converted to ORs, 2-30

compound with ORs converted to, 8-17

ensuring the use of indexes, 4-6

optimizing IN subquery, 2-37

SAMPLE clause and cost-based

optimization, 1-4

star queries, 1-44

tracing, 11-7

QUERY_REWRITE_ENABLED initialization

parameter, 1-60
Index-14

R
range

distribution value, 9-26

range partitions, 9-12

examples of, 9-12

read consistency, 22-20

read events

direct path, 22-33

read wait events

scattered, 22-29

REBUILD clause, 4-7

RECOVER statement

PARALLEL clause, 17-8

recovery

parallel intratransaction recovery, 17-19

parallel processes for, 17-8

PARALLEL_MAX_SERVERS initialization

parameter, 17-8

setting number of processes to use, 17-8

RECOVERY_PARALLELISM initialization

parameter, 17-8

recursive calls, 10-14

RECYCLE cache, 14-14

REDO BUFFER ALLOCATION RETRIES

statistic, 14-47

redo logs, 13-5

mirroring, 15-19

placement on disk, 15-17

sizing, 13-5

reducing

contention with dispatchers, 19-4

contention with operating system

processes, 16-5

contention with shared servers, 19-5

data dictionary cache misses, 14-34

paging and swapping, 14-4

rollback segment contention, 18-3

unnecessary parse calls, 14-26

RELEASE_CURSOR clause, 14-27

REMARKS column

PLAN_TABLE table, 9-23

removing

data, 21-23

snapshots, 21-23

REPORT_NAME variable, 21-12

reports

performance, 21-3, 21-9

SPREPORT.SQL, 21-9

SPREPSQL.SQL, 21-10

Statspack, 21-10

request modes, 24-19

resource bottlenecks, 22-26

resource wait events, 22-31

response time

cost-based approach, 1-7

optimizer goal, 1-5

optimizing, 1-5, 5-7

REWRITE hint, 5-18

rollback segments, 22-21

assigning to transactions, 18-3

choosing how many, 18-3

creating, 18-3

rollback tablespaces, 13-6

rollbacks

fast-start on-demand, 17-18

fast-start parallel, 17-18

round-robin

distribution value, 9-26

row locking, 13-8

row sampling, 3-4

row sources, 1-22

row transaction locks, 24-18

ROWID hint, 5-11

rowids

mapping to bitmaps, 4-16

table access by, 1-27

ROWNUM pseudocolumn

cannot use indexes, 8-15

optimizing view queries, 2-36, 2-45

rows

row sources, 1-22

rowids used to locate, 1-27, 8-4

setting number retrieved at one time, 11-10

RowSource event, 12-2, 12-15

RULE

optimizer mode parameter, 1-7

RULE hint

OPTIMIZER_MODE and, 1-8

rule-based optimization, 8-2, 8-3
Index-15

S
SAMPLE BLOCK clause, 1-36

access path, 1-36

access path and hints cannot override, 1-37

SAMPLE clause, 1-36

access path, 1-36

access path and hints cannot override, 1-37

cost-based optimization, 1-4

sample table scans, 1-36

hints cannot override, 1-37

sar UNIX command, 16-12

scans

bounded range, 8-10

cluster, 8-4, 8-5, 8-6, 8-7

cluster key, 8-7

composite index, 8-8

full table, 8-14

full table using rule-based optimizer, 8-14

hash cluster, 8-5, 8-7

index, 1-28

index bounded range, 8-10

index cluster key, 8-7

index joins, 1-35

index of type bitmap, 1-35

index restrictions, 8-14

index with ORDER BY, 8-13

MAX or MIN of index, 8-13

range, 8-8

range of MAX or MIN, 8-13

range with ORDER BY, 8-13

sample table, 1-36

sample table and hints cannot override, 1-37

single-column index, 8-8

unbounded range, 8-11

unbounded range index, 8-11

unique, 8-6, 8-7

scattered read wait events, 22-29

actions, 22-30

schemas

star schemas, 1-44

SCPU item, 12-16

scripts

registering automatically, 11-9

SPAUTO.SQL, 21-9

SPCPKG.SQL, 21-6

SPCREATE.SQL, 21-5

SPCTAB.SQL, 21-6

SPCUSR.SQL, 21-6

SPPURGE.SQL, 21-23

SPTRUNC.SQL, 21-25

Statspack documentation scripts, 21-28

Statspack installation scripts, 21-27

Statspack performance data maintenance

scripts, 21-28

Statspack reporting and automation

scripts, 21-27

Statspack supplied scripts, 21-26

upgrading Statspack scripts, 21-27

SEARCH_COLUMNS column

PLAN_TABLE table, 9-24

segment-level statistics, 22-14

SELECT statement

SAMPLE clause, 1-36

SAMPLE clause and access path, 1-36, 1-37

SAMPLE clause and cost-based

optimization, 1-4

selectivity, 3-2

histograms, 3-20

improving for an index, 4-4

indexes, 4-3, 4-6

SQL statement predicate, 3-2

user-defined, 1-62

select-project-join views, 2-35

semi-joins, 1-43

transformations not allowed, 1-44

sequential read wait events

actions, 22-32

SERVEROUTPUT

tuning, 11-10

Session Data Unit (SDU), 23-13

session id, 21-19

session memory statistic, 14-37

