

 Two Stress Test Tools for Oracle DBMS:

1) Orabm: an Open Source suite to test
CPU performance under a CPU-
intensive Oracle workload.

2) Orastress!: a tool to generate a

multi-session, multi-instance, multi-
mode workload from a single
command line.

by Geoff Ingram (geoff.ingram@linxcel.co.uk)

© Linxcel Europe Ltd
2004

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

2

ABOUT THE AUTHOR .. 3

BACKGROUND READING: THE TPC-C BENCHMARK .. 3

INTRODUCTION... 3

ORABM... 4
INSTALLATION ... 5
HOW ORABM WORKS .. 5
ORABM COMMAND LINE ... 5
RESULTS OUTPUT .. 6

ORASTRESS! ... 7
INSTALLATION ... 7
OBTAINING A KEY... 7
ORASTRESS! COMMAND LINE.. 8
RESULTS OUTPUT .. 9
MONITORING PERFORMANCE DURING EXECUTION.. 10
REFERENCE RESULT .. 10

APPENDIX A – BUILDING ORABM AND ORABMLOAD FROM SOURCE................................ 12
PRE-REQUISITES... 12
TO BUILD ORABMLOAD .. 12
TO BUILD ORABM... 12

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

3

About the Author

Geoff Ingram began his IT career in the 1980s after gaining a Physics degree at the University of
Birmingham, UK. He has operated as a freelance Oracle consultant for several years, preceded by several
years in product development at Oracle Corp, latterly as a principal software engineer. He is the author of
"High Performance Oracle" (ISBN: 0471224367) published by John Wiley Inc. in August 2002:

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Ingram,Geoff

Background Reading: the TPC-C benchmark

All DBAs should have at least some familiarity with the TPC-C benchmark, as Orabm and Orastress! are
based on some of its facilities. The full TPC-C specification - including examples of the 5 TPC transactions
and an input data generator (written in embedded SQL) - can be found at www.tpc.org.

A TPC-C compliant data-loader (Orabmload) is included, that implements all the functions in the
specification. This data is the basis for both Orabm and Orastress!.

Introduction

Oracle DBAs and developers often find themselves in situations where they need to measure database
performance against a baseline, typically to ensure that operational improvements deliver the expected
benefits or to ensure that no regression in performance has occurred as a result of changes.

The changes in question may be due to a server upgrade, an Oracle upgrade, an operating system
upgrade, or something more radical like a change in operating system or server hardware vendor.

This paper describes three command line tools to facilitate basic baseline performance information
capture with minimal effort:

• Orabmload: loads TPC-C compliant data into a user-chosen number of Warehouses
• Orabm: stresses the CPU and memory of an Oracle DBMS server
• Orastress!: stresses the DBMS server with a multi-session, multi-instance load

Orabmload generates the test data for both Orabm and Orastress!. It’s Open Source, and
available as a Pro*C program. Appendix A includes instructions on how to build the
executable from source.

These tools are not fully-fledged, all encompassing, or totally configurable. Instead they are designed to
run out-of-the box and deliver results quickly, to provide a stake in the ground for the performance of a
server running several different types of Oracle DBMS workload:

• CPU intensive workload - Orabm
• Mixed-workload Online Transaction Processing (OLTP) - Orastress!
• I/O intensive INSERT workload - Orastress!
• I/O intensive direct-path INSERT workload - Orastress!

Ready built executables for Windows are provided in all cases: all you need is a low end PC
with Oracle9i client installed, and one or more Oracle databases (any 8i or 9i server
platform) accessible by Oracle Net to get started.

Orabm transactions are based on the Stock-Level and Order-Status read-only transactions in TPC-C. By
ensuring that the data fits totally in memory (through an appropriate Oracle configuration), Orabm can
generate a CPU and memory intensive workload with almost zero physical I/O.

http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author=Ingram,Geoff

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

4

Orastress! runs in one of four possible modes, where the mode is provided through a command line
parameter. These modes are described in the following table:

Command
Line Arg

Description

READ Runs the identical read-only workload as Orabm to stress CPU and
memory.

OLTP Uses all five TPC-C transactions: New-Order, Order-Status, Payment,
Stock-Level and Delivery, in order to generate a mixed-transaction (SQL
INSERT/UPDATE/DELETE) OLTP workload which stresses CPU, memory,
and I/O.

INS Runs an I/O intensive SQL INSERT workload by copying rows into the
ITEM_INS table from the TPC-C ITEM table.