SESSION_CACHED_CURSORS initialization

parameter, 14-40

SESSIONS initialization parameter, 13-14

SET AUTOTRACE, 11-2

SET command

APPINFO variable, 11-9

ARRAYSIZE variable, 11-10
Index-16

SET TRANSACTION statement, 18-3

setting

system variables for SQL*PLUS

performance, 11-9

SGA size, 14-47

shared server

performance issues, 19-2

reducing contention, 19-2

tuning, 19-2

tuning memory, 14-35

shared SQL areas

memory allocation, 14-34

SHARED_POOL_RESERVED_SIZE initialization

parameter, 14-42

SHARED_POOL_SIZE initialization

parameter, 13-14, 14-34, 14-42

allocating library cache, 14-34

tuning the shared pool, 14-38

sharing data, 21-22

SHOW SGA statement, 14-5

sizing redo logs, 13-5

snapshot levels, 21-15, 21-17

snapshot thresholds, 21-15, 21-17

snapshots

begin and end, 21-10

databases identifier (DBID), 21-3

deleting, 21-23

instance numbers, 21-3

levels, 21-15, 21-17

removing, 21-23

SNAP_ID, 21-3

Statspack, 21-3

taken by Statspack, 21-3

taking snapshots, 21-7

thresholds, 21-15, 21-17

SOME operator, 2-22

sort areas

memory allocation, 14-69

sort merge joins, 1-49

access path, 8-12

cost-based optimization, 1-42

example, 8-12

SORT_AREA_SIZE initialization parameter, 1-60,

4-14, 13-12

configuring, 14-66

cost-based optimization and, 1-42

See also PGA_AGGREGATE_TARGET

initialization parameter

tuning sorts, 14-70

use PGA_AGGREGATE_TARGET, 1-42, 1-60,

13-12

sorts

(disk) statistic, 14-68

(memory) statistic, 14-68

avoiding on index creation, 14-71

space transaction locks, 24-18

SPAUTO.SQL script, 21-8, 21-9, 21-27

SPCPKG.LIS output file, 21-6

SPCPKG.SQL script, 21-6, 21-27

SPCREATE.SQL script, 21-5, 21-27

running, 21-6

SPCTAB.LIS output file, 21-6

SPCTAB.SQL script, 21-6, 21-27

SPCUSR.LIS output file, 21-6

SPCUSR.SQL script, 21-6, 21-27

SPDOC.TXT

Statspack documentation, 21-28

SPDROP.SQL script, 21-26, 21-27

SPDTAB.LIS output file, 21-26

SPDTAB.SQL script, 21-26, 21-27

SPDUSR.LIS output file, 21-26

SPDUSR.SQL script, 21-26, 21-27

SPPURGE.SQL script, 21-23, 21-28

SPREPINS.SQL script, 21-27

SPREPORT.SQL script, 21-27

performance report, 21-9

running the script, 21-10

SPREPSQL.SQL script, 21-27

performance report, 21-10

SPTRUNC.SQL script, 21-25, 21-28

SPUEXP.PAR parameter file, 21-28

SPUP816.SQL script, 21-27

SPUP817.SQL script, 21-27

SPUP90.SQL script, 21-27

SQL functions

optimizing view queries, 2-43

SQL Parse event, 12-2

SQL statements

avoiding the use of indexes, 4-6

complex, 2-33
Index-17

complex optimizing, 2-33

converting examples, 2-30, 8-17

distributed optimization, 2-13

ensuring the use of indexes, 4-6

execution plans of, 1-18

modifying indexed data, 4-4

optimization of complex statements, 2-33

optimization of distributed, 2-13

optimizing complex, 2-33

processing overview, 1-2

thresholds, 21-15, 21-17

waiting for I/O, 22-31

SQL trace facility, 10-2, 10-6

example of output, 10-16

output, 10-13

statement truncation, 10-15

steps to follow, 10-3

trace files, 10-5

SQL*Loader, 13-11

SQL*Net message from client idle events, 22-26

SQL*Net message from dblink wait events, 22-27

SQL*Plus

autotrace, 11-1

BEGIN_SNAP variable, 21-12

CLEAR TIMING command, 11-7

DEFAULT_TABLESPACE variable, 21-6

END_SNAP variable, 21-12

REPORT_NAME variable, 21-12

statistics, 11-4

system variables influencing performance, 11-9

TEMPORARY_TABLESPACE variable, 21-6

TIMING command, 11-7

SQL_STATEMENT column

TKPROF_TABLE, 10-18

SQL_TRACE

initialization parameter, 10-6

SQL.BSQ file, 13-4

SQLSegment event, 12-15

ST locks, 24-18

standard resource utilization items, 12-16

STAR hint, 5-23

star joins, 1-44

star query, 1-44

star transformation, 5-21

STAR_TRANSFORMATION hint, 5-21

STAR_TRANSFORMATION_ENABLED

initialization parameter, 1-61, 5-22

start columns

in partitioning and EXPLAIN PLAN

statement, 9-13

START statement in Oracle Trace, 12-3, 12-4

STATEMENT_ID column

PLAN_TABLE table, 9-23

statistics

automated collecting, 21-8

automated gathering, 21-8

collecting, 11-7, 21-8

collection interval, 21-9

consistent gets, 14-9, 18-3

database server, 11-4

db block gets, 14-9, 18-3

estimates and block sampling, 3-4

estimates and row sampling, 3-4

exporting and importing, 3-2

extensible optimization, 1-61

from B-tree or bitmap index, 3-9

gathering with DBMS_STATS package, 3-6

generating, 3-3

generating and managing with DBMS_

STATS, 3-5

generating for cost-based optimization, 3-3

HIGH_VALUE and LOW_VALUE, 1-38

max session memory, 14-37

optimizer mode, 1-7

optimizer use of, 1-10, 3-2

partitions and subpartitions, 3-4

physical reads, 14-10

segment-level, 22-14

selectivity of predicates, 3-2

selectivity of predicates and histograms, 3-20

selectivity of predicates for user-defined, 1-62

session memory, 14-37

shared server processes, 19-5

sorts (disk), 14-68

sorts (memory), 14-68

SQL*Plus, 11-4

user-defined statistics, 1-62

Statspack

and Oracle Real Application Clusters, 21-25

automatic statistics gathering, 21-8
Index-18

compared with BSTAT/ESTAT, 20-7, 21-3

DBID, 21-25

documentation, 21-28

exporting data, 21-22

installation scripts, 21-27

installing in batch mode, 21-6

installing interactively, 21-4

INSTANCE_NUMBER, 21-25

level 7 snapshot, 21-18

performance data maintenance scripts, 21-28

removing, 21-26

reporting and automation scripts, 21-27

running reports, 21-10

scripts, 21-26

sharing data, 21-22

SNAP_ID, 21-3

snapshots, 21-3

space requirements, 21-4

SPCREATE.SQL, 21-5

SPDOC.TXT, 21-28

uninstalling, 21-26

upgrading scripts, 21-27

using DBMS_JOB to gather statistics, 21-8

STATSPACK.MODIFY_STATSPACK_

PARAMETER procedure, 21-16, 21-19

STATSPACK.SNAP procedure, 21-7, 21-8, 21-19

stop columns

in partitioning and EXPLAIN PLAN

statement, 9-13

STOP statement in Oracle Trace, 12-3, 12-6

STORAGE clause

OPTIMAL parameter, 18-3

stored outlines

creating and using, 7-4

execution plans and plan stability, 7-2

hints, 7-3

moving tables, 7-11

storage requirements, 7-4

using, 7-6

viewing data for, 7-10

striping, 15-4

manual, 15-16

subpartitions

statistics, 3-4

subqueries

converting to joins, 2-33

NOT IN, 1-43

optimizing IN subquery, 2-37

subquery unnesting, 6-21

substitution variables

parsing, 11-10

swapping, 16-12

reducing, 14-4

switching processes, 16-13

System Global Area tuning, 14-4

system statistics

gathering, 3-6

system variables

influencing SQL*Plus performance, 11-9

T
tables

creating, 13-7

dimensions and star queries, 1-44

fact tables and star queries, 1-44

formatter in Oracle Trace, 12-3

full scans, 22-34

lookup tables, 1-44

placement on disk, 15-16

setting storage options, 13-7

tablespaces, 13-6

creating, 13-6

dictionary managed, 21-4

locally managed, 21-4

rollback, 13-6

temporary, 13-6

TCP.NODELAY parameter, 23-14

temporary tablespaces, 13-6

TEMPORARY_TABLESPACE variable, 21-6

thrashing, 16-12

thread, 16-5

thresholds

SQL statement, 21-17

SQL statements, 21-15

throughput

cost-based approach, 1-7

optimizer goal, 1-5

optimizing, 1-5, 5-7

TIMED_STATISTICS initialization parameter, 21-7
Index-19

SQL Trace, 10-4

TIMESTAMP column

PLAN_TABLE table, 9-23

TIMING command

SQL*Plus, 11-7

TKPROF program, 10-3, 10-6

editing the output SQL script, 10-17

example of output, 10-16

generating the output SQL script, 10-17

syntax, 10-8

using the EXPLAIN PLAN statement, 10-11

TKPROF_TABLE, 10-18

querying, 10-18

TM locks, 24-18

Trace, Oracle, 12-1

tracing

queries, 11-7

tracing statements

for performance statistics, 11-5

for query execution path, 11-5

using a database link, 11-6

with parallel query option, 11-7

transactions

assigning rollback segments, 18-3

TRIMOUT

tuning, 11-10

TRIMSPOOL

tuning, 11-11

truncating data, 21-25

tuning

DEFINE OFF, 11-10

FLUSH OFF, 11-10

iSQL*Plus parameters, 11-13

latches, 24-12

logical structure, 4-2

memory allocation, 14-5

resource contention, 22-1

SERVEROUTPUT, 11-10

SET ARRAYSIZE, 11-10

shared server, 19-2

SQL statements, 11-2

System Global Area (SGA), 14-4

TRIMOUT, 11-10

TRIMSPOOL, 11-11

TX locks, 24-18

U
UCPU item, 12-16

UL locks, 24-19

UNION ALL operator

examples, 2-31, 2-33, 2-48

optimizing view queries, 2-36

transforming OR into, 2-30, 8-17

UNION operator

examples, 2-39, 2-49

optimizing view queries, 2-36

UNIQUE constraint, 4-8

unique keys

optimization, 2-34

searches, 8-6

uniqueness, 4-8

UNIX system performance, 16-7

UNNEST hint, 5-36

upgrade

to the cost-based optimizer, 7-14

USE_CONCAT hint, 5-18

USE_MERGE hint, 5-25

USE_NL hint, 5-24

USE_STORED_OUTLINES parameter, 7-6

user defined locks, 24-19

user global area (UGA)