DIO Runs an I/O intensive direct-path INSERT workload by copying rows into
the ITEM_DIO table from the TPC-C ITEM table.

All tests run entirely on the database server without client-server traffic generation, and consecutive
transactions run without any delay period: that’s because the goal of the tests is to stress the DBMS
server. In these respects the tests differ fundamentally from TPC-C, which simulates the behavior of a
real-world application with real end users who introduce thinking and data-entry time delays between
transactions.

Orabm

Orabm is a set of SQL scripts and command line program (Orabm) designed to help answer the question:

"how does my server perform under a CPU/memory intensive Oracle database workload"

The code is downloadable from:

http://www.linxcel.co.uk/orabm/orabm.tar

The Orabm data loader program (Orabmload) generates a TPC-C compliant set of data against which the
test runs, and orabm runs the stress test itself.

Source code for both Orabm (orabm.c) and Orabmload (orabmload.pc) is available.

Note: Ready-built executables for Oracle9i on Sun Solaris, Linux, and Windows are
provided – the Windows version means you can run the entire suite from any PC, even
a low-end one, where Oracle client software is installed. The database can be any
Oracle database accessible by Oracle Net.

If you don't run Oracle on those platforms you can easily build your own versions from source, using
instructions in Appendix A. POSIX threads support is required to build orabm, which runs multiple
concurrent database sessions at once from separate threads in the same program.

The chief characteristics of a workload to meet the goal of stressing the CPUs are:

1. it runs entirely within the DBMS server thereby avoiding delays from client/server
roundtrips.

2. there is no wait time between transactions
3. all transactions are read-only to avoid file-write operations
4. the set of tables which the stress test runs against fit entirely within a 200MB buffer cache

Provided that you allocate an Oracle System Global Area (SGA) with a 200MB buffer cache, the Oracle
workload imposed by orabm should result in no physical I/O at all, once the data is cached - just logical
I/O from the Oracle buffer cache, resulting in intensive use of CPU and memory.

http://www.linxcel.co.uk/orabm/orabm.tar

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

5

Installation

All objects used by the stress test are owned by ORABM. Follow the steps below to install the objects and
load the test data, making sure that ORACLE_SID is set to the database that you want to run the test
against:

Operation Command
1 create the ORABM user (assumes TOOLS tablespace, TEMP

temporary tablespace)
sqlplus system/pwd @orabm_user

2 create the tables sqlplus system/pwd @orabm_tab
3 load the data $ orabmload Warehouses 1
4 create the indexes sqlplus system/pwd @orabm_ind
5 analyze the tables and indexes sqlplus system/pwd @orabm_analyze
6 create the stress-test PL/SQL procedures sqlplus system/pwd

@orabm_serverside_stress
7 cache the table and index data in the SGA sqlplus system/pwd @orabm_cache

Note: you can optionally run Orabmload against a remote database by first setting the
environment symbol LOCAL (Windows) or TWO_TASK (UNIX/Linux) to contain an Oracle Net
alias where you installed the objects. Keep in mind this will be a lot slower than running the
load from the server where the database is located.

Atfer completing the list, you can use the orabm_query_cache.sql script to display the approximate
percent of each table's data and index blocks present in the block buffer cache. This should be close to
100%.

How Orabm Works

Orabm works by running a user-specified number of database transactions in each of a user-specified
number of concurrent database sessions. The transactions are executed by the
ORABM_SERVERSIDE_STRESS stored procedure, under the schema ORABM.

For each concurrent session, ORABM_SERVERSIDE_STRESS runs the number of transactions specified on
the orabm command line, and returns the transactions per second (TPS) value for that session during the
sampling interval on completion. To ensure that all concurrent sessions are processing transactions during
the sampling interval, the TPS value only includes results from the middle 80% of transactions: the first
10% and last 10% are ignored.

The transactions are loosely based on the TPC-C Order-Status and Stock-Level transactions, using a
predefined distribution of transactions. The transaction split, which is based on data returned by the
DBMS_RANDOM package, should be:

Stock-Level:Order-by-Customer-Name:Order-by-Customer-Id
50%:30%:20%

The string returned by ORABM_SERVERSIDE_STRESS includes the transaction split during the test, to
ensure that the transaction distribution is correct, subject to random fluctuations e.g.:

...sl=4042(50.5%) on=2384(29.8%) oi=1573(19.7%)...