shared servers, 14-35, 19-2

V$SESSTAT, 14-37

USER_DUMP_DEST initialization parameter, 10-4

SQL Trace, 10-4

USER_ID column

TKPROF_TABLE, 10-19

USER_OUTLINE_HINTS view

stored outline hints, 7-10

USER_OUTLINES view

stored outlines, 7-10

USER_TAB_COL_STATISTICS view, 1-38

USER_TAB_COLUMNS view, 1-38

USER_TABLES view, 1-38

user-defined costs, 1-63

UTLCHN1.SQL script, 22-22

utlxplp.sql

SQL script for viewing EXPLAIN PLANs, 1-19

utlxpls.sql

SQL script for viewing EXPLAIN PLANs, 1-19
Index-20

V
V$BH view, 14-15

V$BUFFER_POOL_STATISTICS view, 14-15

V$DATAFILE view, 24-7

V$DB_CACHE_ADVICE view, 14-6, 14-9, 14-11,

14-12, 14-15

V$DB_OBJECT_CACHE view, 24-5

V$FAST_START_SERVERS view, 17-19

V$FAST_START_TRANSACTIONS view, 17-19

V$FILESTAT view, 24-6

V$INSTANCE_RECOVERY view, 17-9

V$LATCH view, 24-9

V$LATCH_CHILDREN view, 24-13

V$LATCHHOLDER view, 24-13

V$LIBBRARY_CACHE_MEMORY view, 24-16

V$LIBRARYCACHE view, 24-15

NAMESPACE column, 14-29

V$LOCK view, 24-17

V$MTTR_TARGET_ADVICE view, 24-21

V$MYSTAT view, 24-22

V$OPEN_CURSOR view, 24-23

V$PARAMETER view, 24-25

V$PROCESS view, 24-26

V$QUEUE view, 19-5

V$ROLLSTAT view, 24-28

V$ROWCACHE view, 24-29

GETMISSES column, 14-34

GETS column, 14-34

performance statistics, 14-32

V$RSRC_CONSUMER_GROUP view, 22-8

V$SEGMENT_STATISTICS view, 24-31

V$SEGSTAT view, 24-32

V$SEGSTAT_NAME view, 24-32

V$SESSION view, 24-33

V$SESSION_EVENT view, 24-36

network information, 23-6

V$SESSION_WAIT view, 22-13, 24-37

network information, 23-6

V$SESSTAT view, 22-8, 24-41

network information, 23-6

statistics, 24-42

using, 14-37

V$SHARED_POOL_ADVICE view, 24-45

V$SHARED_POOL_RESERVED view, 14-42

V$SQL view, 24-45

PLAN_HASH_VALUE column, 24-45

V$SQL_PLAN view, 24-46

V$SQL_PLAN_STATISTICS view, 24-51

V$SQL_PLAN_STATISTICS_ALL view, 24-53

V$SQLAREA view, 24-57

V$SQLTEXT view, 24-59

V$STATISTICS_LEVEL view, 24-61

V$SYSSTAT view, 24-61

redo buffer allocation, 14-47

statistics, 24-63

tuning sorts, 14-68

using, 14-9

V$SYSTEM_EVENT view, 24-67

V$SYSTEM_PARAMETER view, 24-25

V$UNDOSTAT view, 13-15, 24-69

V$WAITSTAT view, 22-13, 24-70

VARCHAR datatype, 13-3

VARCHAR2 datatype, 13-3

variables

bind variables and optimization, 1-38

views

complex view merging, 2-37

counter/accumulator, 24-2

current state views, 24-2

dynamic performance, 24-2

histograms, 3-25

information views, 24-4

non-null values for nulls, 2-45

select-project-join views, 2-35

statistics, 3-15

vmstat UNIX command, 16-12
Index-21

W
wait events

buffer busy waits, 22-27

contention wait events, 22-41

direct path, 22-35

event timings, 21-21

free buffer waits, 22-39

idle wait events, 22-49

log file switch, 22-46

network communication wait events, 22-25

reasons for, 24-70

resource wait events, 22-31

time units, 21-20
Index-22

	Contents
	Send Us Your Comments
	Preface
	Audience
	Organization
	Related Documentation
	Conventions
	Documentation Accessibility

	What’s New in Oracle Performance?
	Part I� Writing and Tuning SQL
	1 Introduction to the Optimizer
	Overview of SQL Processing
	Overview of the Optimizer
	Features that Require the CBO
	Optimizer Operations

	Choosing an Optimizer Approach and Goal
	How the CBO Optimizes SQL Statements for Fast Response

	Understanding the Cost-Based Optimizer
	Components of the CBO
	Understanding Execution Plans

	Understanding Access Paths for the CBO
	Full Table Scans
	Rowid Scans
	Index Scans
	Cluster Scans
	Hash Scans
	Sample Table Scans
	How the CBO Chooses an Access Path

	Understanding Joins
	How the CBO Executes Join Statements
	How the CBO Chooses the Join Method
	How the CBO Chooses Execution Plans for Join Types
	Nested Loop Joins
	Hash Joins
	Sort Merge Joins
	Cartesian Joins
	Outer Joins

	Setting Cost-Based Optimizer Parameters
	Enabling CBO Features
	Controlling the Behavior of the CBO

	Overview of the Extensible Optimizer
	Understanding User-Defined Statistics
	Understanding User-Defined Selectivity
	Understanding User-Defined Costs

	2 Optimizer Operations
	How the Optimizer Performs Operations
	How the CBO Evaluates IN-List Iterators
	How the CBO Evaluates Concatenation
	How the CBO Evaluates Remote Operations
	How the CBO Executes Distributed Statements
	How the CBO Executes Sort Operations
	How the CBO Executes Views
	How the CBO Evaluates Constants
	How the CBO Evaluates the UNION and UNION ALL Operators
	How the CBO Evaluates the LIKE Operator
	How the CBO Evaluates the IN Operator
	How the CBO Evaluates the ANY or SOME Operator
	How the CBO Evaluates the ALL Operator
	How the CBO Evaluates the BETWEEN Operator
	How the CBO Evaluates the NOT Operator
	How the CBO Evaluates Transitivity
	How the CBO Optimizes Common Subexpressions
	How the CBO Evaluates DETERMINISTIC Functions

	How the Optimizer Transforms SQL Statements
	How the CBO Transforms ORs into Compound Queries
	How the CBO Unnests Subqueries
	How the CBO Merges Views
	How the CBO Pushes Predicates
	How the CBO Executes Compound Queries

	3 Gathering Optimizer Statistics
	Understanding Statistics
	Generating Statistics
	Getting Statistics for Partitioned Schema Objects
	Using the DBMS_STATS Package
	Using the ANALYZE Statement
	Finding Data Distribution
	Missing Statistics

	Using Statistics
	Managing Statistics
	Verifying Table Statistics
	Verifying Index Statistics
	Verifying Column Statistics

	Using Histograms
	When to Use Histograms
	Creating Histograms
	Types of Histograms
	Viewing Histograms
	Verifying Histogram Statistics

	4 Understanding Indexes and Clusters
	Understanding Indexes
	Tuning the Logical Structure
	Choosing Columns and Expressions to Index
	Choosing Composite Indexes
	Writing Statements That Use Indexes
	Writing Statements That Avoid Using Indexes
	Re-creating Indexes
	Compacting Indexes
	Using Nonunique Indexes to Enforce Uniqueness
	Using Enabled Novalidated Constraints

	Using Function-based Indexes
	Setting Parameters to Use Function-Based Indexes in Queries

	Using Index-Organized Tables
	Using Bitmap Indexes
	When to Use Bitmap Indexes
	Using Bitmap Indexes with Good Performance
	Initialization Parameters for Bitmap Indexing
	Using Bitmap Access Plans on Regular B-tree Indexes
	Bitmap Index Restrictions