Orabm Command Line

Once you have set up the test tables, data, and indexes, you're ready to run orabm. The following
command shows orabm running 20000 transactions in a single session against the Oracle database
identified by ORACLE_SID in the UNIX environment:

$ orabm 1 20000

This command line runs the same workload against a remote database identified by the Oracle Net alias
linxceld1.co.uk from a Windows command box:

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

6

C:\> orabm 1 20000 linxceld1.co.uk

Note: running against a remote database has little (if any), affect on the transaction
throughput, because all processing takes place on the DBMS server.

Execution of a single Orabm session should show a single CPU at close to 100% utilization, provided that
all table and index data is present in the Oracle block buffer cache and no other workload is running on
the database server. On UNIX or Linux, you can use the “top” command to confirm this, or check that no
"db file sequential read" event waits are taking place for the Oracle session using info in the
V$SESSION_EVENT view - these indicate waits for physical I/O.

Alternatively, if your Oracle DBMS is running on Linux, you can use the gkrellm performance monitor to
show that CPU utilization of a single CPU is at ~100% and no physical I/O is taking place. Gkrellm can be
downloaded from:

http://web.wt.net/~billw/gkrellm/gkrellm.html

Here's an example of the command line you would use to run 10000 transactions against a local Oracle
database for three iterations. In the first iteration, one session runs, in the second iteration two
concurrent sessions run, and in the third iteration, six concurrent sessions run:

$ orabm 1,2,6 10000

Keep in mind that the specified number of transactions is run in each concurrent session.

Note: you should specify sufficient transactions such that the TPS results produced
don't fluctuate significantly between runs for a given number of sessions; 100000 is a
good value to choose.

Results Output

Output is appended to a log file orabm.database.log, where database is either the ORACLE_SID or TNS
alias that identifies the database where the test was run e.g. orabm.t92.log. For each iteration, the TPS
value for each concurrent session appears between begin and end markers. For example, the following
shows the contents of the log for two concurrent sessions - in this case the second iteration for the
previous command line example - where txn(all) displays the total transaction count, and xn(sam) and
t(sam) show the total transactions and time for the middle 80% of transactions for which sampling took
place:

---begin sess=2 txn=10000 ORACLE_SID=t92 Fri Nov 8 20:31:48 2002
T92.WORLD txn(all)=10000 xn(sam)=7999 t(sam)=44 tps=182 ...
T92.WORLD txn(all)=10000 xn(sam)=7999 t(sam)=45 tps=178 ...
---end - Fri Nov 8 20:32:46 2002

The total TPS for this iteration is the sum of the TPS for the two concurrent sessions (182+178=360). A
shell script (orabm_tps.sh) can be used to process output from the log on UNIX and Linux. The script
aggregates the TPS values for concurrent sessions in a single iteration into a total TPS value for that
iteration. The output based on the log info from the previous command line (3 iterations with 1, then 2,
then 6 concurrent sessions) shows:

$ orabm_tps.sh orabm.t92.log
ORACLE_SID=t92 sess=1 tps=182
ORACLE_SID=t92 sess=2 tps=360
ORACLE_SID=t92 sess=6 tps=364

In this example the server was a 2 CPU model - as a result, 2 concurrent sessions running in orabm are
enough to completely utilize all available CPU capacity. Additional sessions should result in the total TPS
remaining unchanged, or even falling slightly as the operating system performs context switches to share
the overloaded CPU resource between more ready-to-run sessions than available CPUs.

http://web.wt.net/~billw/gkrellm/gkrellm.html

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

7

Orastress!

Orastress! is a Windows command line utility and Oracle package procedure designed to help answer the
question:

"how does my server perform under a wide range of Oracle DBMS workloads"

The code is downloadable from:

http://www.linxcel.co.uk/orabm/orastress.zip

Note: to run Orastress! you need a Windows PC with Oracle9i client software, and one or more
Oracle instances accessible via Oracle net.

Installation

Orastress! requires the same TPC-C schema used by the Orabm CPU stress test. The schema and objects
should be installed as shown in the following table.

It’s important to be aware that, while Orabm uses a TPC-C schema with a single Warehouse to ensure all
data can be cached in memory, with Orastress! you can choose the number of Warehouses to be a higher
value.

Note: the size of the data loaded scales with the number of Warehouses. A 10
Warehouse schema requires approximately 1GB of database space. If you already
loaded data for Orabm, run the SQL “DROP USER ORABM CASCADE” first to prepare for
Orastress!.