	Using Bitmap Join Indexes
	Using Domain Indexes
	Using Clusters
	Using Hash Clusters

	5 Optimizer Hints
	Understanding Optimizer Hints
	Specifying Hints

	Using Optimizer Hints
	Hints for Optimization Approaches and Goals
	Hints for Access Paths
	Hints for Query Transformations
	Hints for Join Orders
	Hints for Join Operations
	Hints for Parallel Execution
	Additional Hints
	Using Hints with Views

	6 Optimizing SQL Statements
	Goals for Tuning
	Reduce the Workload
	Balance the Workload
	Parallelize the Workload

	Identifying and Gathering Data on Resource-Intensive SQL
	Identifying Resource-Intensive SQL
	Gathering Data on the SQL Identified

	Dynamic Sampling
	How Dynamic Sampling Works
	When to Use Dynamic Sampling
	How to Use Dynamic Sampling to Improve Performance

	Overview of SQL Statement Tuning
	Verifying Optimizer Statistics
	Reviewing the Execution Plan
	Restructuring the SQL Statements
	Controlling the Access Path and Join Order with Hints
	Restructuring the Indexes
	Modifying or Disabling Triggers and Constraints
	Restructuring the Data
	Maintaining Execution Plans Over Time
	Visiting Data as Few Times as Possible

	7 Using Plan Stability
	Using Plan Stability to Preserve Execution Plans
	Using Hints with Plan Stability
	Storing Outlines
	Enabling Plan Stability
	Using Supplied Packages to Manage Stored Outlines
	Creating Outlines
	Using and Editing Stored Outlines
	Viewing Outline Data
	Moving Outline Tables

	Using Plan Stability with the Cost-Based Optimizer
	Using Outlines to Move to the Cost-Based Optimizer
	Upgrading and the Cost-Based Optimizer

	8 Using the Rule-Based Optimizer
	Overview of the Rule-Based Optimizer (RBO)
	Understanding Access Paths for the RBO
	Details of the RBO Access Paths
	Choosing Execution Plans for Joins with the RBO

	Transforming and Optimizing Statements with the RBO
	Transforming ORs into Compound Queries with the RBO
	Using Alternative SQL Syntax

	Part II� SQL-Related Performance Tools
	9 Using EXPLAIN PLAN
	Understanding EXPLAIN PLAN
	How Execution Plans Can Change
	Minimizing Throw-Away
	Looking Beyond Execution Plans

	Creating the PLAN_TABLE Output Table
	Running EXPLAIN PLAN
	Identifying Statements for EXPLAIN PLAN
	Specifying Different Tables for EXPLAIN PLAN

	Displaying PLAN_TABLE Output
	Reading EXPLAIN PLAN Output
	EXPLAIN PLAN Examples

	Viewing Bitmap Indexes with EXPLAIN PLAN
	Viewing Partitioned Objects with EXPLAIN PLAN
	Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN
	Examples of Pruning Information with Composite Partitioned Objects
	Examples of Partial Partition-wise Joins
	Examples of Full Partition-wise Joins
	Examples of INLIST ITERATOR and EXPLAIN PLAN
	Example of Domain Indexes and EXPLAIN PLAN

	Viewing Parallel Execution with EXPLAIN PLAN
	CPU Costing Model
	EXPLAIN PLAN Restrictions
	PLAN_TABLE Columns

	10 Using SQL Trace and TKPROF
	Understanding SQL Trace and TKPROF
	Understanding the SQL Trace Facility
	Understanding TKPROF

	Using the SQL Trace Facility and TKPROF
	Step 1: Setting Initialization Parameters for Trace File Management
	Step 2: Enabling the SQL Trace Facility
	Step 3: Formatting Trace Files with TKPROF
	Step 4: Interpreting TKPROF Output
	Step 5: Storing SQL Trace Facility Statistics

	Avoiding Pitfalls in TKPROF Interpretation
	Avoiding the Argument Trap
	Avoiding the Read Consistency Trap
	Avoiding the Schema Trap
	Avoiding the Time Trap
	Avoiding the Trigger Trap

	Sample TKPROF Output
	Sample TKPROF Header
	Sample TKPROF Body
	Sample TKPROF Summary

	11 Using Autotrace in SQL*Plus
	Overview of the Autotrace Report
	Configuring the Autotrace Report
	Setups Required for the Autotrace Report
	Execution Plans for SQL Statements
	Database Statistics for SQL Statements
	Tracing Statements Examples

	Collecting Timing Statistics
	Tracing Parallel and Distributed Queries
	Monitoring Disk Reads and Buffer Gets

	SYSTEM Variables Influencing SQL*Plus Performance
	SET APPINFO OFF
	SET ARRAYSIZE
	SET DEFINE OFF
	SET FLUSH OFF
	SET SERVEROUTPUT
	SET TRIMOUT ON
	SET TRIMSPOOL ON

	iSQL*Plus Server Statistics Report
	Active Statistics
	Interpreting Active Statistics

	12 Using Oracle Trace
	Overview of Oracle Trace
	Event Data
	Event Sets
	Accessing Collected Data

	Collecting Oracle Trace Data
	Using the Oracle Trace Command-Line Interface
	Using Initialization Parameters to Control Oracle Trace
	Controlling Oracle Trace Collections from PL/SQL

	Accessing Oracle Trace Collection Results
	Formatting Oracle Trace Data to Oracle Tables
	Running the Oracle Trace Reporting Utility

	Oracle Server Events
	Data Items Collected for Events
	Items Associated with Each Event

	Troubleshooting Oracle Trace
	Oracle Trace Configuration
	Formatter Tables

	Part III� Creating a Database for Good Performance
	13 Building a Database for Performance
	Initial Database Creation
	Database Creation Using the Installer
	Manual Database Creation
	Parameters Necessary for Initial Database Creation
	The CREATE DATABASE Statement
	Running Data Dictionary Scripts
	Sizing Redo Log Files
	Creating Subsequent Tablespaces

	Creating Tables for Good Performance
	Data Segment Compression

	Loading and Indexing Data
	Using SQL*Loader for Good Performance
	Efficient Index Creation

	Initial Instance Configuration
	Configuring Undo Space

	Setting up Operating System, Database, and Network Monitoring

	14 Memory Configuration and Use
	Understanding Memory Allocation Issues
	Oracle Memory Caches
	Dynamically Changing Cache Sizes
	Application Considerations
	Operating System Memory Use
	Iteration During Configuration

	Configuring and Using the Buffer Cache
	Using the Buffer Cache Effectively
	Sizing the Buffer Cache
	Interpreting and Using the Buffer Cache Advisory Statistics
	Considering Multiple Buffer Pools
	Buffer Pool Data in V$DB_CACHE_ADVICE
	Buffer Pool Hit Ratios
	Determining Which Segments Have Many Buffers in the Pool
	KEEP Pool
	RECYCLE Pool

	Configuring and Using the Shared Pool and Large Pool
	Shared Pool Concepts
	Using the Shared Pool Effectively
	Sizing the Shared Pool
	Interpreting Shared Pool Statistics
	Using the Large Pool
	Using CURSOR_SPACE_FOR_TIME
	Caching Session Cursors
	Configuring the Reserved Pool
	Keeping Large Objects to Prevent Aging
	CURSOR_SHARING for Existing Applications

	Configuring and Using the Java Pool
	Configuring and Using the Redo Log Buffer
	Sizing the Log Buffer
	Log Buffer Statistics

	Configuring the PGA Working Memory
	Automatic PGA Memory Management
	Configuring SORT_AREA_SIZE

	15 I/O Configuration and Design
	Understanding I/O
	Designing I/O Layouts
	Disk Performance and Reliability
	Disk Technology
	What Is Disk Contention?
	Load Balancing and Striping
	Striping and RAID
	Balancing Budget, Performance, and Availability

	Basic I/O Configuration
	Determining Application I/O Characteristics
	I/O Configuration Decisions
	Know Your I/O System
	Match I/O Requirements with the I/O System
	Lay Out the Files Using Operating System or Hardware Striping
	Manually Distributing I/O
	When to Separate Files
	Three Sample Configurations
	Oracle-Managed Files
	Choosing Data Block Size

	16 Understanding Operating System Resources
	Understanding Operating System Performance Issues
	Using Operating System Caches
	Memory Usage
	Using Process Schedulers
	Using Operating System Resource Managers

	Solving Operating System Problems
	Performance Hints on UNIX-Based Systems
	Performance Hints on NT Systems
	Performance Hints on Midrange and Mainframe Computers

	Understanding CPU
	Context Switching

	Finding System CPU Utilization
	Checking Memory Management
	Checking I/O Management
	Checking Network Management
	Checking Process Management

	17 Configuring Instance Recovery Performance
	Understanding Instance Recovery
	Checkpointing and Cache Recovery
	How Checkpoints Affect Performance

	Reducing Checkpoint Frequency to Optimize Runtime Performance
	Configuring the Duration of Cache Recovery
	Initialization Parameters that Influence Cache Recovery Time
	Use Fast-Start Checkpointing to Limit Instance Recovery Time
	Set LOG_CHECKPOINT_TIMEOUT to Influence the Amount of Redo
	Set LOG_CHECKPOINT_INTERVAL to Influence the Amount of Redo
	Use Parallel Recovery to Speed up Redo Application

	Monitoring Cache Recovery
	Monitoring Estimated MTTR: Example Scenario
	Calculating Performance Overhead
	Calculating Performance Overhead: Example Scenario
	Calibrating the MTTR