Create the ORABM schema objects, then load and analyze the data as follows:

Operation Command
1 create the ORABM user (assumes TOOLS tablespace,

TEMP temporary tablespace)
sqlplus system/pwd @orabm_user

2 create the tables sqlplus system/pwd @orabm_tab
3 load the data $ orabmload Warehouses n
4 create the indexes sqlplus system/pwd @orabm_ind
5 analyze the tables and indexes sqlplus system/pwd @orabm_analyze
6 Ensure ORABM can run the DBMS_LOCK package As SYS run:

GRANT EXECUTE ON DBMS_LOCK TO ORABM

The Orastress! workload for each session is generated by the ORABM.ORASTRESS.STRESS package
procedure. To create the tables required for the Orastress! insert tests, and install the package against
the database identified by <your-TNS-alias> (where you loaded the test data), run:

 sqlplus orabm/orabm@<your-TNS-alias> @orastress_tab.sql
 sqlplus orabm/orabm@<your-TNS-alias> @orastress.plh
 sqlplus orabm/orabm@<your-TNS-alias> @orastress.plb

Obtaining A Key

By default you can run one session per database at any time. This in itself provides useful information on
server performance.

You need to register and get a key to create more than one concurrent load session per database.

http://www.linxcel.co.uk/orabm/orastress.zip

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

8

To get a trial key free of charge, please complete the following online form. Your trial key details will be
emailed to you shortly thereafter.

http://www.linxcel.co.uk/7505/10218_trialkey_orastress!.html

Your Serial number is displayed by running Orastress! without command line arguments from a DOS
command window e.g.:

C:\orabm>orastress!
Serial: D5F8-C0A0

After receiving the key, install as follows by entering the Name and Key into the dialog box that displays
when you run:

C:\orabm>orastress! register

Orastress! Command Line

Orastress! contains significant enhancements over Orabm:

• it provides 4 different types of workloads.
• it can execute against multiple instances in each iteration, from the same command line.

Command line usage:

orastress! –s sess-iterations-list –t transacts-per-sess –c tns-alias-list –m mode [-s
batchsize]

 where transactions-per-session in each iteration is run concurrently against all aliases in tns-alias-
list
 mode is one of READ OLTP INS DIO
 batchsize is optional number of rows inserted per transaction for INS and DIO mode (default 10000)

Note: a COMMIT takes place after each batchsize insert in INS or DIO mode.

Note: when Orastress! runs in READ mode against a single Warehouse, the code executed is identical to
Orabm.

Example 1:

 orastress! –s 1 –t 50000 –c inst1.world –m oltp

Run one iteration - comprising 50000 transactions in 1 session - against inst1.world.

Example 2:

 orastress! –s 2 –t 50000 –c inst1.world,inst2.world –m oltp

Run one iteration comprising 2 concurrent sessions of 50000 transactions on each of
inst1.world,inst2.world giving a total of 4 concurrent sessions. The location of the instances
specified by inst1.world,inst2.world is entirely down to the user. They could be:

• 2 instances of a RAC cluster
• different non RAC instances on the same server
• different non RAC instances on different servers (e.g. one on Linux, one on Solaris)

Example 3:

 orastress! –s 1,2,4 –t 50000 –c inst1,inst2,inst3,inst4 –m read

http://www.linxcel.co.uk/7505/10218_trialkey_orastress!.html

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

9

Run 3 iterations each of 50000 transactions on each of four instances: inst1, inst2, inst3 and
inst4, where the number of concurrent sessions in each iteration is:

1st iteration: 1 concurrent session on each instance, giving 4 sessions total
2nd iteration: 2 concurrent sessions on each instance, giving 8 sessions total
3rd iteration: 4 concurrent sessions on each instance, giving 16 sessions

Results Output

Output is very similar to Orabm, showing the transactions per second for each session in each iteration
and the transaction split between the five TPC-C transactions for OLTP mode:

---begin mode=oltp sess=1 txn=5000 TNS=l Fri Sep 19 22:11:06 2003
LXD1.WORLD #1 w=3 txn(all)=5000 xn(sam)=3999 t(sam)=431 tps=92.8 end=190903-12:25:39
---end - Fri Sep 19 22:20:19 2003

You need to add the tps= values in each iteration session to give the total tps for that iteration.

Note: the instance id is given by #1.