	MTTR Advisory
	How MTTR Advisory Works
	Enabling MTTR Advisory
	Viewing MTTR Advisory

	Tuning Transaction Recovery
	Using Fast-Start On-Demand Rollback
	Using Fast-Start Parallel Rollback

	18 Configuring Undo and Temporary Segments
	Configuring Undo Segments
	Configuring Automatic Undo Management
	Configuring Rollback Segments

	Configuring Temporary Tablespaces

	19 Configuring Shared Servers
	Introduction to Shared Server Performance
	Configuring the Number of Shared Servers
	Identifying Contention Using the Dispatcher-Specific Views
	Reducing Contention for Dispatcher Processes
	Reducing Contention for Shared Servers
	Determining the Optimal Number of Dispatchers and Shared Servers

	Part IV� System-Related Performance Tools
	20 Oracle Tools to Gather Database Statistics
	Overview of Tools
	Principles of Data Gathering
	Interpreting Statistics
	Oracle Enterprise Manager Diagnostics Pack
	Statspack
	V$ Performance Views
	Example - Saving File I/O Data

	21 Using Statspack
	Introduction to Statspack
	Statspack Compared with BSTAT/ESTAT
	How Statspack Works
	Configuring Database Space Requirements for Statspack
	Installing Statspack
	Interactive Statspack Installation
	Batch Mode Statspack Installation

	Using Statspack
	Taking a Statspack Snapshot
	Automating Statistics Gathering
	Running a Statspack Performance Report
	Configuring the Amount of Data Captured in Statspack
	Time Units Used for Wait Events
	Event Timings
	Managing and Sharing Statspack Performance Data
	Oracle Real Application Clusters Considerations with Statspack

	Removing Statspack
	Statspack Supplied Scripts and Documentation
	Scripts for Statspack Installation and Removal
	Scripts for Statspack Reporting and Automation
	Scripts for Upgrading Statspack
	Scripts for Statspack Performance Data Maintenance
	Statspack Documentation

	Part V� Optimizing Instance Performance
	22 Instance Tuning
	Performance Tuning Principles
	Baselines
	The Symptoms and the Problems
	When to Tune

	Performance Tuning Steps
	Define the Problem
	Examine the Host System
	Examine the Oracle Statistics
	Implement and Measure Change

	Interpreting Oracle Statistics
	Examine Load
	Using Wait Event Statistics to Drill Down to Bottlenecks
	Table of Wait Events and Potential Causes
	Additional Statistics

	Wait Events
	SQL*Net
	buffer busy waits
	db file scattered read
	db file sequential read
	direct path read and direct path read (lob)
	direct path write
	enqueue
	free buffer waits
	latch free
	log buffer space
	log file switch
	log file sync
	rdbms ipc reply

	Idle Wait Events

	23 Tuning Networks
	Understanding Connection Models
	Detecting Network Problems
	Using Dynamic Performance Views for Network Performance
	Understanding Latency and Bandwidth

	Solving Network Problems
	Finding Network Bottlenecks
	Dissecting Network Bottlenecks
	Using Array Interfaces
	Adjusting Session Data Unit Buffer Size
	Using TCP.NODELAY
	Using Connection Manager

	Part VI� Performance-Related Reference Information
	24 Dynamic Performance Views for Tuning
	Dynamic Performance Tables
	Current State Views
	Counter/Accumulator Views
	Information Views

	Description of Dynamic Performance Views
	V$DB_OBJECT_CACHE
	V$FILESTAT
	V$LATCH
	V$LATCH_CHILDREN
	V$LATCHHOLDER
	V$LIBRARYCACHE
	V$LIBRARY_CACHE_MEMORY
	V$LOCK
	V$MTTR_TARGET_ADVICE
	V$MYSTAT
	V$OPEN_CURSOR
	V$PARAMETER and V$SYSTEM_PARAMETER
	V$PROCESS
	V$ROLLSTAT
	V$ROWCACHE
	V$SEGMENT_STATISTICS
	V$SEGSTAT
	V$SEGSTAT_NAME
	V$SESSION
	V$SESSION_EVENT
	V$SESSION_WAIT
	V$SESSTAT
	V$SHARED_POOL_ADVICE
	V$SQL
	V$SQL_PLAN
	V$SQL_PLAN_STATISTICS
	V$SQL_PLAN_STATISTICS_ALL
	V$SQLAREA
	V$SQLTEXT
	V$STATISTICS_LEVEL
	V$SYSSTAT
	V$SYSTEM_EVENT
	V$UNDOSTAT
	V$WAITSTAT

	A Schemas Used in Performance Examples
	PER_ALL_PEOPLE_F Table
	RA_CUSTOMERS Table
	SO_HEADERS_ALL and SO_HEADERS Tables
	MTL_SYSTEM_ITEMS Table
	SO_LINES_ALL and SO_LINES Tables

	Glossary
	Index