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

10

Monitoring Performance During Execution

Orastress! in OLTP mode enables you to monitor performance via SQL during execution as follows:

-- use this SQL to show total Transactions/Sec (TPS) for a single instance
select sum(substr(module,instr(module,'#')+1)) tps from
v$session where module like 'oltp%#%';

-- use this SQL to show total TPS per instance for RAC
select inst_id,sum(substr(module,instr(module,'#')+1)) tps from
gv$session where module like 'oltp%#%'
group by inst_id

-- use this SQL to show total TPS cluster-wide for RAC
select sum(substr(module,instr(module,'#')+1)) tps from
gv$session where module like 'oltp%#%'

To convey the maximum information about performance during execution, a graphical presentation of
wait events and statistics is required. For example, you can use the Event Profiles and Statistic Profiles
options in the Enterprise Edition free trial of empower! to show wait events and statistics for all nodes in a
RAC cluster on a single display. You can download empower! from:

http://www.linxcel.co.uk/empower/software/2.1/empower!.msi

The following screenshot shows significant amounts of waits for I/O (“db file sequential read”) and row
level locks (“enqueue”) during a three-session iteration of Orastress! on Red Hat Linux ES 2.1, running on
a single instance:

Reference Result

The following hardware and Oracle configuration produced ~100 TPS for a single session in repeated
tests:

http://www.linxcel.co.uk/empower/software/2.1/empower!.msi

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

11

• Oracle 9.2.0.4
• Red Hat Linux ES 2.1 kernel 2.4.9-e.12
• 1 x Pentium P4 1.4GHz processor
• 1 GB ECC RAM
• database located on 10000rpm Ultra160 18GB SCSI drive
• 10 Warehouse schema (Orabmload – 50 mins load time)
• 8K blocksize database
• 3 x 100MB redo logs
• 500K redo log buffer

TOOLS tablespace definition as follows:

CREATE TABLESPACE TOOLS BLOCKSIZE 8192
DATAFILE
'/u03/oradata/LXD1/tools01.dbf' SIZE 2000M AUTOEXTEND ON
NEXT 1280K MAXSIZE UNLIMITED
ONLINE PERMANENT EXTENT MANAGEMENT LOCAL UNIFORM SIZE 128K SEGMENT SPACE MANAGEMENT AUTO

/

Tip: set the TOOLS tablespace file size to ensure no autoextend takes place during the
monitored interval.

Significant Oracle initialization parameters:

db_cache_size 268435456
db_file_multiblock_read_count 16
log_buffer 524288
log_checkpoint_interval 0
pga_aggregate_target 25165824
shared_pool_size 83886080
sga_max_size 403772716
workarea_size_policy AUTO

Linxcel Europe Limited, 29 Harley Street, London, W1G 9QR
Tel: +44 (0) 207 927 6792, Fax: +44 (0) 207 637 0419

URL: http://www.linxcel.co.uk

12

Appendix A – Building Orabm and Orabmload from
source

If the supplied executables of orabm and orabmload don't work
for your OS or version of Oracle, you can create both from the source code.

• orabmload.pc is a Pro*C program.
• orabm.c is an OCI program.

Pre-requisites

For orabmload you need Pro*C installed (check for $ORACLE_HOME/bin/proc).
For orabmload and orabm, you need a C compiler. On Linux, gcc is available.

You can also download ready-built binaries of gcc for many other OS, including Solaris.

Note: The table and index creation scripts assume a TOOLS tablespace. For 10g this doesn’t
exist by default, so you need to create it.

To build orabmload

$ cd $ORACLE_HOME/rdbms/demo

Copy orabmload.pc to this directory.

Edit demo_rdbms.mk and add orabmload to the DEMOS symbol e.g.:

DEMOS=orabmload cdemo1 …

$ make -f demo_rdbms.mk orabmload PROC=$ORACLE_HOME/bin/proc

To build orabm

$ cd $ORACLE_HOME/rdbms/demo

Copy orabm to this directory.

Edit demo_rdbms.mk and add orabm to the DEMOS symbol e.g.:

DEMOS=orabm cdemo1 …

$ make -f demo_rdbms.mk orabm

	ABOUT THE AUTHOR	3
	About the Author
	Background Reading: the TPC-C benchmark
	Introduction
	Orabm
	Installation
	How Orabm Works
	Orabm Command Line
	Results Output

	Orastress!
	Installation
	Obtaining A Key
	Orastress! Command Line
	Results Output
	Monitoring Performance During Execution
	Reference Result

	Appendix A – Building Orabm and Orabmload from source
	Pre-requisites
	To build orabmload
	To build orabm

